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Figure 1: Vision system is used to detect the ball position and an inverse kinematics (IK) model of a soft robotic finger is used to find control
parameters that will hit the ball causing the ball to move on impact.

Abstract
Soft robots are attractive because they have the potential of being safer, faster and cheaper than traditional rigid robots. If we
can predict the shape of a soft robot for a given set of control parameters, then we can solve the inverse problem: to find an
optimal set of control parameters for a given shape. This work takes a data-driven approach to create multiple local inverse
models. This has two benefits: (1) We overcome the reality gap and (2) we gain performance and naive parallelism from using
local models. Furthermore, we empirically prove that our approach outperforms a higher order global model.

CCS Concepts
• Computer systems organization → Robotic control; • Computing methodologies → Physical simulation;

1. Introduction

Current state of the art in controlling soft robotics and anima-
tronics use digital twins. These create forward dynamics simu-
lations that combined with optimization can solve inverse prob-
lems [CED17, ZKBT17]. The simulation models are created in a
direct approach by describing the viscoelastic properties of the soft
robot and specialized actuator models are created for using lines
and/or air pressure etc for moving the robots. The advantage of the
simulation models is that they generalizes easy. However, they suf-
fer from the reality gap. It is quite hard to get a highly accurate
model of a real world soft robot due to imperfections in manu-
facturing or unknown factors from the real-world. Computational
fabrication has started to measure the viscoelastic properties using
computer vision and map these to models by numerical coarsen-
ing [CLMK17]. Thereby tying simulations models closer to direct
data. Our work is based on data obtained from depth cameras. Fig-
ure 1 shows motion clips from an inverse kinematics test using our
models.

By combining point clouds with fiducial makers from multiple
depth cameras we can easily create “shape functions” ~s ∈ RN that
describes deformations of the soft robots as a function of the con-
trol parameters ~α ∈ RP. Our objective is to push for an agile and
in-expensive approach to create data-driven models of soft robots.
We do this by exploiting a Intel RealSense depth sensors combined
with Arduino motor controls. Figure 2 shows our platform. We have
applied our approach to several soft robots that we have build our-
selves. Examples are shown in Figure 3.

2. Method and Results

The shape~s of a robot can be described as a function of the control
parameters ~α and can be approximated by a Taylor series approxi-
mation

~s(α)≈~s(~0)+J~α+ · · · (1)

We generate training data using a grid-search like technique ex-
ploring the ~α-space exhaustively. For a given αk sample we use
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Figure 2: The Learning Cube: RGB-D platform using Arduino
based motor controls to obtain shape deformations of DIY soft
robots. The technology is easy accessible and in-expensive. Fur-
ther, the APIs for using the technology are quite mature and robust.

Figure 3: Different robots we have tested our approach on.

RGBD data to acquire the current shape of the robot~sk. We denote
the rest position by ~s(~0) = ~s0, and define the displacement field
~uk =~sk−~s0. We collect all such K data into matrices,

A≡
[
~α1 ~α2 · ~αK

]
and U≡

[
~u1 ~u2 · ~uK

]
(2)

This notation allows us to write up (1) simultaneously for all sam-
ples. Without loss of generality, a first order approximation can be
written as

U = JT A and⇒ J = UA†, (3)

where A† is an appropriate pseudo-inverse. A direct approach for
computing J is applicable due to relatively low dimension of con-
trols. This is the main idea of our training and it generalizes to
higher order models too. The Taylor approximation can be used to
model non-linear shape deformations for any number of actuators.

Figure 4: Left shows a silicone finger and right shows point cloud
data. This input is used to capture the shape of the robot.

Figure 5: Many low ordered, local models show promising results
in terms of run-time complexity and validation loss (accuracy). Ob-
serve that 43 models of 1st order are just as “accurate” as using 1
model of 5th order.

The issue is that the shape vectors we extract from the depth data
contains noise, which higher order approximations tend to overfit
to. To decrease the complexity of the model, while still being able
to learn the non-linear deformations, we split the control param-
eter space into several disjoint regions. For each region, a lower
order model can be fitted to the data as described above. We use
optimization when solving the inverse kinematics (IK) problem

~αgoal ≡ argmin
~α

1
2
||~s(α)−~sgoal ||2 (4)

where ~sgoal is the desired goal shape and ~αgoal is the control pa-
rameter solution. For 1st order models the problem reduces to a
low dimensional QP method with linear constraints that is very ef-
ficient to solve. The IK problem is solved in parallel for each region
and the solution with smallest objective value is chosen. For higher
order models, we find the best local model using decision trees,
which makes the time complexityO(1) with respect to the number
of models. We performed a 5-fold cross-validation for optimal ap-
proximation order vs number of local models using two controls.
Our results are shown in Figure 5.

3. Discussion and Conclusion

Our early results show that using a spatial decomposition of the
configration space and a low-order local model for each subdo-
main outperforms using one higher order global model. This in-
dicates that simplicity in models can be exploited and hence is very
promising for future work on a full dynamic model. Our current
approach is limited to static models. However, the RGBD sensors
permits us to model low frequencies of motion. We aim to incorpo-
rate path and task planning into the models for more complex soft
robots in the future.
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