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Abstract. Conventional evaluations of tumor tracking algorithms
require inter-observer segmentations from radiation oncologists on the
Cine-MRI (2D sagittal MR video). Instead of performing intensive man-
ual annotations on images, we present a 2D video simulator that uses the
pre-treatment images, including a breathing model, that generates Cine-
MR images in parallel with the underlined segmentation of the tumor. We
include the data of seven patients within a retrospective clinical study
that received stereotactic body radiation therapy for liver metastases.
Each patient has a pre-treatment 4DCT scan, a pre-treatment 3D MR
with tumor and liver delineations, and the treatment Cine-MRI. We aug-
ment the data with the simulator by changing breathing motion param-
eters and adding noise. The simulator generates a total of 84 Cine-MRI
sequences, thus having 12 videos per patient. We validate the simulated
versus the real Cine-MRI in terms of tumor motion. Finally, we used
the simulator to evaluate the performance of real-time tumor tracking
algorithms with this dataset.

Keywords: Cine-MRI · Simulation · Tumor tracking · Real-time ·
Image-guided radiotherapy

1 Introduction

An MR-linac is a device that combines magnetic resonance imaging with a lin-
ear accelerator. Stereotactic body radiotherapy (SBRT) of liver metastases on
the MR-Linac system is advantageous due to the improved soft-tissue contrast
compared to cone-beam computed tomography [12]. In addition, the MR-Linac
has beam gating, i.e. the treatment accelerator beam is triggered in response to
patient movement [4]. The clinical advantages of using an MR-linac with online
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tracking have been demonstrated [1], indicating the potential to reduce the liver
target volume and lower the radiation dose to adjacent organs at risk.

Liver tumors deform and move during treatment mainly caused by breathing
motion [14]. During treatment, the scanner acquires 2D cine-MR sagittal images
at four (4) frames per second [16]. Tumor tracking is one of the main components
of beam gating in the MR-Linac system. Tumor tracking is solved automatically
using image analysis. Some proposed strategies for tumor tracking are based
on template matching [3,19], feature detection [15], optical-flow methods [17,
23], deformable image registration [5], segmentation [9], neural networks [22]
or modeling based [8]. The difficulty in evaluating tumor tracking is the need
for ground truth data as no publicly available datasets that comprise tumor
tracking on Cine-MRI exist. This requires manually delineation of the tumor in
the entire video by a radiation oncologist [3,5,19,22]. Evaluations are therefore
only comparable at the institutional level. A generalized methodology to easily
evaluate tumor tracking is required.

In addition, current tracking systems used in clinical practice may fail to track
unexpected movements and have difficulty in tracking motion in the out-of-plane
direction [16]. The breath-hold treatment is the most used respiratory motion
management in practice [6]. After breath-hold, the patients can exhibit a fast
motion, and thus tracking becomes very difficult. All the previously reported
studies evaluate tumor tracking under free-breathing conditions [3,5,8,15,17,
19,22,23]. Thus, there is a need for improved tracking algorithms under varying
breathing motion.

Our contribution is a straightforward evaluation methodology to quantify
tumor tracking performance without the need of manual segmentations. The
method is patient-specific and simple to implement. We demonstrate the capa-
bilities of our method to create multiple simulated Cine-MRI, and to evaluate
tumor tracking algorithms under varying conditions.

2 Related Work

Respiratory motion modeling is an extensively studied field [13]. Deformable
image registration generates the most suitable models [20]. Likewise, our breath-
ing model works with deformable image registration. Fu et al. [7] use known
deformation fields to create ground truth images and landmarks to validate fea-
ture detection on 4DCT. Our simulator works in a similar way, but in contrast
the known transformation model is applied to the images and the tumor con-
tours.

The use of pre-treatment 4D imaging data has been exploited for treatment.
Harris et al. [11] use 4DMRI to create synthetic 4DCT during treatment on
conventional linear accelerators. Garau et al. [8] use pre-treatment 4DCT with
treatment Cine-MRI to estimate a 3DCT and compare planning versus treat-
ment. The mentioned methods suggest multi-modal integration of images and
that pre-treatment time-sequence images are valid to model breathing motion
during treatment. We aim for a similar goal with a distinction, to build a breath-
ing model based on registration, use the model to simulate treatment sequences,
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in order to improve tumor tracking algorithms. To our knowledge this is the first
Cine-MRI simulation based on a respiratory motion model.

An alternative option to manually delineate the tumor is to use matched
landmarks [15,17]. Although this process can be automated with feature detec-
tion algorithms some outliers occur. Furthermore, the landmark distance alone
does not represent how well the tracking algorithm performs with respect to the
tumor structure and the contours. Most tumor tracking algorithms have been
tested on lung patients with manual delineations of the tumor [3,5,19,22] and
only a small set has been evaluated on liver patients with landmarks [15,17]. We
test the proposed methodology and the tracking algorithms with liver patients.
Identifying a tumor contour on a sagittal slice is difficult in the liver due to the
lack of contrast. Hence, the liver is a remarkable example of why manual tumor
delineations for evaluating tumor tracking are not always feasible.

3 Methods

3.1 Data

This study uses image data from seven patients already treated with SBRT for
metastases in the liver at Rigshospitalet (Copenhagen, Denmark) between April
and December 2019. The patients provided informed consent and approval for
the usage of their anonymized data for research purposes.

Respiratory correlated 4DCT with intravenous contrast injection was per-
formed for all patients on a SOMATOM Definition AS scanner (Siemens Health-
ineers, Germany). 4DCT image data were phase-sorted into ten phase bins
throughout a respiratory cycle based on an external respiratory signal moni-
tored with Real-Time Position Management (RPM, Varian Medical Systems,
USA). The slice separation in each phase of the 4DCT was 2 mm. The image
resolution in each slice was 512 × 512 pixels and a pixel size of 0.98 × 0.98 mm.

A 0.3T MRIDIAN MR-Linac (ViewRay, USA) is used to acquired a pre-
treatment 3D MRI and the Cine-MRI sequences. The 3D MR scans were per-
formed for all patients in inspiration breath-hold position without visual guid-
ance. The acquisition technique is balanced steady-state free precession (bSSFP).
The pre-treatment image resolution is [512×512×128 pixels] and [1.5×1.5×3.0
mm] spacing. The Cine-MRI sequences (bSSFP-Sagittal) have a resolution of
[256 × 256 pixels] and [1.5 × 1.5 mm] spacing. The clinical gross tumor vol-
ume was delineated on the 3D MR by a senior radiologist and approved by a
senior oncologist. Organs at risk, including the liver, were also delineated. These
delineated contours are used to segment the region of interest (ROI).

3.2 Cine-MRI Simulation

We developed a patient-specific Cine-MRI simulator capable to generate a sim-
ulated ground truth contour of the desired organs using pre-treatment images.
The input images are a 4DCT scan and an MR with organ contours. The video
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simulator has the following input parameters: video time, frames per second,
breathing cycle time, breathing amplitude, and additive noise. Figure 1 illus-
trates the video simulation process. Algorithm 1 details the simulator pseudo
code. The simulator has two stages: breathing modeling and video synthesis.
Each stage is described in the following.

Fig. 1. 2D Cine-MRI Simulator. The process comprises two stages: breathing modeling
and video synthesis. The breathing model is a pre-processing stage and uses full 3D
information to consider out-of-plane motion in the 2D Cine-MRI. The video synthesis
stage can be run several times changing the simulation parameters to create different
variants and motion conditions.

The breathing modeling is a pre-processing stage. It is computed once and
stored in order to create several videos. This model is based on the 4DCT scan
that represents the full respiratory cycle of each patient. Initially, all phases in
the 4DCT are registered sequentially with the symmetric normalization algo-
rithm [2]. Subsequently, the MR image is registered to phase 00 of the 4DCT
scan, since both images are at inspiration position. This transformed MR is the
starting video frame.

The video synthesis stage is an iterative stage. The simulator produces a
new video frame as a composition of sequential transformations related to the
4DCT. The corresponding transformation is interpolated over time to match
the proportion of the respiratory cycle with the video sample time. The video
is created based on 3D images and transformations. From this a 2D slice is
extracted in the sagittal view where the tumor has better visibility. Thus the
simulated video has the same complexity as real 3D motion in the 2D images and
simulates the MR-Linac imaging setup, where 2D real-time images are acquired
and tracked. Since the initial contour of the tumor and organs are known in the
reference MR, we create independent files with those regions of interest (ROI)
and the ROI are transformed in parallel with the raw video image generation. For
simplicity we only generate the tumor contours. Therefore, we have the ground
truth ROI for each video sample.
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Algorithm 1. Cine-MRI Simulation
Input: 4DCT, 3D MRI (bSSFP) and clinical tumor contour
Parameters: Video time, frames per second, breathing cycle time, breathing ampli-
tude, and additive noise
Output: Cine-MRI (Video containing 2D bSSFP-Sagittal images)

1: Register sequentially 4DCT images, and store transformations
ϕ00→01, ϕ01→02, ..., ϕ09→00 where j = 00, 01, ..., 09 correspond to the phase;

2: Register MRI image to 4DCT phase 00 obtain ϕMR→00;
3: Transform MRI image to CT phase 00 using ϕMR→00, obtain M00;
4: Transform tumor delineation XMR using ϕMR→00 to get contour X00;
5: Compute simulation time using parameters: video time, frames per second;
6: for t in time do
7: Compute time point t location in breathing cycle;
8: Calculate time proportion for time interpolation tδ;
9: Find the shortest path of sequential transformations;

10: Compose a transformation ϕc(x) with the shortest path;
11: Multiply ϕc(x) with breathing amplitude parameter α;
12: Transform image M00 using ϕc(x), obtain Mt;
13: Extract a slice of Mt to create the image M2d,t;
14: Add noise to image M2d,t;
15: Transform contour X00 using ϕc(x), obtain Xt;
16: Extract a slice of Xt to create the image X2d,t;
17: end for

The simulator supports noise with two different probability distributions:
Gaussian and Rician distributions. Noise in MR images is often modeled as
Rician, and for signal to noise ratio greater than two, the noise behaves like
Gaussian [10]. Furthermore, other sources of noise from the MR device are still
modelled as Gaussian.

3.3 Tracking Algorithms

The MR-Linac typical rate of acquisition is four (4) frames per second [16].
Tracking algorithms must meet this time requirement. The first image and its
corresponding tumor contour in the Cine-MR sequence is used as the reference
and the tracking algorithms uses the subsequent Cine-MRI input images to esti-
mate a new tumor contour. Fast et al. [5] presented a comparative study where
they analyzed four tumor tracking techniques. The authors concluded that all
the algorithms had a relatively similar performance but among them deformable
image registration and template matching provided slightly better results. We
implemented these two algorithms to evaluate tumor tracking simulator. Both
algorithms are implemented on C++ and parallelized on CPU with OpenMP.

We chose the diffeomorphic demons [21] as a fast solution of deformable image
registration. Our approach uses a multiresolution framework with three pyrami-
dal levels. The computational bottleneck of registration is the computation of
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the transformation and the similarity metric [18]. We focused on this stage to
improve performance. Regarding the optimization, we fix the iteration values to
be able to achieve the time restriction, this means that full convergence is not
always guaranteed.

We implemented the generalized template matching algorithms [3,19]. The
algorithm defines a template in a reference image, usually the tumor bound-
ing box, and search for it in a local region of the input image by maximizing
an objective function to determine a good match. The preferred function is
cross-correlation for Cine-MR tracking. The wider the search region is, the more
computational time, while with a more limited search region, there is a risk of
not capturing the tumor motion.

3.4 Metrics

We used three metrics to validate the real and simulated Cine-MRI and to eval-
uate the tumor tracking algorithms. First, the Dice Similarity Coefficient, which
serves to quantify the whole segmented structure. Secondly, the centroid dis-
tance, which quantify the algorithm’s ability to follow the center of mass (COM)
of the tumor. And third, the Hausdorff distance, which provides a measurement
of the effectiveness to detect and track the tumor contours. Further information
regarding the metrics are detailed in Fast et al. [5].

4 Experiments and Results

4.1 Patient Summary

Table 1 summarizes the patients tumor and breathing motion. The patient set
is small in numbers but represents a wide variety of anatomical tumor location,
tumor size, breathing motion, and breathing cycle times. The most challenging
conditions for the tracking algorithms are a short tumor displacement or a small
tumor area.

Table 1. Summary of patient information. Tumor location is the geometric octant
of where the tumor is with regards to the liver center of mass. The abbreviations
correspond to Superior-Inferior, Anterior-Posterior, and Left-Right. Breathing cycle
times were determined from real patient respiratory motion during 4DCT scans. Tumor
displacements refer to the maximum motion presented in the video without registration.
Gross tumor volumes/areas are estimated on the reference 3D/2D (sagittal) MR.

Patient 1 2 3 4 5 6 7

Tumor location (geometric) S-A-L S-A-L S-A-R I-A-L S-A-R S-P-L I-P-R

Breathing cycle (mean) [s] 4.8 3 4.1 3.6 4.4 4.1 5.8

Tumor max. displacement [mm] 5.9 9.1 8.1 9.7 2.0 6.5 12.6

Tumor volume [cm3] 5.5 5.6 12.0 3.1 3.1 8.0 5.7

Tumor sagittal area [cm2] 2.7 3.0 7.4 3.3 1.8 4.7 4.1
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4.2 Cine-MRI Image Quality

Figure 2 shows a comparison between the real Cine-MRI and the simulation for
one patient. All the resulting videos are visually close to the real Cine-MRI.
To validate the real versus the simulated Cine-MRI, we verify how consistent
the tumor motion is for all the patients. We select 12 images (approximately
a breathing cycle) of the real Cine-MRI with the first image in the inspiration
position. The tumors are segmented manually on the real Cine-MRI. Since the
real and the simulated data have a slightly different field of view, we perform
rigid registration around the tumor on the first image and align the remaining
simulation images using the same transformation. We calculate the metrics for
all the patients with the real versus the simulated Cine-MRI. The Dice score
is 0.89 ± 0.05 (mean ± std.dev.), the centroid distance 0.78 ± 0.32mm and
Hausdorff distance 2.11 ± 0.91mm.

Fig. 2. Video comparison of real Cine-MRI and simulated of one patient. Top images
depict the real Cine-MRI and the bottom images the simulation.

4.3 Tumor Tracking Performance

We evaluate tumor tracking with a full factorial experiment between breathing
amplitude and noise. The breathing amplitude is varied with values 1.0, 1.5,
2.0, or random. The noise is varied between none, Gaussian and Rician. Gaus-
sian noise and Rician noise applied in all the tests are equivalent to 20% of
added noise. These experiments generate 12 videos per patient for a total of
84 Cine-MRI sequences. The breathing cycle parameter is patient-specific taken
from Table 1. All the videos are 20 s long at 4 frames per second (80 images),
approximately 4–5 breathing cycles.

Figure 3 depict the tumor tracking performance. For comparison, we compute
a baseline (in blue) that corresponds to the metric value without tracking. Videos
1 to 4 vary in amplitude without noise, videos 5 to 8 vary in amplitude with
Gaussian noise, and videos 9 to 12 vary in amplitude with Rician noise. Video
1 is the most representative as it has the default and control conditions. The
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Dice score summary as mean ± standarddeviation results of registration are
0.88 ± 0.06, template matching 0.79 ± 0.12. The centroid distance obtained for
the registration is 0.89 ± 0.54mm versus template matching 1.71 ± 3.81mm. The
Hausdorff distance obtained for registration is 3.23 ± 1.35mm versus template
matching 4.41 ± 4.02mm. Both algorithms’ performance in terms of centroid
distances is adequate for image-guided radiotherapy.

Fig. 3. Video statistics of tumor tracking. The metrics are estimated per video and com-
prise all patients. Videos are generated as a full factorial experiment between breathing
amplitude and added noise. Ascending numbers in groups of 4 videos correspond to
breathing amplitude of 1, 1.5, 2, and random respectively. The metrics are shown from
top to bottom as Dice, centroid distance, and Hausdorff distance. In blue, the baseline
as the metrics computed without tracking. In green, the metrics determined with reg-
istration. In red, the metrics estimated with template matching. (Color figure online)

All the tests were run on a workstation with 2 CPUs and 128 GB of RAM.
Each CPU is an Intel(R) Xeon(R) Silver 4110 @ 2.10 GHz, 8 cores, 16 threads.
The computational time of the deformable registration algorithm time is on
average 62.7 ms with a standard deviation of 42.3 ms. The maximum registration
time is 242 ms. The computational time of the template matching algorithm is
on average 16.7 ms with a standard deviation of 4.4 ms.

5 Discussion and Conclusion

We validate the tumor motion between the real versus the simulated Cine-MRI.
The centroid distance is the best metric to represent the motion, and its mean
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value distance of 0.78 mm indicates a high similarity between the real and the
simulated data. We do not compare image intensities between the real and the
simulated Cine-MRI because they come from sources acquired on different dates
and under different conditions (pre-treatment - treatment, the field of view,
alignment, among others). Furthermore, a direct comparison of pixel intensities
or image similarity will only reveal how close they are in terms of signal, contrast,
or even alignment but not how well the simulation model breathing and tumor
motion.

Regarding our specific evaluation of tumor tracking algorithms, we iden-
tify in general that deformable image registration perform better. The template
matching algorithm fails under noisy conditions and present several outliers. A
breathing amplitude of 2.0 is an extreme condition and unrealistic. However,
from the algorithms point of view is an interesting experiment. Both tracking
algorithms fails to follow the tumor having wide ranges of Dice scores under this
condition.

A limitation of our Cine-MRI simulator is that the breathing model uses a
single respiratory cycle from the 4DCT scan. The breathing model overcomes
this by composing transformations that are time interpolated. Time interpolation
guarantees that different patterns arise due to asynchrony between the patient’s
breathing cycle time and sampling times. Furthermore, when we model with full
3D images and then create the 2D Saggital MR, we incorporate the desired out-
of-plane motion, which is the main challenge for tracking algorithms. Overall,
our goal is not to create a perfect breathing model but to facilitate challenging
experiments to evaluate tumor tracking algorithms.

We designed a platform and a methodology to easily evaluate tracking algo-
rithms on Cine-MR with ground truth segmentation. The video simulator does
not require any training data and works only with pre-treatment images. The
proposed methodology is the most automated way to evaluate tumor tracking
algorithms with a ground truth. Our code is open source and available at https://
github.com/josetascon/cinemri-simulation.
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