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ABSTRACT The process of constructing precise geometry of human jaws from cone beam computed
tomography (CBCT) scans is crucial for building finite element models and treatment planning. Despite
the success of deep learning techniques, they struggle to accurately identify delicate features such as thin
structures and gaps between the tooth-bone interfaces where periodontal ligament resides, especially when
trained on limited data. Therefore, segmented geometries obtained through automated methods still require
extensive manual adjustment to achieve a smooth and organic 3D geometry that is suitable for simulations.
In this work, we require the model to provide anatomically correct segmentation of teeth and bones which
preserves the space for the periodontal ligament layers. To accomplish the task with few accurate labels,
we pre-train a modified MultiPlanar UNet as the backbone model using inferior segmentations, i.e., tooth-
bone segmentation with no space in the tooth-bone interfaces, and fine-tune the model with a dedicated
loss function over accurate delineations that considers the space. We demonstrate that our approach can
produce proper tooth-bone segmentations with gap interfaces that are fit for simulations when applied to
human jaw CBCT scans. Furthermore, we propose a marker-based watershed segmentation applied on the
MultiPlanar UNet probability map to separate individual tooth. This has advantages when the segmentation
task is challenged by common artifacts caused by restorative materials or similar intensities in the teeth-teeth
interfaces in occurrence of crowded teeth phenomenon. Code and segmentation results are available at
https://github.com/diku-dk/AutoJawSegment.

INDEX TERMS Cone-beam computed tomography, deep learning, finite element modeling, human jaws,
instance segmentation, learning with limited data, semantic segmentation, transfer learning.

I. INTRODUCTION
Accurate segmentation of medical images of a human
jaw, such as cone beam computed tomography (CBCT)
scans, is crucial in creating patient-specific preoperative
and predictive finite element (FE) models that improve the
design of implants and treatments [30]. A key aspect in the
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development of FE models is having a precise geometric
representation of anatomical structures [21].

In the case of developing FE models of the human jaw,
in addition to teeth and bone geometries, it is essential to
model the connective tissue between them, called periodontal
ligament (PDL). In general, PDL layer plays an important
role in transferring load from teeth to the bone in orthodontic
treatments, and when triggered with enough orthodontic
forces, it results in bone remodeling [12]. As a result, accurate
segmentations of human jaws must not only depict the shape

102460
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6102-604X
https://orcid.org/0000-0001-8060-2471
https://orcid.org/0000-0001-6808-4747
https://orcid.org/0000-0001-7201-2092


P. Xu et al.: Deep-Learning-Based Segmentation of Individual Tooth and Bone

and boundaries of the involved teeth and bone structures but
also preserve the space between them (see Fig. 1B and D) for
the further modeling of PDLs [12].
Manual segmentation of the CBCT scans with the accurate

geometrical representation of a human jaw’s anatomies is
labor-intensive and extremely time-consuming and depends
on the scans’ resolution and the annotator’s expertise. In addi-
tion, it is especially challenging to accurately delineate the
teeth and bone boundaries with relatively similar intensities
to preserve the PDL from the CBCT scans. Hence, there is
a need for automated segmentation tools that can generate
accurate geometries for developing FE models.

Automatic segmentation methods commonly utilize Con-
volutional Neural Networks with an encoder-decoder archi-
tecture, of which the most effective is the UNet structure [22]
which incorporates skip connections on high-resolution fea-
ture maps in the encoding stage to include more fine-grained
information. Despite the development of newer models for
natural image segmentation such as DeepLabV3+ [3] and
transformer-based models [1], [25], [28], UNet remains one
of the top performers in 3Dmedical image segmentation [14].
As a result, using a variation of UNet, such as 3D UNet,
for segmenting 3D medical data like computed tomography
scans is a straightforward approach that has demonstrated
state-of-the-art performance [6], [14]. However, applying
3D convolutions directly to large 3D images may result in
memory overflow. To mitigate this, 3D models are typically
trained on small patches, which limits their field of view and
causes the loss of global information. An alternative with
lower memory usage is the MultiPlanar UNet (MPUNet)
model proposed by Perslev et al. [20]. This model utilizes a
2D UNet to learn representative 3D semantic information by
sampling slices from various orientations.

Most research in the field of auto-segmentation of human
jaws aims on the neural networks designs that can accurately
separate certain anatomical structures with minimal manual
input [4], [5], [7], [9], [10], [15], [26], [27], [29], [31], [33].
Most of these works only focus on teeth segmentation [4],
[5], [8], [9], [10], [11], [15], [29], [31], especially on the
separation of individual tooth, while others only focus on the
bone segmentation [26], [32], [33]. Although individual tooth
segmentation is critical for computer-aided analysis towards
clinical decision support and treatment planning, PDL layers
cannot be retrieved from either tooth or bone segmentation
alone, thus cannot be used to model the transferring load from
teeth to the bone in orthodontic treatments [12]. Recently,
Wang et al. [27] and Cui et al. [7] work on the multiclass
segmentation of human jaws to simultaneously segment the
bones (i.e., mandible andmaxilla) and the teeth. Their models
are either trained only over axial slices of CBCT scans [27]
or trained on thousands of scans to reach a Dice score
above 90% [7]. More crucially, their segmentations ignore
the inter-bone gaps and thus are anatomically inaccurate.
These anatomically inaccurate segmentations cannot be used
to generate 3D models and limits the application in finite
element simulations [12].

FIGURE 1. Illustration of gap generation. A: Inferior ground truth labels
ignoring the space where the periodontal ligament resides. B: The
accurate labels of the same patient that considers space for the
periodontal ligament. C: Results of the proposed method on a test scan
with model trained only on inferior dataset with no gap. D: Fine-tuned
model with gap information.

Analog to Xu et al. [30], which accurately delineates the
gap in hip joint segmentation for further cartilage simulation
studies, we require the deep learning models to provide
anatomically correct segmentation of human jaws which
preserves the space for the PDL layers between teeth and
mandibles as shown in Fig 1. Our approach leverages a
standard UNet with batch normalization as the backbone
model and incorporates the concept of MultiPlanar [20]
to integrate more volumetric features into the model and
increase the model’s efficiency. In addition, due to the
difficulty of manual delineation of the PDL layers, we have
very few anatomically accurate teeth-bone label maps of
the CBCT scans that detail the gap where PDL resides.
Our framework utilizes an interactive learning process to
reinforce such gapwith limited annotated data by pre-training
the MPUNet on a dataset with subpar segmentation to gain
a general understanding of the tooth and bone structures.
Subsequently, the model is fine-tuned using just a few highly
accurate segmentations with a specific loss function that
penalizes more on the gap regions.

By combining these techniques, our proposed pipeline
is capable of achieving accurate segmentation results that
fill in the missing gaps between the tooth-bone interfaces
where the PDL is located with few accurate training data,
while being both memory and computationally efficient. Our
findings are verified using a test set of CBCT scans, where
we construct finite element models and numerically evaluate
the segmentation performance with the manually corrected
segments utilized in biomechanical models.

In addition to the gap generation process, a further task
is to separate individual tooth. The UNet output consists
of the segmentation of a single class of jaw bones, as well
as a single class of teeth that contains all the teeth.
Automatic segmentation of individual tooth is critical for
computer-aided analysis towards clinical decision support
and treatment planning, but this segmentation is further
challenged by blurring the boundaries of neighboring teeth
and metal artifacts. Therefore, a simple post-processing
with Connected Component Decomposition (CCD) over the
UNet output will not correctly separate the adjacent teeth,
especially if the subject has crowded teeth or is in a biting
position.

VOLUME 11, 2023 102461



P. Xu et al.: Deep-Learning-Based Segmentation of Individual Tooth and Bone

Deep-learning-based instance segmentation methods, e.g.,
Mask R-CNN, have shown state-of-the-art performance on
2D natural images [13]. These networks involve region
proposals to generate bounding boxes around each instance,
with one branch for box regression and object detection
and another for semantic segmentation. Cui et al. exploited
3D Mask R-CNN as a base network to realize automatic
tooth segmentation and identification fromCBCT images [9].
However, region proposals in 3D are extremely time and
memory-consuming and require a larger training set than
semantic segmentation methods that only deal with voxel
labeling. Many of the modifications by Cui et al. that make
region proposal work on 3D cases rely on the teeth having
similar structure and orientation, thus will fail with, for
instance, wisdom teeth and, more fatally, after adding jaw
bone classes. Moreover, a threshold of the confidence level
on each proposed region needs to be selectedmanually during
inference, which may completely miss an object or generate
overlapping instances and hinder biomechanical modeling
afterward.

Instead, since there is no occlusion in 3D images, a com-
mon way to accomplish instance segmentation in practice is
to apply post-processing over semantic segmentation output.
For example, Chen et al. proposed to apply watershed
on the raw probability map of the output of semantic
segmentation models [4]. Besides, they proposed to train a
multi-task 3D VNet that learns both the teeth region and the
teeth surfaces to gather more information about teeth and
better separate neighboring teeth [17]. However, the dense
skip connections in VNet and multi-task learning severely
increase computational overhead. We follow the same idea
of separating individual tooth by applying watershed over
UNet probability map that fits into our pipeline. However,
we keep a simple single-task problem with MPUNet as
the backbone model while enforcing the gap regions for
better separation of teeth through a dedicated loss function.
To our best knowledge, our work is the first on automatic
segmentation of human jaws that separates both individual
tooth and bones (maxilla and mandible) while accurately
detailing the gaps between them with very few data.

II. MATERIALS AND METHODS
In order to achieve accurate segmentation with a limited
number of annotated training images, our strategy involves
several key components: (i) We use the MPUNet approach,
which segments 3D medical images by breaking them
down into 2D views while maintaining as much spatial
information as possible. (ii) To prevent overfitting and
memory issues, we use a simple yet effective backbonemodel
for segmentation. (iii) The model is pre-trained using data
without the gap to learn general semantic features and then
fine-tuned using a small set of highly accurate annotated data
for gap generation. (iv) A dedicated weighted distance loss is
used to emphasize the gap between the teeth and bones and
between neighboring teeth. (v) We separate individual tooth

by applying marker based watershed segmentation over the
UNet output probability map.

Here we divide the pipeline into two parts; the first part
focuses on model construction and training, while the second
deals with individual tooth segmentation over the model
output, corresponding to strategy (v).

A. GENERAL PIPELINE
As a general pipeline, we are inspired by themethod proposed
by Xu et al. in regard to neural network training [30].

1) MODEL
As a baselinemodel, we use theMPUNet proposed by Perslev
et al. to segment the 3D jaws using 2DUNet while preserving
as much 3D spatial information as possible by generating
views from different perspectives [20].

2) TRANSFER LEARNING
The accurate segmentation and efficient convergence with
limited data rely partially on pre-training the model using a
dataset with inferior annotation, followed by fine-tuning with
a smaller set of precisely labeled data. Here we also follow
[30] by transferring the weight in the last softmax layer and
explicitly learning the encoder, which results in much faster
convergence and correct encoding of the gap respectively.

3) LOSS FUNCTION WITH WEIGHTED DISTANCE MAP
In the pre-training step, the model is trained using a
standard categorical cross-entropy loss, as we observed no
improvement using a class-wise weighted cross-entropy loss
or the Dice loss. During fine-tuning, to guide the model in
learning the space between the teeth and bones where the
PDL is located, a voxel-wise weight map w(x) is applied to
the loss function based on the distances from the foreground
class borders. This approach was first proposed in the original
UNet paper, which we have adapted for use with 3D data in
a modified form [22], [30]. We define w(x) as follows,

w(x) ≡ wc(x) + w0 e
−

(
(d1(x)+d2(x))

2

2 σ2

)
. (1)

where d1 and d2 represent the distance to the border of the
nearest foreground class and the second nearest foreground
class respectively. We follow the original UNet paper and
set w0 = 10 and σ = 5. wc : � → R was originally
proposed to balance the class frequencies, which we do not
enforce; thus, wc is set to 1 for every class c. During the fine-
tuning process, the corresponding slice of the 3D weight map
is sampled in conjunction with the images and labels. Then,
the weight map is multiplied element-wisely with the cross-
entropy loss between predictions and labels on each pixel
before reduction and backpropagation. The whole process is
illustrated in Fig. 2.

The incorporation of the distance-based weights (Eq. (1))
into the training of the neural network is inspired by the
anticipation that in further FE simulations, a similar distance-
based metric will be employed to generate space between the
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FIGURE 2. Model training pipeline weighted by distance map calculated
from Eq. (1). ⊗ denotes element-wise product, which suppresses the
general boundary uncertainties while amplifying loss near the gaps. Note
that the pixel-wise cross-entropy is visualized after averaging over all the
classes. L is the final loss as a scalar after reduction.

segmented teeth and bone geometries to locate the PDL. This
methodology is outlined in [12].

4) SAMPLING STRATEGIES
Careful sampling and interpolation are crucial for obtaining
corresponding 2D slices from a 3D medical image viewed
from a random orientation different from the standard RAS
axes, which our initial test runs showed evidence of being
the actual key to success. Here we follow the same idea of
Perslev et al. to sample on isotropic grids within a sphere of
diameter m centered at the origin of the scanner coordinate
system in the physical scanner space [20]. Pixel dimension
d ∈ Z+ of the grid and the actual size (diameter) m ∈ R+

(controlled by voxel size) in millimeters of the sphere need to
be settled before the model training to decide the input size to
UNet and its field of view. We differ from [20] by following
the modification made by [30] in that these two numbers are
chosen differently during training and inference. Briefly, d
and m are computed heuristically as the 75 percentile across
all axes and images during training but as the maximum
value across all axes and all training images together with the
current test image during testing. Please refer to [30] for the
justification of this modification.

B. INDIVIDUAL TOOTH SEGMENTATION
The segmentation of the CBCT scans is conducted in two
steps; first, proper teeth-bone segmentation is performed
using the strategy discussed in the previous section with
MPUNet; second, the teeth segments are decomposed into
individual tooth segments.

Based on our observation, the model is less confident in the
contacting interface of the two adjacent teeth in the output of
the MPUNet before the argmax step, meaning a lower value
in the probability map. Therefore, we apply a Marker Based
Watershed Segmentation (MBWS) algorithm over the teeth
probability map to separate the wrongly merged neighboring
teeth [4].Watershed is an unsupervised instance segmentation

FIGURE 3. Individual tooth segmentation pipeline. MPUNet output from
various views are first fused together. The probability map of teeth class
is used by MBWS to generate individual tooth segmentation, which is
then combined with the segmentation of bone class (maxilla and
mandible). Coloring is random.

model that refers metaphorically to a geological watershed
that separates adjacent drainage basins. Fig. 3 illustrates the
whole process, where foreground and background markers
are generated to guide the watershed operation based on the
output probability map of MPUNet after averaging different
views. Details of MBWS with foreground and background
generation are explained in Appendix B.
The final result is the union of segmented tooth instances

and the bone classes as shown in Fig 3, while the bone class
has a higher priority in the intersecting/overlapping regions.
Note that the upper and lower bone classes, i.e., mandible and
maxilla can be trivially separated by a simple CCD because,
unlike teeth, the upper and lower bone classes are always
disconnected by a large gap. Here the bone class is labeled
in one color for simplicity.

C. DATA AND EXPERIMENTS
We use 13 CBCT scans in this study, where 12 scans belong
to 3Shape A/S in-house CBCT dataset, and one scan (P12 in
Table 5) is obtained from 3DSlicer’s ‘‘Sample Data’’ module,
titled ‘‘CBCT-MRI Head’’. In all scans, the teeth and bone are
annotated in both the upper and lower jaw. The scans were
acquired from multiple resources from the typical age group
of adult male and female ranging between 34 to 64 years old.
Further details on sex, age, manufacturer details, and scanner
settings are presented in Table 5 in Appendix A. Most of the
patients have various dental problems such as dental implants
and missing teeth. Besides, the dataset comprised of scans
with different voxel sizes and various levels of artifacts such
as metal filling artifacts or double contouring artifacts due to
the movement of patients in the image acquisition step [16],
[18]. Details about the utilized scans and artifacts are listed
in Table 4 in Appendix A.

1) TRAIN-TEST SPLIT
Due to the difficulty of concise manual labeling to ensure
the gap between teeth and bones, we only have eight cases
with an accurate label map detailing the teeth-bone gaps
whereas the rest five labeled data are inaccurate due to the
missing gaps. These five scans are used for pre-training the
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network, while the eight scans with accurate label maps are
split equally for the train-test, meaning that only four scans
are used to train the network to detail the gaps. Specifications
about the data split are listed in Table 4 in Appendix A.

2) PRE-PROCESSING
As presented in Table 4, the original scans are with various
voxel sizes and different dimensions. Therefore, all the scans
are first upsampled to the smallest voxel size (0.15 mm) in
the dataset with a B-Spline interpolation and cropped to an
identical dimension of 5123. We then pre-process the data by
applying an intensity standardization based on the equation
Xscale ≡ (xi − xmean)/(x75 − x25), where x25 and x75 are
the 1st and 3rd quartiles respectively. This transformation
scales the intensity based on quartiles and is more robust
to outliers, which is especially crucial when working with
data involving metal artifacts, in some cases resulting as
outliers with extremely high-intensity values. We apply this
standardization in two steps: over the 3D volume and then
over each sampled slice to MPUNet. No other pre-processing
is used to avoid potential errors that can easily propagate in
the neural network.

3) EXPERIMENTAL SETUP
The network is trained on NVIDIA GeForce RTX 3090 with
a batch size of 10 using the Adam optimizer for 60 epochs
with a learning rate of 10−5 and reduced by 10% for every
two consecutive epochs without performance improvements.
We stop training if the performance of five consecutive
epochs does not improve. Pre-training takes approximately
one day, while fine-tuning takes about 10 hours to converge.

4) AUGMENTATIONS
We apply Random Elastic Deformations to generate images
with deformed strength and smoothness [24]. The augmenta-
tions are generated on the fly during the training process, and
following MPUNet we assign a weight value of 1/3 for the
deformed samples [20].

D. ETHICS STATEMENT
The requirement for the ethical committee’s approval was
waived from ‘‘Center for Regional Development, The Scien-
tific Ethics Committee’’ with a reference number 21063693,
with the following statement: ‘‘It has been assessed that this
is not a health science research project as defined in section
II of the committee act, but that it is a non-invasive study
containing 3D scan images of jaws and teeth’’. Note that,
this work only uses an available dataset that already had been
collected by 3Shape, and no new scans has been collected just
for use of this study. All scans had been acquired as part of a
patient’s treatment and had already been thoroughly studied
by patient’s dentist/orthodontist, which is a legal requirement
when performing a CBCT scan. Hence, here is no possibility
that we can discover additional diseases etc. that the patient

FIGURE 4. Generated gaps for one of the scans in the test set displayed
from different views.

FIGURE 5. Finite element analysis of a tipping scenario. A: Displacement
filed of the teeth. B: smooth von Mises stress pattern on the periodontal
ligaments.

had not already been informed about. The patients and the
dentists have given written consents for using the scans.

III. RESULTS AND DISCUSSIONS
In order to produce geometries suitable for finite element
(FE) models, the auto-segmentation framework must accu-
rately separate teeth and jaw bones and produce precise
results near the boundaries, which are crucial for creating
the PDL layers in the jaw. We evaluate the performance of
generating the general tooth-bone semantic structures and the
gaps between the teeth-bone interfaces in the first subsection.
In the second subsection, we evaluate our further task of
individual teeth segmentation.

As shown in Figure 4, the enforcement of a distance weight
to the loss allows the model to accurately capture the gap.
The final result is anatomically accurate and requires minimal
manual intervention for subsequent simulations, such as finite
element analysis. Segmentation results in 3D are available
at https://github.com/diku-dk/AutoJawSegment. As an exam-
ple, we have generated the PDL geometries on the recon-
structed geometries obtained from the segmented CBCT
scans with a method proposed in [12] to analyze the stress
distributions in a tipping scenario as shown in Fig 5. The
results demonstrate a smooth stress pattern, indicating that
the output from our method is suitable for finite element (FE)
simulations.

A. PERFORMANCE METRICS
Although the commonly adopted measurements of voxel-
wise correspondence, e.g., Dice Score, could be misleading
regarding the final FE simulations, we still include these
measurements as part of the quantitative validation and an
ablation study of our several design choices. The Dice Score
is defined as

Dice(P,Y ) ≡
2 |P ∩ Y |

|P| + |Y |
. (2)
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where P and Y denote the predicted result and ground truth
segmentation respectively.

In addition to the standard Dice score, we are particularly
interested in evaluating the performance of the model in
the surface and gap regions. To assess this, we adopt two
additional evaluation metrics. The first metric is the Haus-
dorff distance (HD), which measures the surface accuracy by
calculating the largest distance between the predicted result
P and the nearest point on the ground truth Y .

HD(P,Y ) ≡ max(max
p∈P

min
y∈Y

∥p− y∥2,

max
y∈Y

min
p∈P

∥p− y∥2) (3)

Secondly, Average Segmentation Surface Distance
(ASSD)measures the average distance between the estimated
segmentation surface SP and the ground truth surface SY . The
surface is computed by subtracting erosion from dilation.

ASSD(P,Y ) ≡ mean(mean
d∈SP

(dist(d, SY ))

× mean
g∈SY

(dist(g, SP))). (4)

where dist (d, SY ) ≡ miny∈SY ∥d − y∥2 denotes the nearest
Euclidean distance from point d to surface SY .

Although the above two surface measurements better
capture the segmentation stability and conciseness than Dice
score, they are based on the whole structure with parts
that are not that critical for later simulation studies, e.g.,
the upper surface of the maxilla and lower surface of the
mandible. Instead, we are only interested in the parts where
two instances meet, i.e., the teeth-bone interfaces. Therefore,
we also adopt GapDice proposed in [30] in Eq (6) to measure
the average Dice score only around the gap regions.

Given the segmentation results P and the ground truth
segmentation Y , the gap region G is defined by thresholding
the Euclidean distance transformation map of Y

G = {x|d1(x) + d2(x) < ϵ} (5)

where as defined in Eq (1), d1 and d2 represent the distance
to the border of the nearest foreground class and the second
nearest foreground class in Y , respectively. ϵ is the threshold
value, which we set ϵ = 5 as we found it to effectively capture
both the gap and boundary regions.

The Dice score between P and Y is then calculated in the
standard manner, but only inside G , as defined in Eq (6).
Fig 6 shows an indication of such regions.

GapDice(P,Y ) ≡
2 |P ∩ Y ∩ G|

|P ∩ G| + |Y ∩ G|
. (6)

B. QUANTITATIVE RESULTS AND ABLATION STUDY
Table 1 presents the aforementioned performance metrics
on the test set, including four images with accurate ground
truth segmentations. This experiment is implemented by
modifying one of the design choices each time while fixing
the others. (i) The strategy described in the Materials and

FIGURE 6. The estimated gap region (green) when calculating GapDice
for a patient, illustrated in an axial slice (left) and in 3D (right).

TABLE 1. Test results of our model compared with various design
choices and other models from the literature.

methods Section (ours), (ii) Training the model without
pre-training inaccurate data with no gap (NoPretrain), (iii)
Training the model without enforcing distance-based weight
map (NoWeight), (iv) Using only inaccurate data without
fine-tuning the model (NoFineTune), (v) Using a 3D UNet
[6] as the backbone model (3DUNet).

In addition, we also compare our results with 2D mixed-
scale dense CNN (MSDNet) [19] adopted by Wang et al.
[27] for the segmentation of human jaws as mentioned in
the Introduction. The model is trained only over the extracted
axial slices of CBCT scans from the training set, as proposed
in [27]. During inference, the 2D prediction results of all
the slices of each test scan are concatenated back to 3D for
validation. The MSDNet employed by Wang et al. [27] has
only a depth of 3, which we found extremely insufficient for
such task. We have thus also considered a depth of 100 and
200, as adopted in the original MSDNet paper [19].

The results indicate that the MPUNet (all the first four
models) performs significantly better than the standard
3D UNet when dealing with limited data. The 3D UNet
fails to learn the general semantic features of tooth-bones
with few data compared with MPUNet. Similarly, our
model significantly outperforms the MSDNet [19] adopted
by Wang et al. [27], even with more depth adjustment.
We speculate the poor performance of MSDNet is due to
the model’s oversimplified structure without downsampling
and upsampling phases like in UNet and its insufficiency in
learning 3D data from axial slices alone. These drawbacks
prevent it from learning appropriate features, especially on
data with high noise ratios like the scans in our dataset,
compared with the dataset in [27] where the CBCT scans are
free of metal artifacts.

Among ablation studies using MPUNet as the backbone
model (all the first four models), it is very interesting to
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notice that the model without being fine-tuned (NoFineTune)
gives a high Dice score and best surface measurements
(HD and ASSD). However, since it is anatomically incorrect
in that it fails to detail the gap between tooth-bones (cf.
Fig. 1c), it has significantly worse performance in the
proposed task-specific measurement, i.e., GapDice. This is
an indication of why the standard performance metrics that
measure voxel-wise correspondence or surface closeness can
be misleading regarding the final FE simulation and needs to
be resolved for future segmentation works.

Apart from this, our pipeline outperforms in almost all four
metrics. Especially, although the difference in the Dice score
is not significant (95.14± 1.21 vs 94.05± 1.35), pre-training
on inaccurate data and enforcing the weight map during
fine-tuning shows a significantly better GapDice score (64.28
± 4.65 vs 59.68 ± 4.65) and ASSD (0.118 ± 0.03 vs 0.139
± 0.04), which is vital for further simulation. Nonetheless,
we notice that the GapDice score is significantly lower than
the standard Dice score even in our pipeline which has the
highest GapDice. Such segmentation errors are mostly due
to various artifacts in the scan, as listed in Table 4, which
influences the segmentation results. In general, our results
in Table 1 have shown good segmentation performance and
robustness to the aforementioned artifacts by producing high
Dice scores and low surface deviations. However, the concise
modeling of details such as PDL layers in noisy scans can
be challenging even with our model adaptations to penalize
more on the gap regions. A future direction for providing
an even more robust network against the mentioned artifacts
would be including more data that capture various kinds
of artifacts or adding synthetic artifacts to the scans to
verify if the model can be trained to learn invariance to
the artifacts. Alternatively, deep learning models have been
proposed to reduce artifacts as a preprocessing step for the
auto-segmentation task [2], [34]. This means we would need
to have more data from the scan with artifacts along with the
scan of the same patient without artifacts, which is difficult
to obtain.

1) RESULTS WITH CROSS-VALIDATION
The aforementioned experiments and results in Table 1
are based on a specific train-test split of the eight scans
with accurate label maps. This choice is to preserve a
similar level of noise/artifacts in the training data (used for
fine-tuning to learn the gap) and test data, as listed in Table 4
in Appendix A. As another common practice in machine
learning, here we also conduct a 5-fold cross-validation by
randomly dividing the eight scans into training and test sets,
ensuring an equal split of four scans in each set as before to
analyze performance variations. Table 2 shows the mean and
standard deviation of the results with various design choices
in correspondence to those in Table 1. Note that the methods
with different backbone models (3DUNet and MSDNet) are
not included for cross-validation as they have shown to have
significantly poorer performance in Table 1. Table 2 generally

TABLE 2. Cross-validation with various design choices.

FIGURE 7. Illustration of failure cases. Top: The segmentation results on
two different test scans. Different failure cases are illustrated with
different colored circles, i.e., orange: inaccurate segmentation of the root
apexes; red: connected teeth problem; purple: a single tooth is wrongly
segmented with different labels. Colors are randomly assigned to
different teeth. Bottom: The scan with overlaid individual tooth labels
from the top right case, displayed from different views and showing
various artifacts that explain the failures.

shows a similar pattern with Table 1 in that our pipeline is able
to give significantly better GapDice which is vital for further
simulation studies [12].

C. PERFORMANCE OF INDIVIDUAL TEETH
SEGMENTATION
We further evaluate the performance of individual tooth
segmentation of our pipeline with the watershed method
mentioned above. Fig 3 illustrates that our pipeline can
generate visually accurate surface meshes of each tooth and
bone even in cases where the CBCT had been acquired
in the natural biting position, making the individual tooth
segmentation complex as the maxillary and mandibular teeth
are touching each other in most of the occlusal surfaces.
On the other hand, Fig 7 illustrates several failure cases in one
test scan. This test case is filled with various artifacts such as
crowded teeth, metal fillings, or dental bridges, as indicated in
Fig 7 Bottom. As mentioned in the previous subsection, such
artifacts can influence the segmentation in fine detail, e.g.,
the gap between neighboring teeth and roots, which results in
connected teeth and missing root apexes.

Numerical evaluation of the individual tooth and bone
segmentation is tricky because, unlike deep-learning-based
instance segmentation methods, no soft region proposals are
involved in the proposed method, making it impossible to
compute a mean Average Precision (mAP). Therefore, our
result of individual tooth segmentation is evaluated using the
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TABLE 3. Test results of individual teeth segmentation compared with
semantic segmentation.

same metrics in the previous section as shown in Table 3.
In this case, all the predicted teeth instances are mapped
back to a binary case and then combined with the bone
class. This is an unfair comparison since those metrics cannot
reflect its ability to distinguish individual teeth. However, it is
interesting to investigate if the further separation of individual
teeth does not harm the overall performance, even in this
unfair setting. In particular, Table 3 shows that the result after
applying individual tooth segmentation gives almost identical
results, with a surprising improvement of GapDice and HD.
This evaluation scheme could provide insight that the teeth
segments deviate negligibly from the prior segmented single
tooth class.

We acknowledge that the watershed method involves
several hyper-parameters, e.g., the threshold of the UNet
probability map and the opening and erosion sizes in Eq (7).
The values of these parameters must be tuned beforehand
to ensure that neighboring teeth do not share the same
foreground marker while avoiding creating multiple markers
for the same tooth. Furthermore, one might need to tune
these parameters when applying the same pipeline to other
problems with different scales or resolutions. Therefore,
a future work direction would be to infer those numbers
automatically from the studied dataset.

IV. CONCLUSION
Our proposed auto-segmentation framework successfully
segments both individual tooth and bones (maxilla and
mandible) from CBCT scans of human jaws, with accurate
tooth-bone boundaries and the gaps between the teeth roots
and sockets. The framework employs a modified version
of MPUNet, which is pre-trained on a dataset that does
not consider the presence of the PDL layer to learn the
general features of tooth-bone geometries. The model is then
fine-tuned using a small set of highly accurate segmentations
with a dedicated loss function that penalizes the gap regions.
This allows the model to better understand the gap where
the PDL layer resides and generate anatomically accurate
segmentations. We further separate individual teeth by
applying watershed segmentation over the MPUNet output.
The results of our experiments demonstrate the effectiveness
of our framework in detailing critical features, such as the
gap between the teeth-bone interfaces and the interproximal
regions of the teeth.

A trained segmentation professional has verified our work,
and the results show improved numerical results, reaching
an overall Dice score above 95% and a significantly higher
GapDice than other methods. Our approach can improve
anatomically incorrect and poorly annotated datasets with
a few accurate labels. One ablation study indicates that the

standard performance metrics can be misleading regarding
the final FE simulation by producing high-performance
metrics but anatomically incorrect results. On the other hand,
our results from the finite element (FE) analysis performance
test indicate that the models generated produce stress patterns
that are smooth and free of artifacts caused by missing gaps
in the geometry. As a result, the segmentation outcomes from
this study can be applied to generate FE models with minimal
adjustments.

APPENDIX A
UTILIZED SCAN DETAILS AND CBCT ARTIFACTS
Image artifacts can be broadly defined as visual effects in
reconstructed data that are absent in the real-world object
being studied. These artifacts may be the result of various
factors, such as subject movement, hardware limitations, the
simplifiedmathematical assumptions used for 3D reconstruc-
tion, or their combination. These artifacts, their severity, and
voxel sizes can play a significant role in the segmentation
task’s complexity. Therefore, to provide an overview of
observed artifacts in the dataset, we assessed the existence
of the common CBCT artifacts, i.e., metal artifacts, noise,
blurriness, motion, and aliasing artifacts [16], [18], [23].

The noise artifact can be observed as inconsistent voxel
intensities in regions where similar intensities should be
present. In addition, double contours can be observed in the
CBCT scans that are typically caused due to the patient’s
movement during the image acquisition process, making
it difficult to accurately identify boundaries and delicate
structures. Another common effect is the aliasing pattern,
which can be seen as lines diverging from the center toward
the periphery [16], [18], [23]. Moreover, metal artifacts can
be seen as regions with high intensities followed by streaks
diverging from the center of the metallic restoration/crown,
making it difficult to precisely identify the studied tooth’s
boundaries. Furthermore, such metal artifacts can cause
inaccurate grayscale values in areas not immediately adjacent
to the metallic restoration [16], which we refer to as the
ghosting effect here.

Table 4 provides details of the utilized scans in this study
and represents an overview of the train-test split in this study,
as well as the involved artifacts in each scan ranked between
zero to two, specifying the artifact’s severity level. Further
details on sex, age, manufacturer details, and scanner settings
are presented in Table 5.

APPENDIX B INDIVIDUAL TOOTH SEGMENTATION
DETAILS
Individual tooth is separated by applying the watershed
method over the MPUNet probability map of the teeth class.
The watershed method considers the intensity value of each
voxel as the height, where a high value denotes spikes/hills
and a low value denotes valleys. It fills every isolated valley
(local minima) with different colored water (labels). As the
water rises, depending on the peaks (gradients) nearby, water
from other valleys with different colors will merge. The
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TABLE 4. Specification of the utilized scans, including details on the original voxel size, number of missing teeth (including the wisdom teeth), different
artifact types, and data split for model training. The included artifacts ranked between zero, one, and two to specify the artifact’s level in each scan. This
variety of artifacts indicates a challenging task for learning an auto-segmentation network. The last column represents the data split for the pre-training
(PreT), fine-tuning (FineT), and testing (Test) steps.

TABLE 5. Details of studied cohort and utilized devices for image
acquisition including manufacturer information and device settings.

algorithm then tries to prevent the merging by building
‘‘barriers’’ locations where water merges until all the peaks
are underwater. The barriers then naturallymark the boundary
for each instance, which results in instance segmentation of
the teeth.

In practice, the primary watershed method usually pro-
duces over-segmented results due to its sensitivity to noise
or other irregularities in the image, like many local minima.
Instead, Marker-Based Watershed Segmentation (MBWS)
alleviates this problem by specifying the valley points
(foreground markers) that are to be merged and barriers
(background markers) to the model. The whole process
is shown in Fig 3, which is explained in the following
paragraphs.

1) FOREGROUND MARKERS GENERATION
Instead of working directly on the image here, the foreground
markers are determined by thresholding the UNet output
probability map since the probability map naturally repre-
sents how confident the model is in predicting the foreground
class, in this case, teeth. Eq (7) below indicates the foreground
regions where we first apply a threshold of 0.8 over the
probability map on teeth class P(x). We then remove isolated
false positives and shrink the thresholded foreground regions
by applying an opening, ◦, with a structural ball element
E5×5×5 followed by an erosion, •, with a structural ball
element E3×3×3 to provide disconnected teeth. Note that the
radii should be determined based on the general shape of the
instance, in this case, a tooth, to separate neighboring teeth

while avoiding introducing undesired disconnectivity inside
each tooth.

Mf ≡ {x | (P(x) > 0.8) ◦ E5×5×5 • E3×3×3} . (7)

2) BACKGROUND MARKERS GENERATION
The background markers are generated based on the fore-
ground markers Mf generated from the previous step by first
applying a distance transform over Mf , which corresponds
to the terms of d1 and d2 in Eq (1). The final background
region is generated by thresholding both the difference and
the sumof the two distances, which is indicated in Eq (8). This
choice of background markers corresponds to the trimmed
perpendicular bisector plane between any two neighboring
teeth, thus ensuring neighboring teeth do not get merged
by the watershed. The threshold of d1 + d2 is necessary to
ensure that the background marker does not penetrate other
foreground regions. The value of 20 is experimental and will
need to be tuned for other datasets or voxel sizes.

Mb ≡ {x||d1(x) − d2(x)| ≤ 1 ∧ |d1(x) + d2(x) |≤ 20} . (8)

3) MARKER-BASED WATERSHED SEGMENTATION
As shown in Fig 3, with the selected foreground and
background markers, the final MBWS is conducted on the
gradient of the UNet probability map due to its good response
to weak edge information [4]. The gradient is computed by
convolving Gaussian derivative kernel with σ = 2. Our
experience indicates that this preserves root structures better
than directly working on the probability map.

4) TRAINING STRATEGY WITH ADDITIONAL WEIGHT-MAP
Although this MBWS to separate individual tooth has shown
to be effective, its performance largely depends on the quality
of the UNet probability map. More specifically, if the model
gives inaccurate results (high probability of being fore-
ground) near the gap between some neighboring teeth, these
teeth will share a common foreground marker. Increasing
the utilized thresholding value for the foreground or the
erosion/opening kernel sizes in Eq (7) can provide different
foreground markers for the adjacent teeth. However, this
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FIGURE 8. The values of the weight map presented as colormap along
with the labeled teeth and bone. The proposed weight map enforces gaps
not only between the teeth and bone segments where the periodontal
ligament lies, but also between nearby teeth.

may also introduce fractions (several foreground markers)
inside the same tooth, causing the watershed algorithm to
assign several labels to the different parts of the same tooth.
Therefore, keeping the morphological and thresholding level
is crucial while providing a more accurate result near the
interproximal gaps.

As the distance weight map is very effective in learning the
gaps in the teeth-bone interfaces, we use this same strategy
to learn the interproximal gaps. After applying connected
component decomposition over ground truth to get a different
label for each tooth, we can follow the same strategy in Eq (1)
to enforce a higher weight on both the gap in the teeth-bone
interface and in the interproximal regions of the teeth to
better separate the adjacent teeth from each other. As shown
in Fig 8, the weight map calculated by Eq (1) has a higher
value not only between tooth-bone gaps but also between
neighboring teeth. Note that such Euclidean transformation
in Eq (1) is highly time-consuming because it involves the
distance computation to every class and sorting the values
afterward. Hence, the time complexity increases with at
least O(n log n) where n denotes the number of classes.
For example, the gap modeling in the teeth-bone interfaces
involved only two classes (bone and teeth), but modeling
the gaps in the interproximal regions involves approximately
30 classes (number of teeth). Therefore, it is crucial that the
weight map is computed before the model training and then
sampled together with the corresponding images and labels.
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