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Background and Objectives: Finite element simulations are widely employed as a non-invasive and cost-

effective approach for predicting outcomes in biomechanical simulations. However, traditional finite element 
software, primarily designed for engineering materials, often encountered limitations in contact detection and 
enforcement, leading to simulation failure when dealing with complex biomechanical configurations. Currently, 
a lot of model tuning is required to get physically accurate finite element simulations without failures. This adds 
significant human interaction to each iteration of a biomechanical model. This study addressed these issues by 
introducing PolyFEM, a novel finite element solver that guarantees inversion- and intersection-free solutions 
with completely automatic collision detection. The objective of this research is to validate PolyFEM’s capabilities 
by comparing its results with those obtained from a well-established finite element solver, FEBio.

Methods: To achieve this goal, five comparison scenarios were formulated to assess and validate PolyFEM’s 
performance. The simulations were reproduced using both PolyFEM and FEBio, and the final results were 
compared. The five comparison scenarios included: (1) reproducing simulations from the FEBio test suite, 
consisting of static, dynamic, and contact-driven simulations; (2) replicating simulations from the verification 
paper published alongside the original release of FEBio; (3) a biomechanically based contact problem; (4) 
creating a custom simulation involving high-energy collisions between soft materials to highlight the difference 
in collision methods between the two solvers; and (5) performing biomechanical simulations of biting and quasi-

stance.

Results: We found that PolyFEM was capable of replicating all simulations previously conducted in FEBio. 
Particularly noteworthy is PolyFEM’s superiority in high-energy contact simulations, where FEBio fell short, 
unable to complete over half of the simulations in Scenario 4. Although some of the simulations required 
significantly more simulation time in PolyFEM compared to FEBio, it is important to highlight that PolyFEM 
achieved these results without the need for any additional model tuning or contact declaration.

Discussion: Despite being in the early stages of development, PolyFEM currently provides verified solutions for 
hyperelastic materials that are consistent with FEBio, both in previously published workflows and novel finite 
element scenarios. PolyFEM exhibited the ability to tackle challenging biomechanical problems where other 
solvers fell short, thus offering the potential to enhance the accuracy and realism of future finite element analyses.
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1. Introduction

Simulations of biomechanical systems are often used as a controlled 
and cost-effective way to make predictions of normal and/or patho-

logical processes, to gain insights into these complex systems through 
parametric analyses, to design devices, as an indirect and non-invasive 
way to perform measurements, and as a way to communicate and ed-

ucate [68,24,33,2,54,62,10]. Traditionally, computational biomechan-

ics, and bioengineering in general, have benefited significantly from 
adapting theories and approaches developed to solve traditional en-

gineering problems with traditional materials. For example, rubber 
elasticity provided an excellent general framework for understanding 
the fundamentals of tissue mechanics. However, many of these tools 
were never designed specifically to solve problems in biomechanics so 
they often fail to sufficiently describe specific aspects of biological me-

chanical behavior that are often required to answer specific biological 
questions (e.g., rubber elasticity cannot describe tissue growth and re-

modeling) [32].

Energy transfer via contact and friction is particularly challenging 
for simulations and proves to be especially problematic in the context 
of biological tissues. Compared to standard engineering materials, bio-

logical tissues can undergo very large non-linear deformations, even in 
response to relatively small forces, and are often in contact with other 
tissues that are mutually deformable. Small errors in the calculation of 
forces can result in very large deformations that do not accurately sim-

ulate the system. Thus, it is not only important to accurately describe 
material behaviors in these scenarios, but it is also critical to accurately 
describe mechanical interactions between materials that share contact 
surfaces.

For most scenarios, there are a few common configurations that are 
particularly challenging:

1. thin, soft layers compressed between large and stiff objects (for 
example, cartilage and menisci),

2. high-energy collisions,

3. large deformations of soft tissues,

4. complex contact between multiple objects in close proximity.

In all these cases, there are often failures due to either individual 
elements degenerating into zero or negative volume (often referred 
to as negative Jacobian elements) or an inability to correctly resolve 
collisions leading to either invalid simulation states or non-physical im-

pulse forces to compensate for the incorrect collision response. These 
problems are tackled in existing simulators by providing parameters 
that allow controlling both contact and elastic forces to prevent these 
configurations. However, finding a valid set of parameters for scenes 
with complex geometries and scenarios can be extremely challenging 
and time-consuming. Furthermore, there is no guarantee that a set of 
parameters even exists. This can lead to an infinite loop of adjusting pa-

rameters that may ultimately never produce a viable result. Once this 
happens, the user either has to make compromises (e.g., changes to the 
geometries, altering the boundary conditions, or otherwise simplifying 
the simulation) in order for the simulation to complete.

A new family of robust FE solvers based on the Incremental Poten-

tial Contact (IPC) formulation [40] has been recently introduced for 
structural mechanics problems: the key difference in these approaches 
is that their formulation is, by construction, addressing the two issues 
above. No element can invert, and no collision can be missed. This is 
achieved with an entirely different (and not equivalent) formulation, 
which trades off computational efficiency for increased robustness and 
reduction of parameter tuning. In this work, we benchmark the imple-

mentation of this approach in the PolyFEM [60] open-source software to 
evaluate its utility for biomechanical simulations, comparing it against 
the established FEBio software [43]. Each of the tests in the benchmark 
compares different simulation’s outcomes, including stresses, strains, 
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and displacements. As there is no clear definition of equivalence be-
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tween different results, for this study, we deemed the solvers to be 
equivalent if the difference in the outcome’s measure is less than 5%. 
However, many of the simulations, especially those without contact, 
produce identical results because the solvers are based on the same ma-

terial models.

We observed that the results obtained by PolyFEM are very similar 
to FEBio while requiring much less parameter tuning; in some com-

plex cases, we found that PolyFEM was able to simulate systems that 
proved to be challenging for FEBio. On the other hand, PolyFEM is still 
in the early stages of development and thus does not yet support a wide 
selection of features that are necessary for many biomechanical simula-

tions, including reduced models of rods and shells, advanced material 
models, and certain constraints. As noted, it is important to recognize 
that the ability to handle more complex simulations also comes at a 
higher computation price; based on our experience, we believe this is 
a fair tradeoff, as computational resources are affordable compared to 
the human effort required for parameter tuning.

2. Related works

2.1. Biomechanics simulations

We note that the list of FE studies and software included in this sec-

tion is by no means exhaustive. Providing such an exhaustive review 
is beyond the scope of this work; however, we believe that it is impor-

tant to contextualize our work by providing a representative selection 
of other software that is often used in biomechanics research.

A common application for the use of specialized simulation is in 
the area of musculoskeletal modeling. Software for these simulations 
is based on using rigid multi-body systems for bones and Hill-based 
(spring-like) models for muscles [61,13]. While very important and suc-

cessful for many questions related to joint kinematics and dynamics, 
muscle force estimation, and muscle activation patterns, such simu-

lators ignore inter-contact between muscles and model muscle-bone 
interaction directly via points. The type of problems addressed often 
implies inverse dynamics and contact with the environment are pre-

scribed as boundary constraints. Hence, they often do not include the 
elasticity of tissue and use idealized assumptions on joints and contact, 
sometimes driven by real-life force measurements. It is not uncommon 
to use simulation outputs from such simulators to estimate forces that 
can drive motions in finite-element simulations.

For fast solvers for real-time medical simulations, there exist frame-

works such as SOFA [21] which are well designed to provide solutions 
for pre-guided image surgery, control of soft medical robots, surgi-

cal training, and more. SOFA focuses on performance to deliver fast 
real-time interaction with clinical operators [74]. By using the finite el-

ement method with a focus on linear elements and co-rotational linear 
elastic materials mixed with optimizations of matrix computations that 
exploit zero-fill patterns, this software can achieve significant perfor-

mance gains at the cost of accuracy. In terms of contact, the SOFA does 
support general collision detection and implements constraint-based 
contact forces using expressed LCP models based on the classic Coulomb 
friction models for planar dry friction. Nevertheless, these compromises 
in accuracy in favor of performance are often justified for some prob-

lems in biomechanics. SOFA can also be extended. For example, the 
inverse finite element method is being used in SOFA to support con-

trol of soft medical robots [45]. In addition, FEniCSx and SOFA have 
also been combined [44] providing SOFA with advanced FE features 
and support for users to implement their constitutive model of choice 
through coding both for direct forward and inverse simulations.

On the other hand, many problems in biomechanics often necessitate 
accuracy on a level that cannot be provided by fast real-time medical 
simulators. These simulations are usually performed using commer-

cial finite element (FE) software packages (e.g., AnsysTM [15,52,56], 
ABAQUSTM [36,29,78,42], COMSOL [26,27], and NIKE3DTM) or open-
source solvers like FEBio (University of Utah, and Columbia Univer-
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sity) [43,23,58,39] or aforementioned FEniCSx [41]. These solvers 
have largely evolved from traditional structurally focused engineer-

ing solvers, and while they do provide state-of-the-art material models 
for biomechanics and are often robust to handle many biomechani-

cal scenarios, they were not specifically designed to capture some of 
the complex mechanical interactions that are common in biomechanics 
(e.g., large deformation, sudden contact, and friction forces). As such, 
the contact models are generally most suitable for structural mechan-

ics applications. While these can be effective for specific biomechanical 
applications (e.g., orthopedics), they often require a large degree of pa-

rameter tuning and often explicit specification of the contact surfaces. 
This can present significant challenges for simulating soft tissue-to-

soft tissue interactions with nonuniform geometries that undergo major 
changes in shape, size, and areas of contact. Even for well-posed prob-

lems, incorrect parameter choices can often lead to simulation failure or 
inaccurate results. Other solvers, such as the SIMon Finite Element Head 
Model (developed in part by the National Highway Traffic Safety Ad-

ministration), are designed to simulate specific scenarios; namely head 
trauma in motor vehicle accidents [65,66]. Other studies either used 
less popular software [64,57,16] or did not explicitly state which FE 
solver they used [20,75].

2.2. Existing benchmarks of finite element solvers

We are not aware of a comprehensive set of benchmarks that can 
evaluate an FE solver’s ability to compute complex biomechanical prob-

lems. Therefore, the responsibility falls on the software developers and 
model creators to ensure the accuracy of their work. FE benchmarks 
can be broadly divided into two categories, verification and valida-

tion. The former focuses on confirming that the solver produces accu-

rate mathematical solutions, while the latter involves ensuring that the 
computational model accurately simulates real-world physical interac-

tions [3,28].

In the past, verification has primarily been the responsibility of 
the solver’s creators, who have released verification problems along 
with their FE solver. These problems serve to demonstrate that the 
underlying mathematical implementation is sound by comparing the 
solver’s solutions to known analytical solutions and/or previously ver-

ified FE solvers [1,4,43]. Although some groups have attempted to 
compile a comprehensive list of verification problems that should ac-

company any FE solver, these lists have yet to gain significant adapta-

tion [51,17,47,18]. The most common verification problems are simple 
simulations with well-known analytical solutions and will be presented 
in more detail later in the paper (i.e., a cantilever beam, hyperelastic 
sheet with hole, single element tension/compression, etc.). This study’s 
major focus was on this topic, to ensure that the underlying mathemati-

cal implementation of material models and boundary conditions within 
PolyFEM are correct.

Validation, on the other hand, is usually produced to accompany 
the release of a FE model. In these benchmarks, the model’s creator 
should attempt to prove that their model is capable of modeling real-

world physical interactions. In biomechanics, this typically involves one 
or more of the following: comparing the measures generated by an 
FE model to experimental biomechanical data, such as stress, strain, 
and displacement [15,65,66,76,52,22,16,64,78,56], cadaveric and/or 
human system measures [65,76,22,36,52,23,58,39], or even other FE 
solvers [36,20,56]. In cases where simple outcome measures are nearly 
impossible to measure (i.e., in vivo tissue response), comparing the 
motion of organs/tissues on dynamic MRI to that calculated from the 
model has been used as proxy [57,42]. As previously stated the focus 
of this study was verification of PolyFEM’s mathematical implementa-

tion however, some of the examples are based on analytical solutions or 
physiologic data (sections 4.1, 4.2, 4.5, and 4.6) and thus some valida-

tion may be possible. Any future work creating a model in PolyFEM, as 
is true with any finite element solver, would need to be further validated 
3
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Beyond comparing the accuracy of FE solutions, benchmarks offer 
the ability to compare the efficiency of FE software while simulating 
the mechanical problem. Assuming that the solvers produce identical 
stress and strain states, the easiest of these comparisons to make is the 
CPU time that it takes for the solvers to converge to the same solution. 
This notably does not include the time that it takes for the user to set up 
the simulation, or “human time,” which in most cases is the most time-

consuming portion of FE model development. Human time also extends 
to the iterative process where the user has to adjust model parameters 
(meshes, contact penalties, etc.) in order for the model to converge to 
a solution. There are not many studies that aim to determine which FE 
software is the fastest. Those that do compare solvers are comparing 
specific components of the software like the contact algorithm or solv-

ing method [46,38]. One of the potential reasons for this lack of study 
is that the majority of researchers in this field will choose the FE soft-

ware that they are most comfortable with, even if there are potentially 
significant time delays in doing so.

2.3. Common contact models in biomechanics

Biomechanical simulations often require the accurate modeling of 
physical interactions (i.e., contact) between different tissues, such as 
those that occur in joints, organ systems, foot/ground interactions, and 
others. Detecting and implementing methods to resolve the transfer of 
energy during these interactions are some of the most challenging ar-

eas in biomechanical simulation. In general, three classes of contact 
have been used to detect and implement contact; node-on-node, node-

on-segment, and segment-on-segment [73]. Node-on-node contact can 
only be used in linear cases with symmetrical meshes and thus will not 
be discussed further. Node-on-segment contact was first developed to 
address a common problem in all contact methods, i.e. penetration be-

tween the two objects that have entered contact with each other. This 
is handled by first checking for, and if needed, addressing, intersecting 
faces [73,55,67,31,63,71]. Addressing these intersections depends on 
the solver that is used and will be discussed later. A single pass node-on-

segment approach only requires that the nodes from one object (object 
A) do not intersect with the faces of another object (object B), also 
known as “primary and secondary” surfaces [55]. Two-pass approaches 
do the same thing as single-pass but also ensure that the nodes from B 
also do not intersect the faces from A [55]. However, these methods are 
prone to four major drawbacks, which are discussed in much further 
detail in Puso et al. and Erleben [55,19]:

1. Locking or over-constraint of some nodes

2. Non-smooth contact that leads to jumps in contact forces when 
nodes from an object slide between the faces of the other

3. The discrete constraints cause jumps when nodes from one object 
slide off the boundary of the other

4. Inequality equations determine active and inactive constraints

These four drawbacks were the significant driving force behind the de-

velopment of surface-on-surface algorithms, which can address the top 
three drawbacks [55]. By using smoothed surface approximations to 
calculate contact, these algorithms avoid the possibility of nodes get-

ting “locked” in place or experiencing significant jumps due to sliding 
between surfaces or off of the boundary of the surface. Most software 
allows the user to select which of these contact detection formulations 
they want to use. Then the method for enforcing the detected con-

tact is software-dependent. Several algorithms have been developed for 
enforcing contact, and two widely used methods are the penalty and 
Lagrange multiplier methods [8,50]. In general, both methods apply 
constraints that limit the possibility of infeasible solutions forming, i.e., 
intersection detected between two objects. The augmented Lagrangian 
method uses the principles of both aforementioned methods but also in-

cludes additional augmentation steps to improve the estimates of the La-
grangian multipliers and is implemented in popular software packages 
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such as FEBio, ANSYS, and ABAQUS [70]. The augmented Lagrangian 
method starts with a penalty step and then enters an augmentation cy-

cle where the Lagrangian multipliers are iteratively updated to improve 
the estimates of the multipliers. These methods are easier to implement 
than others we will discuss because they only add a multiplier to the 
objective function [7]. However, their simplicity can introduce signifi-

cant bias to the simulation since the choice of penalty is often arbitrary 
and can significantly impact the outcome [6]. Although these methods 
work well in simple contact cases, they often struggle when computing 
high-energy contact between soft deformable bodies, such as human or-

gans.

Other, less popular biomechanical FE software derive their reg-

ularized contact model from Nitche’s method. One such software is 
CutFEM [9,12]. CutFEM has been designed to make the problem’s dis-

cretization as independent as possible from the geometric description 
and to minimize the complexity of mesh generation while maintain-

ing the accuracy of the FE method [9]. Contact interfaces between two 
meshes are represented by a level set function that is placed on a back-

ground grid of the simulation, which allows for low-quality and/or com-

plex geometries to be modeled without the need for computationally 
expensive remeshing. By using this discretization method, it becomes 
much easier to implement Nitsche’s method for contact [12]. Nitsche’s 
method and its derived regularized contact models apply a penalty 
term to the weak form of the governing equations and can be viewed 
as a generalization of the classic penalty model. However, unlike the 
classical penalty model, Nitsche’s method is symmetric and consistent 
across boundaries, which works well with CutFEM’s implementation of 
geometric boundaries. Symmetry across boundaries ensures that these 
methods do not suffer from any of the aforementioned locking or jump-

ing effects. Unfortunately, in nonlinear cases, Nitsche’s method becomes 
more complex than penalty or Lagrange multiplier methods and thus 
more challenging to compute. This becomes problematic in biomechan-

ical simulations as the majority of them include some sort of nonlinear 
contact [71]. Additionally, Nitche’s method uses a penalty parameter 
that must be arbitrarily assigned and has a significant effect on the sim-

ulation outcome.

The final type of contact models to be discussed is those based on 
barrier stiffness methods. These methods are utilized in PolyFEM, which 
employs the IPC contact library [40]. A barrier stiffness model oper-

ates by introducing a stiffness term that prohibits two contacting bodies 
from intersecting. At the time of their publication Li et al. stated that 
IPC is the first implementation of a contact model that can ensure con-

vergence of solutions free of intersections and inversions (which, based 
on another literature search, appears to remain true) [40]. We are not 
claiming that this is the first implementations of barrier stiffness meth-

ods for biomechanics simulations. In fact these methods have become 
more and more popular over the last 20 years [37,15,34,59]. If a reader 
is interested in how IPC fits in the landscape the history of other barrier 
stiffness methods we point the reader to Li et al. and Laursen [37,40]. 
This makes barrier stiffness methods particularly suitable for problems 
with significant nonlinear deformations, such as those encountered in 
biomechanical simulations. However, it should be noted that the suit-

ability of this software for biomechanical simulations has not yet been 
verified, which is something we will aim to assess in subsequent sec-

tions.

3. Mathematical background

We briefly overview the major solver differences between FEBio 
and PolyFEM, focusing on their relevance in biomechanics. We exclude 
from our discussion friction forces; we refer an interested reader to 
Maas et al. [43] and Li et al. [40] for more details. The major dif-

ference between the two solvers is that PolyFEM expresses all parts 
(elasticity, inertia, contact, etc.) as potentials, while FEBio uses only 
the elastic energy. While both formulations are mathematically equiv-
4

alent, the PolyFEM formulation allows using a standard unconstrained 
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optimization method coupled with a line search to ensure that the so-

lution remains in the feasible region, thereby having the capability of 
handling challenging cases such as small elements being compressed or 
high velocities leading to large deformations. Granted this will lead to a 
harder minimization problem that might require more iterations for the 
quadratic approximations of the Newton solver; however, the method 
is inherently robust as it is guaranteed to produce a physically valid 
configuration for any provided displacement or velocity (i.e., the solver 
remains in the feasible region).

Elastic potential Both FEBio and PolyFEM use the same elastic potential 
𝐸𝑒 derived from the elastic energy. However, FEBio supports signifi-

cantly more material models; for instance, transversely isotropic (Trans-

versely Isotropic Hyperelastic) and orthotropic (Fung Orthotropic, 
Holzapfel-Gasser-Ogen) materials are not yet implemented in PolyFEM. 
The major advantage of the potential formulation in PolyFEM is that in 
the line search, it explicitly checks for inverted elements and shortens 
the Newton increment to ensure that the new solution is valid. This oc-

curs since the quadratic approximation of 𝐸𝑒 used by the solver does 
not diverge when elements have zero volume, even if 𝐸𝑒 does. We show 
an example of such a problem in Fig. 2. While this may seem like a mi-

nor change, it is possible to implement it only because of the difference 
in how the solver is set up.

Inertia potential FEBio implements the standard time integration 
scheme1 while PolyFEM uses the incremental potential formula-

tion [35]. Both formulations are equivalent and support several stan-

dard time integrators (e.g., Newmark or backward differentiation for-

mula). In PolyFEM, the inertia potential is simply summed to the elastic 
potential.

Contact potential While the previous potentials (elastic and inertia) are 
identical, PolyFEM and FEBio handle contact differently. From a high-

level, point of contact requires a set of nodal positions 𝑥𝑡 and nodal 
velocities 𝑣𝑡, a choice of spatial and temporal discretization, and a mea-

sure of overlap between primitives 𝑔(𝑥), and obtains the updated nodal 
positions by solving a constrained minimization of a potential 𝐸 [35]

(inertia and elasticity in PolyFEM and elasticity in FEBio):

𝑥𝑡+1 = argmin
𝑥

𝐸(𝑥,𝑥𝑡, 𝑣𝑡), s.t. 𝑔(𝑥) ≥ 0. (1)

The choice of 𝑔 varies, but it is usually a function that is zero when el-

ements do not overlap and negative otherwise. There are many ways 
of defining; for instance, FEBio uses the signed distance along the nor-

mal direction between the closest points [77]. This problem is typically 
solved using off-the-shelf or custom numerical solvers; FEBio uses a 
Newton-Raphson method [43]. As for the elastic potential 𝐸𝑒, the so-

lution of (1) with linearized constraints does not directly imply that 
𝑔(𝑥) ≥ 0, and even solving a sequence of problems with linearized con-

straints at each step might not necessarily find a valid configuration 
satisfying the non-linear constraints, thus potentially not resolving col-

lisions. We show an example of such failure in Fig. 10. Another source 
of failure is that constrained solvers usually only satisfy the constraints 
up to numerical precision. This might lead to missed/problematic colli-

sions when large or small numbers are present (e.g., in the presence of 
high velocities or small elements).

Incremental potential contact The IPC formulation tackles these failure 
points by avoiding the use of constrained solvers and making the lin-

earization of constraints and energy safe by using a custom line search 
procedure, as for 𝐸𝑒. The constrained optimization problem (1) is con-

verted into the unconstrained optimization of:
1 https://help .febio .org /docs /FEBioTheory -4 -0 /TM40 -Chapter -6 .html.

https://help.febio.org/docs/FEBioTheory-4-0/TM40-Chapter-6.html
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𝐵𝑡(𝑥) =𝐸(𝑥,𝑥𝑡, 𝑣𝑡) + 𝜅
∑

𝑘∈
𝑏(𝑑𝑘(𝑥)),

where 𝜅 > 0 is an adaptive parameter controlling the barrier stiffness, 
𝑑𝑘 measures the distance between two primitives in the set of all pos-

sible primitive pairs , and 𝑏 is a logarithmic barrier function. This 
non-linear energy is minimized with a Newton descent algorithm with 
a custom line search that explicitly prevents crossing configurations 
where 𝐵𝑡(𝑥) is infinite; that is, when two primitives are at zero distance 
(i.e., there is an overlap between two primitives). These two conditions 
are tested with algorithms that are exact under floating point round-

ing [69].

4. Methods and results

We directly compared each of the two solvers in five head-to-head 
comparison tests. We selected the first two benchmarks, FEBio-Test (Sec-

tion 4.1) and FEBio-Verification (Section 4.2), to validate the capability 
of PolyFEM to conduct simulations similar to those previously published 
by FEBio [5,43]. Using the information from these two sections and the 
previously published FEBio verification paper, we conducted general 
comparisons with other finite element solvers, such as ABAQUS, which 
had previously been compared to FEBio [43]. We designed the third 
benchmark to emphasize PolyFEM’s potential as a finite element soft-

ware in complex biomechanics simulations (Section 4.3) by including 
complex contact between elastic bodies in a scenario based on biome-

chanics. Additionally, the fourth comparison, Planet-Fall (Section 4.4), 
introduced a high degree of non-linearity into the simulation while 
exploring the limits of material models and the solvers themselves. 
Finally, the fifth benchmark, Hip-and-Jaw (Section 4.5), serves as a real-

world example, using patient data, of using PolyFEM as a biomechanics 
solver [49,25]. We conducted all simulations using the same version 
of each respective solver regardless of the test. For FEBio, we used the 
pre-compiled version of FEBio studio (version 1.8) (FEBio Studio Down-

load, FEBio solver version (3.7.0)), and for PolyFEM, we used version 
1.0 from their GitHub repository [60]. For each of the verification prob-

lems below, the time steps were set to be the same between the two 
solvers. However, some simulations required dynamic time-stepping to 
be enabled in FEBio to complete the simulations which led to slightly 
different time-steps between the two solvers for some simulations.

4.1. FEBio test suite examples

The test suite is a set of examples that outline the features of FEBio, 
including static, dynamic, and contact simulations. We selected a group 
of 18 problems from the test suite, while also adding a new one, and 
simulated them all using both solvers. Of the 18 selected simulations, 
9 are static and involve contact, while the other 9 are dynamic (Fig. 1

shows three frames for 7 examples). We ran our simulations on AMD 
Ryzen Threadripper PRO 3995WX, 64 Core (2.7GHz) sWRX8 Processor, 
2TB 3200 MHz DDR4 memory, Ubuntu 22.04.1 LTS using 16 threads. 
Depending on the simulation, outputs for comparisons included dis-

placement or stress, and simulation time in terms of performance. Both 
FEBio and PolyFEM produce similar results; but PolyFEM, in general, 
takes more time to simulate. Table 1 lists the time taken by PolyFEM 
and FEBio on the selected simulations. We accounted for these timings 
being computer-specific in this manuscript by employing the same com-

puter for both solvers within each of the verification tests. For all of the 
simulations in this benchmark, the average point-to-point distance be-

tween the solvers was much less than the 5% we allowed. For example, 
in simulation co20 (Fig. 1 second row, Table 1 third row) the aver-

age distance between all points at all time steps in the simulation was 
0.0030m, or 0.15% of the shortest axis of the block (maximum 0.0484m, 
2.42%). We note that all of the tested FEBio TestSuite problems that in-

volved contact (all of the “co” problems, and dy03, dy04, and dy09) 
used settings other than the default for the contact interface while 
5

the same simulations in PolyFEM were simply converted and worked 
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Fig. 1. Results of 7 simulations (co07, co20, co34, dy02, co41, dy03, and dy04, 
from top to bottom) from the FEBio-Test dataset. Each row corresponds to one 
example simulated from 𝑡 = 0 to 𝑡 = 𝑁 . Images in the figure were generated 
using PolyFEM visualized in Paraview.

with the default contact settings. The two cases in which PolyFEM was 
faster compared to FEBio (co21 and dy09) are notable because they are 
the only simulations within the TestSuite where PolyFEM outperformed 
FEBio. An explanation for this outcome could be attributed to the fact 
that these particular simulations consisted of complex sliding (co21) or 
high-energy collisions (dy09). Such complex contact scenarios may be 
handled better using PolyFEM’s contact algorithm. However, significant 
further investigation and analysis must be conducted to confirm these 
hypotheses.

To highlight the differences in the limits of the solver’s performance 
when modeling large deformations of very soft elastic materials, we 
created a new simulation using geometry from the existing benchmark, 
dyn02, a 20m×2m×1m rectangular block in a beam bending scenario. 
The goal of this simulation was to introduce a negative jacobian due to 
elastic stretching in a simple mechanics problem. Errors like this one 

are a common failure observed in computational biomechanics and do 

https://febio.org/downloads/
https://febio.org/downloads/
https://github.com/polyfem
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Table 1

Timings for the simulations from FEBio-Test 
dataset.

Simulation Category PolyFEM (s) FEBio (s)

co07 Static 13.237 12.1

co16 Static 4.122 0.047

co20 Static 66.811 52.169

co21 Static 15.550 52.764

co32 Static 0.280 0.136

co34 Static 30.114 0.412

co35 Static 91.887 0.095

co41 Static 57.223 5.794

co44 Static 4.371 0.058

dy01 Dynamic 0.330 0.015

dy02 Dynamic 10.663 0.259

dy03 Dynamic 29.567 23.596

dy04 Dynamic 38.474 5.667

dy07 Dynamic 2.918 0.126

dy09 Dynamic 181.853 332.919

dy10 Dynamic 0.176 0.023

dy11 Dynamic 0.477 0.024

dy12 Dynamic 1.407 0.031

not have a guaranteed solution. The simulation was first changed to be 
a static simulation and the beam was oriented parallel to the world’s 
x-axis. We modeled the material as Neohookean with 𝐸 = 100 Pa, 𝜈 =
0.0 , and 𝜌 = 1 ) and meshed it within FEBio using tetrahedral elements 
(𝑁𝑥 = 20 , 𝑁𝑦 = 10 , 𝑁𝑧 = 4 , 𝑋 − 𝑏𝑖𝑎𝑠 = 1.4 , 𝑌 − 𝑏𝑖𝑎𝑠 = 1 , 𝑍 −
𝑏𝑖𝑎𝑠 = 1 ). We choose tetrahedral elements because of their common 
use in biomechanics simulations. We fixed the left side along all three 
axes (negative 𝑥 direction) and limited the front side from deflecting 
into/out of the page (positive 𝑧 direction). On the right side of the 
block (positive 𝑥 direction), we prescribe a vertical displacement (in 
the positive 𝑦 direction) until FEBio failed using the default simulation 
settings, which occurred at 21m of vertical deflection.

We note that changing the mesh elements to hexahedral elements 
or changing the mesh bias, allows for more beam deflection. We then 
replicated the same simulation in PolyFEM but prescribed a vertical de-

flection of 22m (one meter more than what FEBio was able to handle). 
It is important to note that both solvers produced the same solution for 
21m of vertical deflection, which is shown in Fig. 2. Although this is 
an extreme example designed to produce a failed solution in FEBio, it 
highlights PolyFEM’s ability to handle large hyperelastic deformations 
without inverting elements.

4.2. FEBio verification examples

Our second set of comparisons was based on the verification paper 
released by FEBio, which compares the results of FEBio to analytical re-

sults, as well as results generated with ABAQUSTM and NIKE3DTM [43]. 
The paper outlines ten simulations and verifies the results from FEBio 
with respect to the other two solvers. Thus, the following section not 
only serves to verify the results from PolyFEM with FEBio but also the 
other two solvers by extension. All simulations were conducted using 
PolyFEM and FEBio using the same computer by the same author (2017 
iMac Pro, 10 Core (3GHz), all of which were allocated for this prob-

lem, Intel Xeon W, 128 Gb 2666 MHz DDR4 memory, macOS Ventura 
13.0.1).

The initial example uses a single hexahedral element mesh and com-

presses it to 0.5 times, and stretches it to 1.5 times its original length in 
one axis. As the dimensions of the geometry were not specified by [43], 
we choose a 1mm × 1mm × 1mm cube. We evaluated the resulting 
stress inside the element using two different material models, namely 
the Mooney-Rivlin (𝐶1 = 6.8MPa, 𝐶2 = 0 , 𝐾 = 100GPa) and the 
Ogden hyperelastic (𝑁 = 1 , 𝑐1 = 0.0329MPa, 𝑚1 = 6.82 ). Each of 
the simulations, in both solvers, finished simulating in under 0.5 s. We 
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ploted the von Mises stress (for both material models) to compare the 
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Fig. 2. A 20m × 2m × 1m rectangular block deflected in the 𝑦 direction from 
the right-hand side. The first figure shows the setup in its undeformed configu-

ration, and the second and third image shows the FEBio and PolyFEM results, 
respectively, for a deflection of 21m. The final picture shows the results for a 
deflection 22m using PolyFEM, as FEBio cannot find a solution.

results between FEBio and PolyFEM (Fig. 3); both solvers produce the 
same values in tension and compression.

The next example modeled a hyperelastic sheet placed under ex-

treme deformations. The sheet’s undeformed dimensions are 165mm ×
165mm × 2mm with a circular hole (𝑟 = 6.35mm) cut in the center 
of the large face (Fig. 4 top). We meshed it with 128 hexahedral ele-

ments and modeled the material as Mooney-Rivlin (𝐶1 = 0.1863MPa, 
𝐶2 = 0.00979MPa, 𝐾 = 100MPa). The top and bottom faces are 
not allowed to move in the 𝑦 direction, and the front and back faces 
are not allowed to displace in the 𝑧 direction. We compared the re-

action forces on the left face between the two software packages. We 
note that reaction forces are calculated slightly differently between the 
two software packages. In FEBio, the reaction forces are calculated at 
each node, while PolyFEM computes them on the surface (i.e., traction 
force). While FEBio Studio can integrate forces over a surface we chose 
to convert the traction force calculated in PolyFEM to FEBio. To convert 
between FEBio and PolyFEM, we needed to multiply PolyFEM’s force by 
the cross-sectional area of the element. We found that the two reaction 
forces were slightly different in value (less than 3%). This difference is 
likely due to differing implementations of the Mooney-Rivlin material 
model. However, it should be noted that the reaction force reported by 
PolyFEM matched the force calculated by ABAQUS. Similar to most of 
the other simulations, FEBio was significantly faster than PolyFEM (2 
and 56 seconds, respectively).

In the next simulation, we applied a load that induced approxi-

mately 8m of lateral deflection to a 0.15m × 0.10m × 10m long rect-

angular cantilever beam. We meshed it with 400 hexahedral elements 
along its length and one through, each its width and depth. We fixed 
one face at the end of the length and applied a load 269.35 N to the tip at 
the other end, which was perpendicular to the depth of the beam. We 
modeled the beam using St. Venant-Kirchhoff material (𝐸 = 10MPa, 
𝜈 = 0.0 ). The beam was also fixed along its depth so that it could only 
deflect vertically and horizontally (Fig. 5, left). The method used to 
apply the load at the tip differed slightly between the two solvers. In 
FEBio, we applied the force as a nodal force split evenly between the 

four nodes at the top of the beam – meaning each node was subjected 
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Fig. 3. Comparison of the von Mises stress versus stretch between PolyFEM and 
FEBio for a single hexahedral element modeled with two material models.

Fig. 4. Hyperelastic sheet stretched to 615% of its initial length. The top frame 
shows the sheet (blue) and rollers (black). At the bottom, we plot the reaction 
forces from the left side of the sheet.

to 67.3375N of force. PolyFEM integrates the load across the surface it-
self; therefore, we divided the applied force by the cross-sectional area 
7

(17956.66N) in order to make the two problems equivalent. We mea-
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Fig. 5. Cantilever comparison between FEBio and PolyFEM.

sured the amount of lateral deflection (displacement to the left) at the 
center of the top face, and the two solvers produced equivalent final 
results, with FEBio providing results faster (2 and 30 seconds, respec-

tively). (Fig. 5, right).

In the “upsetting of an elastic billet” simulation, we compressed to 
60% of its initial height between two rigid surfaces a 1mm × 1mm ×
0.1mm elastic billet (meshed with 40 × 40 × 1 hexahedral elements, 
Fig. 6, top). Using a quarter symmetry assumption, we can simulate 
only one-quarter of the elastic billet (Fig. 6, top). This meant that the 
top and left sides of the billet were fixed perpendicular to those sides 
(modeled as rollers in Fig. 6). We modeled the billet as a Mooney–

Rivlin material (𝐶1 = 1MPa, 𝐶2 = 10MPa, 𝐾 = 10GPa). The rigid 
surface was modeled as an obstacle in PolyFEM and a rigid wall within 
FEBio. The outcome measure of this simulation is the maximum lateral 
displacement of the elastic billet. In this example, the solvers agreed on 
the lateral displacement of the top of the billet to the thousandths of a 
millimeter (0.781mm, Fig. 6 bottom). The simulation was significantly 
faster when conducted in FEBio than in PolyFEM, with a convergence 
time of 3 seconds and 56 seconds, respectively.

The final simulation consists of crushing a pipe (𝑟o = 114.3mm, 𝑟i =

105.43mm, 𝑡 = 25.4mm) by a rigid body. The pipe was modeled as 



L. Martin, P. Jain, Z. Ferguson et al.

Fig. 6. Elastic billet Figure displacement caused by the compression of two rigid 
surfaces.

Fig. 7. Model of a deformable pipe that was crushed between two rigid objects. 
The left image showed the pipe and rigid wall in the rest configuration while 
the image on the right showed the pipe which has been compressed to ≈ 46%
its initial height.

a St. Venant-Kirchhoff material (𝐸 = 185.86GPa, 𝜈 = 0.29972 ) and 
meshed it using FEBio (Slices = 24 , Segments = 4 , Stacks = 1 ). As 
in the previous simulation, the rigid body was modeled as a rigid wall 
and obstacle in Febio and PolyFEM, respectively. Additionally, quar-

ter symmetry was assumed. Fig. 7 shows the pipe and obstacle in the 
rest and deformed configurations. We were unable to directly compare 
the outcome measures calculated in the FEBio paper because PolyFEM 
does not calculate reaction forces on rigid objects. Instead, we com-

pared the shape change between the two solvers, which were identical. 
Once again the simulation ran much faster in FEBio than PolyFEM (2 
and 60 seconds, respectively. Although we were unable to compare the 
reaction force of the rigid body, we were able to show that PolyFEM is 
capable of correctly predicting contact-driven simulations.

We excluded five simulations from the benchmark in [43] as they 
contain unsupported features in PolyFEM: two tests model viscoelastic 
material responses, one uses shell elements, and the final two use rigid 
8

bodies and/or shell as integral components.
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Fig. 8. Images of the simulation output at four different time points, represented 
by the rows. The first two columns display the output from PolyFEM from two 
different views, while the third and fourth columns show the output from FEBio. 
To show the contact surface of the meniscus, the second row hides the femur 
(blue sphere). The top row corresponds to 𝑡 = 0.00 s, the second row to 𝑡 =
0.36 s, the third row to 𝑡 = 0.72 s, and the fourth row represents the end of the 
simulation. Within the top row there are five points on the surface marked by 
the black dots. These points are used to calculate the average contact force in 
Fig. 9. FEBio encountered failure at 𝑡 = 0.95 seconds, attributed to a negative 
Jacobian induced by contact. Images in left column were generated in PolyFEM 
and those in the right were generated using FEBio. Each set of geometries were 
visualized in Paraview.

4.3. Uniaxial compression of soft materials

We developed an extremely simplified knee model to emphasize the 
differences in contact enforcement between the two solvers, particu-

larly in the presence of large deformations, soft materials, and complex 
contact scenarios. Our goal was to show complications which appear 
in more complex simulations in the simplest manner possible. There-

fore, we modeled the knee using three simple components: a triangular 
prism representing a meniscus, which was compressed between a sphere 
representing the femur and a rectangular prism representing the tibial 
plateau. We only allow the meniscus to displace downwards (−𝑦 direc-

tion) and we fixed it in the other two directions on the left side (−𝑥
direction). We fixed the rectangular prism in all three directions on the 
bottom face (−𝑦 direction). Fig. 8 top row shows the setup for both 
solvers. We displace the sphere downward, compressing the meniscus 
between itself and the rectangular prism until the meniscus experienced 
an average axial strain of approximately 18%, which falls within the 
normal physiological range for the contact area [11,72,48]. Initially, all 
objects in the simulation were not in contact, as required by IPC. We 
modeled the femur (𝐸 = 17000MPa, 𝑣= 0.3 , 𝜌 = 1850 kgm−3), tibial 
plateau (𝐸 = 17000MPa, 𝑣= 0.3 , 𝜌 = 1850 kgm−3), and meniscus (𝐸
= 59MPa, 𝑣= 0.49 , 𝜌 = 800 kgm−3) as Neohookean materials [14,53]

and we meshed all objects using tetrahedral elements with FTetWild’s 
default settings [30].

We defined the contact in FEBio as sliding elastic contact with 
an auto penalty and two-pass contact enabled. We setup two contact 
interfaces: one between the femur and the meniscus, and the other 
between the meniscus and the tibial plateau. We used the meniscus 
as the primary surface in both contact pairs as it is more finely dis-
cretized. Because sliding elastic contact is non-symmetric, we ensured 



Computer Methods and Programs in Biomedicine 244 (2024) 107938L. Martin, P. Jain, Z. Ferguson et al.

Fig. 9. Chart of the average contact force for five points on the surface of meniscus normalized to their respective maximum value. The top row of Fig. 8 denotes 
the points used to calculate these plots. As compression of the meniscus increases the force required to resist intersection increases as a similar rate for both solvers. 
Around 𝑡 = 0.72 s the FEBio simulation becomes increasingly unstable and, due to the contact creates non-realistic side-to-side (𝑧-axis) motion of the unconstrained 

end of the meniscus.

that symmetric stiffness was turned off in both the contact menus and 
the analysis step. We adjusted the contact search radius until the sur-

faces no longer passed through each other; this occurred around 0.1. 
Within the solver step, we set max_ups = 0 to enable the full Newton’s 
method. We also set rhoi = 1, to use the backward Euler’s method as 
time integrator (the method naively used in PolyFEM). In PolyFEM we 
defined contact by enabling contact and disabling adaptive barrier stiff-

ness, instead opting for a constant value (1 × 109). We simulated for 1 s
with constant time steps (𝑡 = 0.005 s) for both solvers using dtforce

in FEBio and by defining the time steps in PolyFEM.

We compared the simulation outcomes at four time points (𝑡 = 0.0 s, 
𝑡 = 0.36 s, 𝑡 = 0.72 s, and end of simulation) shown in the rows of Fig. 8). 
We report the contact enforcement variable (contact pressure in FEBio, 
and contact force in PolyFEM) in Fig. 9. We note that FEBio failed to 
complete the simulation and therefore the final comparison is between 
𝑡 = 0.95 s for FEBio and 𝑡 = 1.0 s for PolyFEM. We normalized the con-

tact enforcement forces with respect to their maximum value to ease a 
direct comparison as the scale of the raw values are orders of magnitude 
different.

While the results shown in Fig. 8 look very similar, there are signif-

icant differences in the forces used to resist intersections of bodies. We 
selected a group of five vertices (highlighted in the top row of Fig. 8) 
on the surface of the meniscus within the area of contact of the femur. 
From these, we recorded the contact force for all time steps in both 
solvers and took the average. Fig. 9 shows the contact pressure (FEbio) 
and contact force (PolyFEM) normalized to their respective maximum 
values. We chose these five points on the surface such that we can em-

phasize the difference in oscillations due to applications of the contact 
constraints between the two codes2. As the simulation compresses the 
meniscus, both contact forces increase in a similar fashion. However, 
around 𝑡 = 0.72 s, the FEBio simulation becomes increasingly unstable, 
shown by the significant oscillations in the pressure. This is shown in 

2 Comparing integrated contact forces over the surfaces of the meniscus and 
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tibial plateau is currently not supported in PolyFEM.
the simulation by the unconstrained end of the meniscus moving from 
left to right on the 𝑧-axis in response to the oscillations of the contact 
pressure.

In this simulation, as with some other problems in this study, there 
may well be a set of parameters or mesh configurations that could yield 
better results in FEBio. However, this example underscores the fact that 
even in simple problems involving basic geometries, errors can occur. 
While we acknowledge that these errors can often guide model cre-

ators towards potential issues with geometries or contacts, there are 
situations where, despite parameter tuning and geometric adjustments, 
successful models couldn’t be generated. It’s essential to remember that 
any model generated in any solver should be appropriately validated 
by the model’s creator before its use in any capacity, a point this study 
does not claim to address.

4.4. Planet-fall

We developed a novel dataset to emphasize the differences between 
PolyFEM and FEBio, in particular in the presence of contact, large de-

formations, and soft materials. This specific simulation was not based 
on any biological phenomena, and instead aimed to represent poten-

tial high energy collisions in biomechanical systems is as simple of a 
model as possible. Every simulation in this dataset is composed of: a 
sphere-like (planet) modeled as a single material, and a rectangular 
prism consisting of two different materials, a relatively soft “inner” ma-

terial (jello), which was encased on all sides except for the top surface 
by a relatively stiff outer material (mold). The three materials were all 
modeled as Neohookean. The bottom face of the mold was fixed in all 
three directions and all geometries were subject to gravity (9.81 ms−2), 
which caused the planet to fall onto the top face of the jello (Fig. 10). 
While high-energy contact between very soft materials is a smaller field 
of biomechanics, existing solvers struggle to simulate them properly. 
PolyFEM, for most users, will not replace existing solvers, but for the 
users that need to simulate contact like this example problem PolyFEM 

will be a valuable tool.
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Fig. 10. Steps of the simulation of a high energy collision between three de-

formable bodies (planet: red, jello: blue, and mold: off-white). Each column 
represents the same single simulation of the planet falling onto the jello at each 
of the discretization levels. For this simulation, the planet and jello had moduli 
of 10 kPa and 100 kPa, respectively. Each row represented a different time point 
of the simulation. The first row shows the initial configuration of the simula-

tion, the second shows the first contact between the planet and jello (𝑡 ≈ 1.3), 
and the third shows when the planet has compressed the most (𝑡 ≈ 1.5). Images 
in the figure were generated using PolyFEM visualized in Paraview.

We repeated this setup 64 times using 4 different mesh densi-

ties to mimic the normal iterative process of FE modeling and vari-

ations of moduli between the 3 materials (Table 2). We meshed the 
planet with 20 , 203 , 2002 , and 20164 tetrahedral elements while the 
mold and jello were meshed with a combined 1958 , 3951 , 8034 , and 
16045 tetrahedral elements. Each discretization level was paired with 
the equal mesh density of the other object in the simulation (e.g., the 
20 tet planet was paired with the 1958 tet mold and jello). For each dis-

cretization level, we varied the material properties of the planet and the 
jello between 10 kPa and 10000 kPa; while we kept the modulus of the 
mold’s material constant at 100GPa. Similarly, we fixed the Poisson’s 
ratio and density of all objects (𝜈 = 0.40, 𝜌 = 1000 kgm−3).

We ran the simulation from a start time of 0 s to an end time of 2 s
using 𝑑𝑡 =0.1 s. FEBio allows for adaptive time stepping, which we en-

abled to utilize the aggressive cutback option. In PolyFEM, we simply 
enabled contact and solved for the prescribed 𝑑𝑡 of 0.1 s. We recog-

nize that differences in time stepping may result in slightly different 
solutions; however, the goal of this set of simulations was simply to de-

termine if the two solvers could provide solutions for these test cases 
since the previous sections already provided verification. In the FEBio 
simulation, we specified the same contact parameters as stated above in 
section 4.3, sliding elastic contact using auto-penalty, backwards Euler 
time integration, and the full Newton’s method.

We captured the runtimes (using the same computer as Section 4.2) 
of the simulations and report them in Table 2; we report the successful 
timing for all simulations, but it is important to note that this did not 
include the time required to set up the model and examine each sim-

ulation for penetration. Additionally, we acknowledge that there exist 
configurations of contact parameters that produce significantly faster 
results. However, utilizing these methods necessitated more case-by-

case tuning to achieve a converged solution. In contrast, employing the 
outlined contact parameters yielded results more reliably compared to 
using manually defined penalties and a quasi-Newton solver, despite re-

quiring a significantly longer time to complete. Overall, it was found 
that most of the simulations ran faster in FEBio for the simulations 
where FEBio succeeded. However, it was unable to complete the entire 
benchmark, including the majority of the finest mesh density examples. 
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All simulations that did not complete, failed due to the presence of neg-
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Table 2

Runtimes of simulations in seconds. Each table corresponds to 
a mesh resolution; the rows and columns are the modulus of 
elasticity of the jello and planet, respectively. The entries in 
the table are of the form PolyFEM runtime (FEBio runtime); 
for instance, 13 (5) means that PolyFEM took 13 seconds while 
FEBio only took 5. We use NC when the solver fails to reach a 
solution.

J⧵ P 104 Pa 105 Pa 106 Pa 107 Pa

104 Pa 69 (NC) 28 (NC) 17 (NC) 17 (NC)

105 Pa 30 (NC) 19 (NC) 13 (45) 13 (NC)

106 Pa 21 (NC) 17 (12) 15 (4) 11 (9)

107 Pa 20 (NC) 17 (NC) 12 (3) 14 (7)

Planet (20 tet) – Jello (1958 tet)

J⧵ P 104 Pa 105 Pa 106 Pa 107 Pa

104 Pa 162 (NC) 81 (NC) 57 (NC) 51 (NC)

105 Pa 108 (NC) 49 (115) 43 (22) 36 (NC)

106 Pa 45 (NC) 28 (38) 24 (7) 25 (18)

107 Pa 38 (NC) 30 (349) 24 (6) 21 (13)

Planet (203 tet) – Jello (3951 tet)

J⧵ P 104 Pa 105 Pa 106 Pa 107 Pa

104 Pa 379 (NC) 212 (NC) 109 (NC) 87 (NC)

105 Pa 241 (NC) 128 (2205) 69 (90) 66 (233)

106 Pa 132 (NC) 76 (NC) 47 (25) 43 (51)

107 Pa 124 (NC) 76 (NC) 54 (45) 47 (41)

Planet (2002 tet) – Jello (8034 tet)

J⧵ P 104 Pa 105 Pa 106 Pa 107 Pa

104 Pa 2233 (NC) 1072 (NC) 356 (NC) 220 (NC)

105 Pa 1306 (NC) 612 (NC) 283 (NC) 185 (NC)

106 Pa 689 (NC) 342 (NC) 201 (255) 177 (141)

107 Pa 492 (NC) 246 (NC) 178 (146) 139 (176)

Planet (20164 tet) – Jello (16045 tet)

ative Jacobians, either due to contact or elasticity. Meanwhile, all of 
the simulations for PolyFEM completed successfully.

To provide a quantitative idea of the setup complexity, we prepared 
all simulations on the same computer (2017 iMac Pro, which was used 
to establish the runtimes). The PolyFEM simulations were prepared us-

ing the JSON file format and the FEBio simulations were prepared in 
FEBio Studio (version 1.8). We note that the authors were well-versed 
in using both of the software packages and are familiar with the pro-

cess of setting up this simulation; that is, this was not a blind test. We 
prepared the simulations a total of five times each in alternating order 
(Day 1: PolyFEM, then FEBio, Day 2: FEBio, then PolyFEM, etc.) on five 
subsequent days. We average the processing time excluding the fastest 
and slowest preparation time. The setup times for each of the two soft-

ware packages were similar for a familiar user (219 s for PolyFEM, 214 s
for FEBio).

However, the biggest time save in PolyFEM (excluding the failures 
and subsequent parameter tuning) is when switching between the dif-

ferent meshes. PolyFEM only requires changing the file path to the 
geometry, as the boundary conditions and forces will still be applied 
properly. In contrast, in FEBio, the boundary conditions and body forces 
need to be manually recalculated and reapplied the first time that the 
mesh is changed.

4.5. Hip-and-jaw

In the following two sections we conducted biomechanical simula-

tions of biting and pseudo-stance using PolyFEM and FEBio. To perform 
the simulations, we utilized patient-specific finite element (FE) models 
of the hip and jaw, obtained from the publicly available LibHip [49]

and Open-Full-Jaw [25] repositories. The applied boundary conditions 

are illustrated in Fig. 11 and Fig. 13. Both simulations were simulated 
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Fig. 11. Required boundary conditions applied to the human jaw to setup each 
simulation. Dashes represented boundaries that were fixed in all directions and 
rollers represented boundaries fixed perpendicular to them. The upper jaw was 
fixed in all directions, and the lower jaw was fixed in 𝑥 and 𝑦 directions and 
displaced 0.5mm in the positive 𝑧-direction.

Fig. 12. The outputs from the jaw simulation from both of the FEBio (left) 
and PolyFEM (right). The two solvers produced very similar stress distributions 
across the surfaces.

Fig. 13. Required boundary conditions applied to the human hip (bottom) to 
set up each simulation. Dashes represented boundaries that were fixed in all 
directions and rollers represented boundaries fixed perpendicular to them. The 
sacrum was fixed in all three directions, and the femurs were both fixed in the 
𝑥 and 𝑦 directions. A displacement of 1mm was applied to the distal end of the 
femur in the positive 𝑧-direction.

statically by setting the solver to static in FEBio, “ignore_inertia” set to 
true in PolyFEM.

In the jaw simulation, we fixed the upper region of the maxilla mesh 
in all three directions, while the lower part of the mandible mesh was 
displaced by 0.5mm in the positive 𝑧-direction. The mandible’s side 
nodes were fixed in the 𝑥 and 𝑦 directions. Each anatomical struc-

tures in both models were assumed homogeneous and modeled as Neo-

hookean materials, with the teeth having 𝐸 = 2GPa and 𝜈 = 0.3, the 
periodontal ligament having 𝐸 = 68.9MPa and 𝜈 = 0.45, and the jaw 
bone having 𝐸 = 1.5GPa and 𝜈 = 0.30.

In the hip simulation, we restricted the pelvic girdle by fixing the 
11

sacrum’s displacement and rotation in the 𝑥, 𝑦, and 𝑧 directions. We 
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Fig. 14. The outputs from the hip simulation from both of the FEBio (left) 
and PolyFEM (right). The two solvers produced very similar stress distributions 
across the surfaces. The only major difference was in the stress distributions of 
these simulations, this is most likely due to the differences in how the bound-

ary conditions were applied to the models. The model created in FEBio also 
used rigid regions of bone to drive the displacement, which may have also con-

tributed to differences in stress distribution.

also displaced the distal ends of the two femurs by 1mm in the positive 
𝑧-direction while restricting the rest of the femur in the 𝑥 and 𝑦 di-

rections. The components of the model were simulated as Neohookean 
materials, with the hip bone having 𝐸 = 17GPa and 𝜈 = 0.30, and the 
hip cartilage having 𝐸 = 12MPa and 𝜈 = 0.45.

Due to the different contact models utilized in FEBio and PolyFEM, 
some simulation setups could not be replicated in both solvers. For 
instance, FEBio necessitated an initial penetration between contact sur-

faces for accurate contact detection, while PolyFEM did not require 
such an initial step. Therefore, to ensure simulation convergence, the 
distance between contact surfaces, such as the separation between two 
sliding cartilages in the hip joint, must be tailored to the specific solver 
used. If the contact model in the solver is not taken into consideration 
the likelihood of the simulation failing to converge raises significantly. 
For example, in the biting scenario, if the prescribed displacement is re-

placed with a pressure load, the simulation fails to converge in FEBio 
due to inverted elements. This could have been caused by a few dif-

ferent issues like incorrect contact parameters, and despite our efforts 
to modify the applied load magnitude and adjust various contact pa-

rameters, the simulations failed in all our attempts. Some groups have 
found success using a two step analysis, starting with an initial small 
displacement step which is then followed by the pressure step for con-

tact in a simulation driven by pressure boundary conditions. This may 
have helped drive this simulation to convergence however, PolyFEM’s 
contact formulation does not require this additional tuning which can 
only be discovered after a simulation fails. These findings suggest that 
simulations involving complex geometries, soft tissues, contacts, and 
complex loading conditions may require significant parameter-tuning 
procedures to achieve successful results. Contrarily, PolyFEM was able 
to run the simulation with the pressure load without issues, and did not 
require parameter tuning.

To improve the accuracy of the simulations and avoid element-

locking effects, we increased the order of the volume mesh elements. 
FEBio’s user interface includes a tool that allows for the conversion of 
different element types into one another. In our case, we converted 
Tet4 (linear tetrahedral) elements into Tet10 (quadradic tetrahedral) el-

ements, which resulted in an increase in the number of nodes in the jaw 
model by nearly 700%. However, due to the excessive memory required 
for such a large simulation, we were unable to execute the simulations 
using FEBio on the same computer that was used in sections 4.2 and 4.4. 
Using PolyFEM, we benefited from the adaptive p-refinement feature, 

which allowed us to selectively increase the order of the basis func-



L. Martin, P. Jain, Z. Ferguson et al.

tions used in specific domains while employing linear basis functions 
for the remaining domains. Using this method, we were able to per-

form the simulations on the same machine, and the convergence time 
was approximately 17 and 42 minutes in FEBio and PolyFEM, respec-

tively, both simulations produce similar stress distributions (Fig. 12 and 
Fig. 14). The hip simulation took significantly more time to complete 
in PolyFEM than FEBio (4 hours and 5 minutes, respectively). This is 
likely due to the differences in the contact and methods for applying 
the boundary conditions. Future releases of PolyFEM will need to fo-

cus on addressing the significantly longer simulation time, however, as 
we have noted before there was no tuning of the models required in 
PolyFEM while there was a significant amount of tuning for FEBio dur-

ing the initial model development like adjusting penalty factors and 
adjusting intersection amounts. Additionally, we could simulate a dif-

ferent hip geometry without needing to change any of the boundary 
conditions.

5. Conclusions

This study demonstrated that PolyFEM produced results matching 
those from FEBio, and by extension some other FE solvers for previ-

ously published simulations based on solid, hyperelastic materials. This 
provides important verification of the solutions provided by PolyFEM. 
Further, this study demonstrated that PolyFEM offers solutions to prob-

lems that are challenging for other solvers, such as contact, soft mate-

rials, and/or extreme deformations. Even though for the vast majority 
of biomechanics simulations existing solvers are sufficient, there exists 
a subset of problems that were previous extremely difficult to simulate. 
PolyFEM targets these simulations. Finally, this study demonstrated the 
utility of PolyFEM in solving patient-specific models in biomechanics. 
Thus, this alternative solver is very suitable for solving many problems 
in biomechanics where geometric nonlinearities are common.

We believe IPC-based solvers are an ideal fit for biomechanical sim-

ulation, despite their current restricted scope, and our work provides 
guidelines and benchmarks to support the development and research 
of these techniques for biomechanical purposes. We are excited by the 
prospect of having the IPC-based solvers in biomechanics, as we be-

lieve they could lead to a massive reduction in human effort and open 
the door to a larger use of simulation for designing and understanding 
biomechanical systems.

It is important to note that at this stage of development, PolyFEM 
lacks many of the features available for other solvers. These include a 
user interface (PolyFEM uses a JSON setup file and Paraview for post-

processing), a wide array of materials, shell and rod elements, a rigid 
body solver, tied-contact, a multi-physics platform, and optimization 
for parallel performance. However, there are plans to implement many 
of these features, which would help PolyFEM realize its high potential 
for biomechanical simulation due to its improved automation and ro-

bustness. It should also be noted that one limitation of using a barrier 
potential for contact is that the simulation cannot have interpenetrat-

ing surfaces in its initial configuration. This will need to be considered 
when creating meshes from segmented medical images. The upside of 
this limitation is the higher robustness and the guarantee that there will 
be no penetrations in all timesteps. Moreover, there are parameters that 
can be adjusted that can lead to improved performance for challeng-

ing simulations, including the barrier stiffness and d-hat parameters. In 
some cases in this manuscript we adjusted these parameters such that 
solutions was reached more efficiently however, using the automatic 
formulation of barrier stiffness also produced similar results at the cost 
of computational time. At the time of writing this manuscript, those 
parameters have not been fully optimized, so it is anticipated that the 
difference in runtimes between the two solvers will improve with fur-

ther development.

While PolyFEM is early in its development, it currently provides ver-

ified solutions for hyperelastic materials that are consistent with FEBio, 
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and it is capable of simulating challenging problems in biomechanics 
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where other solvers fail. It is also open-source and publicly available. 
Future work will aim to implement many of the aforementioned fea-

tures to provide more options for the biomechanics community to im-

plement it as another tool in their workflows.
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