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Abstract— Coronavirus disease 2019 (COVID-19) has be-
come a severe global pandemic. Accurate pneumonia in-
fection segmentation is important for assisting doctors in
diagnosing COVID-19. Deep learning-based methods can
be developed for automatic segmentation, but the lack of
large-scale well-annotated COVID-19 training datasets may
hinder their performance. Semi-supervised segmentation is
a promising solution which explores large amounts of unla-
beled data, while most existing methods focus on pseudo-
label refinement. In this paper, we propose a new perspec-
tive on semi-supervised learning for COVID-19 pneumonia
infection segmentation, namely pseudo-label guided image
synthesis. The main idea is to keep the pseudo-labels and
synthesize new images to match them. The synthetic image
has the same COVID-19 infection regions as indicated in
the pseudo-label, and the reference style extracted from
the style code pool is added to make it more realistic.
We introduce two representative methods by incorporating
the synthetic images into model training, including single-
stage Synthesis-Assisted Cross Pseudo Supervision (SA-
CPS) and multi-stage Synthesis-Assisted Self-Training (SA-
ST), which can work individually as well as cooperatively.
Synthesis-assisted methods are featured in two aspects:
1) rectify the training bias caused by inaccurate pseudo-
labels 2) expand the training data by using additional syn-
thetic data. Extensive experiments on two COVID-19 CT
datasets for segmenting the infection regions demonstrate
our method is superior to existing schemes for semi-
supervised segmentation, and achieves the state-of-the-art
performance on both datasets.

Index Terms— Semi-supervised learning, image synthe-
sis, self-training, COVID-19 CT segmentation.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) has caused a
serious health crisis and generated unprecedented social
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Fig. 1. Illustration of our motivation: Conventional semi-supervised
learning methods focus on refining pseudo-labels of unlabeled images
with elaborate designs. We consider this problem from another perspec-
tive, where we keep the pseudo-labels and synthesize new images to
match them, then synthetic pairs are incorporated into model training.

disruptions globally [1]–[3]. By the end of 2021, more than
43% of the global population has been infected with COVID-
19 at least once, and over 5.94 million people died worldwide
because of the COVID-19 pandemic [4], [5]. Early detection
of COVID-19 is helpful for prevent spreading and proper
resource allocation during the pandemic [6]. Though reverse
transcription polymerase chain reaction (RT-PCR) remains
the gold standard for COVID-19 diagnosis, several studies
suggest that the RT-PCR test has low sensitivity [7], [8]. Chest
computed tomography (CT) is an important complement to
the RT-PCR test, and has demonstrated its effectiveness in
accurate diagnosis and follow-up assessment [9]. Recently,
deep learning-based methods have been proposed to combat
COVID-19 [10], [11], for example, the severity classification
task helps distinguish those severe patients who need emer-
gency medical care [11]. However, automatic segmentation of
COVID-19 pneumonia regions still remains a challenging task
[12]–[14]. It is impractical to collect large-scale well-labeled
datasets due to the urgent nature of the pandemic. The labeling
process is tedious and requires professional knowledge. On
average, it takes around 400 minutes to annotate one CT
volume with 250 slices [15]. Therefore, it is desirable to
develop label-efficient deep learning models for automatic and
accurate COVID-19 pneumonia infection segmentation.
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Recently, there is a surge of interest in semi-supervised seg-
mentation, which explores large amounts of unlabeled data for
better performance. They can be divided into two categories,
one-stage and multi-stage. There are some successful one-
stage methods, such as consistency regularization [16]–[19]
and GAN-based methods [20], [21]. However, those single-
stage methods are optimized with both labeled and unlabeled
samples in a single stage, and the performance is highly
affected by those inaccurate predictions in the early training
stage. Self-training is a classical multi-stage method with three
stages [22], [23]. It first trains a teacher model to generate
pseudo-labels for unlabeled samples, and retrains a student
model with the expanded training data. However, the quality
of the generated pseudo-labels can not be guaranteed, and may
bring marginal improvement with a poor teacher model. In
this paper, we would like to explore the usage of pseudo-
labels from unlabeled data more efficiently for semi-supervised
COVID-19 pneumonia infection segmentation.

Inspired by recent advances in semantic image synthesis
[24], [25], we propose to synthesize new CT images to match
the pseudo-labels of unlabeled samples, rather than designing
sophisticated mechanisms for assessing and refining those
pseudo-labels. Recent techniques for semantic image synthesis
allow controlling the style of each region individually in
the segmentation mask, which yields high quality of the
synthesized images. The main idea of pseudo-label guided
image synthesis to control the layout of the generated image
which has the same COVID-19 infection regions as indicated
in the pseudo-labels, and add reference styles to make it more
realistic. Considering the pseudo-label inevitably contains low-
quality predictions and the extracted region-wise style codes
from itself may be inaccurate, we propose to build a style
code pool with the style codes extracted from all labeled
samples which contain infection regions. The quality of the
reference style codes sampled from the style code pool can be
guaranteed, and leads to better synthesized results.

With the synthetic images, we introduce two novel methods
by incorporating them into model training, i.e., Synthesis-
Assisted Cross Pseudo Supervision (SA-CPS) and Synthesis-
Assisted Self-Training (SA-ST), which can work individually
as well as cooperatively. SA-CPS is a single-stage method,
which feeds the synthetic images together with the labeled and
unlabeled images into two segmentation networks that have the
same architecture but different initialization weights. Similar
to self-training, SA-ST is a multi-stage method, which requires
a teacher model to generate pseudo-labels for unlabeled data,
and the re-trained student model can normally bring better
performance than its teacher model. The teacher model can
be a model trained only using a small amount of labeled data
or a trained model from SA-CPS. In SA-ST, the synthetic
images together with the labeled and unlabeled images are
used to retrain a student model. The advantages of synthesis-
assisted methods lie in two aspects. First, the contribution of
the unlabeled data is averaged by the original pseudo pairs
(unlabeled image and its pseudo-label) and the new synthetic
pairs (pseudo-label and its synthetic image), such that the
negative impacts caused by inaccurate pseudo-labels can be
alleviated. Second, the synthetic data is used as additional

supervision to train the model, which behaves like expanding
the training data, and thus improving the model performance.

The main contributions are summarized as follows:
• We propose a new perspective on semi-supervised learn-

ing for COVID-19 pneumonia infection segmentation,
where synthetic images are generated to match the
pseudo-labels of unlabeled images and added to existing
training data for improved performance.

• We introduce two representative methods by incorporat-
ing the synthetic images into model training, i.e., single-
stage Synthesis-Assisted Cross Pseudo Supervision and
multi-stage Synthesis-Assisted Self-Training, which can
work individually as well as cooperatively.

• We conduct extensive experiments on two COVID-19 CT
datasets for segmenting the infection regions, and the
results show that our methods outperform state-of-the-art
methods when training with limited labeled data.

II. RELATED WORK

A. COVID-19 Pneumonia Infection Segmentation
Segmenting the pneumonia regions is a crucial task which

can assist the quantification and diagnosis of COVID-19.
It is a quite challenging task due to the high variation of
infection appearances. Recently, deep learning methods have
been employed to segment the COVID-19 infection regions
automatically. Among various network architectures, U-Net
and its variants are popular choices [12]–[14]. Moreover,
some novel designs are incorporated into the models, such as
attention mechanism [26], [27], joint learning [28], [29] and
transfer learning [15], [30]. Despite their good performance,
they could not realize full potential of deep learning models
due to the small dataset size. Considering the challenge of
data collection and annotation, some pioneer works attempt
to train models with weak labels [31], [32] or noisy labels
[33]. Nevertheless, the performance of existing label-efficient
methods for COVID-19 pneumonia infection segmentation
is obviously inferior to those fully supervised methods. In
this work, we aim at developing a more advanced deep
model trained with limited labeled data and achieve better
segmentation performance.

B. Semi-Supervised Segmentation
Collecting pixel-level annotations for semantic segmentation

is extremely costly and time-consuming. Therefore, semi-
supervised learning that utilizes both labeled and unlabeled
data is attracting more attention for training segmentation
models. There are many successful works on semi-supervised
semantic segmentation, such as consistency regularization
[16], [17], GAN-based model [20], [21], self-training [22],
[23], etc. The key idea of consistency regularization is to
enforce the consistency of the predictions from augmented
input images, perturbed features, or different networks. GAN-
based models either generate additional training data or learn
an additional discriminator to distinguish the prediction from
the ground truth. In self-training, a teacher model is first
trained with labeled data, then it is used to generate pseudo-
labels on a large set of unlabeled data, finally a student model
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is trained using both labeled and pseudo-labeled data. Different
from other single-stage methods, self-training is multi-stage
and can be iterated many times until reaching the satis-
factory performance. Indeed, some works have investigated
semi-supervised learning methods on COVID-19 pneumonia
infection segmentation [18], [19], [34]–[36]. However, they
focus more on developing advanced networks or refining the
pseudo labels of unlabeled data. In comparison, we consider
this problem from another perspective, where we retain the
pseudo-labels and synthesize new images to match them, then
the synthetic data is added to existing labeled and unlabeled
data for model training. Our approach is more generic and
simpler as we do not require specially designed loss functions
or regularization techniques, and is less affected by low-quality
pseudo-labels during training.

C. Semantic Image Synthesis
Semantic image synthesis refers to the task of converting

a semantic segmentation mask to a realistic image, and it
has been extensively studied in the computer vision commu-
nity. The most representative work, Pix2Pix [37], introduces
an encoder-decoder generator for semantic image synthe-
sis. Pix2PixHD [38] is the follow-up work which improves
Pix2Pix by proposing a coarse-to-fine training scheme. After
this seminal work, many subsequent methods are proposed to
improve the performance of semantic image synthesis, such
as SPADE [24] and SEAN [25]. SPADE and SEAN propose
novel normalization layers to synthesize images with high-
quality, and edit the input image controlled by style image
and segmentation masks. SEAN improves SPADE by allowing
per-region style encoding, which leads to better synthesized
results. In the medical domain, some recent works also ex-
plore the synthesis methods for different downstream tasks,
such as data augmentation [39]–[41] and segmentation quality
assessment [42]. Different from these works, we are interested
in a new application of semantic image synthesis, where we
synthesize images controlled by pseudo-labels from unlabeled
data in the semi-supervised learning setting, and improve the
segmentation performance with these synthetic images.

III. METHOD

In this paper, we propose a new perspective on semi-
supervised learning for COVID-19 pneumonia infection seg-
mentation with limited labeled data. Inspired by recent ad-
vances in semantic image synthesis [24], [25], we propose
to synthesize new CT images to match the pseudo-labels
of unlabeled samples, rather than designing sophisticated
mechanisms for assessing and refining those pseudo-labels.
The synthetic images and pseudo-labels are formulated as
additional synthetic pairs, and are incorporated into model
training for achieving better segmentation performance.

In the following section, we first clearly define the problem
of semi-supervised COVID-19 pneumonia infection segmen-
tation, then describe the details of pseudo-label guided image
synthesis. With the synthetic images, we introduce the single-
stage method Synthesis-Assisted Cross Pseudo Supervision
(SA-CPS) and multi-stage method Synthesis-Assisted Self-
Training (SA-ST) in detail.

Fig. 2. Illustration of pseudo-label guided image synthesis. The pseudo-
label of an unlabeled image is obtained from the model. The region-wise
style encoder takes a reference image and outputs the style code. The
decoder generates the synthetic image which matches the pseudo-label
with the reference style.

A. Problem Definition

The task of semi-supervised COVID-19 pneumonia infec-
tion segmentation is formulated as follows. A dataset D is
used for training the models, which contains a small amount
of labeled samples and a large amount of unlabeled samples.
DL = {xl

i, yi}Ni=1 represent N labeled CT samples and DU =
{xu

i }Mi=1 represent M unlabeled CT samples, where xl
i and

xu
i denote CT images and yi is the corresponding groundtruth

segmentation mask. We aim at exploiting the large amount of
unlabeled data (M ≫ N ) to obtain an improved segmentation
model which can achieved the performance comparable to the
model trained using fully labeled datasets.

B. Pseudo-Label Guided Image Synthesis

The pseudo labels generated by a model trained with a
small amount of labeled samples inevitably contain inaccurate
predictions. Unlike conventional methods, we synthesize new
images to match these pseudo-labels rather than refining them,
which is illustrated in Fig. 2.

The region-wise style encoder Enc extracts per region
styles from the reference image, and the output style code
SC is a 512 × s dimensional matrix [25], where s is the
number of semantic labels. To keep the layout of lung regions,
we combine the masks of lung segmentation and COVID-19
pneumonia infection segmentation, to formulate a semantic
mask of s = 4 component categories, i.e., background, left
lung, right lung and infection region. If a category does not
exist in the input image, we set its corresponding column in
SC to zero. With the reference code and the semantic mask,
the decoder Dec generates a realistic CT image which contains
infections in the segmented regions from the pseudo-label.

The next question is how to find a reference image to
obtain the style code. One straightforward solution is to use
the unlabeled image itself and its pseudo-label. However, the
style code may be biased due to the inaccurate predictions
in the pseudo-label. For example, an unlabeled image has no
infections but its pseudo-label contains infection labels, such
that the synthetic image still has no infections because no style
information of the infection category is available. Another
solution to borrow the style codes from the labeled samples,
because their groundtruth segmentation masks are provided
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Fig. 3. Overview of synthesis-assisted cross pseudo supervision (SA-CPS) on unlabeled training data. The framework contains two parallel
segmentation networks s1 and s2. Following the spirit of cross pseudo supervision, we use the pseudo-label yp

1 from s1 to supervise the other
network s2, and use y

p
2 from s2 to supervise network s1. ‘ // ’ on ‘ −→’ means stop gradient, which is used when generating pseudo-labels. Given

the pseudo-label, we can synthesize a realistic CT image with the reference style code sampled from the style code pool. Each network is trained
with three loss functions, including supervised loss, pseudo-supervised loss and synthetic-supervised loss.

and the extracted style codes are more accurate. Therefore,
we build a Style Code Pool P with the style codes of labeled
samples which contain infection regions:

P = { Enc( xl
i, yi) }N

+

i=1, (xl
i, yi) ∈ DL, (1)

where N+ is the number of style codes from labeled training
samples with infection regions, and Enc(·) denotes the output
from the style encoder which is a 512×4 dimensional matrix.

To avoid large variations, we randomly sample K style
codes in P and average them to obtain the reference style
code SCref in each mini-batch iteration:

SCref =
1

K

K∑
i=1

SCi, SCi ∈ P, (2)

where SCi is the style code sampled from the style code pool.
With the reference style code SCref , we can synthesize a

realistic CT image x̂ to match the pseudo-label yp:

x̂ = Dec( yp, SCref ), (3)

where Dec(·) denotes the output from the decoder.

C. Synthesis-Assisted Cross Pseudo Supervision
In this subsection, we introduce the one-stage method

Synthesis-Assisted Cross Pseudo Supervision (SA-CPS). Pre-
dictions from two peer networks can provide complementary
information for each other, and the idea has been proven to be
effective in semi-supervised learning [16], [19]. In SA-CPS,
we adopt two parallel segmentation networks s1 and s2:

p1 = fs1(x), p2 = fs2(x), (4)

where fs1(·) and fs2(·) denote the predictions from s1 and s2.
s1 and s2 have the same architecture but different initialization
weights, to guarantee the diversity of two peer networks.

During training, each network takes a batch of labeled
samples {xl

i, yi}Bi=1 ∈ DL and unlabeled samples {xu
i }Bi=1,

where B is the batch size. The training objective consists of a
supervised loss Ls applied to labeled data and an unsupervised
loss Lu applied to unlabeled data. Specifically, the supervised
loss Ls is formulated using the combination of binary cross-
entropy (LBCE) and dice loss functions (LDICE) :

Ls = LSeg(fs1(x
l
i), yi) + LSeg(fs2(x

l
i), yi), (5)

with

LSeg(p, y) = LBCE(p, y) + LDICE(p, y), (6)

LBCE(p, y) =
∑

(y · log(p) + (1− y) · log(1− p)), (7)

LDICE(p, y) = 1− 2|p ∩ y|
|p|+ |y|+ ϵ

, (8)

where xi is the input image and yi is its pixel-level annotation,
(xl

i, yi) ∈ DL. ϵ refers to the smooth parameter.
Next, we elaborate the unlabeled data training branch, as

illustrated in Fig. 3. The unlabeled image has no groundtruth
labels, and we first generate pseudo-labels from each network:

yp1 = 1(fs1(xu) ≥ τ), yp2 = 1(fs2(xu) ≥ τ), (9)

where 1(.) is the indicator function, and τ is the threshold for
binarization, τ ∈ (0, 1). Following the spirit of cross pseudo
supervision, we use yp1 from s1 to supervise the other network
s2, and use yp2 from s2 to supervise network s1. Given the
pseudo-labels, we can synthesize CT images to match them:

x̂1 = Dec( yp2 , SCref ), x̂2 = Dec( yp1 , SCref ), (10)

where SCref is the reference style code sampled from the
style code pool P .
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Fig. 4. Illustration of synthesis-assisted self-training (SA-ST). First, a
teacher model (T ) is trained on a small amount of labeled data. Next,
the fixed teacher model generates pseudo-labels for a large amount
of unlabeled data. Moreover, we synthesize new images to match
those pseudo-labels. Finally, a student model (S) is trained using the
combination of real, pseudo and synthetic training data.

The segmentation losses on the pseudo and synthetic pairs
are written as:

Lpseudo = LSeg(fs1(x
u), yp2) + LSeg(fs2(x

u), yp1), (11)

Lsynthetic = LSeg(fs1(x̂1), y
p
2) + LSeg(fs2(x̂2), y

p
1). (12)

The unsupervised loss Lu on the unlabeled data is the
combination of the losses on both the pseudo and synthetic
pairs, which is written as:

Lu = Lpseudo + Lsynthetic. (13)

The whole training loss on both the labeled and unlabeled
data is represented by:

LSA−CPS = Ls + λ · Lu, (14)

where λ is the balanced weight for the loss items.

D. Synthesis-Assisted Self-Training
In this subsection, we introduce the multi-stage method

Synthesis-Assisted Self-Training (SA-ST). An illustration of
SA-ST is shown in Fig. 4.

A teacher model is first trained, which can be a model
trained only using a small amount of labeled data or a
trained model from SA-CPS. Then, pseudo-labels can be
obtained for unlabeled data, which yields pseudo-labeled data
Dpseudo

U = {xu
i , y

p
i }Ni=1. Given the pseudo-labels, we can

synthesize images to match them, which brings the synthetic
data Dsynthetic

U = {x̂i, y
p
i }Ni=1.

During training, the student model takes a batch of la-
beled samples {xl

i, yi}Bi=1 ∈ DL, pseudo-labeled samples
{xu

i , y
p
i }Bi=1 ∈ Dpseudo

U and synthetic samples {x̂i, y
p
i }Bi=1 ∈

Dsynthetic
U , where B is the batch size. The training losses are

represented by:

Ls = LSeg(fS(x
l
i), yi), (15)

Lpseudo = LSeg(fS(x
u
i ), y

p
i ), (16)

Lsynthetic = LSeg(fS(x̂i), y
p
i ). (17)

The total loss is the weighted sum of these three losses,
which is defined as:

LSA−ST = Ls + µ · (Lpseudo + Lsynthetic), (18)

where µ is a trade-off coefficient.
The entire training procedure is illustrated in Algorithm 1.

Algorithm 1 Synthesis-Assisted Self-Training (SA-ST)
Input: DL = {xl

i, yi}Ni=1: labeled training data,
DU = {xu

i }Mi=1: unlabeled training data,
Output: S: trained segmentation model

1: Train a teacher model T using all the labeled samples
from DL or adopt a trained model from SA-CPS as T

2: Generate pseudo-labels on unlabeled samples from DU ,
which yields pseudo-labeled data Dpseudo

U

3: Synthesize images to match each pseudo-label, which
results in synthetic data Dsynthetic

U

4: Train a student model S using all the training data, i.e.,
Dall = DL ∪ Dpseudo

U ∪ Dsynthetic
U

5: return S

IV. EXPERIMENTS

A. Datasets and Experimental Settings

1) Datasets: We evaluate our method using two public
datasets for COVID-19 pneumonia infection segmentation, and
their statistics are summarized in Table I :

• COVID-19 Lung CT Lesion Segmentation Challenge-
2020 (COVID-19-20) [43] creates the public platform
to evaluate emerging methods for segmenting COVID-
19 pneumonia regions from CT images. An open-source
dataset is provided by the challenge, where 199 and 50
volumes from the dataset are used for training and valida-
tion, respectively. Since the challenge is over, we can not
access the test data for evaluation. In our experiment, we
randomly divide the 249 volumes into: (1) 180 volumes
as training set; (2) 19 volumes as validation set; and
(3) 50 volumes as testing set. To satisfy the setting of
semi-supervised learning, we randomly sample 10% (18
volumes), 20% (36 volumes) and 30% (54 volumes)
of CT images in the original training set to construct
the labeled training set, and the remaining is used as
unlabeled training set.

• MosMedData [44] is a dataset of 1,110 chest CT volumes
collected by municipal hospitals in Moscow, Russia. The
dataset was originally used for triage, so as to prioritize
those patients with severe COVID-19. Among 1,100 CT
volumes, 50 CT volumes are annotated with binary masks
depicting infection regions, which is a practical scenario
suitable for semi-supervised learning. Later on, additional
32 CT volumes with carefully annotated lesions masks
are publicly released in [11] to evaluate the performance
of COVID-19 pneumonia infection segmentation. In our
experiment, MosMedData is divided into: (1) 40 volumes
as labeled training set; (2) 1,060 volumes as unlabeled
training set; (3) 10 volumes as validation set; and (4) 32
volumes as testing set.

2) Evaluation metrics: Following the evaluation metrics
used in the COVID-19-20 challenge, we employ Dice simi-
larity coefficient (DSC) and Normalized surface Dice (NSD)
to evaluate the infection segmentation performance. DSC is
commonly used in evaluating segmentation performance which
is defined as the overlap between the prediction results and
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TABLE I
STATISTICS OF TWO DATASETS

Dataset Training Validation Testing
# Total Volume # Labeled Volume # Volume # Volume

COVID-19-20 180 180 19 50
MosMedData 1,100 40 10 32

ground truths. NSD provides the normalized measure of agree-
ment between the surface of the prediction and the surface of
the ground truth at a specified tolerance, and 1 mm is used
by default. Python implementations of these two metrics are
publicly available from the challenge website.

3) Pre-processing: During pre-processing, the image inten-
sity values of all CT slices are first truncated to the range
[−1250, 250], and then normalized to [0, 255]. The lung region
segmentation is an initial step which extracts left and right
lung lobes from the CT slice, and we adopt an automatic
model which can accurately segment the lung even under
severe pathologies [45]. We ignore the regions outside the lung
to reduce computational complexity. Before segmenting the
COVID-19 pneumonia regions, we first train the synthesizer
using the labeled data, closely following the implementation
of SEAN [25].

4) Implementation details: The implementation is based on
PyTorch 1.9.0, and all the experiments were conducted on
an NVIDIA A100 GPU. The baseline segmentation network
follows a 2D U-Net architecture, which is commonly used in
medical image segmentation. The input images are resized to
512 × 512. We employ the SGD optimizer to train the models
with an initial learning rate of 1e−2 and a momentum of 0.9.
A polynomial learning policy is used during training, where
the initial learning rate is multiplied by (1− epoch

max epoch )
power

with a power of 0.9. The number of training epochs is set
to 20 for COVID-19-20 and 10 for MosMedData. The batch
size is 16, consisting of 8 labeled images and 8 unlabeled
images. Standard data augmentations such as random flipping
and random rotation are adopted to avoid overfitting. The
sampling number K is set to 10 for obtaining the reference
style code. The coefficients for the loss functions are set to λ =
0.5, µ = 0.5. The threshold for binarization when generating
the pseudo-labels is set to τ = 0.5 for all experiments.

B. Self Evaluation

In this subsection, we conduct self evaluation experiments
on the COVID-19-20 dataset.

1) Effectiveness of SA-CPS and SA-ST: We first analyze
the effectiveness of our proposed methods with 10% labeled
CT volumes. A more detailed evaluation using different label
ratios is shown in Table IV. Fig. 5 shows both our methods
outperform the supervised baseline which is trained only using
the labeled data. Specifically, the NSD score is increased from
56.17% to 61.52% the DSC score is increased from 60.26%
to 65.46% when applying our single-stage Synthesis-Assisted
Cross Pseudo Supervision (SA-CPS). As for our multi-stage
Synthesis-Assisted Self-Training (SA-ST), the NSD score is
increased by 2.74% and the DSC score is increased by 3.26%.
SA-ST is a multi-stage method, where pseudo-labels are first

Fig. 5. Effectiveness of the proposed methods with 10% labeled CT
volumes on COVID-19-20 test set. B: baseline methods which is trained
only using the labeled data; SA-CPS: synthesis-assisted cross pseudo
supervision; SA-ST: synthesis-assisted self-training.

Fig. 6. Visualization results of methods trained with 10% labeled CT
volumes on COVID-19-20 test set. GT: ground truth. B: baseline method
trained only using the labeled data; SA-CPS: synthesis-assisted cross
pseudo supervision; SA-ST: synthesis-assisted self-training. The red
regions denote the segmented infections.

generated for unlabeled samples using a teacher model. If we
use the trained model from SA-CPS as the teacher model
for SA-ST, the NSD score is further improved to 62.34%
and the DSC score is also improved to 66.16%. The results
demonstrate that synthetic images are beneficial for training
the models, and both synthesis-assisted methods SA-CPS and
SA-ST can improve the segmentation performance.

Fig. 6 shows some visualization results of methods trained
with 10% labeled CT volumes. The baseline method achieves
less satisfactory performance on the test samples, but the seg-
mentation results can be obviously improved after using both
our synthesis-assisted methods. Moreover, the comprehensive
evaluation results shown in Table IV show our methods con-
sistently improve the baseline under different labeled ratios.

2) Analysis on Pseudo-Label Guided Image Synthesis : We
synthesize new images to match the pseudo-labels of unlabeled
samples, and study the performance of these synthetic images.
The synthetic image is conditioned on the pseudo-label that
describes the infection regions in the desired output image.
The realistic image depends on the specified style code from
an reference image, where the region-wise style code can
be extracted using SEAN [25]. We compare the different
methods for generating the reference style codes in Fig. 8.
We can find that it achieves the best performance when
sampling the reference style code from a style code pool with
the style codes of labeled samples which contain infection
regions. The main reason is that the pseudo-label inevitably
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Fig. 7. Visualization results of pseudo-label guided image synthesis.
Pseudo-labels are generated for unlabeled images but their quality is not
guaranteed, which can be with: (a1-a2) high false positive, (b1-b2) high
false negative, (c1-c2) high accuracy. Synthetic images are conditioned
on the pseudo-labels that describe the infection regions in the desired
output images.

contains low-quality predictions and the extracted region-wise
style codes from itself may be inaccurate. Moreover, most of
labeled images contain no infections and their style codes are
uninformative for synthesizing infection regions. These two
alternative options synthesize new images with inferior quality,
and result in lower segmentation accuracy.

To better understand the motivation of our proposed pseudo-
label guided image synthesis, we provide some visualization
results in Fig. 7. The groundtruth labels are not provided
for unlabeled samples during training. Pseudo-labels can be
generated but their quality is not guaranteed and inevitably
contain inaccurate predictions. For example, the input images
have no infections but the pseudo-labels falsely predict some
infections in Fig. 7(a1-a2), but the synthetic images contain the
same COVID-19 infection regions as indicated in the pseudo-
labels. In Fig. 7(b1-b2), the predicted infections regions only
cover a small part of groundtruth infections regions, and
the synthetic images are generated accordingly to match the
pseudo-labels. When the predicted pseudo-labels are close to

Fig. 8. Comparison of different methods for generating reference
style codes. Self Style: the reference style code is obtained from the
unlabeled image itself based on its pseudo-label; Style Code Pool (N ):
the reference style code is sampled from a Style Code Pool with the style
codes of all labeled samples; Style Code Pool (N+): the reference
style code is sampled from a Style Code Pool with the style codes of
labeled samples which contain infection regions.

TABLE II
COMPARISON OF THE SEGMENTATION RESULTS USING DIFFERENT

LOSS COMBINATIONS IN SA-CPS.

Ls
Lu NSD(%) DSC(%)

Lpseudo Lsynthetic

✓ ✓ 56.83 62.59
✓ ✓ 58.73 63.59
✓ ✓ ✓ 61.52 65.46

the ground truths as shown in Fig. 7(c1-c2), the synthetic
images also satisfy the requirement.

To conclude, pseudo-label guided image synthesis could
control the layout of the generated synthetic image which
has the same COVID-19 infection regions as indicated in
the pseudo-labels, and add reference styles sampled from a
style code pool to make it more realistic. Synthetic images
are incorporated into model training and contribute to the
segmentation performance.

3) Analysis on SA-CPS: This part evaluates different loss
combinations in SA-CPS. In the original CPS method, the
pseudo-label from one network is used to supervise the other
network for unlabeled data. In SA-CPS, additional synthetic
images generated based on the pseudo-labels are used for
training. Results shown in Table II demonstrate that both
the pseudo and synthetic supervision on unlabeled data could
improve the segmentation performance. When both the loss
functions of pseudo and synthetic pairs from unlabeled data
work together with supervision loss of labeled data, we can
achieve the best performance, i.e., the NSD score is 61.52%
and the DSC score is 65.46%. The results demonstrate that
the synthetic supervision could contribute the segmentation
performance. Pseudo-labels inevitable contain low-quality pre-
dictions and the training bias may be brought due to the
inaccurate supervision on unlabeled samples. However, the
synthetic images are generated to match the pseudo-labels
and the synthetic supervision is able to reduce the training
bias. Moreover, the additional synthetic images behave like
expanding the training data, and lead to better segmentation
performance. We think these two reasons make our SA-CPS
superior to original CPS.

4) Analysis on SA-ST: This part evaluates different in-
put combinations in SA-ST. Self-training (ST) is a classical
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TABLE III
COMPARISON OF THE SEGMENTATION RESULTS USING DIFFERENT

INPUT COMBINATIONS IN SA-ST.

Real Pseudo Synthetic NSD(%) DSC(%)
✓ ✓ 57.50 63.25
✓ ✓ 58.71 61.99
✓ ✓ ✓ 58.91 63.52

method for semi-supervised learning, and consists of multiple
stages (train a teacher model using labeled data −→ generate
pseudo-labels for unlabeled samples −→ train a student model
using both labeled and unlabeled samples). Our proposed
SA-ST adds synthetic images generated from pseudo-labels
for training the student model, and the third stage becomes
training a student model using labeled, unlabeled and synthetic
samples. Results in Table III demonstrate that the additional
synthetic images could bring extra gains to the original ST
method, where the NSD score is increased to 58.91% and the
DSC score is increased to 63.52%. Similar to SA-CPS, we
think the synthetic images play two important roles in SA-ST,
one is to rectify the training bias caused by inaccurate pseudo-
labels and the other one is to expand the training data, thus
leading to improved segmentation performance.

C. Comparison with State-of-the-Arts
We compare our methods with the following state-of-the-art

methods for semi-supervised medical image segmentation:
• Uncertainty-Aware Mean-Teacher(UA-MT) [46]: fol-

lows the same spirit of mean teacher, and explores the
uncertainty information to enable the student model learn
from the meaningful and reliable targets.

• Cross-Consistency Training(CCT) [17]: is a cross-
consistency based semi-supervised approach for semantic
segmentation, where the predictions from the main de-
coder and auxiliary decoders are forced to be consistent.

• Uncertainty-guided Dual-Consistency(UDC) [18]:
presents a dual-consistency learning scheme for semi-
supervised COVID-19 lesion segmentation, which
introduces image transformation equivalence and feature
perturbation invariance for leveraging unlabeled data.

• Self-Ensembling [19]: presents a co-training framework
for semi-supervised COVID-19 CT segmentation, and
proposes a self-ensembling consistency regularization
technique to alleviate the negative impacts caused by
unreliable pseudo-labels from unlabeled samples.

• Cross Pseudo Supervision(CPS) [16]: is a consistency
regularization approach, which enforces the consistency
between the predictions from two segmentation networks
perturbed with different initialization weights.

• SemiInfNet [36]: is a multi-stage method for semi-
supervised COVID-19 infection segmentation, which pro-
gressively generates pseudo-labels for unlabeled data with
a randomly selected propagation strategy.

• Self-Training [23]: is a multi-stage method, where a
teacher model trained with labeled data is used to gen-
erate pseudo-labels for unlabeled data, then both labeled
and unlabeled data are used to train a student model.

TABLE IV
COMPARISON OF COVID-19 PNEUMONIA INFECTION SEGMENTATION

RESULTS ON COVID-19-20 TEST SET.

Ratio Stages Methods NSD(%) DSC(%)
Baseline 56.17 60.26

UA-MT [46] 57.23 63.65
CCT [17] 56.93 63.09

Single UDC [18] 57.45 61.62
Self-Ensembling [19] 56.65 61.36

10% CPS [16] 56.83 62.59
SA-CPS [Ours] 61.52 65.46

Multiple

SemiInfNet [36] 57.46 63.16
Self-Training [23] 57.50 63.25

SA-ST [Ours] 58.91 63.52
SA-ST(+SA-CPS) [Ours] 62.34 66.16

Baseline 62.78 68.67
UA-MT [46] 63.26 69.07

CCT [17] 61.84 68.19
Single UDC [18] 62.74 68.48

Self-Ensembling [19] 63.48 69.09
20% CPS [16] 63.59 69.64

SA-CPS [Ours] 64.64 69.90

Multiple

SemiInfNet [36] 63.53 69.40
Self-Training [23] 64.40 69.92

SA-ST [Ours] 65.12 70.40
SA-ST(+SA-CPS) [Ours] 65.41 70.31

Baseline 64.20 69.80
UA-MT [46] 64.64 70.37

CCT [17] 64.30 69.87
Single UDC [18] 65.19 70.18

Self-Ensembling [19] 64.74 70.09
30% CPS [16] 65.17 70.39

SA-CPS [Ours] 66.92 71.31

Multiple

SemiInfNet [36] 64.81 69.98
Self-Training [23] 65.16 70.55

SA-ST [Ours] 65.96 71.53
SA-ST(+SA-CPS) [Ours] 67.34 71.61

Full Supervision 69.48 73.56
Green and Blue represent the best results for single-stage and multi-stage
methods, respectively. Red shows the result of combining our proposed
SA-ST and SA-CPS.

Table IV shows the comparison results on COVID-19-20
test set, and we investigate the performance of these methods
under different labeled ratios: 10%, 20% and 30%. For fair
comparison, we adopt the same 2D U-Net architecture for
all the methods. The baseline method is trained only using
the labeled data, while ‘Full Supervision’ represents that all
training samples are labeled and can be regarded as the
upper bound. It can be observed that almost all the methods
are superior to the baseline method by leveraging unlabeled
data, which verifies the value of unlabeled data. Our methods
achieve the best performance among all the competing meth-
ods, which demonstrates pseudo-label guided image synthesis
is beneficial, no matter in the single-stage method or multi-
stage method. The superiority is obvious, especially when
only a small amount of images are labeled. If we take the
trained model from SA-CPS as the teacher model in SA-ST,
their combination could bring extra improvement. When only
10% CT volumes are labeled, the NSD score is increased by
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6.17% and the DSC score is increased by 5.9%. When 30%
CT volumes are labeled, the result is comparable to the fully
supervised upper bound. Existing methods proposed novel
techniques to avoid the negative impacts of imperfect pseudo-
labels, which require sophisticated designs for assessing and
refining pseudo-labels. Unlike these methods, our proposed
pseudo-label guided image synthesis is a new perspective on
semi-supervised learning for COVID-19 pneumonia infection
segmentation, which is more generic and efficient.

D. Application to Large-Scale Unlabeled Data
The goal of semi-supervised learning is to achieve good

performance by leveraging unlabeled data. In this section, we
would like to study the performance of our method when the
unlabeled data is abundant but annotation is limited. We use
the MosMedData dataset due to its relatively large scale of
unlabeled data, where around 1000 CT volumes are unlabeled.

The results on the MosMedData test set are shown in
Table V, where state-of-the-art semi-supervised segmentation
methods are included for comparison. It is observed that the
segmentation performance is improved by leveraging the un-
labeled data in all the semi-supervised learning methods. Our
methods consistently achieve better performance compared to
other competing methods. The combination of SA-CPS and
SA-ST can bring obvious improvements over the baseline,
where the NSD score is increased from 60.92% to 65.67%,
and the DSC score is increased from 61.83% to 65.64%.
The experiment results further demonstrate the superiority of
our method under semi-supervised setting when encountering
large-scale unlabeled data. Note that MosMedData test set was
collected at inpatient clinics, but the MosMedData training set
was collected from the Moscow out-patient clinics database
created from two to six weeks later, the potential domain shift
problem could bring challenges to the segmentation task on the
test samples. We will try to combine some domain adaptation
techniques in the future work.

We show some visualization results of COVID-19 pneumo-
nia infection segmentation results on MosMedData test set in
Fig. 9. We can observe that the baseline model only trained
with a small amount of labeled data can bring low-quality
prediction results, where many regions are mis-segmented.
With the assistance from synthetic images, we can find that
the segmentation results become more accurate.

V. CONCLUSION

In this paper, we propose a new perspective on semi-
supervised learning for COVID-19 pneumonia infection seg-
mentation, namely pseudo-label guided image synthesis,
which aims to train a model using limited labeled data. Our
approach keeps the pseudo-labels and synthesizes new images
to match them. We introduce two novel representative methods
by incorporating the synthetic images into model training,
including Synthesis-Assisted Cross Pseudo Supervision and
Synthesis-Assisted Self-Training. Extensive experiments on
two public datasets have verified the effectiveness of our
methods. In real-world situations, it is impractical to collect
large-scale well-labeled datasets due to the urgent nature of

TABLE V
COMPARISON OF COVID-19 PNEUMONIA INFECTION SEGMENTATION

RESULTS ON MOSMEDDATA TEST SET.

Stages Methods NSD(%) DSC(%)
Baseline 60.92 61.83

UA-MT [46] 63.62 62.39
CCT [17] 63.09 62.42

Single UDC [18] 63.97 63.06
Self-Ensembling [19] 63.80 62.95

CPS [16] 63.62 63.56
SA-CPS [Ours] 64.90 64.32

Multiple

SemiInfNet [36] 62.10 62.33
Self-Training [23] 62.99 62.91

SA-ST [Ours] 64.69 64.82
SA-ST(+SA-CPS) [Ours] 65.67 65.64

Green and Blue represent the best results for single-stage and multi-
stage methods, respectively. Red shows the result of combining our
proposed SA-ST and SA-CPS.

Fig. 9. Visualization results of COVID-19 pneumonia infection segmen-
tation results on MosMedData test set. GT: ground truth. B: baseline
method trained only using the labeled data; SA-CPS: synthesis-assisted
cross pseudo supervision; SA-ST: synthesis-assisted self-training. The
red regions denote the segmented infections.

pandemics. Our method is a generic semi-supervised learning
method, and we believe it will enable new avenues of research
into label-efficient learning in medical applications, such as
fighting against new pandemics or rare diseases.
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