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Abstract. This work presents a Riemannian Deep Learning framework
for extracting features with rotational invariance. Our main application is
classification of multishell Magnetic Resonance Diffusion Weighted Imag-
ing (DWI) at single voxel level. To that extent, we extend a G-CNN
learning architecture, first in a generic way on a Riemannian manifold.
It mainly consists of three layers: a lifting layer that locally represents
and convolves data on tangent spaces to produce a family of functions
defined on the rotation groups of the tangent spaces, i.e., a section of
a bundle of rotational functions on the manifold; a group convolution
layer that convolves this section with rotation kernels to produce a new
section; and a projection by maximisation to collapse this local data to
form new manifold based functions. We propose an instantiation on the
2-dimensional sphere where the DWI orientation data is in general rep-
resented, and we use it for voxel classification. We show that it provides
a grey matter vs. non-grey matter classification that is competitive with
reported results in the literature.
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1 Introduction

This work focuses on building a neural network (NN) for data on manifolds
with some form of orientation invariance, and here we take Diffusion Weighted
Imaging as the main application. Our goal is to be able to understand spherical
patterns up to rotations. There are series of proposals to generalise a R2 con-
volutional neural network to curved spaces. In general, to define convolution,
the underlying space must have a group structure, or be an homogeneous space
of a group. This is not always the case for a curved space. But even when it
is, this usually imposes a certain type of filters. In the case of a sphere, this
means a rotationally symmetric filter. In our case, rotational invariance is a
desirable property we wish freedom in design. We propose a general architec-
ture for extracting and filtering local orientation information of data defined on
a manifold. The architecture allows us to learn similar orientation structures
which can appear at different locations on the manifold. Reasonable manifolds
have local orientation structures – rotations on tangent spaces. Our architecture
lifts data to these structures and performs local filtering on them, before col-
lapsing them back to obtained filtered features on the manifold. This provides
both rotational invariance and flexibility in design, without having to resort to
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complex embeddings in Euclidean spaces. We provide an explicit construction
of the architecture for multishell DWI data and show very promising results for
this case.

Related work The importance of extraction of rotationally invariant features
beyond Fractional Anisotropy [1] has been recognized in series of DWI works.
[5] developed invariant polynomials of spherical harmonic (SH) expansion coeffi-
cients, and discussed their application in population studies. [16] proposed a re-
lated construction using eigenvalue decomposition of SH operators. [14] and [22]
argued their usefulness for understanding microstructures in relation to DWI.
However, there has been little exploration from the view point of deep learning
(DL).

There is though a vast growth in literature on DL for non-flat data. [13]
proposed a NN on surfaces that extracts local rotationally invariant features. A
non rotationally invariant modification was proposed in [3]. On the other hand,
convolution generalises to more group actions than just translation, and this has
led to group-convolution neural networks for structures where these operations
are supported, especially Lie groups themselves and their homogeneous spaces
[10, 8, 20, 12, 2]. Global equivariance is often sought but proved complicated or
even elusive in many cases when the underlying geometry is non-trivial [7]. An
elementary construction on a general manifold is proposed in [15] via a fixed
choice of paths used to transport filters between points on the manifold, ignoring
the effects of path dependency (holonomy). Removing this dependency can be
obtained by summarising local responses over local orientations, this is what
is done in [13]. To explicitly deal with holonomy, [17] proposed a convolution
construction on manifolds based on stochastic processes via the frame bundle,
but it is at this point still very theoretical.

In this work we are interested in rotationally invariant features, so we take a
path close to [15, 13], but we add an extra local group convolution layer before
summarising the data and eliminating path dependency.

Organisation We introduce the construction in the next section, first in a gen-
eral setting, then in our case of interest, the sphere S2. We present experiments
and results in section 3. Discussion and conclusion are presented in section 4.

2 Bundle Geodesic Convolutional Neural Network

Bekkers et al. [2] used the fact that SE(2) acts on R2 to lift 2D (vector-values)
images to R2 × S1 via correlation kernels. This is not in general the case when
R2 is replaced by an oriented Riemannian manifold M as there is no roto-
translation group defined on a general manifold. An alternative construction
is however possible by combining [2] and [13], to obtain a 3-component layer
architecture: i) the lifting layer, ii) the group correlation layer, and iii) the
projection layer. In practical applicaitons, one or more of these multilayers can
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be used and a fully connected layer is built upon the last one. In this section,
we focus only on the Riemannian part.

We refer the readers to [4] for the Riemannian geometric constructions. In
the sequel, a base point x0 is chosen on M. A piecewise smooth path γ joining
x0 and x ∈ M is a continuous curve which may fail to be smooth at a finite
number of points. With such a curve, there is a parallel transport Pγ between
Tx0
M and TxM. This is an orientation preserving isometry between tangent

spaces. A tangent kernel at x0 is a function κ : Tx0M→ RN . We assume it has
a “small support”. A rotational kernel at x0 is a function K : SO(x0) → RM ,
where, SO(x) denotes the rotation group of TxM.

2.1 Layer definitions

As it is usually the case that correlation replaces convolution in convolutional
neural networks (CNN). The first two layers will be defined via correlation.
Lifting layer. The correlation f?̃γκ of f ∈ L2(M,RN ) is defined as the function
on SO(x)

f?̃γκ(S) =

N∑
i=1

∫
TxM

κi(P
−1
γ S−1v)fi(Expx(v)) dv (1)

We assume that κ ◦ P−1γ , the support of κ, is sufficiently small so that the
exponential map is injective. For any other path δ between x0 and x, it is easy
to show that there exists a rotation R ∈ SO(TxM) that only depends on Pγ
and Pδ with f?̃δκ(S) = f?̃γκ(RS). For any point x and a path γx between
x0 and x, this filters/lifts f to functions Fx : SO(x) → R. Using an input

f (`−1) : M → RN`−1 and N` x0-kernels κ(`) =
(
κ
(`)
1 , . . . , κ

(`)
N`

)
, κ

(`)
i RN`−1-

valued at layer `− 1,

∀x ∈M, F (`)
x =

(
f (`−1)?̃γxκ

1, . . . , f (`−1)?̃γxκN`

)
(2)

The output F (`) is not a function defined on M, but a section, in general non
smooth, of the function bundle L2

(
SO(M),RN`

)
= txL2(SO(x),RN`).

Group correlation layer. if F is a function SO(x) → RM , we define F ?γ K
as the classical group correlation

F ?γ K(S) =

M∑
i=1

∫
SO(x)

Fi(U)Ki(P
−1
γ S−1UPγ) dU. (3)

This construction provides a new family of functions F̄x : SO(x)→ R. Differing
from [2], translations are in general not defined inM and rotations are only local.

If Fγ = (fi?̃γκi)
M
i=1 and Fδ = (fi?̃δκi)

M
i=1 then it can be easily shown using the bi-

invariance of the Haar measure on SO(n) that ϕ(Fδ)?δK(S) = ϕ(Fγ)?γK(SR)
where R depends only on paths γ and δ, and ϕ is any real function (typically
a rectified linear unit (ReLU)). With input F (`−1) ∈ L2

(
SO(M),RN`−1

)
with
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N`−1 channels at layer ` − 1 and x0-rotation kernels K(`) =
(
K

(`)
1 , . . . ,K

(`)
N`

)
,

each with N`−1 channels, one obtains F (`) ∈ L2(SO(M),RN`) as

F (`)
x =

(
F (`−1) ?γx K

(`)
1 , . . . , F (`−1) ?γx K

(`)
N`

)
(4)

Projection layer. A family F (`−1) ∈ L2
(
SO(M),RN(`−1)

)
is projected to a

function f :M→ RN(`−1) as

f
(`)
i (x) = max

S∈SO(x)
F

(`−1)
ix (S), i = 1 . . . N`−1 (5)

This actually removes the path dependency thanks to the change of path prop-
erty which was described above. See fig. 1a for illustration.

Biases are added per kernel. Nonlinear transformations of ReLU type are
applied after each of these layers. Note that without them, a lifting followed by
group correlation would actually factor in a new lifting transformation.

2.2 Discretisation and implementation in the case M = S2

In this work, the manifold of interest is S2. Spherical functions f : S2 → RN are
typically given at a number of points and interpolated using a Watson kernel
[11], which also serves as our choice. We use a very simple discretisation of S2
via the vertices of a regular icosahedron. Tangent kernels are defined over these
vertices, sampled along the rays of a polar coordinate system respecting the ver-
tices of the icosahedron. This is illustrated in fig. 1b.

3 Experiments & Results

(a) (b) (c)

Fig. 2: Left to right: original diffusion
data, the ground-truth segmentation,
and the binary ground-truth that we are
going to learn from.

We evaluate our kernels on DWI data
from the human connectome project
[19]. We train a network using our
framework on the individual voxels
containing signals on S2. Our goal is
a voxel-wise classification of grey mat-
ter and the rest of the brain.

We used the pre-processed DWI
data [18] and normalised each DWI
scan for all 3 b-values (shells) with the
voxel-wise average of the B0. The la-
bels provided with the T1-image was
transformed to the DWI using a near-
est neighbour interpolation (fig. 2).

We estimated the partial-volume error from the relabeling to be roughly 6%
thus the expected maximum accuracy was estimated to be 94%. We set up a
binary classification task using the kernels we have defined - segmenting the grey
matter and the rest of the brain. See fig. 2c.
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(a)

(b)

Fig. 1: In fig. 1a, the top row shows the lifting kernel κ(2) applied at a point on
the manifold, resulting in an image F (2) defined on SO(2) as in eq. (1). The
function is first mapped onto the tangent space of the point of interest via the
exponential map, and κ(2) is convolved with the mapped function to get F 2. In
the figure we rotate the tangent space instead of the kernel as eq. (1), but they
are equivalent constructions. We get rotationally invariant responses from the
projection layer. The bottom row shows the same process but with a different
kernel parallel transport, illustrating that the responses of the convolutional
layers are simply rotated. In fig. 1b, the bottom row shows S2 with a regular
icosahedric tessellation and a tangent plane at one of the vertices and 5 sampled
directions. The disk represents the kernel support. The middle row shows the
actual discrete kernel used, with the 2π/5 rotations and the top row is represents
the lifted function on the discrete rotation group.

3.1 Experimental setup

After getting the responses from our proposed layers, we feed them into a fully
connected network to perform our classification task. We design our experiments
with respect to 2 criteria: kernel describability and the number of scan shells.
Describability We used 2 different network architectures to test the describ-
ability of our kernels. We first design a baseline experiment where the network
directly connects the stacked responses from our kernels to an output layer with-
out hidden layers in between to evaluate the describability of our kernels. Then,
to explore the full capacity of the method for the classification task, we designed
a full model experiment that includes hidden layers to compare with the base-
line. Each layer, as well as the lifting and group convolution layer, is followed by
a ReLU activation layer.
Number of Scan Shells. We further modified the architectures to include dif-
ferent numbers of shells (s ∈ 1, 2, 3) of the scans in the input data to see its
impact on the results. For those experiments with multiple shells, we defined
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independent kernels for each shell, after which we stack the responses from all
shells and feed the resulting vector to the fully connected network.

In addition to the criteria described above, we have also experimented with
the impact of the resolution of the kernel definition on model fitting. There are
2 kinds of resolution that we analysed: kernel orientation resolution and kernel
location resolution. Kernel orientation resolution is the density of samples that
a kernel covers. It has 2 factors: the number of rays (nR) of the circular kernel
and the number of samples per ray (nS). We test with 2 setups of the kernel
resolution: nR = 5, nS = 2 and nR = 30, nS = 10. Kernel location resolution
is the density of locations that we define the kernels on, which can be achieved
by subdividing the icosahedron to get a higher resolution polyhedron. Having
explored different configurations of resolution (both orientation and location res-
olution), we observed that subdividing the icosahedron to have a higher density
of kernel locations introduces significant model overfitting. This, however, is ex-
pected since there are only 90 values (signals) on S2 for each voxel, and a high
density of kernel locations will results in unnecessary complexity on the model,
which leads to model overfitting. Increasing the orientation resolution of single
kernels without subdivision of the icosahedron does not boost the performance
either (it even leads to overfitting in some cases), which can be explained by the
sparsity of signals on S2 in our data as well.

Therefore, we use the icosahedron structure as kernel locations with low
orientation resolution of the kernels - 5 rays per kernel, and 2 sample points per
ray. The radius of the kernels should guarantee that the kernel coverage of 2
adjacent icosahedron vertices will overlap with each other, therefore we choose
0.6 as our radius. We use 10 kernels for both lifting and group convolution layers.

We have different dimensions of the input layer of the fully connected network
within each experiment setup due to the different numbers of shells used in the
data. The network structures for both experiment setups are given in the top
table in table 1.

���������
Shells

Experiment
Baseline Full model

1 1200,2 1200,500,200,100,50,10,2

2 2400,2 2400,1000,500,200,100,50,10,2

3 3600,2 3600,1500,1000,500,200,100,50,10,2

1 (Accuracy/Recall/Dice) 0.805/0.820/0.773 0.805/0.778/0.785

2 0.847/0.835/0.828 0.861/0.865/0.840

3 0.850/0.826/0.837 0.864/0.862/0.845

Table 1: The top table shows the illustration of numbers of neurons in each fully
connected layer for experiment setups, and the bottom table shows the results
of each experiment setups.
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3.2 Results

Our dataset contains 53 scans from the human connectome project [19]. We use
2 scans for training, 1 scan for validation, and 50 scans for testing.

We train each network presented in table 1 for 5 epochs with batch size 100
on an Ubuntu 20.04.2 LTS machine with an Intel Xeon(R) Silver 4210 CPU
@ 2.20GHz × 40 processor and a GEFORCE RTX 3090 graphics card. Our
framework is implemented in Python 3.6 and Pytorch 1.7. According to the
experiment setup, the runtime for 1 epoch varies from ca. 3 min (baseline with
1 shell) to ca. 8 min (full model with 3 shells), and the memory usage varies
from 1295 MiB to 1481 MiB. The statistical results (accuracy, recall and Dice
score) are shown in the bottom table in table 1. It is easy to see the correlation
between the number of shells included and the increase in performance of the
method. This is of no surprise since it is axiomatic that more information in the
data aids the learning. Also, increasing the capacity of the network improves
performance, however, not to the same extent as the inclusion of additional
shells. This demonstrates that our kernels are able to encode the data well. The
results in table 1 are aggregated from all subject scans in the test set combined,
therefore we also analyse the test statistics across individual scans. As shown
in fig. 3, we see that the distributions of all 3 evaluation criteria are reasonably
tight, meaning that we have stable performances across individual subjects. This
demonstrates that even trained on only 2 patients, our model generalises very
well to a large scale of different patients. See fig. 4 for examples of predictions
from our model (full model with 3 shells).

4 Discussion and Conclusion

The proposed method is a simple extension of CNN to Riemannian Manifolds
which learns rotationally invariant features. The Bundle G-CNN capability has
been demonstrated on a simple non-flat manifold, S2, and been used to build a
voxel-wise classification of DWI data to recognise grey matter, with an accuracy
of 86% which is on par with standard frameworks [9]. After correcting for the
uncertainty of the propagated labels we achieve close to 92% correct classifi-
cation. Our results compare well with existing methods [21, 6]. This is to the
best of our knowledge, the first learning technique that explicitly learns from
multishell input, and it has promising applications in understanding patterns of
pathology. We have so far only tested it on S2, however, an extension to other
surfaces appears easy, though the choice of a grid might be important. An exten-
sion to dimension 3 will require efficient SO(3) convolutions, potentially using
generalised spectral theory for compact Lie groups.

5 Acknowledgements
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Histograms of accuracy, recall and Dice score across individual scans in
the test set. The mean and standard deviation (std) are shown in the figure as
well.

Fig. 4: Examples of predictions of grey/white matter of patients in the test set.
These predictions are from the full model with 3 shells included in the data.
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