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Figure 1: Underwater view of a swimming pool. Image (a) rendered using regular photon mapping and (b) using our method.

Abstract

A number of popular global illumination algorithms uses density
estimation to approximate indirect illumination. The density es-
timate is performed on finite points - particles - generated by a
stochastic sampling of the scene. In the course of the sampling,
particles, representing light, are stochastically emitted from the
light sources and reflected around the scene. The sampling induces
noise, which in turn is handled by the density estimate during the
illumination reconstruction. Unfortunately, this noise reduction im-
poses a systematic error (bias), which is seen as a blurring of promi-
nent illumination features. This is often not desirable as these may
lose clarity or vanish altogether.

We present an accurate method for reconstruction of indirect illumi-
nation with photon mapping. Instead of reconstructing illumination
using classic density estimation on finite points, we use the corre-
lation of light footprints, created by using Ray Differentials during
the light pass. This procedure gives a high illumination accuracy,
improving the trade-off between bias and variance considerable as
compared to traditional particle tracing algorithms. In this way we
preserve structures in indirect illumination.
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1 Introduction

Monte Carlo sampling is used in a number of global illumination
algorithms. The stochastic natur of Monte Carlo sampling induces
variance, which may require a large number of samples to be re-
duced to an acceptable level. Particle tracing algorithms is a group
of Monte Carlo based Global Illumination algorithms that employs
density estimation in order to reduce this variance. The density es-
timate imposes a trade-off between variance and a systematic error
(bias). Bias is noticeable as a blurring of the illumination. This is
not necessarily a bad effect when concerned with slowly spatially
changing illumination, but it becomes an important problem when
the illumination intensity changes quickly such as when concerned
with caustics and shadows.

In this paper we present a method that enhances edges and struc-
tures of prominent illumination features, improving the trade-off
between variance and bias. We have implemented this method in
photon mapping. Photon mapping is a popular particle tracing al-
gorithm developed by Jensen [1995; 1996].

Particle tracing algorithms usually employ two steps. A first step in
which particles representing light are traced from the light sources
and around the scene, and a second step in which the light transport
information generated during the first step is used to reconstruct
indirect illumination.

Many of the particles traced during the first step have neighbors
which tend to follow the same path. We exploit this coherence by
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tracing imaginary bundles of particles along each trace. Each of
our particles represents a beam of light which expands, contracts
and reshapes, according to the reflections and refraction it under-
goes as it propagates through the scene. This is achieved using Ray
Differentials.

Ray differentials is a technique introduced by Igehy [1999], which
traces two virtual rays along with each real ray by differentiating its
position and direction as it traverse the scene. This translates into
ray footprints which we use to shape the kernels employed in the
density estimate such that they adapt to the illumination structure.
In effect we improve the trade-off between variance and bias as
compared to other particle tracing algorithms.

Figure 1 illustrates two renderings: one using regular photon map-
ping and the other using our method. Both are rendered using the
same number of photons. As can be seen from the images our
method reproduces caustics with more fine details than regular pho-
ton mapping.

2 Related works

As density estimation became relevant to computer graphics so did
the trade-off problem between variance and bias. Numerous papers
address this issue, some of these go beyond common kernel density
techniques.

Photon mapping usually depends on k’th nearest neighbor kernel
estimate to improve the trade-off between bias and variance. How-
ever, in [1995] Jensen proposed an extended method. The method is
called differential checking, and it reduces bias by making sure that
the kernel does not cross boundaries of distinct lighting features.
This is done by expanding the bandwidth ensuring that the estimate
does not increase or decrease drastically, when more photons are
included in the estimate.

Myszkowsky [1997] suggested to solve the problem in much the
same way as Jensen did with differential checking, however, he
made the method easier to control and more robust with respect
to noise. Myszkowsky increase the bandwidth iteratively estimat-
ing the radiance in each step. If new estimates differ more from
previous than what can be contributed variance, then the itera-
tion stops, as the difference is then assumed to be caused by bias.
More recently Schregle [2003] followed-up Myszkowskys work us-
ing the same strategy, but optimizing speed and usability. Speed
is optimized by using a binary search for the optimal bandwidth.
This search starts in a range between a maximum and a minimum
user-defined bandwidth. The range is split up, and the candidate,
whose error is most likely to be caused by variance and not bias, is
searched.

Redner et al. [1995] used b-splines to approximate the illumination
function from a particle density distribution. The b-spline function
is composed of a number of basis functions each associated with a
control point. The advantage of this form of representation is that
the illumination function is easy to evaluate and manipulate and that
the storage consumption is negligible. The method is faced with
the same dilemma as the kernel density estimator as the number of
basis function used in the representation determines the smoothness
of the illumination function.

Shirley et al. [1995] introduced an algorithm for estimating global
illumination. Like photon mapping this algorithm uses density es-
timation to approximate the illumination from particles generated
during a Monte Carlo-based particle tracing step. However, un-
like photon mapping the algorithm is view-independent, and for
this reason the illumination is tied to the geometry. They called the

algorithm the density estimation framework, and they refined it in a
series of papers.

Bias control was not an issue in the first edition of their framework,
but in the paper by Walter et al. [1997] they extended the frame-
work to handle bias near polygonal boundaries. This was done by
converting the density estimation problem into one of regression. In
this way they could use common regression techniques to eliminate
boundary bias.

Later Walter in his PhD thesis [Walter 1998], reduced bias by con-
trolling the bandwidth of the estimate using statistics to recognize
noise from bias. Benefiting from the field of human perception he
used a measure for controlling the bandwidth such that noise in the
estimate was imperceptible to the human eye. Walter recognized
that if bias was to be significantly reduced using his method, then
perceptual noise had to be accepted in the vicinity of prominent
edges and other strong lighting features. This is a common prob-
lem, which also affects differential checking, and both Schregle’s
and Myszkowsky’s method. Hence, in the proximity of strong fea-
tures such as the edges of a caustic the bandwidth stops increasing,
and the foundation on which the estimate is made, is supported by
few photons. This means that when estimates are made close to
edges, the support is limited and noise may occur.

The difference between these algorithms mainly lie in their method
of detecting structure and the degree of change in bandwidth a given
proximity of such structure entails. They use rotation invariant ker-
nels.

In contrast to Myszkowsky, Schregle, and Walter’s approach our
method will smooth along edges and structures, it follows that its
support will not be limited to the same degree in the proximity of
these.

Recently, Schjøth et al. [2006] suggested a bias reducing method
inspired by diffusion filtering. Their method uses a structure ten-
sor to shape-adapt the kernel of the density estimate in order for it
to smooth along edges and structures. The structure tensor is con-
structed from the first order structure of the photon map which is
estimated in an in-between pass.

While Schjøth et al. also use a rotationally variant kernel, their ker-
nels affects a number of photons based on an average of the local
structure. The method proposed in this paper uses a kernel for each
photon. This means that each local estimate is based on the cor-
relation of a number of fixed kernels, each of which is shaped ac-
cording to the structure of the illumination. In effect our method
is more accurate and will be able to handle corners more correctly.
Furthermore, our algorithm does not include an extra pass.

3 Photon mapping

In photon mapping, indirect illumination is reconstructed through
a series of queries to the photon maps. A photon map is a collec-
tion of “photons” created during the particle tracing phase in which
photons are reflected around a scene using Monte Carlo ray tracing.
Each query is used to estimate the reflected radiance at a surface
point as the result of a local photon density estimate. This estimate
is called the radiance estimate.

The accuracy of the radiance estimate is controlled by two impor-
tant factors: the resolution of the photon map and the number of
photons used in each radiance estimate. If few photons are used
in the radiance estimate, then noise in the illumination becomes
visible. If many photons are used, then edges and other sharp illu-
mination features such as those caused by caustics are blurred. It is
impossible to avoid either of these effects, unless an excessive num-
ber of photons are stored in the photon map. This is the mentioned
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trade-off problem between variance versus bias as it manifests itself
in photon mapping.

3.1 The radiance estimate

In his book [2001] Jensen derives an equation which approximates
the reflected radiance at a point, x, using the photon map. This is
done by rewriting the reflected radiance term of the rendering equa-
tion such that it involves an integral over radiant power incident per
unit area rather than radiance incident across the hemisphere. An
approximation of the radiant power incident per unit area is ob-
tained using the k nearest photons around the point, x. In this way
the equation for the reflected radiance becomes

Lr(x, ω) ≈ L̂r(x, ω) =
1

πr(x)2

k∑

i=1

fr(x, ωi, ω)Φi, (1)

where Φi is the radiant power represented by the i’th photon, fr

is the bidirectional reflectance distribution function (abbreviated
BRDF), and r(x) is the radius of a sphere encompassing the k
nearest photons, such that πr(x)2 is the sphere’s cross-sectional
area through its center. The radius is dependent on x, because its
size is decided by the photon density in the proximity of x. In the
context of density estimation r(x) is called the bandwidth.

The bandwidth is important, because its size controls the trade-off
between variance and bias. A small bandwidth gives a limited sup-
port of photons in the estimate; it reduces the bias, but increases the
variance of the estimate. Inversely, estimating the radiance using
a large bandwidth results in an increase in bias and a decrease in
variance.

Using a k’th nearest neighbor search to decide the bandwidth,
Jensen helps limit bias and variance in the estimate by smoothing
more, where the photon density is sparse, and less where the photon
density is dense.

The radiance estimate in (1) is simple insofar as it weights each
photon in the estimate equally. In the thesis by Jensen [1996] the
radiance estimate is refined such that filtering is used to weigh each
photon according to its distance to the point of estimation.

It is possible to reformulate the radiance estimate to a general form
such that it can be used with different filtering techniques. We for-
mulate this general radiance estimate as

L̂r(x, ω) =
1

r(x)2

k∑

i=1

K

(
‖x − xi‖

2

r(x)2

)
fr(x, ωi, ω)Φi, (2)

where xi is the position of the i’th photon and K(y) is a function
that weights the photons according to their distance from x. This
function should be symmetric around x, and it should be normal-
ized such that it integrates to unity within the distance r(x) to x.
In density estimation K(y) is known as the kernel function. Usu-
ally, the kernel function decreases monotonically, weighting pho-
tons near x higher than those farther away. In this way the kernel
function reduce bias, where the change in density is significant.

In his PhD thesis [1996] Jensen presents the cone filter. This filter is
used to reduce bias, such that edges and structure in the illumination
are less blurred. As a kernel in the general radiance estimate the
cone filter has the following form

K(y) =





K(y) =

1−
√

|y|
g

(1− 2

3g
)π

if
√

|y| < 1,

0 otherwise,
(3)

where g ≥ 1 is a constant which controls the steepness of the filter
slope.

Another useful kernel is the Epanechnikov kernel. The Epanech-
nikov kernel is known from statistics for its ability to reduce the
mean integrated square error of kernel density estimation, but it is
furthermore popular because it is computationally inexpensive [Sil-
verman 1986]. In computer graphics, Walter [1998] has employed
it with good results and Schregle [2003] has in his bias case shown
its bias reducing properties to be competitive. In 2D the Epanech-
nikov kernel is given by

K(y) =

{
2
π
(1 − y) if y < 1,

0 otherwise.
(4)

In this paper we use the Epanechnikov kernel to examine our pro-
posed method.

4 Ray differentials

In ray differentials a parameterized ray is differentiated in order
to estimate its propagation as it traverse a scene. Igehy [1999]
demonstrated the technique on texture filtering. Later Suykens et
al. [2001] expanded ray differentials as to include glossy and dif-
fuse reflection and Per H. Christensen et al. [2003] used ray dif-
ferentials to perform efficient multiresolution caching of geometry
and textures.

Here follows a short introduction to ray differentials as presented
by Igehy.

A parameterized ray, r, is defined by its position in space, p, and its
direction, d. The differential of a ray is then the partial derivative
of its position and direction with respect to some initial offset:

∂r

∂u
=

(
∂p

∂u
,
∂d

∂u

)
(5)

These derivatives describe the spread of the ray beam as it is traced
through a scene. The directional derivatives give the rate and direc-
tion of change of the ray beams spread, while the positional deriva-
tives describes its relative size at a given position. In the terminol-
ogy of Suykens et al. [2001], the derivatives multiplied by a finite
distance at the offset is the ray’s differential vectors. We use ∂up
to denote a positional differential vector and ∂ud to denote a di-
rectional differential vector (here both with respect to the variable,
u).

When a ray intersects an object its positional differential vectors are
usually projected down onto the tangential surface of the object at
the intersection point. Here they span a parallelogram, see Figure
2. This parallelogram is the ray’s footprint.

A ray traced through a scene can go through reflections, refractions
and transfers. These are simple operations which can be differenti-
ated. The derivatives of a ray going through such interactions can
then be computed with respect to the initial offset using the Chain
Rule. We refer to Igehy [1999] for the derivatives of these opera-
tions.

5 Photon differentials

In the following we propose to use ray differentials in connection
with photon mapping in order to keep track of the spread of beams
of ’photons’ as they are traced trough a scene. We call these beams,
photon differentials.
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ṕ

Á
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Figure 2: Transfer of a ray and its differential vectors from p to p′.

Photon differentials are traced through the scene much like ordinary
photons; they are stochastically emitted from the light sources, pos-
sibly using stratified sampling, and they are traced and stored in a
caustic map following the rule that only photon beams having fol-
lowed a light path from the light source going through one or more
specular reflections or refractions before being reflected on a diffuse
surface toward the viewer are stored. In the notation of Heckbert
[1990] the definition for this light path is LS+DE.

Unlike ordinary photon tracing, the differentials of the photons are
accounted for as they are traced through the scene. This is done by
keeping track of the positional and directional differential vectors,
updating them using Igehys [1999] equations as they are reflected
and refracted through the scene.

A photon differential is stored along with information about the po-
sitional differential vectors. The exact information stored depends
on whether or not filtering is used. Furthermore it is possible to
store in a way that either optimizes for speed or for storage. This is
explained later in this section.

In the following we will describe light source sampling and lighting
reconstruction. We explain how filtering is performed and finally
we addresses some of the issues concerned with photon differen-
tials.

5.1 Emission from a light source

Given a point light source emitting radiant power, Φl, uniformly in
all directions, the total radiant exitance, Mtotal, leaving the surface
of a unit sphere centered around the point light source is

Mtotal =
Φl

4π
. (6)

Emitting, npd, photon differentials, each represents a fraction of
the total radiant power of the light sources. If each photon dif-
ferential spans a fraction of the area of the unit sphere equal to
Apd = 4π/npd, then a photon differential carries an amount of
radiant power equal to

Φpd = ApdMtotal (7)

=
Φl

npd

. (8)

As the photon differential is traced around the scene, the area of
the parallelogram spanned by the positional differential vectors
changes, Apd → A′

pd. This is illustrated in Figure 2.

When the photon differential has been traced around the scene and
has been projected down onto a surface, its irradiance can be calcu-
lated as

Epd = Φpd/A′
pd. (9)

The irradiance of the photon differential is used to reconstruct the
indirect illumination.

In complete analogy to the isotropic point light source, we also con-
sider an area source emitting uniformly in all directions: For a dif-
fuse light source of area Al, the radiant exitance is

Mtotal =
Φl

Al

. (10)

Assigning the initial area Apd = Al/npd to a photon differential, it
will carry the energy:

Φpd = ApdMtotal =
Φl

npd

. (11)

The irradiance due to a photon differential incident on a diffuse
surface is then found exactly as in (9) (where the area A′

dp is a
modification of the initial photon differential area Adp. The initial
area is modified according to the path which the photon followed
and projected onto the surface where the photon is incident).

5.2 Lighting reconstruction

Irradiance is radiant power incident per unit area at a point x on
a surface. If we consider irradiance due to radiant power incident
from one particular solid angle, the irradiance will have a direc-
tional dependency as well. We have

E(x, ω) =
dΦ(x, ω)

dA
. (12)

By the definition of radiance it follows that

Li(x, ω) =
d2Φ(x, ω)

(nx · ω)dωdA
=

dE(x, ω)

(nx · ω)dω
(13)

or, in other words,

Li(x, ω)(nx · ω)dω = dE(x, ω). (14)

Then the reflected radiance at x in direction ω is [Nicodemus et al.
1977]

Lr(x, ω) =

∫

Ωx

fr(x, ω′, ω)Li(x, ω)(nx · ω′)dω′
(15)

=

∫

Ωx

fr(x, ω′, ω)dE(x, ω). (16)

Using this equation, it is possible to approximate the reflected ra-
diance term of the rendering equation using irradiance due to the
radiant power incident from a particular solid angle. This irradi-
ance is exactly what we obtain from the photon differentials, se (9).
We have

Lr(x, ω) ≈ L̂r(x, ω) =

n∑

pd=1

fr(x, ωpd, ω)∆Epd(x, ωpd), (17)

where n is the number of photon differentials whose footprints
overlap x. When finding the overlap, the footprint of each photon
differential is centered around the intersection point.
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In practice n is found by collecting the photon differentials near-
est x, rejecting the photon differentials not affecting the estimate.
Only the photon differentials within a certain fixed radius need to be
collected. The radius is limited to half the length of the longest po-
sitional differential vector in the photon map. Photon differentials
further away do not affect the estimate.

5.3 Kernel smoothing

Equation 17 provides no smoothing when estimating the illumina-
tion. To provide kernel smoothing we reformulate the equation such
that

L̂r(x, ω) =

n∑

pd=1

fr(x, ωpd, ω)K (Mpd(xpd − x))∆Epd(x, ωpd),

(18)
where K, is the kernel function as described in Section 3.1 and
Mpd, is the matrix which transforms from world coordinates into
a coordinate system with the surface normal and the positional dif-
ferential vectors ∂up and ∂vp as basis vectors. This transformation
is illustrated in Figure 3. We use half the length of the differential
vectors, as we center the footprint around the photon differentials
intersection point, xpd.

Mpd

Geometry space Filter space

xpd

xpdu

xpdv xpdv
^

xpdu
^

xpd

Figure 3: 2D illustration of a transformation from geometry space
to filter space by the matrix Mpd. The ellipse inside the parallelo-
gram is the footprint of the photon differential. When transformed
into filter space the ellipse becomes a unit circle.

Conceptually each photon differential is associated with an ellip-
soid, which in practice works as a three dimensional anisotropic
kernel. The ellipsoid is spanned by the positional differential vec-
tors and the surface normal of the object intersected by the photon
differential, see Figure 4. When filtering we estimate the irradiance
of a photon differential, Epd, using the cross-sectional area, Apd,
of the ellipsoid. This cross-section is an ellipse contained within
the parallelogram spanned by the positional differential vectors of
the photon differential.

xpdv

xpd

xpdu

n

x

A pd

o

Figure 4: Filter kernel of a photon differential illustrated as an
ellipsoid. The size and shape of the kernel is defined by the sur-
face normal of the intersected object and the positional differential
vectors of the photon differential.

In the context of density estimation the radiance estimate, (18), is a
variable-bandwidth kernel estimator, [Simonoff 1996]. With kernel
smoothing we further improve the trade off between variance and

bias. It gives the freedom to choose a suitable kernel, depending on
the task and purpose.

5.4 Implementation

When emitting photon differentials from a light source, the ini-
tial size of the photon differential’s footprint is a smoothing factor
which affects the final image. The size of the footprint corresponds
to the bandwidth in the radiance estimate. In effect a large initial
footprint will reduce noise by promoting bias while a small initial
footprint will have the opposite effect. The initial footprint size
is either set manually or as a function of the number of photons.
When changing the initial footprint size, it is important to adjust
the radiant power of the photon differentials such that their irra-
diance remains the same. In other words we want to balance the
equation, Epd = Φpd/Apd, such that we neither add nor subtract
from the total spectral energy of the scene.

The transformation matrix, Mpd, is a 3 by 3 matrix. It is either be
stored along with the photon differentials demanding an additional
401 bytes per photon differential, or the matrix can be constructed
during run-time thereby demanding only 24 extra bytes per photon
differential in order to store the positional differential vectors. In
our implementation we use the former procedure as the latter im-
poses an overhead on the estimation time.

A problem is that photon differentials provide no security for the
support size of an estimate in a given area. This means that if the
footprints of the photon differentials are small or oblong in an area
with low photon density, noise may appear. To help this problem,
we suggest that density control [Suykens and Willems 2000] is em-
ployed. Note, however, that we do not use density control in our
implementation.

6 Results

In this section we present a case study, exploring the diacaustic of a
simple water wave. This simple case is used to compare our method
with regular photon mapping. Following this we present a more
advanced caustic and finally the time results for the renderings are
examined.

6.1 Case study

The purpose of this case study is to corroborate the ability of photon
differentials to reproduce fine structures in indirect lighting. The
case presented is that of a diacaustic created by refraction of light
through a simple sinusoidal shaped water wave. Although sinu-
soidal waves are not the most accurate model for simulating real
world waves, combinations of sinusoidal waves are often used in
computer graphics to simulate waves in open water. We find the
sinusoidal wave to be well suited for this case study due to its sim-
plicity.

Figure 5 is a diagram of the case study. It illustrates the interaction
between a finite number of collimated light rays2 and a sinusoidal
shaped water wave. The transmission into water causes the light
rays to refract, thus creating a caustic where they intersect the bot-
tom line. The form of the caustic depends on the shape of the wave,
the distance to the bottom line, and the refractive indices of the me-
dia in which the rays traverse. In this case light rays create two
bright points focus where the ray coherence is high. In-between
these focal points is a slightly less bright area. On either side of this
region the ray coherence is low, giving the darkest areas.

136 bytes for the matrix and 4 bytes for the area of the footprint.
2Approximating sunlight.
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Figure 5: Diagram of the case study scene. Illustrates a ray trac-
ing of a sinusoidal shaped water wave illuminated from above by
collimated light.

Figure 6 is a rendering of the case study. The image was rendered
with photon differentials using 20 000 photons. The rendering mir-
ror the diagram quite closely: high intensity in the narrow bands of
the focal areas, lower intensity in between and lowest intensity on
either side of the region bordered by the areas of focus.

Figure 6: Rendering of the case study scene. Rendered with photon
differentials using 20 000 photons.

Now, to approximate the diacaustic most accurately, how narrow
should the focus bands be? How sharp should the edges be? In reg-
ular photon mapping the answer can be found in classical density

estimation. A kernel density estimate f̂ , is a kernel smoothed ver-
sion of the true function, f in addition to random error. Increasing
the number of samples will reduce the variance, making the esti-
mate converge to the true function convolved with the kernel. If the
bandwidth at the same time goes to zero, then our estimate will con-
verge to f . Adjusting the bandwidth controls the trade-off between
bias and variance.

In k’th nearest neighbor photon mapping, the bandwidth is variable.
It is determined by the number of photons used in each radiance es-
timate. To increase the accuracy of the lighting function the total
number of photons should be increased thus decreasing the band-
width.

Similarly, our method will converge toward the true lighting func-
tion as the total number of photons increase and initial differential
size decreases. In the following we will show by example that our
method converges much faster than regular photon mapping.

As a reference image the scene has been rendered with 1 million
photons using regular photon mapping. The camera has been po-
sitioned as to solely capture the caustic. Figure 7a shows this ren-
dering, while Figure 7b reproduces part of the used photon distri-
bution3.

(a)

(b)

Figure 7: Case study - reference images. (a) is a rendering of
the caustic seen in the case study scene, Figure 6. The image was
created with k’th nearest neighbor photon mapping using a photon
map containing 1 million photons. (b) visualizes part of the photon
distribution used to create (a). Only 2 000 photons are shown as to
facilitate visualization.

The image series in Figure 8 are renderings of the case study scene
in Figure 6, with a camera placement similar to that in the reference
image, Figure 7. The images in the first column have been produced
using regular k’th nearest neighbor photon mapping, while the sec-
ond column has been produced with our method. Both methods
uses the Epanechnikov kernel. The bandwidth for all renderings
has been adjusted as to best avoid noise without blurring unneces-
sarily. Each row is based on different numbers of photons in the
photon map. First row has been rendered using 500 photons, sec-
ond using 2 000 photons and the last row has been rendered using
20 000 photons.

Inspecting the images in Figure 8, we see that the image quality
for both methods improve as more photons are included in the pho-
ton map. The focal lines become more pronounced and the edges
becomes sharper and less blurry. The difference between the two
methods is noticeable. Using 500 photons, regular photon mapping
reproduces the focal lines as oblong blobs, in contrast our method
shows the focus lines as distinct lines. At 20 000, the image pro-
duced by our method is comparable to the reference image, Figure
7a.

Furthermore, Figure 8b indicates that even when very few photons
are used, the structure of the caustic is still clearly identifiable. This
assertion is substantiated by the images in Figure 9.

The images in Figure 9 are rendered using photon differential on a
photon map with extremely few photons. In the images the focus
lines are partly flawed, however, parts of the lines are still detectable
and these are of a quality comparable to Figure 8b.

The quality that the structure of caustics is identifiable even at low
photon counts makes photon differentials useful in post-production
as comprehensible images can be obtained at low computational
cost.

6.2 Squashed torus

Figure 10 illustrates a more advanced caustic. It is created by lights
reflection of a mashed-in torus. The caustic, resembling the number

3Only 2 000 photons are shown as to improve visualization

184



(a) (b)

(c) (d)

(e) (f)

Figure 8: Comparison study. Renderings of the study case scene. First column rendered with regular k’th nearest neighbor photon mapping,
while second column was rendered with photon differentials. First row was rendered using 500 photons, second row using 2 000 photons and
third row using 20 000 photons.

(a) (b)

Figure 9: Case study - few photons. Both images was rendered using photon differentials. Image (a) was rendered using 50 photons and (b)
using 100 photons.

8, is much more detailed in the rendering using photon differentials
than the one using regular photon mapping. Notice that the caustics
caught on the back wall in Figure 10,b are not seen in Figure 10,a
where they are blurred out by the density estimate of regular photon
mapping. Both images was rendered with a photon map containing
20 000 photons. Furthermore, the bandwidth of both renderings
was adjusted as to best visualize the caustic.

6.3 Timing results

Scene Method Figure
Photons

in map

Photon

tracing [s]
Rendering

[s]

Pool
Regular 1a 10,000 0.9 215.02
Differentials 1b 10,000 1.3 242.58

Case

study

8a 500 0.01 1.86
Regular 8c 2,000 0.02 2.05

8e 20,000 0.14 4.16
8b 500 0.01 2.63

Differentials 8d 2,000 0.03 3.43
8f 20,000 0.21 4.93

Torus
Regular 10a 20,000 0.49 104.02
Differentials 10b 20,000 0.67 126.91

Table 1: Performance results for the images in Figure 1, 8 and 10.
Times are in seconds.

The photon tracing times for our method are larger than for stan-
dard photon mapping, see Table 1. If the scene complexity or the
number of photons traced goes up this difference will increase. The
increase in difference will, however, stay linear as both algorithms
have the same computational complexity. Likewise, the computa-
tional complexity of the radiance estimates of the two methods are
equal. Our method only has a larger constant.

7 Conclusion

In this paper we investigated the use of ray differentials for light-
ing reconstruction in photon mapping. First we gave an account of
the method in which we explored light source sampling and light
reconstruction using photon differentials. Then we examined the
method using a simple case study of a diacaustic created by a sin-
gle sinusoidal shaped water wave, then a more advanced caustics
was explored and finally we presented the timing results for the
renderings presented in this paper.

From this examination we conclude that with a map of photon dif-
ferentials one obtains better caustic quality with far less photons.
This potentially saves a large amount of time in renderings that re-
quire caustics with high quality edges. We argue that with conven-
tional photon mapping it takes an enormous amount of photons to
generate caustics of the quality needed, for example, for animation
feature films. In a large scene the memory footprint of the needed
photons might cause significant problems. With photon differen-
tials high quality caustics are simply much easier to obtain.

It is furthermore worth to mention that our method is a useful tool
in post-production as photon differentials reveals the structure of
caustics when using even a very low number of photons.
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