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Abstract A maximal independent set graph data struc-
ture for a body-centered cubic lattice is presented. Refine-
ment and coarsening operations are defined in terms of set-
operations resulting in robust and easy implementation com-
pared to a quad-tree-based implementation. The graph only
stores information corresponding to the leaves of a quad-tree
thus has a smaller memory foot-print. The adjacency infor-
mation in the graph relieves one from going up and down the
quad-tree when searching for neighbors. This results in con-
stant time complexities for refinement and coarsening oper-
ations.
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1 The body-centered cubic lattice

We present a new flexible and powerful graph data struc-
ture for a body-centered cubic (BCC) lattice. We believe
the data-structure is well suited for interactive simulations,
where a small memory foot-print and dynamic constant time
operations are attractive. Our focus is on the data structure
and not on the interactive simulation, nor on how to apply
BBC lattice for solving problems. Our data structure is easy
to implement, and the simplicity of only using set-operations
reduces the chance of introducing bugs. Our prototype im-
plementation was done within one hour by copying and past-
ing the set-operations into code.
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A BCC lattice [5] is one of the most common and sim-
plest shapes found in crystals and minerals [3] and has
many usages in computer graphics, for instance, adaptive
meshing [6], physics-based animation [7, 10], and multi-
resolution meshes [2]. A BCC lattice is similar to 4–8 sub-
division [9], triangle quad-trees, and triangle bin-trees [4]
used for adaptive terrains.

A quad-tree [8] implementation of a BCC lattice results
in a nested model for a multi-resolution mesh [7]. How-
ever, a quad-tree implementation holds more generality than
needed for a BCC lattice. Our contribution is a non-nested
data structure for a BCC lattice.

Other 2D mesh-representation could be used, such as
a half-edge data structure. The half-edge would store un-
needed features of the BCC lattice and result in a much
larger memory foot-print. Further, one needs book-keeping
for performing refinement and coarsening operations with-
out destroying the BCC lattice property. Our data structure
does not need book-keeping and has a smaller memory foot-
print. In fact, only one third of the edges and no faces need
to be stored.

A BCC lattice consists of the nodes of a Cartesian grid
along with cell centers. One can visualize the BCC lattice
as two staggered grids, one grid made from the Cartesian
grid nodes and another grid created from the cell-centers. A
triangulation is created by connecting a node with the four
closest neighbors from the other grid. An example is shown
in Fig. 1.

This creates a regular tessellation with a simple topol-
ogy. Thus we do not consider completely general triangu-
lations in this paper. We will also restrict ourselves to the
2D domain. Observe that the triangulation is the Delaunay
complex of the interlaced grid nodes and thus possesses all
properties of a Delaunay triangulation.
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Fig. 1 Example of a body-centered cubic lattice. A fixed number of random refinement operations were done in (a)–(c). Hereafter a sequence of
coarsening operations were done, (d)–(f)

One can refine the triangulation by replacing a cell with a
subdivision of cells of half-size. This is illustrated in Fig. 1.
Observe that T-junction nodes appear in-between the unre-
fined cells and the refined cell. Special attention must be
paid to the junction nodes when creating the triangulation.
In the example in Fig. 1 we have chosen to create trian-
gles by creating edges from a cell-center to all nodes on
the boundary of the containing Cartesian cell. This creates a
star-shaped tessellation pattern of the cell.

If the cell is further refined, more junction nodes will ap-
pear on the boundary with the neighboring unrefined cells.
In this case the star-tessellation strategy will in the limiting
case create a lot of sliver triangles. This is an unwanted trait.
Therefore we limit the refinement level of cells such that any
two neighboring cells can have a difference in their refine-
ment level of at most one. In this context a refinement level
is the number of times a cell has undergone a refinement.

A BCC lattice can be implemented using an augmented
octree/quad-tree data structure [6, 7, 10]. In this paper we

will describe an alternative data structure based on mathe-
matical topological set-operations.

2 The graph representation

Let T be a triangulation consisting of a set of vertices V =
{vi}, a set of edges E = {eij }, and a set of faces F = {fijk},
where eij = {vivj } and fijk = {vivj vk}.

We seek a least committed data representation. The set
of vertices is divided into two disjoint vertex sets called
node-vertices, N ⊂ V, and center-vertices, C ⊂ V, where
N ∩ C = ∅. For a node-vertex n ∈ N, we store a neighbor
set, N (n), of indices to incident center-vertices. In a simi-
lar fashion, for each c ∈ C, we store a neighbor set, N (c),
to incident node-vertices. The neighbor sets of all the node-
vertices and center-vertices represent a subset of edges in
the triangulation. The edge eij is running between the ver-
tex vi and the vertex vj . If vi is a node-vertex and vj is a
center-vertex, then vi ∈ N (vj ) and vj ∈ N (vi). Thus we do
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not store edges where vi and vj both belong to the same
vertex-set, N or C. Nor do we explicitly store the edge and
face sets. Instead, these sets will be inferred from the node-
vertex set, the center-vertex set, and the neighbor set infor-
mation.

As an example, we will study how an instance of a tri-
angulation from a BCC lattice can be stored in the above
representation. Figure 1 shows an example. Here the nodes
from the green lattice will make up the node-vertex set N,
the nodes of the red lattice will correspond to the center-
vertex set C, and the black diagonal edges would correspond
to the neighbor sets. Observe that no horizontal or vertical
edges are explicitly represented.

Because none of the red-edges is part of the triangula-
tion, the center-vertex set is a maximal independent set [1].
A maximal independent set means that no node-vertex can
be taken from N and added to C without creating an edge
that is incident to more than one center-vertex. The node-
vertex set is not a maximal independent set of the origi-
nal triangulation due the fact that all green edges are part
of the triangulation. However, by not representing any hor-
izontal or vertical edges we have a graph where the center-
vertices and the node-vertices are both maximal independent
sets.

The green edges we have discarded can be generated by
computing the edges of the convex hull of the neighbor sets
of the node-vertices,

⋃

∀c∈C

conv
(

N (c)
)
. (1)

The union of the edges from all the hulls corresponds to the
vertical and horizontal green edges that are not part of the
current representation. Thus we have shown that we have
a maximum independent set partition of a graph which is
equivalent to the triangulation of a BCC lattice. In the fol-
lowing we will outline the refinement and coarsening oper-
ations on this special case graph data structure.

2.1 The refinement operation

We specify a cell-vertex, c, corresponding to the cell that
should be refined. Initially a logical test should be performed
ensuring that the refinement level of any neighboring cells
is larger than or equal to the current refinement level. If one
of the neighboring cells has a refinement level less than the
cell we want to refine, then the result would be a refinement
difference greater than one, which is illegal.

We want to obtain all the vertices, B, on the boundary
of the cell that is subject to refinement. These vertices are
stored in the neighbor set of the cell-vertex, N (c). One may
observe that the cardinality of the neighbor set of a junction-
vertex is always 3. Thus we separate the neighbor vertices of

Fig. 2 The four steps of the refinement operation, (a) find the neigh-
borhood sets, (b) creating sub cell centers and changing c into a
node-vertex, (c) creating and connecting new junctions, and (d) adding
junctions to neighboring cells. Observe that the neighbor sets of
the neighboring cell-vertices have been extended with a single junc-
tion-vertex. The red grid has been hidden for clarity in some of the
steps

the cell-vertex into pure node-vertices, P, and junction node-
vertices, J:

B = N (c), (2a)

J = {
bi |bi ∈ B ∧ ∥∥N (bi)

∥∥ = 3
}
, (2b)

P = B \ J. (2c)

From the pure node-vertices, P, we can find all the neigh-
boring cell-vertices, X. We take the union of all the neighbor
sets of the pure node-vertices of the boundary,

X =
{ ⋃

∀bi ,bj ∈B,i �=j

N (bi) ∩ N (bj )

}
\ {c}. (3)

At this point we have complete knowledge about the topol-
ogy of the cell that should be refined. Figure 2(a) illustrates
the vertex sets.

One can iterate over the vertices in X and verify that the
refinement level is not less than the refinement level of c. If
the test passes, we can continue the refinement operation.

The cell c is subdivided into four new cells. This ac-
tion will convert c into a node-vertex and change the neigh-
bor set of c to hold indices of four new cell-vertices,
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Y = {y1, . . . , y4}, corresponding to the four new cells in the
subdivision.

Y = {y1, . . . , y4}, (4a)

C = C ∪ Y, (4b)

N (c) = Y, (4c)

N (ji) = N (ji) \ {c} ∀ji ∈ J, (4d)

N (pi) = N (pi) ∪ {yi} \ {c} ∀pi ∈ P, (4e)

N (yi) = {pi, c} ∀yi ∈ Y, (4f)

C = C \ {c}, (4g)

N = N ∪ {c}. (4h)

The set of pure node-vertices always have ‖P‖ = 4 and sim-
ilarly ‖Y‖ = 4. We have exploited this to create a one-to-one
mapping between yi ∈ Y and pi ∈ P . This is illustrated in
Fig. 2(b).

Next we create the missing junction-vertices. We already
know how many junction-vertices that are currently part
of the cell, so we can create the correct number of new
junction-vertices needed,

J+ = {
j+

1 , . . . , j+
4−‖J‖

}
, (5a)

N = N ∪ J+. (5b)

Now for all pi,pj ∈ P with i �= j and ‖N (pi) ∩ N (pj )‖ =
1, we carry out the steps below for k = 1, . . . ,‖J+‖:

xk = N (pi) ∩ N (pj ), (6a)

N (xk) = N (xk) ∪ {
j+
k

}
, (6b)

N (j+
k ) = {xk, yi, yj }, (6c)

N (yi) = N (yi) ∪ {
j+
k

}
, (6d)

N (yj ) = N (yj ) ∪ {
j+
k

}
, (6e)

where j+
k ∈ J+. The newly created junction-vertices have

been connected into the graph. Figure 2(c) illustrates the op-
eration on the example from Fig. 2(b).

The final step in the refinement operation is to handle
the old junction-vertices from the set J. These node-vertices
need to be connected to the newly created cell-vertices. If
‖N (jk) ∩ N (pi)‖ = 1 for jk ∈ J and pi ∈ P, then

N (jk) = N (jk) ∪ {yi}, (7a)

N (yi) = N (yi) ∪ {jk}. (7b)

This completes the refinement operation. The final outcome
of our example is shown in Fig. 2(d).

2.2 The coarsening operation

Coarsening is the inverse operation of refinement. The
coarsening operation is initiated by specifying a node-
vertex, n, that must be turned into a cell-vertex. The node-
vertex cannot be allowed to be a junction-vertex. Thus we
must check whether ‖N (n)‖ = 4. If this is the case, we can
continue the coarsening operation.

We find the four cell-vertices, Y, corresponding to the
sub-cells that should collapse into one larger cell. Hereafter,
we use the neighbor sets of the found cell-vertices to deter-
mine all node-vertices, B, currently lying on the boundary
of the resulting larger cell,

Y = N (n), (8a)

B =
⋃

∀yi∈Y

N (yi) \ {n}. (8b)

All the Y-vertices will be deleted, thus their connectivity to
the other vertices in the graph must be removed. We start by
unconnecting them from all the node-vertices on the bound-
ary of the larger cell:

N (bi) = N (bi) \ Y ∀bi ∈ B, (9a)

N (yi) = ∅ ∀yi ∈ Y, (9b)

Fig. 3 The steps of the coarsening operation. In (a) all the cell-vertices
of the sub-cells are unconnected and deleted, (b) all unneeded junc-
tion-vertices are unconnected and deleted, and (c) the final state of the
coarsening operation
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Fig. 4 A body-centered cubic lattice (middle and right columns) is adaptively refined to fit an underlying height-field (left column)

N (n) = ∅, (9c)

N = N \ {n}, (9d)

C = C ∪ {n}, (9e)

C = C \ Y. (9f)

This effectively changes the node-vertex n into a cell-vertex.
Now all the Y-vertices can be deleted. In Fig. 3(a) we have
shown the first step of the coarsening operation on the ex-
ample from Fig. 2(d).

Next we determine if any junction-vertices should be
deleted. These junction-vertices can be identified through
the cardinality of their neighbor sets:

J− = {
bi |bi ∈ B ∧ ∥∥N (bi)

∥∥ = 1
}
, (10a)

B = B \ J−, (10b)

N = N \ J−. (10c)

Hereafter all the junction-vertices that are about to be
deleted are unconnected. For each j−

i ∈ J−,

xi = N (j−
i ), (11a)

N (xi) = N (xi) \ {j−
i }, (11b)

N (j−
i ) = ∅, (11c)

N = N \ J−. (11d)

Now all J−-vertices are deleted. The step is illustrated in
Fig. 3(b).

The final step consists in connecting the cell-vertex n

with the remaining boundary vertices of the larger cell:

N (n) = B, (12a)

N (bi) = N (bi) ∪ {n} ∀bi ∈ B. (12b)

This completes the coarsening operation. Figure 3(c) shows
the end-result.
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Fig. 5 A body-centered cubic lattice is adaptively refined to fit an underlying height-field. Refinement levels are increased from left-to-right.
Number of grid nodes (N), cell-centers (C), and total number of refinement operations (O) are shown

3 Results

In Fig. 1 we show a subset of operations testing the robust-
ness of our implementation. Refinement operations are first
used to create a random tessellation. Hereafter coarsening
operations are used to invert the effect of all the refinement
operations. As the example illustrates, the refinement and
coarsening operations are truly inverses of each other.

We have also applied the data-structure for an adaptive
meshing application. We use the BCC lattice to adaptively
tessellate a high-resolution height-field. The height-field is
created from a 256-by-256 pixel image. An initial 6-by-6
BCC lattice is overlaid the height-field. Hereafter we test
each cell of the BCC lattice whether it should be refined or
not. The test is independent of the data-structure, and we
choose a naive test since our focus is on the data structure
rather than on surface modeling or refinement. The test is

based on how well a fixed number of random height sam-
ples within a cell can be interpolated from the enclosing grid
nodes. Several sweeps are done over all the vertices until a
visual pleasing result is obtained. Figure 4 shows the ini-
tial height fields of 3 examples together with adaptive tes-
sellations after having performed 5–6 sweeps over the cell-
vertices.

In Fig. 5 we have illustrated intermediate tessellation re-
sults. As demonstrated, the graph data structure can be used
as a spatial data structure.

The tessellations were computed using a Dell Precision
M90 laptop, Intel(R) Core Duo CPU, 2.33 GHz, 2 GB of
RAM. Running times ranged from 1–5 seconds, no special
optimization was done, and only a single core was utilized.
Although not the most efficient choice, we used STL algo-
rithms for set-operations in our implementation.

To demonstrate that the 2D BCC lattice is not restricted to
height-fields, we performed a cloth simulation where coars-
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Fig. 6 A piece of cloth is being
represented by a body-centered
cubic lattice. The refinement
and coarsening are based on
mean curvature at contact
points. Notice the finer
resolution at the sharp edges of
the impacting box-object

ening and refinement of the cloth mesh was done based on
a mean curvature measure at the contact points. Resulting
frames of the animation are shown in Fig. 6.

4 Discussion

In this paper we have introduced a graph-based data struc-
ture for a body-centered cubic lattice. Further we have de-
veloped both refinement and coarsening operations for the
new data structure and shown examples illustrated the re-
versibility of the two operations. An adaptive meshing and a
cloth simulation application demonstrate the usability of the
graph-based data structure for real problems.

In this paper we have only considered the two-dimen-
sional case. We believe that our ideas could be extended
to three dimensions. This extension would require changes
in the algorithm in regards to the handling of junctions. In
higher dimensions junctions may appear with different car-
dinalities, ranging from 3 to 7. Further the green edges in
three dimensions will be given by the edges of the faces
of the convex hull of the neighbor sets of the node node-
vertices.

In comparison with a quad-tree-based implementation,
one would require O(n logn)-space complexity for storing
the BCC lattice, where n is the number of cells in the BCC
lattice. A vertex can have at most 8 vertices in its neigh-
bor set, and we therefore consider the storage per vertex to
be constant. Thus our graph-based data structure requires
O(n)-space complexity. We consider all set-operations as
being constant time operations for larger meshes due to the
small-size upper bound on the vertex neighbor sets. Refine-
ment and coarsening only consist of a sequence of such set-
operations. Refinement and coarsening operations can there-
fore be considered to be of O(1) time-complexity. In a quad-
tree data structure one may have to ascend all the way to
the root before being able to descending to a neighboring
cell. Since neighboring cells must be located to deal cor-
rectly with junction nodes, this implies at least a O(logn)

time-complexity for refinement and coarsening operations
in a quad-tree-based implementation.

If an application needs explicit access to the face sets,
then our graph-based data structure needs to infer the face
sets from the node, center, and neighbor sets. This requires
the computation of a convex hull, which may be too costly
during run-time of an interactive application.

The data locality of the graph-based data structure may
also prove to be useful if one seeks a GPU or CELL CPU
implementation. Due to lack of hardware, we have not pur-
sued this.
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