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Abstract

We present an SE(3) Group Convolutional Neural Network along
with a series of networks with different group actions for segmenta-
tion of Diffusion Weighted Imaging data. These networks gradually
incorporate group actions that are natural for this type of data, in
the form of convolutions that provide equivariant transformations of
the data. This knowledge provides a potentially important inductive
bias and may alleviate the need for data augmentation strategies. We
study the effects of these actions on the performances of the networks
by training and validating them using the diffusion data from the
Human Connectome project. Unlike previous works that use Fourier-
based convolutions, we implement direct convolutions, which are more
lightweight. We show how incorporating more actions - using the SE(3)
group actions - generally improves the performances of our segmenta-
tion while limiting the number of parameters that must be learned.

Keywords: Geometric deep learning, Group action, Homogeneous spaces
GCNN, Image Segmentation, Diffusion Weighted Imaging
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2 SE(3) Group Convolutional Neural Networks

1 Introduction

In this work, we study the influence of group actions on data and how they
may impact the architecture and performances of neural networks, especially
convolutional neural networks (CNN). CNNs rely on assumed translational
symmetries in data and have shown very robust performance in imaging tasks,
especially medical imaging ones, and they are highly parameter-efficient thanks
to their weight-sharing property. When data offer more structure than simply
translation, this can be used to build generalized CNNs. This is especially
the case for the task at hand - classification and segmentation of Diffusion
Weighted Imaging (DWI) data. These Group and Geometric CNNs (GCNN)
have been studied intensively and applied in many situations in the few past
years ([1–5] to cite a few).

DWI is a non-invasive image modality that provides local information
about water diffusion in tissues by means of measuring spins displacement [6].
It provides 3-dimensional diffusion information at each location x that can be
encoded as a function fx on the 2-dimensional sphere S2. A field of these func-
tions, on a given domain, can be represented as a function f : R3 × S

2 → R. If
a sample is rotated and translated, the acquired signal should reflect, up to the
limitations of acquisition protocol, this transformation. The group in question
is the group of 3D rigid motions, SE(3), and the space R

3 × S
2 is a homoge-

neous space under the action of SE(3): a point in R
3 × S

2 can be transformed
in any other point by a rigid transformation. This notion of homogeneous space
is at the heart of the extension of CNNs to GCNNs [5, 7].

Our task at hand is the classification/segmentation of diffusion data. The
inductive bias provided by the knowledge of these transformations may prove
important for our task, especially when the amount of annotated data is lim-
ited. The problem boils down to how to incorporate this knowledge. The most
classical approach is to use data augmentation, reflecting the expected sym-
metries in the data, in the hope that the network will be able to learn it during
the training phase, learning symmetry-aware kernels.

Incorporating, on the other hand, some information about the symmetries
of the data in the model has been shown to boost the performances of these
networks [4]. But how much of this information is needed for a given task?
To provide an answer, for the DWI segmentation task, we propose several
networks, which gradually incorporate these symmetries in their architecture
and study their performances. In addition, instead of performing convolution
on non-Euclidean data in a spectral fashion using Fourier-type transforma-
tions, we implement convolution in all our experiments in a direct way, as is
usually done in the image analysis community. In other words, we use reg-
ular representations of groups to encode the group actions in the models,
instead of irreducible representations. Our experiments, in some sense, perform
a group action ablation study. We start with a “naive” CNN, then incorpo-
rate spherical symmetries, resulting in a SO(3)-GCNN, discarding the spatial
aspect of the data. The spatial aspect is then added in the form of a standard
CNN coupled with spherical symmetries and then we build a network where
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roto-translational transformations are used in almost all steps. This work
demonstrates empirically the improvement in performances. The results are,
however, not always clear-cut. The GCNN built from 3D-translations on one
hand and rotations on the other hand seems to perform better than a SE(3)-
GCNN. However, the SE(3)-network generalizes better to unseen rotated data
than the previous one. The reason may lie in the particular type of data used
- our DWI scans come from the Human Connectome Project (HCP) [8] are
highly preprocessed, including a form of alignment – and this may impact the
results. Nevertheless, for every model we propose, we also experiment training
them with data augmentation to compare with our equivariant networks. We
show that the more equivariance we incorporate into the model, the better the
model resists the inconsistency of distributions between training and testing
data.

This work is an extension of our previous work [9] with detailed theoretic
formulation of the proposed method and an ablation study of different group
actions in different spaces and the combinations of these actions with addi-
tional experiments using data augmentation, as well as comparison to [10],
which, to our knowledge, is the only other existing work that does tissue
classification from DWI data using SE(3) group convolutions.

In the rest of this paper, we review related work, both around CNN
and DWI classification problem. Then we introduce the theoretical setup of
GCNN and build several networks. Thereafter we study and discuss their
performances.

2 Related Work

Deep Learning (DL) for non-flat data, or using more complex group actions
than just translations, is currently getting more attention from the research
field. When it comes to non-flat data, such as the point-wise spherical signals
in DWI, particularly relevant related works are the following. [1] proposed
a NN on surfaces that extracts local rotationally invariant features. A non-
rotationally invariant modification was proposed by [3]. The above provide
methods for DL-based processing of data on arbitrary manifolds. When the
manifold, however, is a homogeneous space, i.e., there is a group action by
which any two points on the manifolds can be reached, theory simplifies via
a natural generalization of classical convolutions in group convolution neural
networks (GCNNs), as was presented in [4, 11, 12]. GCNNs guarantee global
equivariance. However, global equivariance can be complicated and elusive
when the underlying geometry is non-trivial, which was discussed in [13]. An
elementary construction on a general manifold is proposed by [14] via a fixed
choice of geodesic paths used to transport filters between points on the man-
ifold, ignoring the effects of path dependency, i.e. holonomy when paths are
geodesics. The removal of this path dependency can be obtained by summariz-
ing local responses over local orientations, which is what was done by [1]. To
explicitly deal with holonomy, [15] proposed a theoretical breakthrough using
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convolution construction on manifolds based on stochastic processes via the
frame bundle.

On the other hand, [11] lifted spherical functions to the 3D-rotation group
SO(3) and used a generalization of Fourier transform on it to perform convo-
lution. [16] proposed an equivariant spherical deconvolution method to learn
the orientation distribution function (ODF). [17] generalized convolution to
manifold-valued convolutions using Volterra Series, preserving its equivari-
ance. With the generalization of convolution to more complex group actions
than translation, several authors [2, 4, 12, 18–26] explored the group convo-
lution path for Lie groups and the homogeneous spaces of these groups. [27]
proposed a separable convolution setup on Lie groups. The relation between
group actions, principal bundles and related vector bundles, and convolutional
architectures is currently explored [5, 13, 28]. The latter elucidates important
relations between differential geometry of bundles and Reproducible Kernel
Hilbert Spaces. Links between partial differential equations, symmetries and
GCNN is studied in [29]. A unifying framework for equivariant DL on mani-
folds, connecting both the bundle and homogeneous space viewpoint, is given
in [30] through a notion of coordinate indepencent convolutions.

Most CNNs approach for the processing of DWI signals discard its specific
structure. For instance, [31] built multi-layer perceptrons in q-space for kurto-
sis and NODDI mappings. However, the importance of spherical equivariant
or invariant structure has been acknowledged for some years now. The impor-
tance of the extraction of rotationally invariant features beyond Fractional
Anisotropy [32] has been recognized in series of DWI works. For instance, [33]
developed invariant polynomials of spherical harmonic (SH) expansion coeffi-
cients, and discussed their application in population studies. [34] proposed a
related construction using eigenvalue decomposition of SH operators. [35] and
[36] argued their usefulness for understanding microstructures in relation to
DWI.

[23] proposed a rotation equivariant construction inspired by [11] for dis-
ease classification. The same authors [37] used a S

2 ×R
+ CNN using SHORE

function representation for classification in Parkinson Disease. [38] used a
spherical U-Net for f-ODF estimation The same authors [39] used a spheri-
cal CNN for microstructure parameter estimation, using spherical harmonics
representations. [10] proposed a sixth-D, 3D space and q-space NNs with
roto-translation/rotation equivalence properties, targeted at DWI data. [40]
reviewed several implementations of SE(3) neural networks and showcased a
comparison among these networks. In their work, steerable CNNs generalize
better than group CNNs while dealing with inconsistent distributions between
training and testing data for 3D images. In our experiments, in comparison to
[10] which uses steerable filter bases, we found out, however, that our direct
convolution implementation of SE(3) GCNN does not perform inferior to its
steerable alternative.
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3 Method

The networks we present will be built from the principle of expanding CNNs
to groups and their homogeneous spaces, on which they act by extending con-
volution operations to functions on groups and their homogeneous spaces. For
the rotation group SO(3) and the sphere S2 as SO(3)-homogeneous space, the
common path for implementing convolutions/correlations is to use irreducible
representations [41]. We do not follow that path here.

An action of a Lie groupG on a spaceM is a smooth mappingG×M → M,
(g,m) → g.m such that for each g, m → g.m is a diffeomorphism of M and
such that g.(g′.m) = (gg′).m. The neutral element of G acts as the identity.
The orbit of m ∈ M is the set G.m = {g.m, g ∈ G}. The stabilizer Gm of an
element m is the set of transformations that lets m fixed, Gm = {g ∈ G, g.m =
m}. It is a subgroup of G. M is a G-homogeneous space if it contains only
one orbit, i.e, if for any m,m′ ∈ M, there exists g ∈ G, with g.m = m′.
Given a base point m0 (for instance, the north pole if M is a sphere) in the
homogeneous space M, there is an isomorphism G/Gm0

≃ M, called the orbit
map. G/Gm0

is the quotient space of G by Gm0
and consists of the left cosets

gGm0
of Gm0

. The inverse of the point m by the orbit map is a coset gGm0
,

with g.m0 = m, called the fiber above m.

3.1 Standard convolution operations

A group G acting on a space M via (g,m) 7→ g.m also acts on functions on
M by the left translation

(Lgf)(m) = f(g−1m). (1)

We assume that each homogeneous space is endowed with a G-invariant mea-
sure that allows integration, and that each G is endowed with a left-invariant
Haar measure.

3.1.1 Lifting layer

A function f : M → R
N can be lifted to the group G via a kernel κ : M → R

K

by

κ ∗ f(g) =

K
∑

i=1

∫

M

f(m)κi(g
−1m) dm (2)

This operation is equivariant : κ ∗ Lgf = Lg(κ ∗ f).

3.1.2 Group convolution layer

A feature function F : G → R
N can be transformed by a convolution kernel

K : G → K by

K ∗ F (g) =

N
∑

i=1

∫

G

F (h)Ki(h
−1g)dh. (3)
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This operation is equivariant: K ∗ (LgF ) = Lg(K ∗ F ).

3.1.3 Projection Layer

If needed, feature map F : G → R
n can be projected to a function f : M → R

n

by summarizing on the fibers

F (m) = max
h∈Gm0

F (gh), for any g with g.m0 = m, (4)

where the max is computed component-wise. This operation is equivariant:
LkF = LkF .

3.1.4 Activation Functions and Separable Kernels

A point-wise activation function α, such as ReLU, is trivially equivariant
Lg(αf) = α(Lgf). On manifolds with an underlying product structure, M =
M1 × M2 - this includes homogeneous spaces and groups - one can choose
separable kernels κ = κM1

⊗ κM2
, and activation functions can be introduced

in (2) and (3). For instance, lifting (2) can be replaced by

κ ∗α f(g) =

K
∑

i=1

∫

M1

α

(
∫

M2

f(m1,m2)κ2(g
−1m2) dm2

)

κ1(g
−1m1) dm1, (5)

which preserves equivariance. Having separable kernels increases the efficiency
of the model since it increases weight sharing. For example, instead of having
kernels defined in R

3×S
2, we have kernels defined in R

3 and in S
2. In this way,

all voxels in R
3 share the same spherical kernels. This is used in this work.

The spaces used in this work are R
3, the sphere S

2 and the product space
R

3 × S
2. The groups that we consider are the group of translations of R

3,
T
3 ≃ R

3, the group SO(3) or 3D rotations, the direct product G = T
3×SO(3)

and the special Euclidean group SE(3) = SO(3)⋉T
3. Note that though G and

SE(3) are isomorphic as manifolds, they are not as groups: in G, (⃗t, R).(s⃗, S) =
(⃗t+ s⃗, RS) while in SE(3), (R, t⃗).(S, s⃗) = (RS, t⃗+Rs⃗). This is also reflected in
their respective actions in Table (1), which shows the different combinations
of spaces and groups.

3.2 Discretization of spherical signals

The way spherical signals are numerically handled have major implications for
our networks. A DWI signal is treated as a discretization of a signal f : R3 ×
S
2 → R. DWIs are acquired, for each voxel, at N fixed directions p1, . . . , pN

on S
2 (here N = 90). These are represented in two different ways.
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P
P
P
P
P
P

G

M
R3, x S2, v⃗ R3 × S2, (x, v⃗)

T3, t⃗ x+ t⃗

SO(3), R Rv⃗

T3 × SO(3), (t⃗, R) x+ t⃗ Rv⃗ (x+ t⃗, Rv⃗)

SE(3), (R, t⃗) Rx+ t⃗ Rv⃗ (Rx+ t⃗, Rv⃗)

Table 1: The groups and homogeneous spaces in this work. For each group
and each homogeneous space, typical elements are provided, as well as the
action of the group element on the space element. Entries left empty are not
used or fail to be homogeneous spaces for standard group actions on them.

• Type 1. Ignoring the spherical structure, at each voxel x, we get a measure-
ment vector
f(x) = (f(x, p1) . . . , f(x, pN )) ∈ R

N . Thus an image is a mapping I : R3 →
R

N .
• Type 2. A signal at voxel x is interpolated as a proper spherical function
f(x, v⃗) = W (v; v1, . . . , vN ) where W is a Watson kernel [42]. An image from
this type is a mapping I : R3 × S

2 → R.

3.3 Direct convolution and discretization of groups

Unlike existing methods that use generalized Fourier-type transforms to per-
form convolution on spheres [2, 4, 11, 12, 18, 20–25], we implement the
convolution for spheres directly as in classical 2D CNNs in the image anal-
ysis field. We first discretize the sphere S

2 using an icosahedron. To lift the
function from the sphere to the SO(3) group, we define a star-shaped kernel
k : S2 7→ R with a limited support. The kernel then moves around the dis-
cretized sphere, and convolves with signals at each vertex of the icosahedron.
It rotates 5 times at each icosahedral vertex according to the 5 edges each ver-
tex has, and collects convolutional responses from all 5 rotations. In this way,
the spherical function is lifted to SO(3), which is discretized by ISO(3) - the
60 rotational symmetries of an icosahedron. This is shown in fig. 1 A. For the
SO(3) group convolution layer, the kernel is defined on SO(3), which is rep-
resented by the icosahedral symmetries. Here we specially design the kernel
in the way that the support of it covers exactly a fiber. Therefore, we rotate
(permute) the kernel at each fiber and convolve the rotated kernels with the
fiber, and move the kernel to the next fiber. This is shown in fig. 1 B.

3.4 Generic Networks used in this work

We present 4 constructions in which gradual levels of complexity in group
actions are introduced. This can be seen as a group-action ablation study. The
precise description of each network will be provided in section 4.
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3.4.1 T
3

The S
2-structure of the signal is ignored, using the Type 1 discretization.

The group being T
3, we just obtain a standard CNN, ignoring rotational

information. An illustration can be found in fig. 2.

3.4.2 SO(3)

This time the spatial structure is ignored, and each voxel provides a spherical
data point. Type 2 discretization is used. The GCNN takes as input a spherical
function, and will classify it by performing SO(3)-lifting, SO(3)-convolutions
and summarization. The convolved function on SO(3) is then projected back
to S

2 by this summarization. It is illustrated in fig. 1 A and B. This model is a
fully equivariant implementation of SO(3) group convolution followed by the
work in [43], which does not hold global equivariance.

3.4.3 T
3
× SO(3)

Spatial and spherical structures are decoupled. This implies a standard spa-
tial CNN dealing with only voxel translations, and a SO(3)-GCNN part for
the directional signal. Type 2 discretization is used for spherical signals. The
decoupled R

3-layer and S
2-layer are with group actions T3 and SO(3) respec-

tively. The illustration for the S
2-layer can be found in fig. 1 A and B, and

the illustration for the R
3-layer can be regarded as only one Conv3D opera-

tion in fig. 1 C without the rotations. Note that since the spatial convolution
does not incorporate rotational equivariance, it does not reflect equivariance of
the DWI measurements. I.e., one can expect that when the brain rotates, the
spatial patterns rotate as well as their spherical diffusion signals. This model
takes rotation into account in the spherical part of the signal, but not the spa-
tial part. The projection at the end collapses the function in the group back
to R

3 by summarizing - in this case, maximizing - over SO(3), and the result-
ing feature map is fed into a fully connected layer to perform the classification
task.

3.4.4 SE(3)

Type 2 discretization is used and the network uses the full interplay between
spatial roto-translations and corresponding rotations of the spherical signal
and is thus fully equivariant to SE(3) transformations on the DWI data. fig. 1
A and B shows the kernels of the S

2-layer. When the kernel moves from one
vertex to another, it follows a specific rotation that maps the one-ring neigh-
borhood of the source vertex to the one-ring neighborhood of the target vertex.
At each vertex, the kernel has an SO(2) symmetry group structure discretized
by 5 rotations. fig. 1 C shows the kernel for the R3-layer. It is rotated with the
same rotation matrices that moved the S

2-kernel as in fig. 1 A and B. Since
the spatial kernels are cube-shaped grids, interpolation is required while rotat-
ing them. Here we use linear interpolation, which can be easily implemented.
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Fig. 1: The three group convolution operators used in this paper. Fig. A shows
the spherical part of the separable lifting convolution. The star-shaped kernel
translates (in this case translation is equivalent to rotation) to the 12 icosa-
hedron vertices like a spider crawling on a sphere. At each vertex location,
the kernel rotates 5 times aligned with the edges of the icosahedron and gets
5 responses from all the orientations. Therefore, at each vertex, the output is
a fiber consisting of 5 elements. There are in total 60 responses from all 12
vertices, and thus 60 rotation matrices to translate the kernel, assembling a
discretization of SO(3) - ISO(3). Fig. B shows the spherical part of the separa-
ble group convolution. The kernel is then defined at each fiber, and is rotated
(permuted) again for 5 times to get the responses of different orientations, as
in the lifting convolution. Fig. C shows the spatial part of the separable convo-
lution (the spatial convolution is the same in the lifting and group convolution,
thus we only show one). The spatial kernel is a 3D grid. The grid is rotated to
convolve with all 60 spherical responses. The kernel is rotated 60 times, using
the same icosahedral symmetry rotations as those on which the input is sam-
pled.

To perform the segmentation task, the projection layer collapses the function
on SE(3) back to R

3 by summarizing - again, maximizing - over SO(3).
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C1
× 7

3

C2
×
5
3

C3
×
3
3

C4
× 1

3

Fig. 2: Illustration of the classical CNN. In the grids shown above, which
assembles the dimensions of feature maps in the later experiments. Each voxel
in the ith layer contains Ci values, indicating the numbers of channels. C1 here
is the number of signal values each voxel from the original scan, thus 90. Due
to striding, the grid shrinks to 1 voxel after 3 convolutional layers, and then
is fed into a fully connected layer for classification.

4 Experiments and Results

In this section, we first list all the detailed network setups, after
which we present the results of the experiments. We evaluate our
method on the DWI brain dataset from the human connectome project
(HCP) [8]. We classify the human brains into 4 regions - cere-
brospinal fluid (CSF), subcortical, white matter (WM), and grey mat-
ter (GM). An illustration of the task can be found in fig. 3.

Fig. 3: Left to right: original diffusion
data, the ground-truth segmentation,
and the processed ground-truth that we
are going to learn from. The label col-
ors for CSF, subcortical, white matter
and grey matter are red, blue, white
and grey respectively. The figures only
illustrate the data, they are not neces-
sarily from the same slice of the same
scan.

We use the pre-processed DWI
data [8] and normalize each DWI
scan for the b-1000 images with the
voxel-wise average of the b0. We
use the brain masks provided in the
dataset to obtain the voxels of inter-
est, while background is ignored.
The labels provided with the T1-
image are transformed to the DWI
using nearest neighbor interpolation
(fig. 3). The resolution of the DWI
images is 145 × 174 × 145, and the
resolution of the T1-images is 260×
311 × 260. Focal Loss [44] is used
to counter the class imbalance of
the 4 brain regions. For Focal Loss,
all experiments use γ = 2 and use
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α = (0.35, 0.35, 0.15, 0.15) for CSF, subcortical, WM, and GM respectively.
For the Watson Kernel, all experiments that used this interpolation (Type 2
discretization) have κ = 10. Batch size for all experiments is 100.

4.1 Experiment setup

To reduce the computational burden, as inputting a full DWI volume is
intractable, we use spatial windows of N3 voxels, with N = 1 for the SO(3)-
action network and N = 7 for the rest. In addition, due to the effect of striding
in spatial convolution, the 73 grid of voxels shrinks to 13 after 3 spatial convolu-
tions. Therefore, a separable convolution layer (for both T

3×SO(3) and SE(3)
actions) is equivalent to a single SO(3) convolution layer when the grid shrinks
to 13, since the spatial convolution becomes trivial. S2 is discretized by a reg-
ular icosahedron. SO(3) is discretized as the icosahedral rotation group with
60 elements. Each vertex of the icosahedron is fixed by 5 rotations, isomorphic
to the subgroup of SO(2) consisting of rotations of angle 2kπ/5, k = 0 . . . 4.
This is, of course, the discretization used for SO(2).

To validate the proposed SE(3) network, we first provide an ablation study
of our proposed 4 types of networks based on different group actions. Then,
we compare it with [10], which implements an SE(3)-GCNN using irreducible

representations.
For the ablation study, based on the networks we introduced above and

on top of the networks presented in [9], we design our experiments for them.
For each experiment, in order to explore the impact of model capacity on the
performance, we construct 2 models with high and low capacities respectively,
denoted by the superscription + and -. We choose the architectures for the
models with low capacity by trying out different complexities and depths and
picking the one with the lowest capacity with the same level of performance.
Then for the models with high capacity, we simply increase the numbers of
kernels in each layer of the models with low capacity.

Detailed descriptions of all the experiments are reported below, and a
summary of the experiments can be found in table 2.

4.2 Ablation study

T
3-Classical CNN

The architecture we use is ReLU(R3 conv) − ReLU(R3conv) −
ReLU(R3conv)−FC with network setups of a low capacity and a high
capacity. FC here is a fully connected layer. We label the small network
(90− 5− 5− 5− 4) Classical- and the big network (90− 120− 120− 90− 4)
Classical+.

SO(3)-Baseline

In the experiments, we use the ReLU(lift) −ReLU(gconv)−project−FC archi-
tecture as was used in [43], but with true SO(3)-convolution. The projection
layer takes the maximum of the 5 rotations to collapse the function back to the
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sphere. We experimented various sizes of the network (10− 20− proj.− 4 and
20−40−proj.−4), in addition to the setup used in [43] (1−5−proj.−4). The
network that has the biggest size did not seem to improve the second biggest
one, thus we omit it in this paper. Based on the size of the experiments, we
call the small network Baseline- and the big network Baseline+.

T
3 × SO(3)-OursDecoupled

      Lifting on

     Lifting on

      Gconv on

     Gconv on

      Gconv on

     Gconv on

      Gconv on
FC

Proj.

Fig. 4: Architecture of the network with group action T
3×SO(3). Each block

is a convolutional layer split into 2 separable layers. The vertical arrows in
each block shows the separable convolutions. First the spherical convolution
is applied, followed by the spatial convolution. The last block before the FC
layer is equivalent to a single S

2-layer as explained in section 4.1. Illustrations
of ReLU actions are omitted for visualization simplicity.

We use the architecture ReLU(lift) − ReLU(gconv) − ReLU(gconv) −
ReLU(gconv) −project−FC. Using separability discussed in section 3.1.4, a
convolution layer (including lifting) is split into 2, and ReLU activation is
added between separable layers as well. An illustration of the architecture can
be found in fig. 4.

We again experiment with 2 sizes of the network - a small one and a big
one. The small network has 5−5−5−5−5−5−5−proj.−4 kernels for each
layer, while the big network has 10− 20− 20− 40− 40− 20− 10− proj.− 4.
We label them OursDecoupled- and OursDecoupled+.

SE(3)-Ours

      Lifting on

      Lifting on

      Gconv on

      Gconv on

      Gconv on

      Gconv on

      Gconv on
FC

Proj.

Fig. 5: Architecture of the network with group action SE(3).

Here too we use the separable setup described in section 3.1.4. Thus a
layer is again split into 2 layers - an S

2-layer and an R
3-layer, both for lifting

and group convolution. The S
2-layer is defined as shown in fig. 1 A and B.

We rotate the R
3 kernels and the S

2 kernels using the same actions. The
rotational actions of the kernels can be represented by 60 rotation matrices,
and is equivalent to the discretization of the SO(3) rotation group using the
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Experiment G #Params #Epochs

I : R3 → RN

Classical-

T3

13539
34

ClassicalAug- 66
Classical+

972694
19

ClassicalAug+ 67
I : R3 × S2 → R

Baseline-

SO(3)
286

31
BaselineAug- 45
Baseline+

2104
31

BaselineAug+ 54
OursDecoupled-

T3 × SO(3)
2514

41
OursDecoupledAug- 80
OursDecoupled+

59914
15

OursDecoupledAug+ 54
OursPart-

SE(3)∗
2514

41
OursPartAug- 49
OursPart+

59914
15

OursPartAug+ 48
OursFull-

SE(3)
2514

41
OursFullAug- 86
OursFull+

59914
15

OursFullAug+ 42

Table 2: Criteria and properties of experiments. SE(3)∗ indicates the rota-
tions in the spatial part are only a part of the rotations used in the spherical
part.

icosahedral symmetry group, as shown in fig. 1 C. As in section 4.2, we use
the ReLU(lift)−ReLU(gconv) −ReLU(gconv)−ReLU(gconv)−project−FC
architecture. After the separation of the layers, the illustration is showcased in
fig. 5. As in section 4.2, ReLU activations are added between separable layers
as well.

In addition, we intend to explore the impact of the equivariance we imposed
in R

3 in this section. As was explained above, we align the rotations of the R3

kernel with the ways the S
2 kernel moved on the sphere, which is discretized

by the 60 rotation symmetries of an icosahedron. At a vertex xi, i ∈ 1, ..., 12
of an icosahedron, there exists a stabilizer SO(3)xi

discretized by 5 equally
divided rotations that keep xi unchanged. Therefore, we also experiment a
partial equivariance in the R

3 roto-translational convolution. This means at
each vertex xi of the icosahedron, we only take 1 out of the 5 rotations that
discretized SO(3)xi

instead of using all of them to rotate the spatial kernel.
Note that the partially equivariant models are only fully SE(3)-equivariant
when the kernels have a sub-group SO(2) symmetry in them [7, Thm 1], which
we do not impose and thus equivariance is not guaranteed.

Again, we experiment with 2 sizes of the network with 5− 5− 5− 5− 5−
5 − 5 − proj. − 4 and 10 − 20 − 20 − 40 − 40 − 20 − 10 − proj. − 4 kernels
respectively. Therefore, we generate 4 experiments for this section: OursFull-,
OursPart-, OursFull+, and OursPart+.
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4.2.1 Data augmentation experiments

To validate the robustness of GCNNs against data variation modeled by group
actions, we train all the proposed models with augmented data as well. Each
data sample (grid of 73 or 13) is randomly rotated on the fly before being
fed into the model. To prevent interpolation, the rotations used to transform
the data are sampled from a octohedral symmetry group. For DWI data that
have directional signals in each voxel, the directions of the signals (b-vectors)
in each voxel rotate with the voxel grid. In order to guarantee the signal
values in each voxel are from the same orientations after augmentation, we
interpolate the function values at the orientations-of-interest using the rotated
b-vectors. Therefore, for Type 1 discretization, we interpolate function values
at the original b-vectors, and for Type 2 discretization, we interpolate at the
pre-defined icosahedron as demonstrated above.

4.2.2 Results

As was done in [43], we trained all networks using 1 scan, validated using 1
scan, and tested using 50 scans. We evaluate the accuracies and Dice scores
of the classification of the 4 regions respectively, and the overall classification
accuracy across all test scans. We have also tried training models with more
scans (5 or 10), it does not seem to improve the results significantly. Therefore,
we choose to use 1 scan for training. For each class, the accuracy is calculated
by #CorrectPredictions

#ClassSamples
, and the Dice score is calculated by 2TP

2TP+FP+FN
for the

class. The overall accuracy is calculated by #CorrectPredictions
#AllSamples

.
We trained all models until they converge and before overfitting, thus mod-

els of different capacities and different setups are stopped at different epochs.
Each model is trained with both original data and augmented data. Details
can be found in table 2.

✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM

I : R3 → RN

Classical- 0.756± 0.07 0.376± 0.043 0.834± 0.011 0.839± 0.02
ClassicalAug- 0.625± 0.11 0.128± 0.021 0.77± 0.017 0.806± 0.017

I : R3 × S2 → R

Baseline- 0.75± 0.073 0.185± 0.04 0.801± 0.012 0.83± 0.011
BaselineAug- 0.741± 0.074 0.232± 0.048 0.805± 0.014 0.835± 0.011

OursDecoupled- 0.817± 0.051 0.705± 0.033 0.867± 0.009 0.909± 0.007
OursDecoupledAug- 0.775± 0.063 0.639± 0.038 0.851± 0.01 0.886± 0.009

OursPart- 0.807± 0.048 0.658± 0.037 0.865± 0.009 0.899± 0.008
OursPartAug- 0.78± 0.06 0.643± 0.037 0.849± 0.01 0.886± 0.009

OursFull- 0.769± 0.06 0.621± 0.038 0.854± 0.01 0.891± 0.008
OursFullAug- 0.772± 0.061 0.637± 0.037 0.846± 0.01 0.884± 0.009

Table 3: Statistics of dice scores from experiments using models of low capac-
ity.
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✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

I : R3 → RN

Classical- 0.792± 0.08 0.415± 0.053 0.879± 0.024 0.789± 0.034 0.806± 0.017
ClassicalAug- 0.662± 0.105 0.088± 0.017 0.808± 0.042 0.801± 0.039 0.761± 0.014

I : R3 × S2 → R

Baseline- 0.742± 0.082 0.145± 0.04 0.804± 0.024 0.85± 0.016 0.788± 0.011
BaselineAug- 0.785± 0.074 0.202± 0.055 0.793± 0.028 0.858± 0.018 0.791± 0.012

OursDecoupled- 0.844± 0.061 0.741± 0.033 0.833± 0.02 0.934± 0.013 0.878± 0.009
OursDecoupledAug- 0.769± 0.087 0.716± 0.04 0.854± 0.023 0.87± 0.023 0.853± 0.01

OursPart- 0.787± 0.068 0.717± 0.032 0.848± 0.019 0.906± 0.016 0.868± 0.009
OursPartAug- 0.772± 0.081 0.752± 0.036 0.848± 0.021 0.87± 0.022 0.852± 0.01

OursFull- 0.81± 0.065 0.692± 0.029 0.857± 0.022 0.874± 0.019 0.856± 0.01
OursFullAug- 0.783± 0.077 0.711± 0.054 0.855± 0.023 0.864± 0.021 0.85± 0.01

Table 4: Statistics of classification accuracy from all experiments using models
of low capacity.

The Dice scores and accuracies of models of low capacity can be found
in table 3 and table 4, while the Dice scores and accuracies of models of
high capacity can be found in table 5 and table 6. The numbers shown in all
the tables are the average value and standard deviation across 50 test scans.
Examples of predictions compared with the ground-truth can be found in
fig. 9a.

The impact of data augmentation

As we can see from the table 3, table 4, table 5, and table 6, models trained
with augmented data do not perform better than their counterparts trained
with just original data, if not worse. Unlike 2D image datasets in the computer
vision community that have various backgrounds and objects in their images,
the HCP dataset is very uniform. The distribution of the original training data
is expected to be the same as the test set data. However, after augmentation,
the distribution of the training data changed and it differs from the test data.
Therefore, in this case data augmentation does not help any of the models
since the augmentation does not represent the diversity in this dataset. One
extreme would be Classical- vs. ClassicalAug- that can be found in table 3 and
table 4, the augmented data confused the model in terms of the subcortical
region - a somewhat mixture of white and grey matter. Therefore, from now
on, if not specified, we mainly discuss the models and results trained without
data augmentation.

The impact of the R
3 spatial component

It is easy to observe that the the Baseline experiments perform worst among
all. This is an anticipated outcome since it is usually the case that neighboring
information is an essential type of local features.

Type 1 discretization vs Type 2 discretization

The classical CNNs use Type 1 discretization while Type 2 discretization is
used for the rest of the models. The classical CNNs do not perform as well as
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models that take into account the spherical geometry with spatial information,
but performs better than Baseline. However, Classical- is not much better than
Baseline+ while having far more parameters to train, and Classical+ performs
even worse than OursDecoupled-, OursPart-, or OursFull-, which have much
less training parameters.

The results of the two extreme cases - Baseline that only takes into account
spherical geometry but ignore any spatial information and Classical that only
looks into the spatial part and discards spherical geometry - show that the voxel
geometry and neighboring voxel correlation can both capture some decent
amount of information to deal with the segmentation task, but they both
have something that the other one cannot grasp, and combining the spherical
geometry and the spatial correlation can boost the performance to a promising
extent.

The impact of adding an R
3 part to Baseline

On top of the Baseline, the easiest way to add spatial information to the
purely voxel-based framework is what was done in OursDecoupled section 4.2
- a GCNN on S

2 to learn the geometric signals in individual signals and a
regular classical CNN to take into account the local spatial information. We
can see from the results that this setup immediately boosted the performance
compared to the Baseline. We can also see that OursDecoupled+ performs
better than OursDecoupled-, for the sake of model capacity.

✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM

I : R3 → RN

Classical+ 0.804± 0.053 0.583± 0.036 0.856± 0.011 0.893± 0.009
ClassicalAug+ 0.752± 0.069 0.407± 0.044 0.828± 0.011 0.849± 0.017

I : R3 × S2 → R

Baseline+ 0.754± 0.069 0.334± 0.037 0.805± 0.013 0.841± 0.012
BaselineAug+ 0.748± 0.072 0.311± 0.037 0.796± 0.016 0.845± 0.011

OursDecoupled+ 0.827± 0.047 0.716± 0.044 0.878± 0.009 0.903± 0.01
OursDecoupledAug+ 0.79± 0.053 0.721± 0.033 0.87± 0.009 0.902± 0.007

OursPart+ 0.834± 0.045 0.752± 0.034 0.878± 0.009 0.914± 0.007
OursPartAug+ 0.789± 0.059 0.736± 0.035 0.872± 0.009 0.902± 0.008

OursFull+ 0.788± 0.05 0.746± 0.034 0.877± 0.008 0.909± 0.006
OursFullAug+ 0.792± 0.051 0.737± 0.031 0.873± 0.009 0.907± 0.007

Table 5: Statistics of dice scores from experiments using models of high capac-
ity.

The argument for OursFull not performing the best

For models of low capacity, however, we can observe from table 3 and table 4
that our proposed method performs worse than OursDecoupled-. Addition-
ally, for models of high capacity, even though we can see that OursFull+
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✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

I : R3 → RN

Classical+ 0.815± 0.061 0.702± 0.026 0.834± 0.022 0.89± 0.011 0.854± 0.012
ClassicalAug+ 0.687± 0.088 0.42± 0.04 0.863± 0.031 0.818± 0.038 0.812± 0.015

I : R3 × S2 → R

Baseline+ 0.778± 0.07 0.379± 0.065 0.784± 0.024 0.848± 0.02 0.792± 0.013
BaselineAug+ 0.776± 0.076 0.351± 0.067 0.749± 0.029 0.875± 0.017 0.789± 0.014

OursDecoupled+ 0.865± 0.061 0.783± 0.035 0.867± 0.017 0.902± 0.019 0.879± 0.011
OursDecoupledAug+ 0.821± 0.066 0.759± 0.052 0.876± 0.02 0.891± 0.018 0.876± 0.008

OursPart+ 0.819± 0.065 0.816± 0.031 0.845± 0.019 0.936± 0.011 0.888± 0.009
OursPartAug+ 0.756± 0.084 0.816± 0.033 0.876± 0.017 0.888± 0.017 0.877± 0.009

OursFull+ 0.896± 0.042 0.826± 0.023 0.857± 0.017 0.912± 0.014 0.883± 0.008
OursFullAug+ 0.864± 0.048 0.78± 0.031 0.866± 0.019 0.905± 0.016 0.88± 0.008

Table 6: Statistics of classification accuracy from all experiments using models
of high capacity.
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Fig. 6: Comparison of Dice scores of the 4 classes from low-capacity mod-
els trained with original data and augmented data, tested with original and
rotated test set.

and OursPart+ improve from their low capacity counterparts more than
OursDecoupled+, OursFull+ does not perform as well as OursPart+ as shown
in table 5 and table 6. This differs from our expectation since models with full
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Fig. 7: Comparison of Dice scores of the 4 classes from high-capacity mod-
els trained with original data and augmented data, tested with original and
rotated test set.
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Fig. 8: Comparison of overall accuracies from the original and rotated data.

roto-translational equivariance should be more capable of handling variances
in data, thus should have better performance. Recall that the HCP dataset [8]
contains scans that are preprocessed and aligned with axes, thus there is little
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(a) Predictions from test set using orig-
inal data.

(b) Predictions from test set
using rotated data.

Fig. 9: Examples of predictions. fig. 9a shows the predictions from the orig-
inal test set, and fig. 9b shows the predictions from the augmented (rotated)
test set. In fig. 9a, from left to right are ground-truth, Classical+, Baseline+,
OursDecoupled+, OursPart+, and OursFull+. In fig. 9b, from left to right
are Classical+, Baseline+, OursDecoupled+, OursPart+, and OursFull+. The
colors of CSF, subcortical, WM and GM are red, blue, white, and grey respec-
tively.

(a) A test scan slice. (b) Another test scan slice.

Fig. 10: Showcases of zoom-in regions from predictions of the rotated test
set. For both scan slices presented, from left to right, top to bottom, are the
ground-truth, prediction from OursDecoupled+, OursPart+, and OursFull+.

variance in rotation. In this case, enforcing SE(3) equivariance in the model
can be futile and be even confusing for the model.
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✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM

I : R3 → RN

Classical- 0.631± 0.097 0.101± 0.014 0.696± 0.019 0.558± 0.044
ClassicalAug- 0.678± 0.094 0.117± 0.025 0.775± 0.018 0.813± 0.019

I : R3 × S2 → R

Baseline- 0.735± 0.076 0.158± 0.037 0.799± 0.013 0.829± 0.011
BaselineAug- 0.741± 0.074 0.237± 0.047 0.804± 0.014 0.834± 0.011

OursDecoupled- 0.708± 0.073 0.531± 0.033 0.801± 0.012 0.851± 0.006
OursDecoupledAug- 0.771± 0.065 0.641± 0.036 0.851± 0.01 0.886± 0.009

OursPart- 0.714± 0.069 0.536± 0.035 0.804± 0.011 0.851± 0.008
OursPartAug- 0.784± 0.059 0.642± 0.036 0.849± 0.01 0.887± 0.009

OursFull- 0.737± 0.065 0.517± 0.033 0.823± 0.01 0.867± 0.009
OursFullAug- 0.774± 0.061 0.636± 0.036 0.846± 0.01 0.884± 0.009

Table 7: Statistics of dice scores from experiments using rotated data and
models of low capacity.

✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

I : R3 → RN

Classical- 0.643± 0.106 0.24± 0.047 0.767± 0.051 0.421± 0.048 0.563± 0.023
ClassicalAug- 0.677± 0.105 0.08± 0.02 0.811± 0.044 0.811± 0.043 0.767± 0.016

I : R3 × S2 → R

Baseline- 0.733± 0.085 0.12± 0.035 0.802± 0.024 0.852± 0.016 0.786± 0.011
BaselineAug- 0.786± 0.074 0.21± 0.057 0.793± 0.029 0.856± 0.018 0.79± 0.012

OursDecoupled- 0.755± 0.076 0.528± 0.037 0.779± 0.02 0.871± 0.013 0.81± 0.008
OursDecoupledAug- 0.765± 0.09 0.72± 0.038 0.853± 0.023 0.871± 0.023 0.853± 0.01

OursPart- 0.69± 0.084 0.599± 0.033 0.791± 0.02 0.852± 0.018 0.809± 0.009
OursPartAug- 0.778± 0.081 0.745± 0.038 0.849± 0.021 0.87± 0.021 0.853± 0.01

OursFull- 0.79± 0.067 0.591± 0.026 0.835± 0.023 0.84± 0.022 0.823± 0.01
OursFullAug- 0.785± 0.077 0.707± 0.053 0.854± 0.023 0.865± 0.021 0.85± 0.01

Table 8: Statistics of classification accuracy from experiments using rotated
data and models of low capacity.

To verify this theory, we evaluated all models on the rotated test set. Taking
the N3 (N = 1 for Baseline models and N = 7 for the rest) grids of voxels we
extracted from the test scans, we randomly rotate each grid using a rotation
sampled from the octahedral symmetry group to create a new rotated test set.
In this way, we do not need to interpolate while rotating, and the rotations are
not aligned with the ones we used in our models to rotate the kernels while
still resemble a discretization of the SO(3) group. Hence we have 2 categories
of models as well as 2 categories of the test set: models trained with original
data vs. models trained with augmented data, and original test set vs. the
randomly rotated test set.

Models trained with data augmentation tested with rotated test set

We see that all models trained with augmented training set have very similar
performance results to the same models tested with the original test set, and
they all perform better in this task than their counterparts trained with the
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✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM

I : R3 → RN

Classical+ 0.549± 0.106 0.124± 0.007 0.535± 0.014 0.59± 0.022
ClassicalAug+ 0.768± 0.066 0.445± 0.038 0.82± 0.015 0.857± 0.014

I : R3 × S2 → R

Baseline+ 0.733± 0.076 0.282± 0.036 0.799± 0.013 0.839± 0.012
BaselineAug+ 0.748± 0.072 0.311± 0.037 0.796± 0.016 0.844± 0.011

OursDecoupled+ 0.702± 0.075 0.497± 0.037 0.8± 0.011 0.829± 0.009
OursDecoupledAug+ 0.794± 0.054 0.723± 0.033 0.87± 0.009 0.902± 0.007

OursPart+ 0.734± 0.063 0.58± 0.033 0.806± 0.011 0.862± 0.006
OursPartAug+ 0.791± 0.058 0.736± 0.034 0.872± 0.009 0.901± 0.008

OursFull+ 0.74± 0.06 0.604± 0.034 0.835± 0.01 0.877± 0.008
OursFullAug+ 0.79± 0.051 0.735± 0.03 0.872± 0.009 0.907± 0.007

Table 9: Statistics of dice scores from experiments using rotated data and
models of high capacity.

✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

I : R3 → RN

Classical+ 0.632± 0.097 0.452± 0.02 0.434± 0.018 0.5± 0.03 0.471± 0.015
ClassicalAug+ 0.71± 0.088 0.517± 0.033 0.811± 0.038 0.85± 0.034 0.812± 0.015

I : R3 × S2 → R

Baseline+ 0.769± 0.074 0.307± 0.059 0.782± 0.024 0.846± 0.02 0.786± 0.013
BaselineAug+ 0.776± 0.076 0.356± 0.068 0.749± 0.029 0.873± 0.017 0.788± 0.014

OursDecoupled+ 0.756± 0.082 0.597± 0.034 0.797± 0.019 0.81± 0.019 0.791± 0.01
OursDecoupledAug+ 0.819± 0.067 0.761± 0.051 0.876± 0.019 0.891± 0.018 0.876± 0.008

OursPart+ 0.716± 0.078 0.635± 0.033 0.78± 0.021 0.876± 0.012 0.819± 0.008
OursPartAug+ 0.762± 0.085 0.811± 0.032 0.878± 0.018 0.886± 0.017 0.877± 0.009

OursFull+ 0.88± 0.048 0.659± 0.028 0.83± 0.019 0.868± 0.018 0.84± 0.009
OursFullAug+ 0.862± 0.049 0.78± 0.031 0.865± 0.019 0.904± 0.016 0.88± 0.008

Table 10: Statistics of classification accuracy from experiments using rotated
data and models of high capacity.

original training set. This checks with our statement in section 4.2.2 that
the consistency of data distributions of the training and test sets boosts test
performance. In this case, we used the same kind of rotations while augmenting
the training set and test set, therefore the consistency of data distributions is
maintained. However, this can never be guaranteed in real life. We can see this
from table 7, table 8, table 9, table 10, fig. 6, fig. 7, and fig. 8.

Models trained with original data tested with rotated test set

In this section, only models trained without data augmentation are compared
and discussed. For models with both low and high capacity, OursFull mod-
els have the best performance among other models. OursFull- remains 0.823
accuracy, decreased from 0.856 while OursFull+ decreased from 0.883 to 0.84.
This is illustrated in table 8 and table 10. In terms of Dice scores, OursFull-

performs the best for all classes but the subcortical class, and OursFull+ has
the best results for all classes, as shown in table 7 and table 9.
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Comparison figures of the 4 classes for all models can be found in fig. 6
and fig. 7, while comparisons of overall accuracies can be found in fig. 8. We
can see again from the model with no spatial equivariance (OursDecoupled),
the model with partial spatial equivariance (OursPart), and the model with
full spatial equivariance (OursFull) that the gap between the performances on
original data and rotated data shrink. It is worth noticing that Baseline models

Classical OursDecoupled OursPart OursFull Baseline
No SO(3) equivariance -> Full SO(3) equivariance.
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Fig. 11: Logistic map of the ratio of two criteria to evaluate the proposed
models. One criterion is for the models trained with augmented data compared
to their counterparts trained with original data. For models trained both with
original and augmented data, fig. 11a shows the decrease of test results while
trained with data augmentation and tested with the original test set as shown
in table 3, table 4, table 5, and table 6. The second criterion is for the models
trained with original data only. It is the decrease of performance while tested
with rotated data, shown in fig. 11b.

almost do not suffer from performance drop while applied with rotated data. It
is an SO(3)-network that preserves rotational equivariance on S

2. For a single-
voxel input, the network is very resistant to variations, but the performance of
this model is limited due to the lack of spatial interaction and thus in general
worse than models with spatial interplay.

Examples of predictions using the rotated test set can be found in fig. 9b.
It is easily observed that the classical CNN does not generalize well to the data
variation, while models with rotational symmetry (either SO(3), T3 × SO(3),
or SE(3)) generate better results. However, it is also noticeable that for a
challenging minority class, subcortical region, OursFull+ performs better than
the others while other models with some rotational equivariance do not predict
a concentrated subcortical region. Zoom-in examples can be found in fig. 10.
Predictions from Baseline are omitted from fig. 10 since it does not have the
same level of performance.
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Augmentation in training data vs. augmentation in testing data

We have experimented models trained with both the original training set and
augmented training set, and models tested with both the original test set and
randomly rotated test set. The random rotations applied to the test set can be
seen as augmentation too. As was discussed above, data augmentation changes
the distribution of the dataset, which creates inconsistency between the train-
ing and testing set. However, augmentation in the training set enables the
models to see more data and thus even tested with the original test set, the
performance of any model does not go far off, since the model has seen the
type of data in the test set. The performance of models trained with data
augmentation is worse than that of models trained with the original training
set, though, due to the inconsistency of distributions between the training set
and test set when only one of them is augmented. fig. 11a shows, for models
tested with the original test set only, the decrease of model performance from
models trained with the original training set to models trained with data aug-
mentation. The y-axis shows the logistic map of the ratio of the performance
decrease, and is calculated by L(x) = 1

e−αx with α = 20, x =
Coriginal

Caugmented
, and

Coriginal and Caugmented are the numbers indicating the performance (in this
case, either dice score or accuracy as shown in the figure) of models tested
with only the original test set but trained with the original (Coriginal) or
augmented (Caugmented) training set. We can see from fig. 11a that the perfor-
mance of the equivariant models we propose decrease less. This shows, from
one perspective, the resistance of equivariant models to inconsistency of data
distributions between training and testing data. On the other hand, having
data augmentation only in the test set becomes a big problem for models with-
out equivariance. fig. 11b shows, for models trained with the original training
set only, the performance decrease from models tested with the original test
set to those tested with rotated data. The y-axis values are calculated the same
as the formula above, but the Coriginal and Caugmented become the numbers
indicating the performance of models trained with the original training set
only but tested with the original (Coriginal) or rotated (Caugmented) test set.
We can see clearly from fig. 11b as well that the performance of classical CNN
decreases the most using rotated data, and the decrease of performance goes
down when we enforce more spatial equivariance in the model. Baseline mod-
els decrease the least, but again, the performance is limited due to the lack of
information in R

3. Furthermore, the SE(3)-equivariance is implemented sep-
arately for the spatial and spherical parts, and is with interpolation in the
spatial part, thus there are some errors introduced to it. Therefore, OursFull
models always perform the best when there is variation in the test data.

Rotational invariance for Type 1 discretization

Further more, we have also experimented with networks that have some rota-
tional invariance but in the classical CNN setup - viewing the DWI images as
I : R3 → R

N . Taking the classical CNN setup we have in section 4.2, we rotate
the CNN kernels in each layer using the same rotations as in section 4.2 to
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Rotations Data Type CSF Dice Subcortical Dice WM Dice GM Dice Overall ACC

90− 5− 5− 5− FC, #Param 13539

Part(12)
Original 0.798± 0.058 0.425± 0.052 0.843± 0.01 0.875± 0.01 0.838± 0.011
Rotated 0.71± 0.074 0.306± 0.042 0.755± 0.014 0.796± 0.014 0.75± 0.013

Full(60)
Original 0.754± 0.065 0.485± 0.059 0.823± 0.014 0.848± 0.02 0.818± 0.016
Rotated 0.75± 0.063 0.479± 0.059 0.813± 0.013 0.838± 0.02 0.809± 0.016

Table 11: Augmented CNN tested with original and rotated data.

discretize SO(3). As was done above, we use the 60 rotations from the icosa-
hedral symmetry group as well as only 12 of them (1 at each rotation axis)
to act on the CNN kernels. In each layer, one rotation of the kernel is only
convolved with the response of the corresponding rotation from the last layer,
thus this network is in fact 60 (or 12) independent networks, in which they
share the same weights of different rotations. At the end, we take the average
of the 60 (or 12) responses from all the rotations. With a small trial, we dis-
covered that, as expected, even though this type of network does not perform
as well as our spatial-directional GCNN as a whole, the performance decreases
little in the full icosahedral group case with 60 rotations when tested with
augmented data, and decreases more when only a subset (12) of the group is
used to rotate the kernels. See table 11.

This further demonstrates that having rotational equivariance in the model
makes it much more robust to variance in the data - which, with no need of
explanation, is inevitable when dealing with real-world raw data. Averaging
rotational copies of a classical CNN achieves the goal of dealing with variance
in data, but for nonlinear data like DWI, for which signals in voxels have some
geometric structure, our full SE(3)-GCNN provides the best solution.

4.3 Comparison to Müller et al. [10]

We now compare our method to the approach of [10]. They used DWI data
with q-space encoding in the diffusion part and the spatial part of the data is
referred to as p-space, and these two parts of the data resemble the S2 and R

3

spaces in our formulation. We use the b-vectors from the HCP dataset as the
input to the q-space. In their case, the input of the network is a whole DWI
scan, not a series of extracted patches like we do, and we cannot fit an entire
HCP scan into the model without exceeding the memory limit of a 24 GB
GPU. After discussion and agreement with one of the authors (V. Golkov),
we decided to use a modified architecture of their network to get an as fair as
possible comparison: 1) we provide their network with patches of the same size
as ours (7×7×7), but with DWI signals that are only normalized by b0 instead
of interpolated spherical functions in each voxel like we did in our method.
2) The best performing model hyper-parameters they provided in the paper
(with 4 and 5 layers in totals) are optimized for receptive fields that are much
larger than ours, we use instead their 3-layer network, which has almost the
same level of performance. 3) We have also disabled padding in their network
in order to to cancel biases introduced in the networks. After 3 p-spatial layers,
the output of their network without padding has spatial dimensions 1× 1× 1.
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Their method and ours thus perform the same task: voxel-wise classification.
We used the Focal Loss [44] using the same parameters as all the experiments
above. We used the suggested structure of their network with fully connected
layers in the radial basis, which reportedly has better performance than ones
without them. To make the comparison fair, we use a network whose hyper-
parameters are different from what was presented in [9] such that the number
of trainable parameters is similar to that of [10].

4.3.1 Network architectures

For [10], we use the 1(pq)+1(q−reduction)+2(p) layer structure with the TP±
1 basis presented in their paper, and channels (5, 3, 0, 0), (5, 3, 0, 0), (10, 5, 0, 0),
(4, 0, 0, 0) as presented in the appendix section E.1 in their paper, except that
we changed the output channel to 4 to fit our multi-class classification task,
and changed the p-space kernel sizes to 3 to ensure that the receptive field of
the network is 7× 7× 7, as we discussed with the author. For our method, we
use a ReLU(lift)−ReLU(gconv)−ReLU(gconv)−project−FC architecture
such that there are 3 spatial layers as in [10]. With each layer split into 2,
we use 10 − 10 − 20 − 40 − 20 − 10 − proj. − 4 as our layer structure such
that we have similar numbers of parameters as [10]. Our method has 34964
parameters, while [10] has 34781 parameters.

4.3.2 Results

✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

Accuracy

Ours 0.804± 0.073 0.754± 0.033 0.871± 0.018 0.908± 0.011 0.882± 0.008

Müller’s 0.583± 0.123 0.442± 0.176 0.83± 0.036 0.834± 0.033 0.805± 0.015

Dice score

Ours 0.799± 0.053 0.722± 0.034 0.877± 0.008 0.908± 0.006

Müller’s 0.655± 0.086 0.41± 0.105 0.813± 0.015 0.849± 0.016

Table 12: Statistics of results from both our method and Müller’s method

The results are shown in table 12. We can see that our method performs
better than [10]. To test the equivariance of both methods, we again test both
models with the randomly rotated test set as presented above, and the results
can be found in table 13.

We can see from the numbers that the performance of [10] does not drop
much either while tested with unseen rotated test set, similar to our method.
As we can see from fig. 12, overall, [10] lost less in percentage of the Dice
scores of Subcortical, White matter, and overall accuracy, but more in CSF
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✥
✥
✥
✥
✥
✥
✥
✥
✥✥Experiment

Class
CSF Subcortical WM GM Overall

Accuracy

Ours 0.725± 0.083 0.596± 0.036 0.834± 0.02 0.874± 0.013 0.838± 0.008

Müller’s 0.445± 0.1 0.337± 0.146 0.823± 0.036 0.789± 0.031 0.771± 0.014

Dice score

Ours 0.742± 0.067 0.593± 0.032 0.832± 0.009 0.875± 0.006

Müller’s 0.426± 0.055 0.343± 0.104 0.787± 0.015 0.813± 0.015

Table 13: Statistics of results from both our method and Müller’s method
tested with rotated test set.

Fig. 12: Comparison of model performance decrease while applied with
rotated test set between our method and Müller’s. The radial axis indicates
the decrease, and it is the logistic map of the ratio calculated by the same
scheme used in fig. 11.

Dice score. Both equivariant methods are more resistant to variations in the
distributions of the training and test set than the non-equivariant models pre-
sented above. Moreover, since the overall performance decrease of [10] while
tested with rotated data is lower than our fully equivariant model, [10] actu-
ally has better equivariance than all models we presented even though their
prediction accuracies and dice scores are lower.

5 Discussion

The resistance to data variation that has been shown by our fully equivariant
network was demonstrated on synthetically augmented data - with 90-degree
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rotations. Even though this synthetic augmentation did not cost any loss of
signals or any interpolation-caused inaccuracy, it is desirable to verify the
robustness of more complex group actions in CNNs using data with real-
world variations (e.g. subjects scanned in different positions, affine variations
in shapes). Acquiring this type of data is another challenge. On the other
hand, data augmentation seems to be very robust against the variations in
the rotated test set. However, this is because the augmentations applied in
the training set and the test set are identical, they modeled exactly the same
distribution in the data. Our proposed equivariant methods deal with incon-
sistent distributions between the training set and the test set much better,
which is usually the case in real world. In addition, our method outperforms
[10] with the same amount of information given to the models. Even though
both methods show similar resistance to variations in the distributions of the
training and test set, our model has a more light-weight implementation using
regular group representation with separable kernels.

6 Conclusion

We presented a systematic study of GCNNs of various group actions with
the application to DWI segmentation. We interpreted images of DWI scans
(I : R3 × S

2 → R) as functions in the homogeneous spaces of groups with
different complexities of symmetries and provided a detailed analysis of how
different levels of complexities of these symmetries impact the performance
of the network. From the experiments, we conclude that 1) exploiting the
spatial-directional interactions in the data is crucial for efficient learning of the
features; 2) incorporating complex group actions of 3D rigid motions - SE(3) -
might not be essential for highly aligned and preprocessed data like the human
connectome project (HCP) [8], but it shows significantly higher resistance to
variations in data. For real-world raw data in which positions of subjects are
not perfectly aligned as in [8], our proposal shows great potential.

Acknowledgements

We would like to thank Dr. Vladimir Gorkov for his efforts and insights in
helping us setting up experiments with their model [10].

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 801199. This paper only contains the author’s views. The
Research Executive Agency and the Commission are not responsible for any
use that may be made of the information it contains. Data were provided [in
part] by the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded
by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neu-
roscience Research; and by the McDonnell Center for Systems Neuroscience at
Washington University. This project is also partially funded by 3Shape A/S,



Springer Nature 2021 LATEX template

28 SE(3) Group Convolutional Neural Networks

as well as by the research programme VENI (grant number 17290), financed
by the Dutch Research Council (NWO).

References

[1] Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic Con-
volutional Neural Networks on Riemannian Manifolds. In: Proceeding of
3dRR (2015)

[2] Cohen, T.S., Welling, M.: Group equivariant convolutional neural net-
works. In: Int. Conf. Machine Learning, pp. 2990–2999 (2016)
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