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Abstract

Topological changes like sliding motion, sources and sinks are a significant challenge in

image registration. This work proposes the use of the alternating direction method of multi-

pliers as a general framework for constraining the registration of separate objects with indi-

vidual deformation fields from overlapping in image registration. This constraint is enforced

by introducing a collision detection algorithm from the field of computer graphics which

results in a robust divide and conquer optimization strategy using Free-Form Deformations.

A series of experiments demonstrate that the proposed framework performs superior with

regards to the combination of intersection prevention and image registration including syn-

thetic examples containing complex displacement patterns. The results show compliance

with the non-intersection constraints while simultaneously preventing a decrease in registra-

tion accuracy. Furthermore, the application of the proposed algorithm to the DIR-Lab data

set demonstrates that the framework generalizes to real data by validating it on a lung regis-

tration problem.

Introduction

Inadequate management of discontinuities in the displacements field of image registration

causes problems for widely-used algorithms utilizing smoothness regularizations [1]. One

such instance is sliding motions along domain boundaries as observed in longitudinal registra-

tion of lungs. Algorithms producing a single smooth deformation field cannot account for dis-

continuities. A separation of the registration domain into its sliding segments is, thanks to

increasingly well-performing deep learning methods for accurate individual organ segmenta-

tion [2–4], available but subsequent, independent registration of the resulting segments suffers

from the possible overlap of the computed deformation fields. In order to acquire separate and

congruent deformation fields without intersection, an additional constraining mechanism is

required. To this end, the alternating direction method of multipliers (ADMM) is presented to

enforce constraints preventing overlap of the individual components.

Extending the early development of rigid [5] registration algorithms, the implementation of

diffusion inspired processes [6], called DEMONs, as well as non-rigid deformations intro-

duced by Free-Form Deformations (FFD)[7] account for more complex image registrations.
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Analogies from fluid mechanics allowed to consider large deformations [8, 9]. Topology pres-

ervation in image registration is enforced by the use of diffeomorphisms. The combination

with the large deformation algorithms gave rise to another approach, called Large Deformation

Diffeomorphic Metric Mapping (LDDMM)[10, 11]. One type of discontinuities, particularly

present in lung and abdominal registrations, are sliding motions [12]. The sliding of the lung

along the pleura and the expansion of the rib cage in the opposite direction leads to severe sin-

gularities in the deformation field and consequently invalidate the usual premise of smooth

displacement fields [13].

Existing approaches aiming to deal with sliding motions can be categorized into methods

computing a single deformation field for the whole image domain and those that split the

domain into individual parts for each independently moving subdomain and subsequently

computing as many deformation fields. Solutions computing one deformation field require

additional constraints controlling smoothing across domain boundaries. One such approach

of enriching the b-spline basis functions with additional information around discontinuities,

i.e. in the lung case domain boundaries, is proposed in [14] and prevents information

exchange over domain boundaries. Due to its built, the approach doesn’t require further reg-

ularization or a specific interface smoothness. Being a completely intensity based method

without explicitly penalizing overlaps, the image gradient may push voxel over the domain

boundary regardless of the underlying enrichment. Further approaches utilizing the need for

regularization differentiation between sub-domains can be divided into two groups [13]:

direction-dependent methods and locally adaptive methods. Direction-dependent

approaches decompose the deformation field into tangential and normal components.

Smoothing the image globally only in the direction of the surface normals and tangentially

only inside segmented domains offers a closed mathematical solution, with the draw back of

stationary normal directions [15]. Using a piece wise diffeomorphic solution with a station-

ary velocity field implementation that smooths the velocity field domain independently in

tangential direction while matching the velocity direction and magnitude on both sides of

the domain interface is introduced in [16]. However, using different resolutions in different

domains requires interpolation at the domain boundary effectively smoothing intensities.

Locally adaptive approaches implement regularization whose weight in the loss function dif-

fers according to the location in the image domain. The first locally adaptive version investi-

gated in this section offers to balance diffusion-based L2 norm regularization for smooth

domain interiors and L1 norm total variation at domain boundaries, showing good results

even with minor domain segmentation errors. Low magnitude updates, e.g. small scale slid-

ing motion, can still be falsely smoothed [17]. [18] uses a classical bilateral filtering kernel to

identify interface boundaries with the application of a computationally costly kernel. An

alternative to bilateral filtering is isotropic total variation [1]. Both methods, bilateral filter-

ing and total variation are challenged, however, by interfaces between similarly textured and

low contrast domains. Registration algorithms splitting the image domain into indepen-

dently moving sub-domains suffer more than the methods above from possible overlaps or

gaps in between distinct deformation fields. [19] minimizes the overlaps by assigning unique,

penalizing intensities for voxel lying outside the respective sub-domain during registration,

allowing for the use of different registration parameters for each sub-domain. The definition

of the right intensities can be tedious and time consuming. [20–22] drop intensity based

penalization in favour if a distinct term added to the loss function penalizing overlaps and

gaps. These terms can consist of the product of deformed signed distance fields [20], requir-

ing a computationally expensive creation of motion mask and being restricted to two sub-

domains, or a local distance metric to the opposing interface via the sum of sample surface

points [22]. The second implementation offers a solution to sliding along curved surfaces
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and surfaces that are separated by a third domain, but relies on the resolution of the sampled

surface points. Another approach penalizing a set of sampled surface points is the split

Gauss-Newton approach [21, 23]. Here any deviation of the point set from the deformed

interface is weighted relative to the distance to the interface. If not parametrized properly,

the penal term can overrule the registration forces, keeping the deformation field in its initial

state. Using not n deformation fields for as many sub-domains, but n + 1, [24] utilizes the

additional field to calculate the global normal displacements only. The normal direction is

derived from local bases. The remaining deformation fields produce the sub-domain specific

tangential displacements, ensuring matching normal displacements along the interface. This

approach assumes smooth, small-deforming interfaces, since the bases are created in the

moving image only. All aforementioned methods except [1, 18] require correct

segmentations.

This work presents a registration framework, the Collision Constrained Deformable Image

Registration (CC-DIR), to account for sliding motions by combining a collision constraining

regularization with the registration term and solving the resulting minimization problem

using the ADMM.

Materials and methods

Image registration

Formally, in image registration a transformation Φ: O! O is sought that aims to align the

source or moving image I 2 Rn via the transformation Φ 2 O to a target or fixed image J 2 Rn.

The registration problem can be written as a minimization problem of the energy term F: O

! R

min
F

FðF; I; JÞ ¼ min
F

MðJ; I � FÞ þ SðFÞ: ð1Þ

The image similarity M: O! R measures the alignment between two images. Difference

methods like Sum of Squared Differences (SSD) and Sum of Absolute Differences (SAD) are

widely used as similarity measures for monomodal registrations that map the same anatomical

structures, performing similarly well [25]. SSD methods penalize outliers in intensity heavier

[26] and are in consequence a valid approach to properly register the relative high differences

between lung tissue and the surrounding air. Image registration as an ill-posed problem has no

single solution [27] and often utilizes regularization S:O! R. Regularization may be applied

for smoothing [28] or constraining the deformation to reasonable [29] solutions. Cubic B-

splines utilized in FFD act as a smoothing alternative themselves [28] and free the algorithm of

additional regularization implementations.

Parametrization

Parametrizations offer a reduction in dimensionality, improved robustness [1], and decreased

risk of overfitting. One example are Free-Form deformations. By deforming an overlying grid

of control points, the deformation of the underlying image is calculated by interpolating the

pixel- or voxelwise displacements. Widely used approximation functions for individual voxel

displacements are cubic B-Splines, which have a very local influence and only affect points in

their neighbourhood [7]. For an exemplary image in R3, z 2 Rn1�n2�n3 is the mesh control

points spaced equidistantly at δ = (δ1, δ2, δ3). The displacement of p 2 R3

FðpÞ ¼
X3

l¼0

X3

m¼0

X3

q¼0

BlðuÞBmðvÞBqðwÞziþl;jþm;kþq ð2Þ
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with the basis functions [30, 31]

B0ðuÞ ¼
1

6
ð1 � uÞ3; ð3aÞ

B1ðuÞ ¼
1

6
ð3u3 � 6u2 þ 4Þ; ð3bÞ

B2ðuÞ ¼
1

6
ð� 3u3 þ 3u2 þ 3uþ 1Þ; ð3cÞ

B3ðuÞ ¼
1

6
u3: ð3dÞ

Location of the respective control points follows i = ⎥p1/δ1⎦ − ξ, j = ⎥p2/δ2⎦−ξ, k = ⎥p3/δ3⎦ − ξ,

with ξ shifting the support along the axis. The localized coordinates derive from u = (p1−δ1*⎥p1/

δ1⎦)/δ1, v = (p2 − δ2*⎥p2/δ2⎦)/δ2, and w = (p3 − δ3*⎥p3/δ3⎦)/δ3. By decreasing the grid resolution,

cubic b-spline represent global deformations as well. Consequently, a multiresolution approach

with sequentially increasing resolutions will capture both local and global deformations.

Collision detection

Collision detection algorithms can be classified according to utilized object representation

[32], such as purely explicit, implicit or hybrid approaches. Explicit representations may range

from simple point clouds to polygon meshes, one of the most common tools utilized [33].

Implicit representations, such as signed distance fields SDF : Rn
! R, describe geometries as

a mapping function. A hybrid approach of a point cloud, representing the deformable object,

with a rigid object, depicted as a SDF, has been proven to perform fast and accurately [34]. On

top, this algorithm leverages existing data structures such as segmentation masks and can be

directly pre-computed from segmented images by fast marching methods, allowing for fast

intersection tests [33]. This sidesteps the need for object meshing, which proves hard to imple-

ment for anatomical structures [35]. Let pi 2 R
n

be any point in the image and o � Rn
by a

closed and bounded [36] subset representing a collision object with δω as its boundary. Detect-

ing a collision of pi with ω requires evaluating the signed distance

SDFoðpiÞ ¼

� dðpiÞ pi 2 o

0 pi 2 do

dðpiÞ pi=2o

8
>>><

>>>:

ð4Þ

with d : Rn
! R

dðpiÞ ¼ inf
y2do
k pi � y k

2 ð5Þ

equating to the shortest distance to its domain boundary. The intersections are formulated as a

quadratic penalty function g : Rn
! R [37].

gðpiÞ ¼

0 SDFoðpiÞ � 0

m

2
SDFoðpiÞ

2
0 SDFoðpiÞ < 0

8
<

:
ð6Þ
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This function weights possible collisions by the depth of intersection of colliding particles

with respect to the object surface with an adjustable free parameter μ. Neglecting all influences

of non-intersecting points by simple piece-wise definition g acts both as the collision detection

and correction, with a value only deviating from 0 once pi collides with ω.

Reformulating this collision constraint for the registration problem to account for sliding

motion between the image domains ω1� I and its counterpart ω2� J, let Xi 2 ω1 be the set of

all material points in the undeformed configuration. The energy formulation in the deformed

configuration xi = Xi �Φ reads as

CðF; I; JÞ ¼
X

i

gðxiÞ ð7Þ

Here, the SDFo2
is calculated in spatial space. Adding the collision constraint energy formula-

tion to the initial registration problem changes the term to

min
F

FðF; I; JÞ þ CðF; I; JÞ: ð8Þ

Alternating direction method of multipliers

With the constrained registration problem now consisting of F(Φ, I, J) and C(Φ, I, J), we can

take advantage of this formulation by splitting the variable Φ representing the transformation

into two distinct deformations ΦR and ΦC for the registration respectively collison problem

and adding a coupling constraint.

min
FR ;FC

FðFR; I; JÞ þCðFC; I; JÞ

subject toFR � FC ¼ 0:

ð9Þ

This formulation clearly illustrates the advantage of applying the ADMM. Utilizing a com-

bination of dual ascent and decomposition, the ADMM splits the objective function into sub-

problems, favouring problems where the local optimization of theses sub-problems can be car-

ried out efficiently [38]. The registration problems in the form of Eq 9 can be solved by iterat-

ing through the sequential updates of ΦR, ΦC, and a so-called dual variable u by

ΦR kþ 1 arg min
ΦR

FðΦR; I; JÞ þ
r

2

�
�ΦR � Φk

C þ uk
�
�2

2
; ð10aÞ

ΦC kþ 1 arg min
ΦC

CðΦC; I; JÞ þ
r

2

�
�Φkþ1

R � ΦC þ uk
�
�2

2
; ð10bÞ

ukþ1  uk þΦkþ1

R � Φkþ1

C ; ð10cÞ

until either convergence or a fixed number of iterations is achieved. This scaled version of the

ADMM utilizes u as the accumulating sum of residuals for the coupling constraint [39]

whereas the free parameter ρ allows to control its influence on the sequential updates Conver-

gence towards an optimum is sufficiently fast for moderate accuracy, but may be slow to pro-

duce highly accurate results.

Experiments & results

2D synthetic examples under controlled conditions, as proof of concept, as well as an applica-

tion to 3D medical data to showcase its feasibility, are conducted.
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Implementation

For each domain ωr representing an independently moving object in I 2 Rn, in this paper in

both synthetic and medical experiments r 2 {1, 2}, a CC-DIR is executed. The object is repre-

sented as two point clouds of i respectively j evaluation points for pcol, preg in the collision

respectively registration problem. Cubic B-spline parametrization (Eq 2) is used as the defor-

mation model, while for interpolating voxel intensities at non-integer positions, linear interpo-

lation is utilized. For updating FNþ1

C ;ΦNþ1

R during the iterations, subsolvers are called to

minimize the respective function and assign the minimizing variables ΦC, ΦR. The subsolvers

are gradient descent implementations with a backtracking according to [40], running for 2

iterations. ρ is kept at 0.5 across all experiments. In our implementation the stopping criterion

for CC-DIR is a fixed set of iterations Nfixed.

Algorithm 1 CC-DIR in 3D
Inputs:
pcol, preg 2 Ri,j×3 with pcol, preg � ωr ΦR;ΦC 2 R

3�n1�n2�n3

Initialize:
N  0
Φ0

R  03�n1�n2�n3

Φ0

C  03�n1�n2�n3
u0  03�n1�n2�n3

while N � Nfixed do
FNþ1

R  arg minΦR
FðFR;I;JÞ þ

r

2
kΦR � ΦN

C þ uNk2

2

ΦNþ1

C  arg minΦC
CðFC;I;JÞ þ

r

2
kΦNþ1

R � ΦC þ uNk2

2

uNþ1  uN þΦNþ1

R � ΦNþ1

C

end while

Synthetic experiments

In order to show the improvements in registration quality by the CC-DIR compared to meth-

ods without collision constraining, the synthetic experiments include a Baseline model, a mod-

ified Baseline (mod. Baseline) model for improved performance and the CC-DIR. The

Baseline model consists of a B-spline FFD registration model with one deformation field and a

gradient descent with backtracking as optimization method. The mod. Baseline uses the same

setup, however running two FFD registrations consecutively, one for each image domain. The

CC-DIR computes one deformation field for each image domain as well. However, CC-DIR

uses Alg. 1 to constrain collisions between the two domains. Differences in algorithms between

Baseline, mod. Baseline and CC-DIR are kept to a minimum by using the same similarity mea-

sure SSD. A small parameter study has been performed for every experiment to identify the

best outcome for the synthetic setup with respect to control point grid scale, learning rate, and

penalty parameter.

Data. Three simplified cases in 2D are computed for a better understanding and visualiza-

tion of the proposed method, while combining different discontinuities in their respective set-

ups. The image domain is divided by the boundary δO into OL on the left side and OR on the

right, each containing the distinct structure IL respectively IR. In the first case, Linear, the

boundary δO moves as a whole to the right-hand side while IL and IR are sliding in opposite

directions up, respectively down. Additionally, IL deforms under conservation of its total area.

The second case, Non − linear, introduces a more complex, non-linear deformation of the

boundary δO. Both structures are subject to deformation and move along the boundary in

contrary directions, again sliding along the boundary. The last case Growth combines defor-

mation, translation and the sliding motion discontinuity from the second example with a

growth OG in the boundary region (Fig 1).
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Results. Two main criteria are quantified and evaluated: registration success and collision

constraint violation. The registration success is easily calculated with the Sørensen-Dice index

(DICE) for matching the structures IL and IR. For the evaluation of the collision constraint the

intersection scores (IS) is introduced. The percentage of intersecting pixels with respect to the

image area constitutes to IS, aiming to giving an qualitative overview of the intersection. For

all three cases, the CC-DIR performs best in terms of registration as well as preventing inter-

section (Table 1). The DICE score indicates a high success in matching the structures, backed

by a clean pullback registration visualization in Fig 1. No pixel intersects with the boundaries,

so no violation of the collision constraint is detected. The mod. Baseline ranks in second, with

satisfying registration results in all but the Growth case. Regarding intersections, this approach

Fig 1. Synthetic experiments setup and results. From left to right: Source, target and pullback-registered CC-DIR

images for Linear (Top row), Nonlinear (Center row) and Growth (Bottom row) case. The registered images show

clear matching of the shapes IL and IR.

https://doi.org/10.1371/journal.pone.0290243.g001

Table 1. Intersection (IS) and DICE score for synthetic experiments. The purposed CC-DIR based algorithm shows

no overlap in the three test cases additionally with a superior DICE score.

Experiment Mode IS [%] DICE
Linear Baseline 0.15 0.954

mod. Baseline 0.0 0.976

CC-DIR 0.0 1.0

Non-linear Baseline 0.2 0.98

mod. Baseline 0.14 0.984

CC-DIR 0.0 0.998

Growth Baseline 3.48 0.843

mod. Baseline 3.44 0.876

CC-DIR 0.0 0.999

https://doi.org/10.1371/journal.pone.0290243.t001
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performs similarly well for the Linear case as the CC-DIR, but shows more intersections with

increasing non-linearities in the boundaries. Losing registration performance quickly, the

Baseline approach struggles to match the structures already in the Linear case. Additionally,

intersections are reported for every case, hence violating the collision constraints consistently.

Medical experiments

The CC-DIR for evaluation on a medical data set is run as described in Alg. 1. Two deforma-

tion fields are computed consecutively and independently. The two independent domains of I
2 R3 are the lung domain OLung� I defined by a segmentation and the rib cage ORib = I\Ome-
gaLung. The multiresolution procedure is derived from the findings in the EMPIRE challenge

[41]. For the best possible results, a possible initial affine registration, followed by a multireso-

lution CC-DIR registration is run. The multiresolution setup consists of multiple successive

CC-DIR registrations, with a coarse-to-fine control point grid adaption. The successively run

CC-DIR compute updated starting coordinates for pcol, preg, handing these down to the next

finer resolution CC-DIR. Image similarity is measured by SSD. Mirroring the synthetic experi-

ments, the registration success and collision constraint violation are evaluated. The results are

compared to a set of algorithms also tackling the sliding motion along the lung-ribcage inter-

face [14].

Data. For the medical test setup, the DIR-LAB 4DCT data set from [42] is used with previ-

ously segmented lung masks from the Continuous Registration Challenge [43]. The registra-

tion is computed between the extreme inhale-exhale image pairs in order to ensure high

deformations and sliding motions. To exclude regions with little image inforamtions, the

images are cropped to exclude inmaging artifacts at the boundary regions. All CC-DIRs are

run for 100 iterations.

Parameters. Even though consisting of only 10 lung scans, the DIR-Lab data set contains

a variety of motion patterns, requireing individually tuned parameters. Hence, initial affine

registrations were run for cases 5-10 as a gradient descent with backtracking for 100 iterations

and SSD for similarity measure. The multiresolution scales in mm for the (x,y,z) axis for cases

1, 6, 7, 9, and 10 were (19.4,19.4,50), (9.7,9.7,25), and (4.85,4.85,12.5). Cases 2 had scales

(23.2,23.2,50), (11.6,11.6,25), and (5.8,5.8,12.5). Case 3 had scales (23,23,50), (11.5,11.5,25),

and (5.75,5.75,12.5). Case 4 used (22.6,22.6,50), (11.3,11.3,25), (5.65,5.65,12.5) as scales and

case 5 (22,22,50), (11,11,25), (5.5,5.5,12.5). And finally case 8 with (38.8,38.8,100),

(19.4,19.4,50), (9.7,9.7,25), and (4.85,4.85,12.5).

Target registration error. For the registration accuracy, anatomical landmarks are used.

The data-set provides 300 annotated landmarks in both extreme phases. Consequently the

summed position error after registration, called target registration error (TRE) over all land-

marks indicates the registration outcome (Table 2). Introduced in the original data set publica-

tion [1, 20, 42], a snap-to-voxel evaluation for the TRE is used. The proposed CC-DIR

algorithm’s overall TRE accuracy ranks at fourth place, while matching the best benchmark in

cases 1 and 2.

A coronal slice of a 3D CT lung scan in Fig 2 shows an example of the registration process.

The difference image between the moving and target configuration before and after registra-

tion depict a reduction of structural differences. The deformation grid overlaid over the regis-

tered image in Fig 3 is the result of the CC-DIR. This close-up shows a clear solution to the

sliding interfaces along the pleura as well as a translation in the diaphragm caused by the

inhalation.

Congruent interfaces. For the evaluation of congruent, and thus physiologically plausible,

rib-cage-lung interfaces, the metric introduced in [24] is used. After transforming a 3D surface
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mesh of the rib-cage-lung boundary δO by both displacement fields ΦLung and ΦRib, the subse-

quent gap and overlap between the two domains is calculated by voxelizing the respective

meshes. The results in cm3 are recorded in Table 3.

Overall, and in half of the cases specifically, the novel CC-DIR registration shows the least

amount of overlap. The average resulting gap between the two domains ranks second after the

interface matching algorithm [20].

Shear. In order to estimate the shear along the domain interfaces, the maximum shear

stretch introduced in [44] is calculated. Using the deformation gradient tensor F ¼ dx
dX which

maps the transformation from the undeformed configuration x to the deformed state X, the

Table 2. Comparison of TREs for the DIR-LAB data set in mm. The mean TRE of the purposed CC-DIR method ranks at fourth place out of seven with an offset of 0.15

mm to the best performing algorithm.

Case Wu (2008) Delmon (2013) Berendsen (2014) Hua (2017) Eiben (2018) Gong (2020) Proposed CC-DIR

1 1.1 ±0.5 1.2 ±0.6 1.0 ±0.52 1.0 ±0.51 N/A ±N/A 0.97 ±N/A 0.92±0.97

2 1.0 ±0.5 1.1 ±0.6 1.02 ±0.57 0.99 ±0.59 N/A ±N/A 1.02 ±N/A 0.9±1.14

3 1.3 ±0.7 1.6 ±0.9 1.14 ±0.89 1.12±0.64 N/A ±N/A 1.18 ±N/A 1.23 ±1.43

4 1.5 ±1.0 1.6 ±1.1 1.46 ±0.96 1.44 ±1.03 N/A ±N/A 1.38±N/A 1.49 ±1.41

5 1.9 ±1.5 2.0 ±1.6 1.61 ±1.48 1.37±1.35 N/A ±N/A 1.45 ±N/A 1.9 ±2.48

6 1.6 ±0.9 1.7 ±1.0 1.42 ±0.89 1.26 ±1.04 N/A ±N/A 1.12±N/A 1.46 ±1.41

7 1.7 ±1.1 1.9 ±1.2 1.49 ±1.06 1.12±0.67 N/A ±N/A 1.24 ±N/A 1.42 ±1.43

8 1.6 ±1.4 2.2 ±2.3 1.62 ±1.71 1.18±1.22 N/A ±N/A 1.71 ±N/A 1.26 ±1.17

9 1.4 ±0.8 1.6 ±0.9 1.3 ±0.76 1.14±0.64 N/A ±N/A 1.24 ±N/A 1.2 ±1.06

10 1.6 ±1.2 1.7 ±1.2 1.5 ±1.31 1.08±0.82 N/A ±N/A 1.24 ±N/A 1.45 ±1.72

Mean 1.47 ±0.96 1.66 ±1.14 1.36 ±0.99 1.17±0.85 1.21 ±N/A 1.25 ±N/A 1.32 ±1.42

https://doi.org/10.1371/journal.pone.0290243.t002

Fig 2. Overview of the reference, source and registered image. |I − J| shows the intensity differences between moving

and fixed image without registration, |I �Φ − J| after collision-based registration. A clear reduction of intensity

differences and matching of anatomical structures can be observed.

https://doi.org/10.1371/journal.pone.0290243.g002
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Fig 3. Close-up of the displacement field. Displacements around the interface (green arrows) show observable sliding

motion along the boundary (red).

https://doi.org/10.1371/journal.pone.0290243.g003

Table 3. Comparison of gap/overlap for the DIR-LAB data set by case. The purposed CC-DIR algorithm shows the least overlap compared to the six other methods. It

rates second in terms of interface gap with a mean offset of 38.1 cm3 to the first place. All measurements are in cm3.

Case Wu (2008) Delmon (2013) Berendsen (2014) Hua (2017) Eiben (2018) Gong (2020) Proposed CC-DIR

1 38/26 39/15 23/18 39/2 N/A/N/A 67/69 22/2

2 78/46 67/60 74/34 74/31 N/A/N/A 76/94 53/6

3 99/28 83/33 57/30 71/24 N/A/N/A 59/70 53/7

4 75/34 66/44 66/28 92/13 N/A/N/A 71/79 41/7

5 11/38 78/52 61/32 54/6 N/A/N/A 97/109 37/11

6 10/86 119/77 130/50 155/11 N/A/N/A 57/69 90/23

7 10/79 108/77 119/45 138/19 N/A/N/A 73/88 131/14

8 96/91 92/93 85/53 150/40 N/A/N/A 80/98 92/39

9 61/34 54/44 70/51 58/14 N/A/N/A 63/72 78/8

10 120/63 94/56 80/43 109/28 N/A/N/A 90/110 48/19

Mean 88.2/52.5 80.0/55.1 76.5/37.4 94.0/18.8 26.4/34.5 73.3/85.8 64.5/13.6

https://doi.org/10.1371/journal.pone.0290243.t003
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maximum shear stretch constitutes to

lmax ¼
l1 � l3

2
ð11Þ

with

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eigenvalues of FTF

p
: ð12Þ

The exemplary colour-coded representation Fig 4 clearly shows an increase in shear

stretches along the interface, whereas the displacement field in Fig 3 demonstrates sliding

motion. Overall the mean shear stretches amount to 1.3 ± 1.8 between the lung and rib-cage,

respectively 0.2 ± 0.2 in the rest of the image. The computation time averages at 822s ± 519s on

a Xeon CPU @ 3.60GHz x12 with an GPU implementation on a GeForce RTX 3090.

Discussion

Coupling deformable image registration with collision detection offers up new possibilities for

supplying registration algorithms with simple physics. In order to incorporate these physics

into the common registration problem formulation, an energy term (Eq 7) is needed. This

setup simulates the deformation of the distinct image domains, such as organs, by calculating

separate deformation fields. Discontinuities at the domain boundaries, such as sliding motion

don’t need to be modelled explicitly but result automatically by the collision forces minimizing

the non-intersection constraint. Setting up the collision detection requires a domain represen-

tation, either as segmentation masks, surface or volumetric meshes. Acquiring these represen-

tations can be a difficult task, especially for regions with no discernible or low-contrast domain

Fig 4. Shear stretch evaluation. High differences in shear stretches along lung-rib-cage interface with respect to the

rest of the image are depicted.

https://doi.org/10.1371/journal.pone.0290243.g004
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boundaries. A problem encountered in the experiments is the lack of image information at the

domain boundaries. If registration is strictly applied to the respective domain masks, the result-

ing gap might increase as image information outside of the sub-domain is missing. Dilating the

masks to increase the tracking image forces provided an acceptable alternative. This way exten-

sive domain overlap post-registration is prevented by the collision constraints, whereas possible

gaps between the domains are closed by the image forces. Compared to single deformation

field methods, CC-DIR allows to easily use different parametrizations and parameters for dif-

ferent sub-domains. Since no costly on the run identification of the domain boundary, as in fil-

ter based methods, has to be performed, the possibility of surface errors in low contrast regions

is avoided. Not relying on normal and tangential decomposition also permits solving sliding

motions along complex and non-smooth surfaces. Unless other mentioned methods registering

subdomains independently using intensity based constraints, collision detection is geometric

and thus modality independent, allowing the collision detection and correction to be used in

different settings. Since collision detection is a fundamental area in computer graphics, it can

fall back on a considerable body of research and a variety of algorithms, permitting an exchange

of the collision detection method, as long as a respective energy term is formulated. An advan-

tage of using collision detection over interface matching methods is the circumvention of

redundant constraints, letting the registration energy term drive the deformation. Additionally,

collision detection can be applied to scenarios where subdomains are moving freely around the

image domain, with no restriction to constant contact between the subdomains, such as in

computer vision or robotics. The implementation of the collision constraint in the ADMM has

two advantages: First, the modularity of this optimization scheme permits not only the

exchange of the collision method but also of the registration method specifications such as sim-

ilarity metric or deformation model at will. Additional and existing regularization models can

be freely and effectively added to the registration energy term, subsequently offering sliding

motion representation at no further cost. Second, since the penalty function 6 is not bound to

be differentiable, the ADMM still converges [39] and avoids performance issues of gradient-

based methods [1]. However, as with many optimization strategies, convexity is of critical

importance. First, the convergence of the ADMM is formally mathematically proven for con-

vex functions only. Second, the ADMM solves the minimization for the dual problem instead

of the initial primal problem. If strong duality holds, usually for convex functions [45], the dual

solution is the primal solution [39]. The obtained solutions from nonlinear and non-convex

problems, such as registration, might offer a lower bound and if converged, the ADMM still

offers local solutions [39]. Furthermore, with additional regularization, the convexity of the

objective functions might be increased and thus reduce the duality gap.

Looking at the results from the experiments in detail, more practical observations can be

made. The synthetic experiment setups were chosen to analytically examine the possible

improvements of the CC-DIR with collision detection compared to registration algorithms

without collision detection. The results from the synthetic experiments show with stark con-

trast the benefits of the collision detection modeled via the CC-DIR compared to the Baseline

approaches. The CC-DIR outperforms the Baseline approaches not only in terms of intersec-

tion constraints but also with respect to registration. Additionally to enforcing the non-inter-

section constraint, the collision detection acts as a powerful regularization term. Since the

registration loss functions are likely to be non-convex, this regularization might increase con-

vexity at least locally if not globally. Regarding the intersection constraints, the CC-DIR deliv-

ers deformation fields with no intersection at all, while the Baseline approaches have

difficulties adhering to these boundaries.

Looking at the registration success for the medical data set measured by the TREs, this

algorithm ranks in fourth out of seven, with an average distance on 0.15 mm to the best
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ranking algorithm. However, with the finest voxel resolution of 0.97mm in the DIR-Lab data

set, these differences can be regarded as minimal and may be caused by the image discretiza-

tion. Furthermore, due to its advantageous framework build, replacing the registration meth-

ods is not only simple, but any improvement to the registration methods will also likely

increase the TRE accuracy. With the least overlap and the second lowest gap between the

domains compared to other algorithms, the CC-DIR produces separate yet congruent defor-

mation fields that minimize physiologically not feasible transformations. Even though the

CC-DIR doesn’t prevent overlapping completely, two adaptions may offer an improvement:

individually tuned hyper-parameters and an alternative constraint formulation. The imple-

mentation as quadratic penalty functions has the possible disadvantage of producing inexact

solutions as the iterates may be drawn to points that violate the equality constraints but sat-

isfy optimality conditions [37]. Exchanging the quadratic penalty function with an exact pen-

alty function might yield the desired solution, however the resulting non-smoothness should

be taken into account.

Conclusion

The CC-DIR successfully introduces a collision constrained method into the field of image

registration. With its simple framework build, it allows to combine state-of-the-art registra-

tion methods with collision detection for discontinuity preservation. No major drawback in

terms of registration quality have been observed, thus providing an effective method to

account for sliding motion while simultaneously ensuring congruent interfaces. Inspired by

the results in this paper, a future development of this framework is the exchange of the regis-

tration method with diffeomorphic counterparts. Looking at image registrations of the liver

or prostate, which frequently utilize the Finite-Element-Method to simulate deformations

[46], an image driven pathway to simulations may open up new possible developments. The

advantageous movement parametrization based on basis functions can be used to easily

derive FE models. A reformulation with tetrahedral interpolation and movement parametri-

zation coupled with collision detection between tetrahedral meshes and deformable signed

distance fields can even boost this process to fuse image registration with bio-mechanical

analysis.
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