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Abstract. Feature-based self-explanatory methods explain their classi-
fication in terms of human-understandable features. In the medical imag-
ing community, this semantic matching of clinical knowledge adds signif-
icantly to the trustworthiness of the AI. However, the cost of additional
annotation of features remains a pressing issue. We address this problem
by proposing cRedAnno, a data-/annotation-efficient self-explanatory
approach for lung nodule diagnosis. cRedAnno considerably reduces the
annotation need by introducing self-supervised contrastive learning to
alleviate the burden of learning most parameters from annotation, replac-
ing end-to-end training with two-stage training. When training with hun-
dreds of nodule samples and only 1% of their annotations, cRedAnno
achieves competitive accuracy in predicting malignancy, meanwhile sig-
nificantly surpassing most previous works in predicting nodule attributes.
Visualisation of the learned space further indicates that the correlation
between the clustering of malignancy and nodule attributes coincides
with clinical knowledge. Our complete code is open-source available:
https://github.com/diku-dk/credanno.

Keywords: Explainable AI · Lung nodule diagnosis · Self-explanatory
model · Intrinsic explanation · Self-supervised learning

1 Introduction

Lung cancer is one of the leading causes of cancer deaths worldwide due to its
high morbidity and low survival rate [9]. In clinical practice, accurate charac-
terisation of pulmonary nodules in CT images is an essential step for effective
lung cancer screening [28]. Modern deep-learning-based “black box” algorithms,
although achieving accurate classification performance [1], are hardly acceptable
in high-stakes medical diagnosis [26].
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Fig. 1. Concept illustration. (a) Previous works are trained end-to-end, where all
parameters are learned from the annotations. (b) Our proposed cRedAnno uses two-
stage training, where most of the parameters are learned during the first stage in a
self-supervised manner. Therefore, in the second stage, only few annotations are needed
to train the predictors.

Amongst recent efforts to develop explainable AI [4] to bridge this gap [24,26],
post-hoc approaches that attempt to explain such “black boxes” are not deemed
trustworthy enough [18]. In contrast, feature-based self-explanatory methods are
trained to first predict a set of well-known human-interpretable features, and
then use these features for the final classification (Fig. 1a) [15,22,23]. This is
believed to be especially valuable in medical applications because such semantic
matching towards clinical knowledge tremendously increases the AI’s trustwor-
thiness [20]. Unfortunately, the required additional annotation on features still
limits the applicability of this approach in the medical domain.

This paper aims to minimise additional annotation need for predicting malig-
nancy and nodule attributes in lung CT images. We achieve this by separating
the training of model’s parameters into two stages, as shown in Fig. 1b. In Stage
1, the majority of parameters are trained using self-supervised contrastive learn-
ing [6,11,12] as an encoder to map the input images to a latent space that
complies with radiologists’ reasoning for nodule malignancy. In Stage 2, a small
random portion of labelled samples is used to train a simple predictor for each
nodule attribute. Then the predicted human-interpretable nodule attributes are
used jointly with the extracted features to make the final classification.

Our experiments on the publicly available LIDC dataset [2] show that with
fewer nodule samples and only 1% of their annotations, the proposed approach
achieves comparable or better performance compared with state-of-the-art meth-
ods using full annotation [7,13,15,16,22], and reaches approximately 90% accu-
racy in predicting all nodule attributes simultaneously. By visualising the learned
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space, the extracted features are shown to be highly separable and correlated
well with clinical knowledge.

2 Method

As the illustrated concept in Fig. 1b, the proposed approach consists of two parts:
unsupervised training of the feature encoder and supervised training to predict
malignancy with human-interpretable nodule attributes as explanations.

Unsupervised Feature Extraction. Due to the outstanding results exhibited
by DINO [6], we adopt their framework for unsupervised feature extraction,
which trains (i) a primary branch {E,H}θpri , composed by a feature encoder E
and a multi-layer perceptron (MLP) prediction head H, parameterised by θpri;
(ii) an auxiliary branch {E,H}θaux , which is of the same architecture as the
primary branch, while parameterised by θaux. After training only the primary
encoder EθE

pri
is used for feature extraction.

The branches are trained using augmented image patches of different scales to
grasp the core feature of a sample. For a given input image x, different augmented
global views V g and local views V l are generated [5]: x → v ∈ V g ∪ V l. The
primary branch is only applied to the global views vpri ∈ V g, producing K dimen-
sional outputs zpri = EθE

pri
◦ HθH

pri
(vpri); while the auxiliary branch is applied to

all views vaux ∈ V g ∪V l, producing outputs zaux = EθE
aux

◦HθH
aux

(vaux) to predict
zpri. To compute the loss, the output in each branch is passed through a Soft-
max function scaled by temperature τpri and τaux: paux = softmax(zaux/τaux),
ppri = softmax((zpri−μ)/τpri), where a bias term μ is applied to zpri to avoid col-
lapse [6], and updated at the end of each iteration using the exponential moving
average (EMA) of the mean value of a batch with batch size N using momentum
factor λ ∈ [0, 1): μ ← λμ + (1 − λ) 1

N

∑N
s=1 z

(s)
pri .

The parameters θaux are learned by minimising the cross-entropy loss between
the two branches via back-propagation [12]:

θaux ← arg min
θaux

∑

vpri∈V g

∑

vaux∈V g∪V l

vaux �=vpri

L (ppri, paux) , (1)

where L(p1, p2) = −∑C
c=1 p

(c)
1 log p

(c)
2 for C categories. The parameters θpri of

the primary branch are updated by the EMA of the parameters θaux with momen-
tum factor m ∈ [0, 1):

θpri ← mθpri + (1 − m)θaux. (2)

In our implementation, the feature encoders E use Vision Transformer (ViT)
[10] as the backbone for their demonstrated ability to learn more generalisable
features. Following the basic implementation in DeiT-S [25], our ViTs consist
of 12 layers of standard Transformer encoders [27] with 6 attention heads each.
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The MLP heads H consist of three linear layers (with GELU activation ) with
2048 hidden dimensions, followed by a bottleneck layer of 256 dimensions, l2
normalisation and a weight-normalised layer [21] to output predictions of K =
65536 dimensions, as suggested by [6].

Supervised Prediction. After the training of feature encoders is completed,
the learned parameters θEpri in the primary encoder are frozen and all other
components are discarded. Given an image x with malignancy annotation ycls
and explanation annotation y

(i)
exp for each nodule attribute i = 1, · · · ,M , its

feature is extracted via the primary encoder: f = EθE
pri

(x).

The prediction of each nodule attribute i is generated by a predictor G
(i)
exp:

z
(i)
exp = G

(i)
exp(f). Then the malignancy prediction zcls is generated by a predictor

Gcls from the concatenation (⊕) of extracted features f and predictions of nodule
attributes:

zcls = Gcls(f ⊕ z(1)exp ⊕ · · · ⊕ z(M)
exp ). (3)

The predictors are trained by minimising the cross-entropy loss between the
predictions and annotations: G

∗(i)
exp = arg minL(y(i)

exp, softmax(z
(i)
exp)), G∗

cls =
arg min L(ycls, softmax(zcls)).

3 Experimental Results

Data Pre-processing. We follow the common pre-processing procedure of
the LIDC dataset [2] summarised in [3]. Scans with slice thickness larger than
2.5mm are discarded for being unsuitable for lung cancer screening according to
clinical guidelines [14], and the remaining scans are resampled to the resolution
of 1mm3 isotropic voxels. Only nodules annotated by at least three radiologists
are retained. Annotations for both malignancy and nodule attributes of each
nodule are aggregated by the median value among radiologists. Malignancy score
is binarised by a threshold of 3: nodules with median malignancy score larger
than 3 are considered malignant, smaller than 3 are considered benign, while the
rest are excluded [3]. For each annotation, only a 2D patch of size 32 × 32 px is
extracted from the central axial slice. Although an image is extracted for each
annotation, our training(70%)/testing(30%) split is on nodule level to ensure no
image of the same nodule exists in both training and testing sets. This results in
276/242 benign/malignant nodules for training and 108/104 benign/malignant
nodules for testing.

Training Settings. Here we briefly state our training settings and refer to our
code repository for further details. The training of the feature extraction follows
the suggestions in [6]. The encoders and prediction heads are trained for 300
epochs with an AdamW optimiser and batch size 128, starting from the weights
pretrained unsupervisedly on ImageNet [19]. The learning rate is linearly scaled
up to 0.00025 during the first 10 epochs and then follows a cosine scheduler to
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Table 1. Prediction accuracy (%) of nodule attributes and malignancy.
The best in each column is bolded for full/partial annotation respectively. Dashes
(-) denote values not reported by the compared methods. Results of our proposed

cRedAnno are highlighted . Observe that cRedAnno in almost all cases outperforms
other methods in nodule attributes significantly, and also shows robustness w.r.t. con-
figurations, meanwhile using the fewest nodules and no additional information.

Nodule attributes

Sub Cal Sph Mar Lob Spi Tex
Malignancy #nodules

No additional

information

Full annotation

HSCNN [22] 71.90 90.80 55.20 72.50 - - 83.40 84.20 4252 ✗c

X-Caps [15] 90.39 - 85.44 84.14 70.69 75.23 93.10 86.39 1149 ✓

MSN-JCN [7] 70.77 94.07 68.63 78.88 94.75 93.75 89.00 87.07 2616 ✗d

MTMR [16] - - - - - - - 93.50 1422 ✗e

cRedAnno (50-NN) 94.93 92.72 95.58 93.76 91.29 92.72 94.67 87.52

cRedAnno (250-NN) 96.36 92.59 96.23 94.15 90.90 92.33 92.72 88.95

cRedAnno (trained) 95.84 95.97 97.40 96.49 94.15 94.41 97.01 88.30

730 ✓

Partial annotation

WeakSup [13] (1:5a ) 43.10 63.90 42.40 58.50 40.60 38.70 51.20 82.40

WeakSup [13] (1:3a ) 66.80 91.50 66.40 79.60 74.30 81.40 82.20 89.10
2558 ✗f

cRedAnno (10%b, 50-NN) 94.93 92.07 96.75 94.28 92.59 91.16 94.15 87.13

cRedAnno (10%b, 150-NN) 95.32 89.47 97.01 93.89 91.81 90.51 92.85 88.17

cRedAnno (1%b, trained) 91.81 93.37 96.49 90.77 89.73 92.33 93.76 86.09

730 ✓

a1 : N indicates that 1
1+N

of training samples have annotations on nodule attributes.
(All samples have malignancy annotations.)
bThe proportion of training samples that have annotations on nodule attributes and
malignancy.
c3D volume data are used.
dSegmentation masks and nodule diameter information are used. Two other traditional
methods are used to assist training.
eAll 2D slices in 3D volumes are used.
fMulti-scale 3D volume data are used.

decay till 10−6. The temperatures for the two branches are set to τpri = 0.04,
τaux = 0.1. The momentum factor λ is set to 0.9, while m is increased from
0.996 to 1 following a cosine scheduler. The predictors G

(i)
exp and Gcls are jointly

trained for 100 epochs with SGD optimisers with momentum 0.9 and batch size
128. The learning rate follows a cosine scheduler with initial value 0.0005 when
using full annotation and 0.00025 when using partial annotation.

The data augmentation for encoder training adapts from BYOL [11] and
includes multi-crop as in [5]. During the training of the predictors, the input
images are augmented following previous works [1,3] on the LIDC dataset.

3.1 Prediction Performance of Nodule Attributes and Malignancy

Two categories of experiments are conducted to evaluate the prediction accu-
racy of both malignancy and each nodule attribute: (i) using k-NN classifiers
to assign a label to each feature f extracted from testing images by comparing
the dot-product similarity with the ones extracted from training images, with-
out any training; (ii) predicting via trained predictors G

(i)
exp and Gcls. For sim-

plicity, predictors G
(i)
exp and Gcls only use one linear layer. Both k-NN classifier
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Fig. 2. Probability of the number of correctly predicted nodule attributes.
The probabilities of other methods are calculated using their reported prediction accu-
racy of individual nodule attributes, as in Table 1, where not-reported values are all
assumed to be 100% accuracy. Observe that cRedAnno shows a significantly larger
probability of simultaneously predicting all 8 nodule attributes correctly.

and trained predictors are evaluated with full/partial annotation, where partial
annotation means only a certain percentage of training samples have annotations
on nodule attributes and malignancy. Each annotation is considered indepen-
dently [22]. The predictions of nodule attributes are considered correct if within
±1 of aggregated radiologists’ annotation [15]. Attribute “internal structure” is
excluded from the results because its heavily imbalanced classes are not very infor-
mative [7,13,15,16,22].

The overall prediction performance is summarised in Table 1, comparing with
the state-of-the-art. In summary, the results show that our proposed approach
can reach simultaneously high accuracy in predicting malignancy and all nod-
ule attributes. This increases the trustworthiness of the model significantly and
has not been achieved by previous works. More specifically, when using only 1%
annotated samples, our approach achieves comparable or much higher accuracy
compared with all previous works in predicting the nodule attributes. Mean-
while, the accuracy of predicting malignancy approaches X-Caps [15] and already
exceeds HSCNN [22], which uses 3D volume data. Note that in this case we
significantly outperform WeakSup(1:5) [13], which uses 100% malignancy anno-
tations and 16.7% nodule attribute annotations. When using full annotation,
our approach outperforms most of the other compared explainable methods in
predicting malignancy and all nodule attributes, except “lobulation”, where ours
is merely worse by absolute 0.6% accuracy. It is worth mentioning that even in
this case, we still use the fewest samples: only 518 among the 730 nodules are
used for training. In addition, the consistent decent performance also indicates
that our approach is reasonably robust w.r.t. to the value k in k-NN classifiers.

To further validate the prediction performance of nodule attributes, for visual
clarity, we select 3 representative configurations of our proposed approach and
compare them with others in Fig. 2. It can be clearly seen that using our app-
roach, approximately 90% nodules have at least 7 attributes correctly predicted.
In contrast, WeakSup(1:5) although reaches over 82.4% accuracy in malignancy
prediction, shows no significant difference compared to random guesses in pre-
dicting nodule attributes – this shows the opposite of trustworthiness.
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Fig. 3. t-SNE visualisation of features extracted from testing images. Data
points are coloured using ground truth annotations. Malignancy shows highly separable
in the learned space, and correlates with the clustering in each nodule attribute.

3.2 Analysis of Extracted Features in Learned Space

We hypothesise the superior performance of our proposed approach can attribute
to the extracted features. So we use t-SNE [17] to further visualise the learned
feature. Feature f extracted from each testing image is mapped to a data point
in 2D space. Figure 3a to 3h correspond to these data points coloured by the
ground truth annotations of malignancy to nodule attribute “texture”, respec-
tively. Figure 3a shows that the samples are reasonably linear-separable between
the benign/malignant samples even in this dimensionality-reduced 2D space.
This provides evidence of our good performance.

Furthermore, the correlation between the nodule attributes and malignancy
can be found intuitively in Fig. 3. For example, the cluster in Fig. 3c indicates
that solid calcification contributes negatively to malignancy. Similarly, the clus-
ters in Fig. 3e and Fig. 3h indicate that poorly defined margin correlates with
non-solid texture, and both of these contribute positively to malignancy. These
findings are in accord with the diagnosis process of radiologists [28] and thus
further support the trustworthiness of the proposed approach.

3.3 Ablation Study

Validation of Components. We ablate our proposed approach by comparing
with different architectures for encoders E, training strategies, and whether to
use ImageNet-pretrained weights. The results in Table 2 show that ViT archi-
tecture benefits more from the self-supervised contrastive training compared to
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Table 2. Accuracy of malignancy pre-
diction (%). All annotations are used
during training. The highest accuracy is
bolded. The result of our proposed setting
is highlighted. Only cRedAnno and con-
ventional end-to-end trained CNN achieve
higher than 85% accuracy.

Arch #params Training

strategy

ImageNet

pretrain

Acc

ResNet-50 23.5M End-to-end ✗ 86.74∗

Two-stage ✗ 70.48

Two-stage ✓ 70.48

ViT 21.7M End-to-end ✗ 64.24

Two-stage ✗ 79.19

Two-stage ✓ 88.30

∗ This is a representative setting and performance

of previous works using CNN architecture.

Fig. 4. Annotation reduction. Line
colours correspond to settings in Table 2:
“Baseline” uses ResNet-50 architecture
and is trained end-to-end from random
initialisation. cRedAnno shows strong
robustness when annotation reduced.

ResNet-50 as a CNN representative. This observation is in accord with the find-
ings in [6,8]. ViT’s lowest accuracy in end-to-end training reiterates its require-
ment for a large amount of training data [10]. Starting from the ImageNet-
pretrained weights is also shown to be helpful for ViT but not ResNet-50, prob-
ably due to ViT’s lack of inductive bias needs far more than hundreds of training
samples to compensate [10], especially for medical images. In summary, only the
proposed approach and conventional end-to-end training of ResNet-50 achieve
higher than 85% accuracy of malignancy prediction.

Annotation Reduction. We further plot the malignancy prediction accuracy
of the aforementioned winners as the annotations are reduced on a logarith-
mic scale. As shown in Fig. 4, cRedAnno demonstrates strong robustness w.r.t.
annotation reduction. The accuracy of the end-to-end trained ResNet-50 model
decreases rapidly to 74.38% when annotations reach only 1%. In contrast, the
proposed approach still remains at 86.09% accuracy, meanwhile high accuracy
for predicting nodule attributes, as shown in Table 1.

4 Conclusion

In this study, we propose cRedAnno to considerably reduce the annotation need
in predicting malignancy, meanwhile explaining nodule attributes for lung nodule
diagnosis. Our experiments show that even with only 1% annotation, cRedAnno
can reach similar or better performance in predicting malignancy compared
with state-of-the-art methods using full annotation, and significantly outper-
forms them in predicting nodule attributes. In addition, our proposed approach
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is the first to reach over 94% accuracy in predicting all nodule attributes simul-
taneously. Visualisation of our extracted features provides novel evidence that
in the learned space, the clustering of nodule attributes and malignancy is in
accord with clinical knowledge of lung nodule diagnosis. Yet the limitations of
this approach remain in its generalisability to be validated in other medical
image analysis problems.
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