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Abstract Interactive rigid body simulation is important for
robot simulation and virtual design. A vital part of the sim-
ulation is the computation of contact forces. This paper ad-
dresses the contact force problem, as used in interactive sim-
ulation. The contact force problem can be formulated in the
form of a nonlinear complementarity problem (NCP), which
can be solved using an iterative splitting method, such as
the projected Gauss–Seidel (PGS) method. We present a
novel method for solving the NCP problem by applying a
Fletcher–Reeves type nonlinear nonsmooth conjugate gra-
dient (NNCG) type method. We analyze and present ex-
perimental convergence behavior and properties of the new
method. Our results show that the NNCG method has at least
the same convergence rate as PGS, and in many cases better.

Keywords Contact force computation · Rigid body
simulation · Nonsmooth conjugate gradients

1 Introduction

Most open source software for interactive real-time rigid
body simulation use the widespread Projected Gauss–Seidel
(PGS) method for solving the contact force problem, exam-
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ples are Bullet [6] and Open Dynamics Engine [21]. The
technology of such physics engines forms the basis in most
robot simulators today such as Gazebo and Webots [7, 12].
However, the PGS method is not always satisfactory, it suf-
fers from two problems: linear convergence rate [5, 8, 17]
and inaccurate friction forces in stacks [11]. Linear conver-
gence results in viscous motion at contacts and loss of high
frequency effects. The viscous appearance results in a time
delay in contact responses and reduces plausibility [16]. In
this work, we devise a novel method based on a nonlin-
ear conjugate gradient method. We hypothesize that a better
convergence rate would allow one to do more iterations per
frame in the visualization. Furthermore, we speculate that
more iterations will imply better accuracy, thereby improv-
ing fidelity. However, to assess such an improvement from
animation results would require a user study, which is not
tractable in the scope of this work. This is therefore left for
future work. In the following, we will present the NCP con-
tact force formulation, derive the PGS method for this for-
mulation, and proceed to adopt the PGS method into a novel
NNCG method.

1.1 Previous work

Rigid body simulation is dominated by two major para-
digms, impulse based methods [9, 10, 14], and constraint
based methods [1, 22, 23]. The constraint based approach is
usually formulated as complementarity problems at velocity
level, and uses simplified friction modeling for interactive
simulation [8]. Alternatives to complementarity formula-
tions are based on kinetic energy [13] and motion space [18].
As mentioned in the previous section, the focus of this work
will be the NCP model as described in [8].
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Fig. 1 Two video sequences of the NNCG method in action. The box
that appears in a reddish tone is being interactively manipulated by the
user. Both sequences were simulated using 50 NNCG iterations per
frame. Both configurations are challenging in the context of interactive

simulation. Stacking requires accurate friction forces to remain stable,
especially during interaction from the user. The long chain like con-
struction creates a heavily coupled problem that causes trouble for the
PGS solver; see Fig. 5(i)

2 The nonlinear complementarity problem formulation

The frictional contact force problem can be stated as a linear
complementarity problem (LCP) [23]. However, a different
formulation is used in interactive physical simulations; we
will derive this formulation. Without loss of generality, we
will only consider a single contact point. The focus of this
paper is on the contact force model, so the time stepping
scheme and matrix layouts are based on the velocity-based
formulation in [8]. We have the Newton–Euler equations,

Mv − JT
n λn − JT

t λt = F, (1)

where Jn is the Jacobian corresponding to normal con-
straints and Jt is the Jacobian corresponding to the tangen-
tial contact impulses. M is the generalized mass matrix and
v is the generalized velocity vector. We wish to solve for
v in order to compute a position update. For readability we
have, without loss of generality, abstracted the discretiza-
tion details within the Lagrange multipliers λn, λt and gen-
eralized external impulses F. Since the contact plane is two-
dimensional, we span this plane by two orthogonal unit vec-
tors, t1 and t2. Any vector in this plane can be written as a
linear combination of these two vectors. Thus, Jt has only
two rows corresponding to the two directions. From (1), we
can obtain the generalized velocities,

v = M−1F + M−1JT
n λn + M−1JT

t λt . (2)

Let the Lagrange multipliers λ = [λn λT
t ]T and contact Ja-

cobian J = [Jn Jt ]T , then we write the relative contact ve-
locities y = [yn yT

t ]T , such that

y = Jv = JM−1JT

︸ ︷︷ ︸
A

λ + JM−1F︸ ︷︷ ︸
b

. (3)

To compute the frictional component of the contact im-
pulse, we need a model of friction. We base our model on
Coulomb’s friction law. In one dimension, Coulomb’s fric-
tion law can be written as [2],

y < 0 ⇒ λt = µλn, (4a)

y > 0 ⇒ λt = −µλn, (4b)

y = 0 ⇒ −µλn ≤ λt ≤ µλn. (4c)

For the full contact problem, we split y into positive and
negative components,

y = y+ − y−, (5)

where

y+ ≥ 0, y− ≥ 0 and
(
y+)T (

y−)
= 0. (6)

For the frictional impulses, we define the bounds −lt (λ) =
ut (λ) = µλn and for the normal impulse ln(λ) = 0 and
un(λ) = ∞. Combining the bounds with (4), (5), and (6), we
reach the final nonlinear complementarity problem (NCP)
formulation,

y+ − y− = Aλ + b, (7a)

y+ ≥ 0, (7b)

y− ≥ 0, (7c)

u(λ) − λ ≥ 0, (7d)

λ − l(λ) ≥ 0, (7e)
(
y+)T (

λ − l(λ)
)
= 0, (7f)

(
y−)T (

u(λ) − λ
)
= 0, (7g)

(
y+)T (

y−)
= 0, (7h)
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Fig. 2 The NNCG method in action. Similarly to the description found
in Fig. 1, the reddish appearing box is interactively moved around by
the user. 50 NNCG iterations were used per frame. Notice that the sta-
bility of the simulation allows the user to place one gear on top of
another, by applying an indirect force through the small box

where

l(λ) =
[
ln(λ) lt (λ)T

]T
,

u(λ) =
[
un(λ) ut (λ)T

]T
.

The advantage of the NCP formulation is a much lower
memory footprint than for the LCP formulation. The dis-
advantage is solving the friction problem as two decou-
pled one-dimensional Coulomb friction models. As men-
tioned in the Introduction, numerous applications use the de-
rived NCP formulation in practice. The motivation for this
choice is presumably its relative simplicity and direct con-
nection to the easily implemented PGS method. However,
to our best knowledge, there exists no theorems for solu-
tion existence. Furthermore, it is well known that there exists
simple configuration examples, which can be handled only
with great difficulty by the NCP/PGS approach [20]. Finally,
many physical phenomena such as rolling and anisotropic
friction is not handled by the NCP model. However, the
widespread usage of the NCP model, as well as the lack
of a practically tractable alternative for interactive anima-
tion, the NCP model still appears as a reasonable choice of
model.

3 The projected Gauss–Seidel method

The following is a derivation of the PGS method for solving
the frictional contact force problem, stated as the NCP (7).
The result of this derivation is a well-known result, and is
as such of little novel contribution. However, we feel it is
good instructional practice to deliver a sound derivation of
the PGS method, which is neglected elsewhere in literature.
A similar derivation is found in [17]. Using a minimum
map reformulation, the ith component of (7) can be written

as

(Aλ + b)i = y+
i − y−

i , (8a)

min
(
λi − li ,y+

i

)
= 0, (8b)

min
(
ui − λi ,y−

i

)
= 0, (8c)

where li = li (λ) and ui = ui(λ). Note, when y−
i > 0 we

have y+
i = 0, which in turn means that λi − li ≥ 0. In this

case, (8b) is equivalent to

min
(
λi − li ,y+

i − y−
i

)
= −

(
y−)

i
. (9)

If y−
i = 0, then λi − li = 0 and complementarity con-

straint (8b) is trivially satisfied. Substituting (9) for y−
i

in (8c) yields,

min
(
ui − λi ,max

(
li − λi ,−

(
y+ − y−)

i

))
= 0. (10)

This is a more compact reformulation than (7) and elimi-
nates the need for auxiliary variables y+ and y−. By adding
λi , we get a fixed point formulation

min
(
ui,max

(
li ,λi − (Aλ + b)i

))
= λi . (11)

We introduce the splitting A = B − C and an iteration index
k. Then we define ck = b − Cλk , lk = l(λk) and uk = u(λk).
Using this, we have

min
(
uk

i ,max
(
lki ,

(
λk+1 − Bλk+1 − ck

)
i

))
= λk+1

i . (12)

When limk→∞ λk = λ∗ then (12) is equivalent to (7). Next,
we perform a case-by-case analysis. Three cases are possi-
ble:
(
λk+1 − Bλk+1 − ck

)
i
< li ⇒ λk+1

i = li , (13a)
(
λk+1 − Bλk+1 − ck

)
i
> ui ⇒ λk+1

i = ui, (13b)

li ≤
(
λk+1 − Bλk+1 − ck

)
i
≤ ui

⇒ λk+1
i =

(
λk+1 − Bλk+1 − ck

)
i
. (13c)

Case (13c) reduces to,
(
Bλk+1)

i
= −ck

i , (14)

which for a suitable choice of B and back substitution of ck

gives

λk+1
i =

(
B−1(Cλk − b

))
i
. (15)

Thus, our iterative splitting method becomes

min
(
uk

i ,max
(
lki ,

(
B−1(Cλk − b

))
i

))
= λk+1

i . (16)

This is termed a projection method. To realize this, let
λ′ = B−1(Cλk − b) then

λk+1 = min
(
uk,max

(
lk,λ′)), (17)
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is the (k + 1)th iterate obtained by projecting the vector
λ′ onto the box given by lk and uk . Using the splitting
B = D + L and C = −U results in the PGS method. The
PGS method (17) can be efficiently implemented as a for-
ward loop over all components and a component wise pro-
jection. To our knowledge, no convergence theorems ex-
ist for (16) in the case of variable bounds l(λ) and u(λ).
However, for fixed constant bounds, the formulation can be
algebraically reduced to that of a LCP formulation [3]. In
general, LCP formulations can be shown to have linear con-
vergence rate and unique solutions, when A is symmetric
positive definite [5]. However, the A matrix equivalent of
our frictional contact model is positive symmetric semidef-
inite and uniqueness is no longer guaranteed, but existence
of solutions is [5]. Experiments suggesting linear conver-
gence rate of the PGS method for the NCP formulation can
be found in [8, 17].

4 A non-smooth nonlinear conjugate gradient method

Experience from previous work [17, 20] indicates that the
PGS method possesses desirable properties in terms of ro-
bustness and versatility in solving NCP posed contact force
problems. It is therefore relevant to try and capture the
robustness of the PGS method, by incorporating the PGS
method into a new method that allows for an improved con-
vergence rate. The PGS iteration can be written in generic
form as

λk+1 = min
(

u
(
λk

)
︸ ︷︷ ︸

TU λk+tU

,

max
(

l(λk)︸︷︷︸
TLλk+tL

,−(D + L)−1(Uλk + b
)

︸ ︷︷ ︸
Tλk+t

))
, (18)

where the lower and upper bound functions l,u : Rn )→ Rn

are affine functions. The TL and Tu matrices express the
linear relations between tangential friction forces and their
associated normal forces. The tL and tU vectors can be used
to express fixed bound constraints, such as a normal force
constraint. Thus, the PGS iteration can be perceived as a
selector function on three affine functions. Assuming con-
vergence sequence λk → λ∗ for k → ∞ the solution of PGS
can be written as the fixed point formulation,

λ∗ = min
(
TUλ∗ + tU ,max

(
TLλ∗ + tL,Tλ∗ + t

))
︸ ︷︷ ︸

*Hλ∗+h

. (19)

The right-hand side of (19) can conceptually be considered
as the evaluation of an affine function, Hλ∗ + h. This is al-
ways true if the active set of constraints was known in ad-
vance. Therefore, we have

0 = (H − I)λ∗ + h. (20)

Observe, explicit assembly is not needed for any of the ma-
trices, instead one can rely on the PGS method to implicitly
evaluate the residual of any given iterate, rk = (H−I)λk +h.
Thus, if we write one iteration of the standard PGS method
as

λk+1 = PGS
(
λk

)
(21)

then rk = λk+1 − λk = PGS(λk) − λk . This can be in-
terpreted as the gradient of a nonsmooth nonlinear quasi-
quadratic function f (λk) ≡ 1

2‖rk‖2. By observing that
∇f (λk) = −rk and the solution we are seeking for corre-
sponds to the local minimizer of f , it seems appropriate to
use a Fletcher–Reeves nonlinear conjugate gradient method
to search for the local minimizer of f [15]. In each step, one
performs the update,

λk+1 = λk + τ kpk, (22)

where pk is the search direction and τ k can be found using
a line search method. Next, a new search direction is com-
puted by

βk+1 = ‖ ∇f k+1 ‖2

‖ ∇f k ‖2 , (23a)

pk+1 = βk+1pk − ∇f k+1. (23b)

To remain in an interactive context, we avoid perform-
ing line search on f (λk+1). Instead, we use the full step
length τ = 1, and restart the method whenever ‖∇f k+1‖2 >

‖∇f k‖2. This approach is motivated by our experiments,
which show that nothing is gained from combining the
NNCG method with a line search step; see Fig. 3. Further,
we take into account that when computing PGS(λk), it is
practical to do so in-place, meaning that a PGS step is taken
implicitly on λk . Therefore, the update of λk is done sepa-
rately in two places in each iteration. We state the full algo-
rithm as shown below:

1 : λ1 ← PGS(λ0)

2 : ∇f 0 ← −(λ1 − λ0)

3 : p0 ← −∇f 0

4 : k ← 1
5 : while not converged do
6 : λk+1 ← PGS(λk)

7 : ∇f k ← −(λk+1 − λk)

8 : βk ←‖ ∇f k ‖2 / ‖ ∇f k−1 ‖2

9 : if βk > 1
10 : pk ← 0 // restart
11 : else
12 : λk+1 ← λk+1 + βkpk−1

13 : pk ← βkpk−1 − ∇f k

14 : k ← k + 1
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Fig. 3 Test results: The NNCG method combined with line search.
The line search is a backtracking line search, using the Armijo-
condition f (xk + αkpk) ≤ f (xk) + c1αk∇f T

k pk with c1 = 0.01. The

NNCG method with line search does not improve convergence rate,
when compared to either the PGS method or the NNCG method. No-
tice that no restarts are evident in the NNCG–LINE plot

As a termination criteria one may use ‖ ∇f k ‖< ε for some
user specified value ε. A Polak–Ribiere variant may be used
in place of the Fletcher–Reeves method. Further, one may
wish to use different restarting criteria for the nonlinear con-
jugate gradient method [15].

Clearly f is a nonsmooth function. However, it is by de-
finition also a B-differentiable function [19] and as such it
belongs to the class of semi-smooth functions where one
can extend the concept of the gradient to a general defi-
nition. We use ∇f (λ) = −(PGS(λ) − λ) which is an ele-
ment of the generalized Jacobian according to Clarke’s def-
inition [4].

5 Results

The test configurations are shown in Fig. 4. These config-
urations were chosen to test the solver’s ability to handle
traditionally difficult problems, such as stacking and rest-
ing structures that rely on static friction forces. The test
involving gears in Fig. 4(e) and (d) was chosen to pro-
duce NCP problems that consist of numerous redundant
contact points; see Table 1 and contacts that induce a high
amount of angular velocity on bodies. The test results are
shown in Fig. 5 and in Fig. 6. In Fig. 5, only the itera-
tions 0 through 150 are shown, to clarify the behavior of
the NNCG method within an interactive context. The im-
plementation was done in Java, and the tests were per-
formed on a Lenovo T61 2.0 Gz machine. The error mea-
sure used in the plots is the merit function ‖∇f k‖2. This
is a natural choice, as it is the function minimized by the
method. Other measures could be used, such as the Fis-
cher function [20], but might be misleading because a de-
scending step on ‖∇f k‖2 may not always be a descending
step on other merit functions. The iteration count is done
in the number of PGS iterations, and so a NNCG iteration
is slightly more expensive than a PGS iteration, but this is

Fig. 4 Illustrated test cases used for the nonlinear conjugate gradi-
ent method: (a) Boxes resting on an inclined surface resulting in static
friction forces; (b) A large configuration of boxes stacked in a friction
inducing manor; (c) A large stack of boxes of equal mass; (d) A small
pyramid of gears; (e) A medium-scale pyramid of gears; (f) A small
stack of boxes of equal mass; (g) A standing arched snake, composed
of boxes and hinge-joints; (h) A heavy box placed on top of lighter
boxes with mass ratio 1

100 ; (i) A snake suspended in the air by a termi-
nating fixed link. Notice the resting friction dependence in (a) and (b)

highly implementation dependent. It should be noted that
the work done in one NNCG iteration, aside from that of
the PGS iteration, can be computed in body space, which
is often of significantly lower dimension. The overall result
is that the NNCG method has equivalent or better conver-
gence properties, both in interactive and noninteractive set-
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Fig. 5 Test results: The amount of iterations is kept within 150 to emphasize the effect of the methods in an interactive setting. The small spikes
indicate that the method has started to diverge, thus triggering a restart

Table 1 Configuration properties of the test cases illustrated in Fig. 4.
Test configurations may contain more bodies than appears in the illus-
trations, because invisible features such as floor and walls also count as
physical bodies. The rightmost column contains the number of eigen-
values significantly above zero present i the A-matrix

Configuration Bodies Constraints #A eigen.> ε

Figure 4(a) 14 171 54 (31.5%)

Figure 4(b) 30 519 157 (30.2%)

Figure 4(c) 14 156 54 (34.6%)

Figure 4(d) 11 216 36 (16.6%)

Figure 4(e) 15 198 60 (30.3%)

Figure 4(f) 9 51 24 (47.0%)

Figure 4(h) 15 168 62 (36.9%)

Figure 4(g) 11 42 36 (85.7%)

Figure 4(i) 11 30 30 (100.0%)

tings. Some test cases even show drastically improved con-
vergence, such as in Figs. 5(f) and 6(f). In the noninterac-
tive cases of Fig. 6, the NNCG method is observed to con-

verge to a lower error measure than the PGS method. The
convergence rate of the NNCG method is linear or super-
linear, although a slight tendency towards locally quadratic
convergence can be observed, as in Fig. 6(h). The restarts,
which are triggered by a rising merit function, are evident
as spikes in all the convergence plots. However, the over-
all convergence does not seem to be harmed significantly,
as the method quickly recovers to the same level of error
as before the restart. When disregarding restarts, the con-
vergence rate shown in Fig. 6(h) is clearly quadratic. The
number of restarts was high in the test case corresponding
to Fig. 6(a), and it should be noted that this test case has
the highest amount of contact points; see Table 1. A high
amount of spikes is also seen in Fig. 6(h). However, this
test case shows a clear quadratic convergence rate tendency,
despite the large amount of restarts. In the noninteractive
plots in Fig. 6, the NNCG method has a tendency to stag-
nate at some level of error, then suddenly drop to a lower
level. This behavior is also true for the PGS method, but the
NNCG method does so in fewer iterations, and thus reaches
a lower error level faster.
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Fig. 6 Test results: Up to 5,000 iterations of both the PGS method and the NNCG method. The NNCG method clearly converges faster, and often
to a higher accuracy than that of the PGS method. Notice the superior rate of convergence in (f)–(i)

6 Conclusion

We have presented a novel method for solving the con-
tact force problem, when stated as a NCP formulation. The
method is a nonsmooth nonlinear Fletcher–Reeves type op-
timization (NNCG) method, applied to a function whose
gradient is obtainable by performing a single Projected
Gauss–Seidel (PGS) iteration. The accuracy obtained by
the novel method was equivalent or better than that of
the PGS method. The best observed convergence rate was
super-linear, with slight local tendency toward quadratic
convergence. In general, the final accuracy obtained by the
NNCG method was better or equivalent to PGS in all exper-
iments performed. To our best knowledge, there exists no
other published work on solving NCP contact force prob-
lems, that demonstrates better convergence results than the

NNCG method within interactive frame rates. The NNCG
method showed the best results when applied to smaller
configurations, with an obvious structure, such as small or
medium sized stacks. This property was also observed by
the authors in [20], where a Newton type method was ap-
plied to the NCP contact force problem. We speculate that
the inability to improve convergence on larger and more
complex contact force problems, comes from the drasti-
cally increased over-determinacy when the number of con-
tacts grows. This over-determinacy causes the dependence
between solution variables to become increasingly com-
plex, possibly preventing the NNCG method from exploit-
ing the structure present in contact force problems. Fu-
ture work may therefore focus on methods for handling
this problem, possible preconditioning, or multigrid tech-
niques.
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Fig. 7 The NNCG method applied to a large wall structure. The wall
is initially falling onto the floor, and thus a shock effect makes the
top level bricks bounce off. The animation was done using 500 NNCG
iterations per frame. The configuration contains 174 bodies, and has
on average 4083 constraints. The obtained error at final resting frame
was ‖∇fk‖ = 4.62 × 10−3. This large scale animation is not within
interactive frame rates, but it demonstrates the robustness of the NNCG
method when applied to a large scale configuration

References

1. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity

problems. Nonlinear Dyn. An International Journal of Nonlinear
Dynamics and Chaos in Engineering Systems (1997)

2. Baraff, D.: Fast contact force computation for nonpenetrating rigid
bodies. In: SIGGRAPH ’94: Proceedings of the 21st Annual Con-
ference on Computer Graphics and Interactive Techniques (1994)

3. Billups, S.C.: Algorithms for complementarity problems and gen-
eralized equations. PhD thesis, University of Wisconsin at Madi-
son (1995)

4. Clarke, F.: Optimization and Nonsmooth Analysis. Society for In-
dustrial Mathematics (1990)

5. Cottle, R., Pang, J.-S., Stone, R.E.: The Linear Complementarity
Problem. Academic Press, San Diego (1992)

6. Coumans, E.: The bullet physics library. http://www.
continuousphysics.com (2005)

7. Cyberbotics: Webots 6. http://www.cyberbotics.com/products/
webots/ (2009)

8. Erleben, K.: Velocity-based shock propagation for multibody dy-
namics animation. ACM Trans. Graph. 26(2) (2007)

9. Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies
with stacking. ACM Trans. Graph. (2003)

10. Hahn, J.K.: Realistic animation of rigid bodies. In: SIGGRAPH
’88: Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (1988)

11. Kaufman, D.M., Sueda, S., James, D.L., Pai, D.K.: Staggered pro-
jections for frictional contact in multibody systems. ACM Trans.
Graph. 27(5) (2008)

12. Koeng, N., Polo, J.: Gazebo, 3d multiple robot simulator with dy-
namics. http://playerstage.sourceforge.net/index.php?src=gazebo
(2009)

13. Milenkovic, V.J., Schmidl, H.: A fast impulsive contact suite for
rigid body simulation. IEEE Trans. Vis. Comput. Graph. 10(2)
(2004)

14. Mirtich, B.V.: Impulse-based dynamic simulation of rigid body
systems. PhD thesis, University of California, Berkeley (1996)

15. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series
in Operations Research. Springer, New York (1999)

16. O’Sullivan, C., Dingliana, J., Giang, T., Kaiser, M.K.: Evaluat-
ing the visual fidelity of physically based animations. ACM Trans.
Graph. 22(3) (2003)

17. Poulsen, M., Niebe, S., Erleben, K.: Heuristic convergence rate
improvements of the projected Gauss–Seidel method for frictional
contact problems. In: Proceedings of WSCG (2010)

18. Redon, S., Kheddar, A., Coquillart, S.: Gauss least constraints
principle and rigid body simulations. In: Proceedings of IEEE In-
ternational Conference on Robotics and Automation (2003)

19. Scholtes, S.: Introduction to piecewise differential equations.
Prepring No. 53, May (1994)

20. Silcowitz, M., Niebe, S., Erleben, K.: Nonsmooth Newton Method
for Fischer Function Reformulation of Contact Force Problems
for Interactive Rigid Body Simulation. In: VRIPHYS 09: Sixth
Workshop in Virtual Reality Interactions and Physical Simula-
tions, pp. 105–114. Eurographics Association (2009)

21. Smith, R.: Open dynamics engine. http://www.ode.org (2000)

22. Stewart, D.E.: Rigid-body dynamics with friction and impact.
SIAM Rev. (2000)

23. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb fric-
tion. Int. J. Numer. Meth. Eng. (1996)

http://www.continuousphysics.com
http://www.continuousphysics.com
http://www.cyberbotics.com/products/webots/
http://www.cyberbotics.com/products/webots/
http://playerstage.sourceforge.net/index.php?src=gazebo
http://www.ode.org


A nonsmooth nonlinear conjugate gradient method for interactive contact force problems 901

Morten Silcowitz-Hansen holds a
B.Sc in Computer Science from the
University of Copenhagen (2008)
and is currently a M.Sc student at
the department of Computer Sci-
ence, University of Copenhagen. He
is a computer graphics enthusiast,
involved in both research and open-
source projects.

Sarah Niebe recieved her M.Sc in
Computer Science at the University
of Copenhagen, Denmark (2009).
Her main research focus is physical
simulation and rigid body dynam-
ics, as well as optimization meth-
ods. Since graduating, Sarah has
worked as a research assistant at
the eScience Center, University of
Copenhagen.

Kenny Erleben After his comple-
tion of master in Computer Science,
Erleben was employed as full time
researcher in 3DFacto A/S for a pe-
riod of 10 months. In 2001 Erleben
started on his Ph.D. studies. Dur-
ing 2004 Erleben stayed 3 months
at the Department of Mathematics,
University of Iowa. He received his
Ph.D. degree in the beginning of
2005 and finally late 2005 Erleben
was employed as an Assistant Pro-
fessor at the Department of Com-
puter Science, University of Copen-
hagen. Erleben has been chairman

of the OpenTissue project since 2007, which he was co-founder of in
late 2001. In 2009 Erleben was employed as an Associate Professor.


	A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
	Abstract
	Introduction
	Previous work

	The nonlinear complementarity problem formulation
	The projected Gauss-Seidel method
	A non-smooth nonlinear conjugate gradient method
	Results
	Conclusion
	References


