
The Visual Computer manuscript No.
(will be inserted by the editor)

Kenny Erleben

Volumetric Shells using Path Tracing

Abstract Low count tetrahedral meshes are desirable for
producing shell maps or animating deformable objects, where
accuracy is less important. This paper presents a new method
for creating a shell tetrahedral mesh from a triangular sur-
face mesh. We propose to use signed distance fields to im-
plicitly represent the medial surface of a surface mesh com-
bined with a divergence based medial surface representa-
tion. An iterative path tracing algorithm is the main result,
which is easy to parallelize. The new method respects the
structure of the object shape, when generating a shell mesh.
We demonstrate the capability of our method to create thick
shells with almost no residual space inside our test objects.

Keywords Shell Meshing· Path Tracing

1 Introduction

Volumetric shell meshes are attractive, since they give a vol-
umetric representation of a surface mesh with a very low
tetrahedral count. Low tetrahedral count is desirable for ani-
mation or similar purposes, where speed is preferred over ac-
curacy of deformation. Volumetric shell meshes are becom-
ing more attractive for animation of deformable objects [12]
or shell maps [19]. Figure 1 shows examples of volumetric
shell meshes generated with our method.

Existing algorithms such as [15] are difficult to implement
and do not use the natural, intrinsic representation of shape
by medial surfaces [6,18]. Existing tetrahedral mesh gen-
erating methods typically create an initial, blocked tetrahe-
dral mesh from a voxelization or signed distance field. After-
ward, nodes are iteratively repositioned, while tetrahedrons
are sub-sampled in order to improve mesh quality [16,21],
or the variational gradient of an energy functional is used

K. Erleben
Department of Computer Science, University of Copenhagen
Tel.: +45-32351400
Fax: +45-32351401
E-mail: kenny@diku.dk

to move vertices [1]. In contrast to these methods, ours is
surface based. Further, our method can create a shell mesh,
whereas the other methods will create meshes with a full
coverage of the interior.

A linear randomized tessellation algorithm, the ripple tessel-
lation, was developed in [8]. The ripple method suffers from
several problems. It is not deterministic, but relies on picking
random ripple directions to fix inconsistencies. A safe, con-
servative, upper limit on the extrusion length is used in [8]
and later improved in [9]. Nevertheless, both algorithms are
very slow due to bad and unpredictable convergence behav-
ior of the bisection search method. In [10] line stepping was
shown to be a more efficient numerical method for the dis-
placement computation. All the surface based methods [8–
10] suffer from one drawback: at extreme curvatures the
shell meshes become paper thin. A paper thin shell may be
undesirable for many reasons. For example, the small thick-
ness would limit the size of features rendered by a shell map
or cause unwanted tunneling effects when doing collision
detection during a simulation. Further, large area surfacetri-
angles with small extrusion thickness would result in poor
mesh quality due to the obvious creation of slivers and nee-
dles in the resulting shell mesh. Thus, it is interesting to try
to find the thickest possible shell mesh. This is the problem
we address in this paper.

Our main goal is to create the thickest possible shell mesh
with the lowest possible tetrahedral count. That is, given
a polygonal surface mesh, we create a tetrahedral volume
mesh representing a thick version of the surface mesh, called
a shell mesh. The vertices of the polygonal surface mesh
are displaced inwards along a path trace, thereby creating
a new version of the surface mesh. Following the displace-
ment the original surface mesh is used to generate the out-
side of the shell and the displaced surface mesh is used to
generate the inside of the shell mesh. The two meshes are
then used to create a triangle prism shell mesh. Finally, the
triangle prism mesh is converted to a consistent tetrahedral
mesh, also known as a tetrahedral tessellation. In this work
we only focus on the displacement problem and use the tetra-
hedral tessellation algorithm of [8].

2 Kenny Erleben

(a) Teapot

(b) Tube

(c) Propeller

Fig. 1 Volumetric Shell meshes visualized by partly removing someof
the tetrahedrons of the shell mesh, exposing the inside (yellow color)
of the shell mesh.

Intuition hints that we want to find the point on the medial
surface that corresponds to a given surface point. By defi-
nition the medial surface consists of the set of center points
of all interior maximal balls. However, obtaining the me-
dial surface is computational difficult and notoriously er-
ror prone due to discretization errors. Instead, we will use
a signed distance field of the surface mesh. The signed dis-
tance field of the surface contains the medial surface im-
plicitly, and this can be exploited to result in a very simple
solution to be explained shortly.

Working directly on the boundary representation is fast and
simple [20], but topological problems such as shocks [13]
arise easily. Our method is based on the inwards extrusions,
also know as intrusions, of the surface triangles, thus produc-
ing prisms. At shocks these prisms will degenerate to contain
less than 6 vertices. These shocks turn out to be the limit on
the intrusion lengths in our method.

Distance fields have been used prior to our work [17]. How-
ever, [17] uses generalized Newton potentials, which is basi-
cally equivalent to regularizing the Euclidean distance field,
such that the medial surface collapses into a line-skeleton[4].
In our work we use the Euclidean distance field, and we
disprove the claim from [17] that the Euclidean distance
fields cannot be used for shell generation. Besides, [17] suf-
fers from folding at extreme shell thickness. Thus [17] only
shows extrusions for modest shell thickness. As we demon-
strate, our method does not suffer from this artifact. Lastly,
it should be pointed out that the stopping criteria used in the
numerical method of [17] rely on the zero gradient of the dis-
tance field or exceeding a maximum allowed thickness. As
we show, such a method will result in shells with folds. In
addition, we show a mesh quality analysis at extreme thick-
ness.

2 The Path Tracing Algorithm

To inwardly extrude surface triangles we intrude the triangle
vertices as close as possible to the medial surface without
crossing it. Path tracing is a very robust method for this and
will be described in the following subsections. Overall, our
method can be described as follows

– Perform path tracing of all non-planar surface points.

– Perform path tracing of all planar surface points.

– Create triangular prisms by using line segments from the
original surface points to the end positions of the corre-
sponding path traces.

– Convert the triangle prism shell into a tetrahedral shell
mesh by a tessellation method.

In Section 2.1 we present our novel stopping criteria and the
intuition behind them. In Section 2.2 we will present all the
details of the path tracing algorithm.

2.1 The Non-folding Stopping Criteria

We trace a surface pointp j along a curved path in space.
The gradient of a signed distance field,φ , of the surface
mesh is used to determine the trajectory of the point, as the
point traces out the path. In the general case the path trace
is stopped, when a critical-point in the signed distance field
is passed. This is detected by testing, whether the magni-
tude of the gradient of the signed distance field drops below

Volumetric Shells using Path Tracing 3

some threshold-value. Due to discretization and interpola-
tion errors the gradient of a regular sampling of a signed
distance field is not precisely one everywhere. The regular
sampling and numerical diffusion tend to smooth the signed
distance field. Therefore, in our implementation we used a
fraction of the gradient at the initial surface position as the
threshold-value. Two more stopping criteria are also applied:

1. If a path trace hits another path trace, then the path trace
is stopped. This action often corresponds to having de-
tected a junction in the medial surface of the object. The
merge point of the path with the minimum path length is
stored together with each path.

2. If the initial surface point is planar, the path trace willnot
start on a seam of the medial surface. This implies that
the path trace will not necessarily hit a junction of the
medial surface. Therefore the path trace is halted, once
the trace hits the medial surface.

The purpose of criterion 1 is to enhance performance, when
path traces are done sequentially. The idea is that if a merge
point is detected, the path trace will trace out the same tra-
jectory as the merging path.

In order to detect the merge points we used spatial hash-
ing [23] to test whether a point trace is sufficiently close to
a point trace from another path. Spatial hashing is simple to
implement, since it requires only a hashing function to look
up cells in a 3D grid. In our test cases we rescaled all sur-
face meshes to be within the unit-cube and used a distance
value equal to the length of the cell diagonal in the regular
sampled disance field to detect close-by point traces.

Figure 2 shows the actual path traces and merge points of
a more complex horn-like object. Note that if the tip of the
horn was not stopped at the first merge point, one would have
created a triangle prism starting from the tip and ending in
the middle of the base of the horn. Such a prism would go
outside the horn-like object and therefore is clearly undesir-
able.

Observe that path traces of planar surface points may have
merge points that are not junctions of the medial surface.
As a consequence, merge points of path traces of non-planar
vertices must be detected prior to tracing any paths of pla-
nar vertices. This is illustrated in Figure 3. Figure 4 shows
real-life examples of path traces using our method. Observe
that the path traces obey the stopping criterion for planar
vertices.

2.2 The Details of our Path Tracing Algorithm

The algorithm works as follows: The position of thej’th sur-
face vertex at thei’th step along the path is denoted byqi

j and
q0

j = p j. To obtain the positionqi
j a fixed incremental step of

length∆ε is taken in the opposite direction of the gradient

(a) Skeleton of horn object.

(b) Tetrahedra generated from the prisms of the horn
object.

Fig. 2 Observe how the path trace of the pointy spike traces out a
spline through the center line of the object. All traces along the tip of
the horn are merged correctly with the spline.

(a) (b)

Fig. 3 Path tracing problems that must be handled correctly. Numbers
indicate the path trace order. (a) Problem: The path traces of 2 and 3
result in a merge point that is not a junction. If planar vertices on the
line between 1 and 5 are traced, they are likely to intersect the prism
generated by paths 1 and 2. (b) Solution: By tracing planar surface
points last we guarantee that prisms respect the medial surface.

of the signed distance field,∇φ(qi
j),

qi
j = qi−1

j −∆ε∇φ(qi−1
j). (1)

If the cell size of the regular sampled signed distance field
is given by∆x, ∆y, and∆ z then the fixed size increment is
chosen as

∆ε =
min(∆x,∆y,∆ z)

2
. (2)

This ensures that we do not step along the path faster than
the information changes in the signed distance field. This

4 Kenny Erleben

(a) Box Object

(b) Cylinder Object

Fig. 4 Increasing the resolution of the surface meshes causes planar
vertices to be created in the surface meshes. The left columnshows
path traces and corresponding shell meshes of low-resolution surface
meshes. The right column shows how our method correctly deals with
the planar vertices at the increased resolution. Note that the planar ver-
tices do not cross the medial surface of the objects.

works due to spatial coherence of the values in the signed
distance field. The value at a neighboring node in the signed
distance field is different by at most

√

∆x2 +∆y2+∆ z2. (3)

We keep on stepping, until the stopping criterion,

∇φ(qi
j)

T ∇φ(qi
j) < c∇φ(p j)

T ∇φ(p j), (4)

is meet. Where we usec = 10−3 in our experiments. To
counter numerical diffusion we normalize the gradient of
the signed distance field, whenever∇φ(qi

j)
T ∇φ(qi

j) > 1. Fi-
nally, the corresponding path length is updated accordingly

ε i = ε i−1 +
∥

∥

∥
qi

j −qi−1
j

∥

∥

∥
. (5)

The path length is used to find the first merge point along a
path trace.

The stopping criterion for the planar surface points is easy
to understand, but not easy to implement. Obtaining the me-
dial surface is known to be a very difficult problem, and
many simplifications or approximations of the medial sur-
face exist, such as the simplified medial axis [22], the power
crust algorithm [2], or divergence based medial surfaces [3,
7]. Thus, getting an exact representation of the medial sur-
face is a problem in itself. However, it is fairly easy to build
a new field, telling us, whether the medial surface passes
through a given location. Theθ -SMA algorithm [22] can
compute such a field. However, for simplicity we have cho-
sen to compute the divergence of the gradient field of the
signed distance field, i.e. the flux of the gradient field. This
representation is often termed the divergence based medial

(a) Surface Geometry (b) Signed Distance Field

(c) Flux Field

Fig. 5 Illustration of a signed distance field and the corresponding di-
vergence based medial surface (flux field). Observe how the flux field
corresponds to the shape of the path traces.

surface [3] or the average outward flux (AOF) field [7]. The
flux field is defined mathematically as follows:

flux(i, j,k) =

∫

S
∇φ ·ds. (6)

Numerically, we evaluate the flux for each node as follows:
the surfaceS is chosen as a cubical surface, having the node
(i, j,k) as its center. The cube has the eight neighboring nodes
(i−1, j−1,k−1), (i−1, j−1,k+1), (i−1, j+1,k−1), ...,
(i + 1, j + 1,k + 1) as its corner points. The surface integral
is evaluated using a summation approximation

flux(i, j,k) = ∑
a∈N(i, j,k)

∇φ(a) ·n(a), (7)

whereN(i, j,k) is the index set of the 3×3×3 neighboring
nodes (corners, face mid-points, and edge-midpoints of the
surface cube), andn(a) is the outward normal of the cube
surface. For∇φ we used a first order central difference ap-
proximation. Thus the flux at a single node is based on a
measurement from a neighborhood of 5× 5× 5 nodes. In
our experience this adds robustness to our method. Once the
flux field have been obtained, it can be used as an indica-
tor for where the medial surface is located. Figure 5 illus-
trates a flux field of a simple shape. If the flux is zero, then
it is a clear indication that the medial surface is not passing
through the cube surface. If the flux is positive, it means that
the cube surface contains part of the medial surface. Now, a
path trace originating from a planar surface point is stopped,
when the flux-value is sufficiently positive,

flux(q j
i) > ρ, (8)

whereρ is a small user-specified threshold to counter nu-
merical precision and round-off problems from the compu-
tation of the flux field. The entire path tracing algorithm is
summarized in the pseudo code shown in Figure 6.

Volumetric Shells using Path Tracing 5

Algorithm path-trace(j’th path)
i = 0
set qi

j to surface point of path
while forever

add qi
j to path

ε i = ε i−1 +
∥

∥

∥
qi

j −qi−1
j

∥

∥

∥

g = ∇φ(qi
j)

if planar and flux(qi
j) > ρ or

gT g < c∇φ(q0
j)

T ∇φ(q0
j) or

merge point detected at qi
j then

break
end if
if gT g > 1 then

g = g/‖g‖
end if
qi+1

j = qi
j −∆εg

i = i+1
end while

End algorithm

Fig. 6 Pseudo code version of our path trace algorithm. Notice that
three different stopping criteria are used.

name F time T point size step size
box 48 0.04 144 0.0150 0.0043
box 192 0.06 576 0.0150 0.0043

cylinder 48 0.04 144 0.0141 0.0035
cylinder 192 0.09 576 0.0141 0.0035
pointy 96 0.15 288 0.0110 0.0024
star 588 0.57 1764 0.0123 0.0006
horn 408 0.11 1224 0.0116 0.0020
tube 512 0.17 1536 0.0135 0.0028

sphere 760 561.66 2280 0.0150 0.0043
teapot 1056 567.09 3168 0.0115 0.0024

propeller 1200 569.79 3600 0.0124 0.0009
funnel 1280 559.61 3840 0.0127 0.0016
dragon 1496 558.47 4488 0.0128 0.003
bowl 2680 562.22 8040 0.0124 0.0010

Table 1 Statistics of test examples using our shell method. Time is
given in seconds. Here F is the number of surface triangles and T is the
number of tetrahedrons.

3 Results

In all the test examples presented in this paper we have used
a regular sampling of the signed distance fields with resolu-
tion 1283. All surface meshes were isotropically scaled to be
within a unit-cube centered around the origin. In Table 1 we
have listed timing results together with other features of our
test examples.

In Figure 7 some complex shapes have been tested with our
method. The Star-shape is stressing the node spacing in the
regular sampling. Likewise, the small details on the dragon
(fingers, the backside horns etc..) are difficult to capture with
as coarse a grid-resolution as ours.

Regular sampling is problematic, and the resolution should
depend on the curvature of the shapes. Adaptive fields [11]
may turn out to be a future improvement, or other field types [5]
that can be evaluated from closed forms might be interesting.

Fig. 8 First order explicit Euler stepping causes path traces to twist
and bend in cases, where the path traces are expected to be straight
lines.

The path tracing is done with fixed increments in the gradi-
ent direction. This is similar to solving an ordinary differen-
tial equation using an explicit first order Euler method. The
step-size contributes with anO(∆ε) discretization error. The
effect is that the path traces are not as straight and smooth
as one would expect. This can be observed in Figure 5(a),
where the long path traces are not completely straight lines;
a close-up is shown in Figure 8.

Computing the gradient of a regular sampling using central
differences contributes with aO(∆ε2) discretization error,
and finally the interpolation at non-nodal positions adds nu-
merical diffusion. In combination, this means that sub-cell
accuracy of the regular sampling is difficult to achieve, and
path traces are therefore sometimes stopped too early. The
effect of the regular sampling on path traces is seen in the
case of the bowl and funnel objects in Figure 9.

The last parameter in our implementation is the point-size.
The point-size is basically the accuracy by which we de-
tect merge points. Setting the parameter too high may cause
path traces to merge too quickly. The sphere shape in Fig-
ure 9 illustrates this. Setting the value too low might mean
that merge points are not detected when expected. This is
because the discretization error of the explicit Euler step-
ping is larger than the point-size. One remedy may be to
detect merge points using a k-nearest neighbor search or to
use adaptive step-size control for the path trace. We leave
these ideas for future work.

As seen from Table 1 meshes of size 1000-2000 take roughly
500 seconds to compute with our current implementation.
The computational complexity of our method is bilinear in
the number of vertices and the resolution of the regular sam-
pling. In theory each path trace can be computed in parallel.
Note that the point-size of all the points of the path traces
are the same, thus yielding optimal query time of the spatial
hashing scheme.

After having built a shell mesh, a post-processing step can
be performed to improve the mesh quality. Vertices extruded
from opposite sides of the original surface mesh may meet

6 Kenny Erleben

(a) (b) (c)

(d) (e) (f)

Fig. 7 Examples of shell meshes of more complex shapes: (a)-(c) is the Star object, and (d)-(f) is the Dragon object seen from various directions.

along the medial surface. This implies that intruded vertices
from opposite sides coincide within numerical accuracy. In
a post-processing step, a new shell mesh can be build by per-
forming two passes: In the first pass new unique vertices are
created in the new shell mesh, while keeping track of the cor-
responding vertices in the old shell mesh. In the second pass
tetrahedra are created in the new shell mesh. Prior to creat-
ing a tetrahedron it is verified that all its vertices are unique,
and only in this case is the new tetrahedron created. The im-
provements in quality are shown in Figure 10. The figure
clearly shows an improvement, but it also reveals that mesh
quality is not good. In our case we focused on making the
thickest possible shell mesh. Thus, for most cases this obvi-
ously results in slivers and needles. To achieve some regu-
larity perhaps one should choose a local maximum thickness
of each surface vertex related to the average edge-lengths of
the neighboring edges of the vertex.

The mesh quality of the algorithm, we use [9], has never
been examined. A possible improvement may be to use an-
other tessellation method or to expand the post-processing
by an optimization process [14]. This is quite extensive and
not the focus of the work presented in this paper. We there-
fore, leave it for future work.

In Figure 11 we compare a result from our method with other
methods. In Figure 12 we show the shell mesh of the horn
object using our practical suggestion for choosing the shell
thickness. The figure also illustrates the two main sources
for the generation of silvers and needles. In the supplemen-
tary video we have used the shell mesh from the horn object
in Figure 12 to animate a deformable object hitting a plane

using FEM and linear damped penalty forces. Due to the
thickness of the shell the object appears solid and not hol-
low even with a large residual space. The low tetrahedron
count of the shell mesh yields real-time performance and
reasonable animation quality even though the shell contains
tetrahedra of poor quality.

4 Conclusion

In this paper we have shown a proof of concept, of how to
create volumetric shell meshes by performing path traces in
signed distance and flux fields. The resulting shell meshes
can be as thick as one wishes while still respecting the struc-
ture of the object shapes. Our main contribution is an algo-
rithm using path traces to detect merge points, which yields
the final displacements of points of the original surface mesh.

Our test results show that the tessellation algorithm used
does not create a mesh of suitable quality for numerical sim-
ulation. However, we did demonstrate that simple post-pro-
cessing could improve mesh quality. We leave the problem
of finding a “good” tessellation for future work.

Our shell mesh generation method completely relies on the
properties of the surface meshes. Especially, they must be
non-intersecting twofolds, also know as water-tight surfaces.
This is a major drawback, since models created by artists
often have all kinds of degeneracies. We believe that our
work can be extended to deal with unpleasant meshes us-
ing a coarse resolution pseudo volume as in [21]. From the

Volumetric Shells using Path Tracing 7

(a) Notice the empty space in the center of the sphere.

(b) Notice the empty space at the top of the bowl

(c) Notice the empty space at the top and bottom of
the funnel.

Fig. 9 In these examples the point size parameter was set too high.
This caused path traces to be merged before reaching their true critical
points or too far from the precise merge point. The funnel andbowl
are further troubled by having a thin structure comparable to the node
spacing used.

pseudo volume a twofold surface can be created by isosur-
face extraction. Further smoothing or constrained Delaunay
re-triangulation can be applied to generate a pleasant low
resolution water tight surface mesh. The coarse generated
shell mesh can be coupled to the high-resolution artistic mesh
for visualization purpose.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Quality Measure

C
ou

nt

(a)

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

Quality Measure

C
ou

nt

(b)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Quality Measure

C
ou

nt

(c)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Quality Measure

C
ou

nt

(d)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

Quality Measure

C
ou

nt

(e)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

Quality Measure

C
ou

nt

(f)

Fig. 10 Histograms showing how the volume length quality mea-
sure [14] is improved by removing redundant vertices of the shell
meshes. In (a), (c), and (e) histograms of quality measures are shown
for the box, horn and teapot objects respectively. In (b), (d), and (f) the
corresponding histograms are shown after post-processing.

(a) (b)

(c)

Fig. 11 Comparisons of generated tetrahedra meshes of the Horn ob-
ject. In (a) the result of [17] using extreme thickness, (b) aconstrained
Delaunay Triangulation made using TetGen, and (c) a qualitymesh us-
ing TetGen. Observe that (a) is clearly illegal. Notice that(b) and (c)
cannot possibly be used as shell meshes. Observe the large number of
elements in (c).

8 Kenny Erleben

(a) (b)

(c)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Quality Measure

C
ou

nt

(d)

Fig. 12 In (a) a shell mesh is shown using our method. The thickness
is chosen locally based on the average edge length. In (d) thecorre-
sponding volume length ratio quality measure histogram. Observe that
the quality is better than in Figure 10 (c). In (b) and (c) all tetrahedra
with a volume length ratio less than 0.5 are displayed. Notice that in the
tail-part the generated tetrahedra are dominated by the original surface
triangles, and the small thickness results in slivers and needles. Along
the convex curve one observes almost paper thin tetrahedra.This is an
artifact from the ripple-tessellation method.

References

1. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Varia-
tional tetrahedral meshing. ACM Trans. Graph.24(3), 617–625
(2005). DOI http://doi.acm.org/10.1145/1073204.1073238

2. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA
’01: Proceedings of the sixth ACM symposium on Solid modeling
and applications, pp. 249–266. ACM Press, New York, NY, USA
(2001). DOI http://doi.acm.org/10.1145/376957.376986

3. Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In:
ECCV ’00: Proceedings of the 6th European Conference on Com-
puter Vision-Part I, pp. 603–618. Springer-Verlag, London, UK
(2000)

4. Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonization of three-
dimensional object using generalized potential field. IEEETrans-
actions on Pattern Analysis and Machine Intelligence22(11),
1241–1251 (2000). DOI http://doi.ieeecomputersociety.org/10.
1109/34.888709

5. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton applications. In:
IEEE Visualization, p. 13 (2005)

6. Diatta, A., Giblin, P.: Pre-symmetry sets of 3D shapes. In: Pro-
ceedings of the 1st International Workshop on Deep Structure,
Singularities, and Computer Vision,Lecture Notes in Computer
Science, vol. 3753, pp. 36–49. Springer Verlag (2005)

7. Dimitrov, P., Damon, J.N., Siddiqi, K.: Flux invariants for shape.
In: CVPR (1), pp. 835–841 (2003)

8. Erleben, K., Dohlmann, H.: The thin shell tetrahedral mesh. In:
S.I. Olsen (ed.) Proceedings of DSAGM, pp. 94–102 (2004)

9. Erleben, K., Dohlmann, H., Sporring, J.: The adaptive thin shell
tetrahedral mesh. Journal of WSCG pp. 17–24 (2005)

10. Erleben, K., Sporring, J.: Line-stepping for shell meshes. In:
B. Ersbll, K.S. Pedersen (eds.) Scandinavian Conference onIm-
age Analysis (SCIA ’07),Lecture Notes in Computer Science, vol.
4522. Springer Verlag (2007). (to appear)

11. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adap-
tively sampled distance fields: a general representation ofshape

for computer graphics. In: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pp. 249–
254. ACM Press/Addison-Wesley Publishing Co. (2000). DOI
http://doi.acm.org/10.1145/344779.344899

12. Galoppo, N., Otaduy, M.A., Tekin, S., Gross, M., Lin, M.C.: Soft
articulated characters with fast contact handling. In: Computer
Graphics Forum, vol. 26. Prague, Czech Rep. (2007)

13. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks,
and deformations I: The components of two-dimensional shape
and reaction-diffusion space. International Journal of Computer
Vision 15, 189–224 (1995)

14. Klingner, B.M., Shewchuk, J.R.: Aggressive tetrahedral mesh im-
provement. In: Proceedings of the 16th International Meshing
Roundtable. Seattle, Washington (2007)

15. Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red
green strategy for meshing highly deformable objects with tetra-
hedra. In: International Meshing Roundtable, vol. 12, pp. 103–114
(2003)

16. Müller, M., Teschner, M.: Volumetric meshes for real-time med-
ical simulations. In: Proc. BVM (Bildverarbeitung für dieMedi-
zin), pp. 279–283. Erlangen Germany (2003)

17. Peng, J., Kristjansson, D., Zorin, D.: Interactive modeling of topo-
logically complex geometric detail. In: SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pp. 635–643. ACM, New York, NY,
USA (2004). DOI http://doi.acm.org/10.1145/1186562.1015773

18. Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen,J.Z., Frid-
man, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R.,
Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.:
Deformable m-reps for 3d medical image segmentation. Interna-
tional Journal of Computer Vision55(2/3), 85–106 (2003)

19. Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps.
ACM Trans. Graph.24(3), 626–633 (2005). DOI http://doi.acm.
org/10.1145/1073204.1073239

20. Sethian, J.A.: Level Set Methods and Fast Marching Methods.
Evolving Interfaces in Computational Geometry, Fluid Mechan-
ics, Computer Vision, and Materials Science. Cambridge Univer-
sity Press (1999). Cambridge Monograph on Applied and Com-
putational Mathematics

21. Spillmann, J., Wagner, M., Teschner, M.: Robust tetrahedral
meshing of triangle soups. In: Vision, Modeling, Visualization
VMV’06, pp. 9–16. Aachen, Germany (2006)

22. Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial
axis simplification. In: SPM ’05: Proceedings of the 2005 ACM
symposium on Solid and physical modeling, pp. 39–50. ACM
Press, New York, NY, USA (2005). DOI http://doi.acm.org/10.
1145/1060244.1060250

23. Teschner, M., B. Heidelberger, M.M., Pomeranets, D., Gross, M.:
Optimized spatial hashing for collision detection of deformable
objects. In: Proc. Vision, Modeling, Visualization, pp. 47–54. Mu-
nich, Germany (2003)

Kenny Erleben After his studies
Erleben was employed as full time
researcher in the Company 3DFacto
A/S for a period of 10 months. In
2001 Erleben started on his Ph.D.
studies. During 2004 Erleben stayed
3 months at the Department of
Mathematics, University of Iowa.
Hereafter he received his PhD de-
gree in the begining of 2005 and
finally late 2005 Erleben was em-
ployed as an Assistant Professor at
the Department of Computer Sci-
ence, University of Copenhagen.

