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Abstract

Studying different types of tooth movements can help us to better understand the force sys-

tems used for tooth position correction in orthodontic treatments. This study considers a

more realistic force system in tooth movement modeling across different patients and inves-

tigates the effect of the couple force direction on the position of the center of rotation (CRot).

The finite-element (FE) models of human mandibles from three patients are used to investi-

gate the position of the CRots for different patients’ teeth in 3D space. The CRot is consid-

ered a single point in a 3D coordinate system and is obtained by choosing the closest point

on the axis of rotation to the center of resistance (CRes). A force system, consisting of a

constant load and a couple (pair of forces), is applied to each tooth, and the corresponding

CRot trajectories are examined across different patients. To perform a consistent inter-

patient analysis, different patients’ teeth are registered to the corresponding reference teeth

using an affine transformation. The selected directions and applied points of force on the ref-

erence teeth are then transformed into the registered teeth domains. The effect of the direc-

tion of the couple on the location of the CRot is also studied by rotating the couples about

the three principal axes of a patient’s premolar. Our results indicate that similar patterns can

be obtained for the CRot positions of different patients and teeth if the same load conditions

are used. Moreover, equally rotating the direction of the couple about the three principal

axes results in different patterns for the CRot positions, especially in labiolingual direction.

The CRot trajectories follow similar patterns in the corresponding teeth, but any changes in

the direction of the force and couple cause misalignment of the CRot trajectories, seen as

rotations about the long axis of the tooth.

Introduction

Finite element (FE) modeling is a widely used computational method for the analysis of the

reactions to real-world physical effects such as forces and biomechanical responses occurring

during treatments in medicine and dentistry [1] that attempts to solve partial differential
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equations numerically, based on reconstructing the desired geometry and discretizing the

domain into a finite mesh, with minimum need for clinical trials of patients [2]. One of the

main goals in FE-based modeling of the tooth and its supporting complex, i.e., periodontal lig-

ament and adjacent alveolar bone, is to improve tooth movement prediction performance in

orthodontic treatments. Compared to clinical studies that aim, among other things, to assess

the accuracy of digital planning in dentistry [3] or investigate anatomical characteristics for

optimal occlusions [4] using different patient scans, computational modeling allows for more

efficient plannings in orthodontic treatment for correcting dentofacial anomalies using more

generic solutions.

Tooth movement modeling in an uncontrolled tipping scenario using a perpendicular load-

ing system has been widely used for initial tooth movement simulations due to its simplicity

[5]. However, in addition to the uncontrolled tipping movements, different tooth movements

such as the pure translation, crown/root tipping, intrusion/extrusion, or a combination of

them are typically required for tooth position correction in orthodontic treatments. Each of

these movements can be described based on the position of the center of resistance (CRes) and

center of rotation (CRot) with respect to the tooth geometry [6, 7]. For example, a pure transla-

tion, root tipping, and crown tipping can result in CRots located at infinity, crown, and root

apex, respectively. The CRes of a tooth within its supporting complex can be seen as the center

of the mass of a free rigid body [8]. To be more specific, the tooth CRes is a point at which

applying any forces would always result in a pure translation of the tooth [6]. Although the

location of the CRes has been investigated in the literature either experimentally in vivo [9–

11], analytically [12, 13], or computationally using finite-element (FE) models [7, 8, 14], esti-

mating the exact position of the CRes is challenging as it depends on the root shape, the anat-

omy and mechanical properties of the supporting complex [7, 15], the direction of the tooth

movement and force [6, 7, 16–18]. More specifically, since the CRes may not exist as a single

point in 3D space [8] due to the asymmetric geometries, it is proposed to use a volume of CRes

instead [14].

The CRot is another important concept in tooth movement analysis and is a point at which

the movement of the tooth can be defined as pure rotation. Different approaches can be used

for determining the position of the CRes and CRot. One simple approach for determining the

tooth CRes is exerting a couple in different directions. A couple consists of a pair of forces

with the same magnitude and parallel line of action, but in opposite directions where they are

not collinear [19]. Therefore, utilizing only a couple results in a pure rotation in the tooth

where the position of the CRot coincides with the position of the CRes.

The CRot position depends on the load system applied to the tooth. The loading system can

result in some moments and forces in different directions, and due to its complexity in a 3D

coordinate system, it can be decomposed into three planes of the tooth. Hence, tooth move-

ment can be analyzed by decomposing each moment-to-force ratio (M: F) on each principal

plane of a tooth, where each M: F on a plane can be defined based on the force vectors located

on the plane and moments perpendicular to the studied plane [20].

A classical theory on the relation between the applied load and the type of the tooth move-

ment is Burstone’s formula [21]. In this theory, the effect of the various moment-to-force ratios

(M: F) is studied on the position of the CRot for a canine with a parabolic root, while the force

is applied perpendicular to the long axis of the tooth at the bracket level. The study introduces

the following formula

M : F ¼
0:068� h2

D
; ð1Þ

where h is the distance from the alveolar crest to apex, and D is the perpendicular distance
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between the CRes and CRot. Note that M: F has a unit of millimeters where F corresponds to

the magnitude of the applied force and M denotes the moment of the couple mc exerted to the

tooth in order to counteract the moment caused by the applied force mf [19]. According to this

theory, specific values of M: F ratios always correspond to specific types of tooth movement.

That is, the location of the CRot for a specific tooth is only dependent on the moment-to-force

ratio of that tooth.

The classical theory has been widely studied by using FE models [17, 20, 22]. Cattaneo

et al. [22] study the influence of M: F on the same force magnitude and analyze the effect of

applying various load magnitudes on a mandibular premolar and canine teeth with a con-

stant M: F. The study reports that a constant M: F with different force magnitudes can result

in different types of tooth movements. However, this finding does not follow Burstone’s for-

mula, and this is due to considering a nonlinear material model for the PDL layer where the

location of the CRot is dependent on both the M: F and the magnitude of the applied load to

the teeth.

Different studies have utilized different M: F ratios for the pure translation of various teeth.

For example, unlike the generally accepted M: F of 10 and 12 for pure translation of the premo-

lar and canine, Cattaneo et al. [22] suggest M: F of 9 and 11, respectively, for a mandibular pre-

molar and a canine. Also, it is recommended [18] to avoid using a universal M: F and CRes

due to the patient-specific geometries, reporting M: F of approximately 8.8, 9.7, and 10.2, to

simulate the pure translation of maxillary first premolar, lateral incisor, and canine.

Unlike the abovementioned studies that are limited to single-plane analysis, Savignano

et al. [20] investigate the effect of the force system directions on the tooth movement of a max-

illary first premolar by performing analysis on principal planes of the tooth. More specifically,

the mesiodistal, buccolingual, and occlusal planes are used to study the location of the CRot

using the projected axis of rotation on these planes for various M: F and directions. This study

suggests a nonlinear relation between the direction of the force system and the projected

CRots. However, the mentioned study is limited to a single tooth analysis with a limited load

magnitude range applied to the CRes due to using a linear elastic material model for the PDL

layer. Although two patients are considered in a recent work [23], an inter-patient analysis is

missing in general.

The existing studies do not represent the effect of geometrical variations on the M: F
ratios and the position of the CRot under the same analysis setup, boundary conditions, and

loading system for different patients. To this end, in this work, we consider patient-specific

full dentition computational models of three human mandibles to investigate the position of

the CRots in different patients’ teeth. For a comprehensive and consistent inter-patient anal-

ysis, we register different patients’ teeth to a corresponding reference tooth of the first

patient using an affine transformation and use this transformation to map the selected force

directions and force application points on the reference teeth into the registered teeth

domain. Moreover, we model the clinical forces with no specific limitation in the force mag-

nitudes by using a hyperelastic material model for PDL tissue and investigate the position of

the CRot in a 3D space to better represent the resulting rotation. Finally, we assess the influ-

ence of the couple directions on the positions of the CRots of a specific tooth and show that

equally rotating the direction of the couple about the three principal axes results in different

patterns for the CRot positions, especially in labiolingual direction. Modeling different types

of tooth movements using a more realistic force system, i.e., tipping and couple forces

applied to the tooth crown, and investigating the effect of these couple forces on the CRots

can help us to better estimate the force systems needed to achieve the desired tooth

movement.
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Materials and methods

This section first reviews the details of the FE models used in this study including the geometry

reconstruction, mesh generation, boundary conditions, contact definitions, and material mod-

els. Next, it focuses on describing an approach for setting up a consistent loading condition for

different patients’ teeth, both for intra- and inter-patient analysis. Finally, it briefly specifies

how the CRot is computed and illustrated in 3D.

Geometry reconstruction

Three patient-specific and anatomically accurate FE models of the human mandible composed

of mandibular teeth, corresponding PDLs, and bone are considered in this work. To have

enough geometrical variations in the dataset, the three patients’ scans are chosen of various

crown heights, root lengths, and teeth sizes. The scans are used from the 3Shape A/S private

dataset collected from different clinics by orthodontists as a part of treatment. More specifi-

cally, the anonymized Cone-Beam Computed Tomography (CBCT) scans of patients stored in

Digital Imaging and Communications in Medicine (DICOM) format used in this study con-

tain no sensitive personal information including gender and age or details of the scanner

device utilized for image acquisition.

The utilized patient scans labeled as Patient 1, Patient 2, and Patient 3 have an isotropic

voxel size of 0.3mm, 0.3mm, and 0.15mm, respectively. For a consistent and detailed geometry

reconstruction, a cropped region of interest (ROI) of every patient scan including full denti-

tion and mandible is upsampled to an isotropic voxel size of 0.15mm. Further details of the uti-

lized scans can be found in Table 1. Note that the patient-specific geometries are reconstructed

by importing DICOM files to 3DSlicer [24], resampling the ROIs, and segmenting the teeth

and bone geometries in CBCT scans using a semi-automatic watershed algorithm.

The accuracy of the annotated scans is verified by a clinical expert and any required modifi-

cations are applied to the segmented regions accordingly. A general criterion for the verifica-

tion is precise segmentation of roots, crowns, and bone cervical regions including the teeth

sockets, and the miss-annotated regions indicated by the expert are revised until reaching the

criterion. The segmented geometries are then exported as surface meshes in STL file format.

Since the resolutions of the original scans are not high enough to properly represent the thin

layer of the PDL, annotating the PDL layer using the available CBCT scans is not feasible. The

width of the PDL layer is a tooth root dependent factor which can vary between 0.15mm and

0.38mm with an average suggested as 0.2mm [25]. This average thickness is used in the litera-

ture [25–27] to generate the PDL geometries by uniformly extruding the teeth roots in Mesh-

mixer [28]. Therefore, we first re-mesh the teeth and bone geometries using a uniform and

adaptive mesh, respectively. Next, the obtained bone surface is offset by 0.2mm in the reverse

direction of the surface normals to create the required space for the PDL layers in between

the teeth roots and the regenerated bone. Finally, the PDL geometries are produced by

extruding the teeth roots, filling the generated gap in between the teeth and bone. It should be

noted that the generated surface mesh for each PDL geometry includes a uniform mesh with

Table 1. Detail of the utilized scans.

Patient ID Dimensions Slice thickness (mm)

Scan size ROI size Resampled ROI size Original Resampled ROI

Patient 1 400 × 400 × 280 338 × 265 × 140 776 × 530 × 280 0.3 0.15

Patient 2 400 × 400 × 280 335 × 220 × 172 670 × 440 × 344 0.3 0.15

Patient 3 532 × 532 × 540 534 × 435 × 338 534 × 435 × 338 0.15 0.15

https://doi.org/10.1371/journal.pone.0259794.t001
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two elements in the PDL thickness. The reconstructed geometries have been made publicly

available and can be obtained from Electronic Research Data Archive at the University of

Copenhagen under the OpenJaw Dataset (https://doi.org/10.17894/ucph.04e91c97-5c5d-

45d7-afd3-c5e0b5953f58).

After preparing the surface meshes, high-quality tetrahedral meshes are generated by pre-

serving the surface meshes using TetGen [29]. The mesh quality required for an FE analysis

can vary depending on the application and utilized numerical methods [30]. In general, a

regular tetrahedron has the highest mesh quality, and the main guideline is to avoid using

low-quality tetrahedra with small or large dihedral angles, as they can affect the accuracy of the

numerical methods [30]. Therefore, we use an upper limit constraint of 1.2 for the radius-edge

ratio, as the ratio of the circumscribed sphere’s radius and the shortest edge of the linear tetra-

hedral meshes. Additionally, the quality of the generated volumetric meshes are assessed using

four different quality measurements, i.e., the volume-edge ratio [31, 32], radius-edge ratio

[33], radius ratio [34, 35], and volume-area ratio [34]. The volumetric meshes are then

imported into the FEBio software package [36], which is open-source software for nonlinear

FE analysis in biomechanics, to set up a reproducible FE model for each patient. A summary

of the utilized mesh properties is provided in Table 2.

A mesh convergence study is performed to obtain an optimal mesh size for the FE models

[5] by iteratively increasing the number of elements per step with a factor of 2. We continue

the process until the relative stress error does not exceed 4% of maximum von Mises stress.

This study is concerned with smooth bone meshes where there are no sharp elements on the

meshes. Therefore, the model does not experience extreme local stresses in a single node or

element. However, in nonsmooth geometries with sharp edges, more robust methods can be

applied to avoid any extreme local stresses as outliers [37, 38]. Also, note that using more ele-

ments in the PDL thickness would exponentially increase the total mesh size of the full jaw

models and the required computational time. Besides, based on our experience, using smaller

elements would result in extreme element distortion, causing problems in FE model conver-

gence especially for higher load values. Similar behavior is also seen in [39] for hexahedral

elements.

Material properties

We assume teeth as rigid bodies with six degrees of freedom to simplify the proposed model.

Also, we assume the center of mass as the CRes for each tooth which can automatically be cal-

culated using FEBio user-defined options [40]. Since the deformation of the bone tissue is neg-

ligible under the orthodontic forces used in this study, no distinction is made for the cortical

and trabecular bone [41, 42], and isotropic elastic material model is used for the homogeneous

Table 2. Summary of the materials and mesh properties.

Domain Material model Material properties Mesh properties

Young’s modulus (MPa) Poisson’s ratio (−) Surface mesh Edge length (mm) Volumetric mesh Number of elements †

Tooth Rigid body − − 0.4 14±5 K

Bone Isotropic elastic 1.5 × 103 0.3 Adaptive mesh (from 0.4 to 2) 3,261±329 K

C1 (MPa) C2 (MPa)

PDL Mooney-Rivlin � 0.011875 0 0.1 127±41 K

� C2 = 0 reduces the Mooney-Rivlin material to uncoupled Neo-hookean. The values assigned for C1 and C2 correspond to the Young’s modulus and Poisson’s ratio of

0.0689MPa and 0.45, respectively.
† The values are shown as the mean ± standard deviation of the number of elements across all cases.

https://doi.org/10.1371/journal.pone.0259794.t002
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bone geometry. Due to the importance of the PDL tissue in transferring loads from the tooth

to the alveolar bone [39, 43], a Mooney-Rivlin Hyperelastic (MRH) material model is used to

simulate its nonlinear behavior [42, 44]. Furthermore, for the simplicity of the model and fol-

lowing the literature [14, 20, 23, 39], the gingival tissue is discarded from our computational

model due to its extremely low elasticity modulus compared to that of the other tissues, i.e.,

PDL, bone, and tooth.

Boundary condition and contact definition

A rigid contact is defined between rigid teeth and PDLs, and a tied facet-on-facet contact with

an augmented Lagrangian method is used in PDL-bone interfaces to model adhesion in these

two interfaces, as their corresponding surfaces do not have any sliding or separation. Other

parameters, such as boundary conditions, edge length of the elements, and material properties

are chosen as mentioned in Table 2. Also, a Dirichlet boundary condition is applied to all

nodes at the bottom surface of the bone in all directions to fix the jaw model.

Loading conditions for different scenarios

Three different scenarios with varying loading conditions are studied in this work, as shown in

Fig 1. In the first scenario, various M: F values are examined for different patients’ teeth using

a consistent loading system. In the second scenario, the influence of the direction of the couple

is studied on a specific tooth. As our third scenario, the loading conditions are applied to the

CRes, which makes us able to compare our simulation results with those obtained by

Savignano et al. [20, 23].

Scenario 1: Consistent loading conditions for intra- and inter-patient analysis. In the

first scenario, to perform a systematic intra- and inter-patient analysis and to avoid potential

errors caused by the selection of the load points and force directions, different teeth of each

patient are registered to a reference tooth of the same type. To do so, the left teeth of one of the

patients (here, Patient 1), with the Universal Numbering (UNN) ID of 18 through 24, are

selected as the reference teeth. Next, the mandibular teeth of all other patients on both sides, as

well as the right mandibular teeth of Patient 1, are all registered to the corresponding reference

teeth. This allows us to analyze more tooth models of the same type and study the position of

the CRots for different teeth of different patients.

Before any tooth registration, the jaw models of different patients are aligned based on rigid

body transformation using the Iterative Closest Point (ICP) algorithm [45, 46]. Moreover, the

Fig 1. The studied scenarios. A: An illustration of the principal axes and planes of premolar. B to D: Loading

conditions used in three different scenarios.

https://doi.org/10.1371/journal.pone.0259794.g001
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Coherent Point Drift (CPD) algorithm [47] is used for teeth alignment based on an affine

transformation of the corresponding left/right teeth of different patients. The registration pro-

cesses are all performed in MATLAB by considering vertices of each surface mesh as a set of a

point cloud. Compared to the ICP algorithm, CPD is computationally intensive, yet it is more

robust to noise and outliers. Therefore, we prefer using CPD for teeth registration which

includes fewer data points than jaw models. It should also be noted that all teeth on the right

side of the mandibles, with the UNN of 25 through 31, are horizontally flipped with respect to

the sagittal plane of each patient’s jaw before applying the affine transformation using the CPD

method. This is to ensure that the labial surfaces of the registered teeth are properly aligned to

the labial surfaces of the reference teeth.

After registering all patients’ teeth to the reference teeth, three points, at which the force

and couple are applied, are selected on each reference tooth. One point is set for tipping force,

and two points are used for the couple. The center of the middle third of the crown is set for

the tipping load, and two points are selected with a 0.5mm distance below and top of the tip-

ping load point for the labiolingual and linguolabial couple, respectively. The normal vector of

the reference mesh at the tipping point is used for both directions of the force and the couple.

More specifically, the direction of the computed normal vector is used for the linguolabial cou-

ple force on top, and the opposite direction is used for both the tipping force and the labiolin-

gual couple. Nodal loads are utilized to simulate the mentioned forces in the FEBio framework.

The corresponding three load points are then obtained based on finding the closest mesh

points in each registered tooth mesh. These points, as well as the direction of the forces, are

finally transformed back to the original coordinates of each patient’s tooth. This would ensure

unbiased loading conditions for the intra- and inter-patient analysis. Fig 2 displays how regis-

tration is employed for defining consistent loading conditions and calculating the CRots using

FE models of mandibles from three patients.

Multi-patient analyses are conducted on different teeth to evaluate the effect of the couple’s

magnitude on counteracting the moment produced by the tipping load. In this scenario, the

simulations are performed with a constant tipping force of 1N and varying couple magnitudes

of 1N to 13N with 1N intervals. Note that the applied force points are fixed for both the couple

and the tipping load. Hence, increasing the load magnitude of the couple will increase the

resulting moment on the tooth according to the force-moment relation M = F × d, where d
is the distance between the applied force point and the CRes of the tooth. Finally, the

Fig 2. Tooth registration and CRot calculations pipeline. An illustration of the utilized method for calculating the

CRots using finite-element models of mandibles from three patients under consistent loading conditions.

https://doi.org/10.1371/journal.pone.0259794.g002
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corresponding CRots are computed for each patient’s teeth and the same transformations are

used to align different teeth of the same type and their CRots.

Scenario 2: The effect of the couple’s direction on the position of the center of rota-

tion. In the second scenario, as an example, the left premolar of Patient 1 is selected to study

the influence of the couple’s direction on the position of the CRot. The three load points, the

initial load directions, and the direction and magnitude of the tipping load remain the same as

in the first scenario. The couple’s directions are rotated about the mesiodistal, the labiolingual,

and the long axis of the tooth with different degrees varying from 0 to 90 degrees with

10-degree increments. To investigate the trajectories of the CRots in 3D space, for each direc-

tion, we conduct experiments with incremental couple magnitudes of 1N to 13N with intervals

of 0.0625N. This generates a dense representation of the CRot trajectories in 3D space.

Scenario 3: The effect of the force’s direction on tooth movement. As our third sce-

nario, we investigate the influence of the force’s direction on tooth movement and the position

of the CRot, and compare our results with those obtained by Savignano et al. [20, 23]. More

specifically, the effect of the force direction is investigated at the CRes of the left premolar of

Patient 1, while the load direction changes in one of the three principal planes of the tooth,

and a perpendicular moment is applied to the studied plane. Additionally, instead of using the

couple for generating the moments on the tooth crown, we follow the same scenarios of the

aforementioned study and use a load and a moment applied to the CRes, using prescribed rigid
force constraint and prescribed rigid torque constraint, respectively, in FEBio framework. The

direction of the load changes with 10-degree increments, and the M: F changes from -12 to 12

with 2mm intervals.

Computing the center of rotation

The axis of rotation is computed for each tooth by considering displacement vectors of two

nodes arbitrarily selected on the tooth crown. To this end, the intersection line of the perpen-

dicular bisector planes of the displacement vectors is obtained. Any point on the intersection

axis can be assumed as the CRot in 3D space, and to find a unique CRot in 3D, the point with

the closest distance to the CRes of the tooth is selected on the rotation axis. This allows for rep-

resenting the axis of the rotation in 3D as a single point and for better analyzing the influence

of the couple directions on the location of the CRot with respect to the CRes.

Results

We conduct our experiments on a 3.4 GHz processor with 64 GB of RAM, which takes about

an hour to solve the FE model. First, we focus on the analysis of the position of the CRots for

various couple magnitudes of all patients’ teeth. Second, the influence of the couple directions

is studied on the position of the computed CRot of the left premolar of Patient 1. Third, we

assess the influence of the force direction with fixed moment direction on the position of the

CRots. In all the experiments, the position of the closest point to the CRes on the rotation axis

is considered as a single point CRot in 3D coordinate system for each tooth. Fig 3 illustrates

the position of the CRots of each tooth for varying magnitudes of the couple from 1N to 13N

with 1N increments. As can be seen, the CRots follow parabolic shapes with varying slopes

from one tooth type to another.

To better represent the inter-patient results, the utilized patients’ teeth and their CRots

were registered to the corresponding reference teeth. Fig 4 shows the registered teeth geome-

tries, with transparent shapes located on either left or right side of the mandible, and their

CRots for the utilized patients. Note that the third molars were missing in all cases. Hence, the
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different teeth types are represented from the second molars to the central incisors. As can be

noted, the CRot trajectories experience similar patterns in each tooth type.

In practice, more CRot data points are required for a better illustration of the trajectory

curves in 3D space. This in turn requires sampling more data points by using smaller intervals

of the couple magnitudes. As mentioned before, we conduct this experiment using the left pre-

molar of Patient 1 and investigate the CRot trajectories influenced by the couple’s directions

based on smaller increments in the magnitude of the couple. More specifically, the directions

of the couple are rotated about the mesiodistal, labiolingual, and long axes of the tooth from 0

to 90 degrees with 10-degree increments. Fig 5 illustrates the CRot trajectories for different

directions of the couple rotated about the principal axes of the tooth.

Fig 3. Calculated CRots. Calculated CRots for different couple magnitudes changing from 1N to 13N with 1N

intervals shown in 3D space for all teeth with transparent teeth geometries, Left: Results of the three different patients.

Right: A closeup view of the results for Patient 1.

https://doi.org/10.1371/journal.pone.0259794.g003

Fig 4. CRots trajectories of registered teeth in scenario 1. Trajectories of the obtained CRots for the different

patients’ teeth registered to the reference teeth of the same types and shown as transparent teeth. A: The second

molars. B: The first molars. C: The second premolars. D: The first premolars. E: The canines. F: The lateral incisors. G:

The central incisors. A consistent loading condition is applied to all teeth of the same types, and the magnitude of the

couple changes from 1N to 13N. Note that a few extreme outliers are discarded for a better illustration purpose.

https://doi.org/10.1371/journal.pone.0259794.g004
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As our third analysis, we examine the effect of the force direction on the position of the

CRot by considering three principal planes of the tooth. We use the same scenarios followed

by Savignano et al. [20], where the force and moment are applied to the CRes with a force of

1N magnitude. Fig 6, shows the effect of the load’s direction on the position of the CRot,

where the rotation range of the direction of the force system can vary from one axis of the

tooth to another with 10-degree increments. As it can be seen in both subfigures, the distance

between the CRots of the same direction changes nonlinearly with linear increments of the M:

F. The nonlinear variation increases when the force direction is rotated from the mesiodistal

or labiolingual axis direction towards the long axis direction. Additionally, the distance of the

CRots associated with the same M: F ratios changes nonlinearly for linear increments of the

rotation degree in 3D space. This pattern is also shown by Savignano et al. [20] on 2D planes.

Discussion

Scenario 1

As illustrated in Fig 4, the computed CRots for different patients follow similar trajectories for

the teeth of the same types. It can also be seen that linear increments in the magnitude of the

Fig 5. Effects of the couple’s directions on the CRots trajectories in scenario 2. Directions of the couple rotated

about the tooth principal axes with various angles and the corresponding CRots for different couple magnitudes. Left:

An illustration of how the couple forces are rotated about mesiodistal, long axis, and labiolingual of the tooth. Right(A

to C): The corresponding CRots for the rotated couple about mesiodistal, long axis, and labiolingual of the left

premolar of Patient 1, respectively. Note that the initial direction of the couple and tipping load are set based on the

surface normal direction.

https://doi.org/10.1371/journal.pone.0259794.g005

Fig 6. The influence of the force direction on the position of the CRots in scenario 3. The force and moments are

applied directly to the CRes of the left premolar of Patient 1. A: The CRots of the forces rotating from long axis towards

the labiolingual direction of the tooth. B: The CRots of the forces rotating from the mesiodistal axis towards the long

axis of the tooth. Note that each color corresponds to a different force direction, the M: F changes from -12N to 12N,

and the distance between the CRots of the same color changes nonlinearly while the M: F values increment linearly.

https://doi.org/10.1371/journal.pone.0259794.g006
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couples nonlinearly increases the distance between the neighboring CRots of each tooth. The

same behavior was reported by Savignano et al. [20, 23]. Moreover, the CRot trajectories begin

from the CRes of the tooth, and by increasing the M: F, the trajectories move towards the

crowns of the teeth, and then, they change their directions to the back of the teeth. A schematic

curve of the aforementioned path can be seen in part A of Fig 5.

The turning points can be found as outlying points on the top of each tooth with the highest

distance from their neighboring CRots. These points are associated with specific M: F values

where the direction of the tooth movement changes in the opposite direction. In other words,

in the turning point, the generated moment by the couple counteracts the generated moment

caused by the tipping load. In addition, it can be observed that, in some cases, the CRot trajec-

tories are not well aligned, i.e., they seem to be rotated about the long axis of the tooth. This

could be due to the registration errors in matching the teeth models of different patients to

each other, most likely caused by the size and high geometry variations of teeth.

Scenario 2

The investigation of the effects of the direction of the loading conditions on the CRot trajecto-

ries in Fig 5 reveals that although rotating the couples about each axis results in similar CRot

trajectories for different rotation angles, equally rotating the direction of the couple about the

three principal axes results in different patterns for the CRot positions, especially in labiolin-

gual direction. Besides, by increasing the magnitude of the couples in a specific direction, the

distances between two neighboring CRots changes nonlinearly which is in line with the results

of the state-of-the-art [20, 23], indicating that changing the M: F nonlinearly affects the posi-

tion of the CRots.

As it can be observed in Fig 5, the CRot trajectories almost follow the same1-shaped curve

by the rotation of the couple direction about the mesiodistal and long axes of the tooth with

different angles (subfigure A and B). However, the sequence of the CRot points stops earlier

when increasing the rotation angle. The situation in rotating the couple’s direction about the

labiolingual axis of the tooth looks a bit different. That is to say, the CRot trajectories follow

different1-shaped curves which are seemed to be rotated about the long axis.

Considering the obtained results in Fig 4 and subfigure C of Fig 5, one can deduce that any

changes in the direction of force and couple can result in the misalignment of the CRot trajec-

tories, and specifically, rotation of the CRots trajectories about the long axis of the tooth. In

fact, the latter case shows how such systematic changes can affect the trajectory of the CRots,

from which we can infer the reason for the misalignments that occurred in the former case.

This behavior is somehow seen in a related work [20] where the CRot points scatter in the

mesiodistal-long axes plane seems more incoherent than the other cases.

In this study, the direction of the load and couples are determined based on the normal of

the tooth surface at the underlying region. As a result, the normal direction is not necessarily

parallel to the labiolingual direction of the tooth. Therefore, in contrast to the literature where

the force system is simplified in 2D planes by assuming force and couple directions parallel to

the labiolingual direction, we investigate a more realistic clinical force system and study the

influence of the couple’s direction in the tooth movement.

Scenario 3

This work benefits from using more realistic material models and scenarios, such as applying

the forces on the tooth crown, for better modeling of the forces in clinical environments. A

hyperelastic material model is used here to model the nonlinear behavior of the PDL tissue

under orthodontic forces which allows us to model different scenarios without any prior
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assumptions for the range of the applied load. Furthermore, we propose using 3D space for

representing the position of the CRot for the exerted force and moment to help with better

analysis and understanding of the results in real-world applications. In contrast, Savignano

et al. [20, 23] have represented the results in 2D planes and applied the loads and moments on

the CRes, which is difficult to precisely be determined for different teeth. Besides, they have

utilized a linear material model to the PDL tissue which confines the range of the applied load

[48].

Future directions

Although an accurate geometry of the PDL can be obtained in vitro using micro-computed

tomographies, these methods are known to be highly invasive and can only be applied to dead

specimens. In contrast, reconstructing the PDL layer using CBCT scans obtained in vivo is a

challenging process [49] due to the small width of the PDL layer compared to the commonly-

used voxel size of the scans [1, 50]. Therefore, for a consistent analysis of different patients and

following the literature, the PDL layers of this study are generated by extruding the teeth roots

with a uniform thickness of 0.2 mm. Still, further investigation on the PDL is required to

study, for example, the effect of nonuniform PDL geometry on the position of the computed

CRots since different factors such as the patient’s age and the presence of periodontal disease

can influence the shape and thickness of the PDL geometry [25], and consequently, the local

stress maxima and tooth displacements [49]. In addition, the same material parameters are

used in this study for the teeth, PDLs, and bones of different patients. It should however be

noted that the initial and long-term teeth movements can vary from an individual to another

based on differences in material properties, the density of the surrounding bone, and the rate

of the bone remodeling process, apart from the geometrical differences.

In addition to an accurate geometry reconstruction, utilizing appropriate material models

and parameters is important for accurately describing the mechanical behavior of the PDL.

Although experimental studies investigating the biomechanical behavior of the PDL in vitro

[51] and vivo [11, 52, 53] have indicated an anisotropic nonlinear viscoelastic behavior of the

fibrous PDL [42], computational studies mostly consider simpler material models such as lin-

ear elastic, bilinear, and piecewise linear [43] models. The linear assumption confines the

range of the applied load [48], preventing the simulation of realistic load systems in clinical

environments. More complex material models such as hyperplastic and viscoelastic have been

used in the literature [42, 54], and few studies [39] have considered collagen fibers in the PDL

layer to simulate an anisotropic behavior of the PDL layer [55, 56]. However, more investiga-

tions are required to see the effectiveness of such complex material models applied to tooth

movement modeling in terms of computational complexity and accuracy.

Conclusion

In this work, three patient-specific computational models of human mandibles, composed of

full dentition, PDL layers, and jawbone, were utilized to assess the position of the CRots in dif-

ferent patients’ teeth against varying M: F ratios. The patients’ teeth were aligned for a consis-

tent inter-patient analysis and FE simulations were performed under identical scenarios and

boundary conditions for different teeth of each patient to obtain the CRots.

This work benefitted from using more realistic material models and scenarios for better

modeling of the forces in clinical environments. A hyperelastic material model was used for

the PDL tissue under orthodontic forces which allows for modeling different scenarios without

any force constraints. The 3D space was used for representing the positions of the CRots for
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the exerted force and moment for better analysis and understanding of the results in real-

world applications.

The influence of the couple’s magnitudes and directions on the positions of the CRots of

the patients’ teeth were examined. The results show that the CRot trajectories could follow

similar patterns in the corresponding teeth, but any changes in the direction of the force and

couple could cause misalignments of the CRot trajectories that could be seen as rotations

about the long axis of the tooth.

This work considered a more realistic force system in multi-patient tooth movement

modeling by studying the CRot positions. The measured CRot position in relation to the tooth

geometry can be used to infer the type of tooth movement, e.g., pure translation, uncontrolled

tipping, and crown or root tipping. This, in turn, can be used in treatment planning software

to assist clinicians to identify optimal forces required for achieving a desired patient-specific

tooth movement.
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