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Abstract

Fast and robust signed distance field computation is often either a
performance bottleneck due to high resolution fields or nearly im-
possible due to degeneracies in input meshes. Thus, it can be te-
dious and very time consuming to obtain a signed distance field
to be used for collision detection in for instance a physical based
animation, motion planing, or geometry processing.
Sign leaking problems in scan conversion methods may result

in erroneous signed distance fields for even perfect two-manifold
meshes. We present solutions for the sign leaking problems. The
major contribution is the robust handling of errors caused by over-
lapping bounded volumes of neighboring features.
Our method is simple to implement, and has a tradeoff between

performance and quality. Further the method is robust in the sense
that it handles the sign problems of previous work.
The novelty lies in representing the narrow-band as a decompo-

sition of tetrahedra, a shell mesh. We provide numerous examples
and comparisons on different methods for generating the narrow-
band shell.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: Tetrahedra Mesh, GPGPU, Scan Conversion, Distance
Field

1 Introduction

Signed distance fields are very attractive in computer graphics and
related fields. Often they are used for collision detection in cloth
animation [Bridson et al. 2003], multibody dynamics [Guendelman
et al. 2003], deformable objects [Fisher and Lin 2001], also mesh
generation [Molino et al. 2003; Persson and Strang 2004], motion
planning [Hoff, III et al. 1999], and sculpting [Bærentzen 2001].
In all of these applications a signed distance field is represented

as a regular sampling of the closest distance to the surface of an
object. Usually the convention of using negative values inside the
object and positive values outside the object is applied. There does
exist adaptive distance fields [Frisken et al. 2000], but we will not
consider these in this paper.
The first problem of using distance fields is to actually compute

them. There are several issues involved here: The object surface
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is in most cases modeled as a polygonal model by an animator or
obtained by some means of scanning or segmentation. In all cases
one often has to deal with a polygonal model having holes, flipped
surfaces, overlapping faces, and much worse. This is often termed
inconsistent meshes [Bischoff et al. 2005]. Inconsistent meshes are
unpleasant, mostly because it is not always meaningful, what is in-
side or outside.
The computational complexity is also often problematic. A naı̈ve

implementation on CPU can take hours, even days, to complete for
high-resolution grids (2563 resolution or greater).
Thus the practicalities in obtaining a signed distance field is of-

ten overwhelming, and it is these problems that is the focus of this
paper.
The brute force approach to computing distance fields can be de-

scribed as: For each grid node compute the closest distance to the
faces in a polygonal model. Acceleration techniques do exist, such
as only querying grid nodes against a bounding volume hierarchy
or reversing the iteration to iterate over bounding volumes around
faces. These previous methods used a two-pass strategy to resolve
the sign issue. In [Aanæs and Bærentzen 2003] angle weighted
pseudo-normals was used to determine the correct sign, thus allow-
ing for a single pass only.
A straightforward parallelization of the naı̈ve approach is possi-

ble by reversing the order of iteration, that is for each face compute
the distance to all grid nodes. This was done in [Hoff, III et al.
1999]. Here the authors mesh the distance function of a vertex,
edge, or face, and render it directly to the depth buffer. For vol-
umes this is done in a slice by slice manner, and the distance field is
read back from the depth buffer. Any distance metric can be used,
but signs are not handled. The simplicity of the method is attractive,
although it requires tessellation of elliptical cones and hyperboloid
sheets in 3D. Obviously the tessellation causes discretization errors
in the distance computation, but the errors can be controlled. This
approach is henceforth termed distance meshing.
Scan conversion algorithms using the GPU have become quite

popular. Here various external regions is scan converted which
bounds the space of points lying closer to a geometric feature, than
any other geometric feature. These methods require the construc-
tion of bounded volumes that is scan-converted in a slice by slice
manner. For each grid node being rendered (voxel), a distance value
is being computed. In [Mauch 2003] the characteristic scan conver-
sion (CSC) algorithm was presented. Here three different kinds of
Characteristic Polyhedra is used: A prism (for faces), a cone (for
vertices), and a wedge (for edges). Conceptually easy to under-
stand it is not very clear how the curved surfaces of the cones and
wedges should be tessellated. To avoid aliasing, the polyhedra was
enlarged, however the author did not describe the possible errors in
the computations, caused by grid nodes getting caught on the wrong
side of the surface. This artifact is described in detail in Section 2.
In [Sigg et al. 2003] an optimized GPU version of CSC is pre-

sented, together with a more aggressive scan-conversion method,
named Prism Scan. Here prisms are constructed for faces only, thus
reducing the number of bounded volumes that need to be scan con-
verted. Also a novel fragment program is presented for computing
the signed distances of the rasterized grid nodes.
Prism Scan suffers from the same sign problems as CSC, since

only the face plane are used to determine the sign, explained in de-
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tail in Section 2. These sign errors may seem very innocent since
they only occur rarely for small narrow-bands and smooth curved
objects. However if narrow-band size is increased and objects with
sharp ridges and valleys are scan converted, the sign errors imme-
diately blows up as huge areas of discontinuities where the wrong
side of the surface is leaked into the other side.
Both Prism Scan and CSC are limited by a user specified narrow-

band size, unlike the distance meshing approach which is capable
of computing a full grid.
Both these methods relies on the input surface mesh to be a per-

fect two-manifold. Working with real-world models this is often
not the case and one must often resort to some kind of mesh recon-
struction [Nooruddin and Turk 2003]. In this paper we will take the
stand point that meshes might be ugly and may cause errors in the
signed distance field.
In [Sud et al. 2004] several performance improvements for com-

puting distance fields on graphics hardware are presented. The main
two contributions is a culling method based on occlusion queries
and a conservative clamping computation based on the spatial co-
herency of the distance field. Although distance meshing was used
in this paper, the method generalizes to scan-conversion algorithms
as well, here the conservative clamping can be used to control the
size of the narrow-band parameter.
To summarize, methods for computing distance fields on graph-

ics hardware falls into two different approaches: distance meshing
or scan conversion of bounded volumes. In [Hsieh and Tai 2005] a
hybrid of these two approaches is presented for the 2D case.
Other approaches involve solving the Eikonal equation using for

instance a two stage fast marching method [Sethian 1999b]. First
one marches from the surface out, then from the surface in. In or-
der to be efficient these methods rely on a good (fast) heap imple-
mentation. Besides, one have to seed the fast marching method by
computing the distance values on nodes lying just next to the sur-
face. Whereas the scan conversion methods described above com-
pute exact signed distance fields, fast marching methods have a dis-
cretization error of order O(1). Although [Sethian 1999a] presents
a higher order accurate version.
There are other ways for dealing with the computation of dis-

tance fields, such as Danielsson’s distance field algorithm [Daniels-
son 1980]. Here a four pass scan method is used to propagate dis-
tance information on a regular 2D grid. The method can be ex-
tended to 3D, and has some resemblance with the fast marching
method.
We will not discuss CPU based algorithms any further since it is

our goal to exploit graphics hardware to obtain a sufficient perfor-
mance.
In this paper we will present a novel scan conversion approach.

Our approach combines the novel fragment program from Prism
Scan with the pseudo-normal method. Hereby, we avoid any sign
errors of the previous scan conversion algorithms.
Our approach uses a tetrahedral shell [Erleben and Dohlmann

2004; Erleben et al. 2005], meaning only tetrahedra volumes are
considered. This allows the usage of a fast tetrahedron slicer to
compute cross sections. Slicing tetrahedra are well known from
volume visualization and are extremely efficient. Thus it is cheaper
to compute cross-sections from scratch, and render these, than
doing a 3D scan conversion of more complex prisms, cones, or
wedges.
We will present and discuss several methods for computing tetra-

hedra shells.

• First we will discuss a shell generation method based on sim-
ple extrusion along vertex angle weighted pseudo normals,
which will be combined with a convex hull computation [Bar-
ber et al. 1996], and an enlargement to handle aliasing. The
convex hull computation will ensure consistency and removal
of degeneracies.

A 

B 

Figure 1: Plane test sign error. The figure shows a cross section of
a polygonal model focused on two faces, A and B. Shown together
with the bounded region around A, in which the signed distance
is calculated. In the dashed red area, the points are closest to A,
and the sign will therefore become positive. This is clearly wrong.
The points in the dashed red region is located inside the object, so
the sign should have been negative. The sign will be correct in the
green dashed region. If the planes alone are used to determine the
distance, then the distance will be wrong in both the red and green
dashed areas.

• Then we will extend the simple method with the extrusion
algorithm from the thin tetrahedral shell mesh [Erleben and
Dohlmann 2004] combined with a simple face normal extru-
sion technique to avoid leaking. The benefit over the more
simple approach is a more tight fitting shell with less overlap-
ping tetrahedra, thus implying fewer rasterized grid nodes.

• Finally an oriented bounding box (OBB) fittingmethod is pre-
sented, which is simple and easy to implement. In comparison
with the other methods, it may have large overlapping regions,
even regions expanding far beyond the wanted narrow-band.

The first two shell creation methods, we present, rely on the ability
to compute the angle weighted vertex pseudo normals, the last shell
creation method makes no assumption on the mesh whatsoever and
can be used for unstructured meshes with all kinds of degeneracies.
Note any kind of tetrahedral shell generation method could be

used in our scan conversion method, e.g. the adaptive thin tetra-
hedral shell mesh [Erleben et al. 2005]. This allow for a tradeoff
between simplicity of creation and efficiency of scan-conversion.
The correct sign computation in the fragment program relies on

the angle weighted pseudo normals of both vertices and edges. If
these cannot be computed correctly, then there is no guarantee that
the method will compute the proper sign of the distance field.
We have organized our paper as follows: In Section 2 we de-

scribe the leaking problems and their sources. Hereafter we present
our method in Section 3 and our results in Section 4. Finally we
conclude in Section 5.

2 Leaking

In characteristic scan conversion (CSC) and Prism Scan a plane test
is used to determine the sign of the distance function, as illustrated
in Figure 1. As seen in the figure, this may lead to incorrect com-
putation of the sign. In the case of CSC this becomes even worse,
because the characteristic polyhedra are enlarged to avoid aliasing.
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Figure 2: Real life example of leaking due to the plane test prob-
lem. Note that the red color have leaked into the blue color. Red
is negative and blue is positive. Figure 7 shows the result using our
method.

Thus for the face case, the distance of grid nodes outside the face-
Voronoi region are also computed wrt. the face plane. This means
that the dashed lines will produce grid nodes with distances close
to zero inside Voronoi regions of neighboring faces. Prism Scan
performs a case analysis of grid nodes in enlarged regions and will
only suffer from a wrong sign computation. Figure 2 show real life
examples of these problems.

Requiring a mesh to be a two-manifold is not a sufficient con-
dition to avoid sign problems. If a surface mesh contains folds,
then the orientation of a triangle face can be flipped. Thus, if scan-
conversion algorithms are used, then the results depend on the scan
order. If the flipped face is scan converted first, then it will result
in wrong sign computations. This creates a strange leaking effect.
Figure 4 illustrates the mesh-topology of a fold, and Figure 3 shows
a real life example.

The final source for leaking problems is due to construction of
bounding volumes representing the narrow-band. This is illustrated
in Figure 5. Here, the narrow-band shells have different widths on
opposite sides of a thin region. This causes the inside region of one
side to extend beyond the outside region on the opposite side. In
Figure 6 a real life example is shown.

Our method the Tetrahedra (T4) GPU scan method is capable
of handling the leaking by plane test and construction problems as
shown in Figure 7.

Figure 3: Real life example of leaking by the folding problem. Note
that red color is leaking into the blue color. Red is negative and blue
is positive. The triangles shaded in black are folded.

Fold 

F 

B 

Figure 4: A planar mesh is folded, such that the back side B of a
triangle is turning outside instead of the front side F .
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Inside Leaking 

Thin Object 

Figure 5: Cross section of a mesh with thin structure, shown to-
gether with their bounding regions. The top face has a bounding
region shown in green, and the bottom face has a bounding region
shown in red. For this configuration, the bounding region of the
top face extrudes below the bounding region of the bottom face.
This results in the small grey area, wherein the distance becomes
negative.

Figure 6: Real life example of leaking by construction problem.
Observe the red area on the wrong side of the blue area. Figure 7
shows the result using our method.

3 The T4 GPU Scan Method

We call our method the tetrahedron (T4) GPU scan method. In the
following we will give an overview of our method.
Given a surface of an object as a collection of triangles, we com-

pute the signed distance within a user specified narrow-band. First
we generate tetrahedra in such a way that a single tetrahedron is
related to a single triangle face. Note that several tetrahedra can be
related to the same triangle face. Tetrahedra are generated while
iterating over the triangular faces. Figure 8 illustrates the tetrahe-
dra shell creation in pseudo code. A tetrahedron bounds a region
of space containing a subset of grid nodes. For each of these grid
nodes, the closest distance to the related triangle face is computed,
and the sign is determined using pseudo-normals.
In order to determine the grid nodes lying inside a tetrahedron

we move a z-plane in the direction of the positive z-axis. At each
z-slice of the regular grid, we halt the z-plane and find the cross
sections between tetrahedra and the z-plane. We have adopted a
simple sweep-line [de Berg et al. 1997] algorithm to quickly find
all tetrahedra that intersects the z-plane. As an alternative one could
use the occlusion query method from [Sud et al. 2004].
Having found the cross-sections we render these and use a GPU

fragment program to compute the signed distances. Before moving
on to the next z-slice of the regular grid, we read back the computed

Figure 7: Example showing how our T4 GPU scan method handles
the real-life examples from Figure 2 and 6. Notice that no leaking
is present.

distance values from the frame-buffer, and store it in an internal data
structure.
Figure 9 shows the overall steps of the T4 GPU scan method.

Note that the shell creation could be done during the scan conver-
sion, which will minimize storage usage. However, in our imple-
mentation we have chosen to keep the shell creation as a separate
stage for better modularity of the implementation.
Our shell creation methods presented in Section 3.3, 3.4, and

3.5 have linear time complexity, O(n) in the number of triangle
faces n, because while iterating once over the triangle faces a fixed
number of tetrahedra is generated for each triangle face. The ini-
tialization of the sweep-line ie. the z-sorting of the tetrahedra have
O(nlgn) time complexity, although the actual scan-conversion can
be expected to have linear complexity in the number of generated
tetrahedra.
In the following subsections we will describe the details of the

individual steps. In Section 3.1 we describe an efficient method for
computing the cross-section of a tetrahedron and a z-plane. In Sec-
tion 3.2 we describe how to compute the signed distance values in
a fragment program. In section 3.3 we describe a simple approach
to shell creation, which is extended in Section 3.4. Finally in Sec-
tion 3.5 another shell creation approach is described.

3.1 Computing Cross Section of a Tetrahedron

We use tetrahedra as the underlying primitive that bounds the mesh.
To scan convert the distance field, we therefore need an efficient
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algorithm create-shell()
L = empty list
for each face F
generate tetrahedra of F
add tetrahedra to L

next F
sort L in increasing min. z-values

end algorithm

Figure 8: Pseudo code for tetrahedra shell generation.

algorithm T4-GPU-scan()
for z = min z plane to max z plane
set S = {t in L, and intersects z}
for tetrahedra t in S

find cross-section with z
render cross section

next t
read back distance values

next z
end algorithm

Figure 9: Pseudo code for our tetrahedra (T4) GPU scan conversion
method.

way to slice a tetrahedron with a plane. This method is inspired
by [Bærentzen 2005].
To calculate a cross section of a tetrahedron, the four points of

the tetrahedron is sorted by increasing z-value. This allows for a
very simple algorithm to find the number of intersections and to
create polygons to be processed by the fragment program.
Consider Figure 10. If the z-plane under consideration is below

the lowest point in the tetrahedron, then there will be no intersec-
tions. Similar, if the z-plane is above the highest point in the tetra-
hedron, then there will be no intersections.
There are only three topologically distinct ways a z-plane can

actually slice the tetrahedron:

A: The z-plane lies below p1. In this case the plane cuts the lines
p0p3, p0p1, and p0p2.

B: The z-plane lies between p1 and p2. In this case the plane cuts
the lines p0p3, p1p3, p1p2, and p0p2.

C: The z-plane lies above p2. In this case the plane cuts the lines
p0p3, p1p3, and p2p3.

In case B, the polygon will always be convex. This can be seen
by drawing all the possible configurations of a tetrahedron and con-
sider the order, in which the plane cuts the four lines.
Cases, where the tetrahedron is only sliced in one point or along a

line, has no area and should not be considered. The above algorithm
ensures this never happens.
The polygons might be either clockwise or counter-clockwise,

so a post-process might be necessary to ensure a proper orientation.
However, the T4 GPU Scan method does not need this property.

3.2 Computing the Sign using Angle Weighted
Pseudo Normals

A novel fragment program was introduced in [Sigg et al. 2003],
which calculated the distance to a triangle. Here we give a descrip-
tion of the case analysis used to determine the distance, together

A 

B 

C 

3 

1 

2 

0 

Figure 10: The possible topological different slicings of a tetrahe-
dron.

(r,s,t ) 

(x,y,z) 

Figure 11: Local triangle frame for a triangle in the mesh and a
related cross section.

with our extension that calculates the correct sign using the angle
weighted pseudo normals.
Each triangle on the mesh is encased in a bounded volume. Each

bounding volume consists of tetrahedra. The triangle is used to cre-
ate a local triangle frame consisting of vectors!r, !s and!t, as shown
in Figure 11. The coordinates of the slice of the tetrahedron is con-
verted to the local triangle frame and send to the GPU as texture
coordinates.
The triangle on the mesh is analyzed to produce three lengths:

the height called h, the length from the origin of the triangle frame
to vertex !v1 called a, and the length from the origin to vertex !v0
called b. See Figure 12. Further, the six angle weighted pseudo
normals, !nv0 , !nv1 , and !nv2 for the vertices, and !ne0 , !ne1 , and !ne2 for
the edges, are calculated and transformed to the local triangle frame
using a rotation matrix constructed from unit column vectors, as
shown in (1).

!n′ =
[
!a
||!a||

!h
||!h||

!n
||!n||

]T
!n, (1)

where!n′ is the transformed normal of!n. These pseudo normals and
the three lengths are sent to the GPU as texture coordinates.
On the GPU, the first thing that happens is a reduction of the

problem to the half-plane, where r ≥ 0. That is, if the r-coordinate
is negative, we flip the data such that r = −r, a= b, !nv1 =!nv0 , and
!ne1 =!ne2 . This reduces the further analysis considerably.
Next, the r′-, and s′-coordinates is constructed from the r- and s-

coordinates, and a case analysis is performed according to regions
shown in Figure 13. From the case analysis, the distance to the clos-
est feature can be computed, and the corresponding pseudo-normal
can be determined. The sign of point !p can be computed using the
pseudo normal of the closest feature, !n(!c), and some point, !c, on
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Figure 12: Local triangle with lengths a, b and h, and pseudo nor-
mals.
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(r,s,t) 

(r',s',t') 

Figure 13: Regions used in the case analysis for the triangle.

the closest feature, as

d =!n(!c) · (!p−!c), (2)

as described in [Bærentzen and Aanæs 2005].

3.3 Angle Weighted Vertex Pseudo Normal Shell

For each triangular face we extrude the user-specified narrow-band
distance, ε , outward and inward along vertex normals, which gen-
erates 6 points. Then we compute the convex hull to get a con-
vex mesh completely covering and enclosing the triangular face,
as shown in Figure 14. Hereafter we use the center of the con-
vex mesh as apex for each generated tetrahedron and the triangular
faces of the convex hull as bases of the generated tetrahedra. If
non-triangular faces are found, then we use a simple ear-clipping
algorithm [O’Rourke 1998] to tessellate these into triangular faces.
Note that this will in general not generate a connected tetrahedra

mesh. In some cases tetrahedra generated from one face do not
connect nicely with tetrahedra generated from neighboring faces.
This is either because, the quadrilateral faces of the generated

prism in Figure 14 are not necessarily planar, or because the extru-
sion may cross over and create a swallow tail as shown in Figure 15.
In both cases using the convex hull of the extruded vertices

ensures a conservative coverage; it also guarantees that no gaps
will occur between the bounded region of the convex hull and the

Figure 14: Convex hull of pseudo normal extruded vertices.

Extruded 

Convex Hull 

Pseudo Normal 

Too Large 

Figure 15: Swallow-tail extrusion making shell region of a single
face too large. The too large region is illustrated in grey.

bounded regions of hulls from neighboring faces. The drawback
is that grid nodes belonging to overlapping regions will be scan-
converted more than once, causing a slight performance degrada-
tion.
Aliasing artifacts from rasterization of the sliced cross-sections

may cause empty voxels inside the narrow-band. Working with
floating point arithmetics may lead to numerical imprecision and
truncation errors. Thus, even if the tetrahedra generated from two
neighboring faces are perfectly meeting along the shared edge of
the faces, then truncation and imprecision can lead to small voids.
Furthermore, obscure faces could result in oblong tetrahedra, which
would generate slivers when rendered. In conclusion, empty re-
gions are unavoidable unless we do something extra.
The method of choice in the past have been to enlarge the poly-

hedra being scan-converted. However past methods did not rec-
ognize the leaking problems caused by the enlargement. Besides,
enlargement have an inherent scale dependency of mesh size versus
grid spacing, thus leading to an element of parameter tuning. Con-
servative rasterization [Hasselgren et al. 2005] ensures no aliasing
effects and have no element of parameter tuning. The only draw-
back is a computational penalty, due to extra geometry processing
in the vertex program pipeline. Another problem with the pseudo
normal based shell creation method is that it may result in a leaking
problem, due to the way the shell mesh is constructed.

3.4 Thin Tetrahedral Shell

The shell creation method in the previous section suffers from the
swallow tail problem. This causes the shell around a single face
too become too large, thus causing large overlapping regions with
neighboring faces. This is illustrated in Figure 15. To remedy
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Extruded 

Tight Convex Hull 

Thin shell Extruded 

Figure 16: Using thin-shell extrusion lengths result in a more tight
fitting convex hull, illustrated by the grey area.
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Figure 17: The six corner points defining a prism, and vectors yield-
ing extrusion directions.

this problem we could try to keep the shell region of a single face
as tight as possible, e.g. by using the thin-shell extrusion length
method in [Erleben and Dohlmann 2004], the details of which will
be described later.
Using the thin-shell extrusion length method we compute three

inward extruded vertices and three outward extruded vertices, for a
total of 6 vertex positions which is passed along to the convex hull
algorithm before doing the tetrahedra tessellation. Again convex
hull and apex construction method can be applied as in the pseudo
normal shell method. Note that if the extrusion length is limited,
then the coordinates of some of the 6 extruded vertices will be the
same. Figure 16 illustrates the thin-shell idea.
Given a triangle consisting of three vertices !p1, !p2, and !p3,

with corresponding three unit direction vectors (we use the angle
weighted normals) !n1, !n2, and !n3, indicating the extrusion line di-
rection, Then the inward extruded prism is defined by the six corner
points (!p1,!p2,!p3) and (!q1,!q2,!q3) where:

!q1(ε) = !p1−!n1ε (3)
!q2(ε) = !p2−!n2ε (4)
!q3(ε) = !p3−!n3ε. (5)

The extrusion length is given by ε > 0. Notation is illustrated in
Figure 17. Similarly, the corner points of the outward extrusion can
be found by flipping the extrusion direction vectors.
By requiring ε to be strictly positive, all generated prisms will

have non-zero volume. We therefore seek a robust way to determine
an upper bound on ε , such that the prism will be valid.

The direction of the normal of the extruded face,!nq, can be found
from!q1, !q2, and !q3, using the cross-product:

!nq(ε) = (!q2(ε)−!q1(ε))× (!q3(ε)−!q1(ε)) . (6)

This is a second order polynomial in ε ,

!nq(ε) =!aε2+!bε+!c, (7)

where

!a= (!n1−!n2)× (!n1−!n3) (8)
!b= (!p2−!p1)× (!n1−!n3)+(!n1−!n2)× (!p3−!p1) (9)
!c= (!p2−!p1)× (!p3−!p1) . (10)

Observe that!c &=!0, since its magnitude is equal to twice the area of
the triangle being extruded.
To ensure we avoid a swallow-tail, the dot product of the di-

rection of the normal of the extruded face, !nq, with the vectors,
!n1, !n2, and !n3, must always be positive. That is !n1 ·!nq(ε) > 0,
!n2 ·!nq(ε) > 0, and!n3 ·!nq(ε) > 0. This yields the following system
of constraints,




!n1 ·!a !n1 ·!b !n1 ·!c
!n2 ·!a !n2 ·!b !n2 ·!c
!n3 ·!a !n3 ·!b !n3 ·!c








ε2

ε
1



 > 0. (11)

We solve for the smallest positive ε fulfilling the system of con-
straints. That is, each row represents the coefficient of a second
order polynomial in ε , thus for each row we find the two roots of
the corresponding polynomial. The three rows yields a total of 6
roots. If no positive root exist, then ε = ∞, otherwise ε is set equal
to the smallest positive root.
In fact, the tree dot-product constraints ensure that no neighbor-

ing prism will intersect each other, nor will the prism turn its inside
out (ie. flipping the extruded face opposite the original face).
The thin-shell extrusion length creation method can lead to a

leaking artifact, when creating shells for thin objects. This is il-
lustrated in Figure 5. Computing extrusion lengths along vertex
normals only guarantee that we reach the outer boundary of the
narrow-band along the vertex normals. Everywhere else the com-
puted narrow-band will have less extent than along the vertex nor-
mals.
To minimize the chance of leaking due to differences in pseudo

normal angles and trying to make the narrow-band evenly thick, we
could extend the current shell creation method with more extruded
vertices. We have chosen to make an outward and inward extrusion
of the face vertices along the face normal, thus passing a total of 12
extruded points to the convex hull algorithm. We term this heuristic
“face-offsetting”.
The idea of face-offsetting is illustrated in Figure 18. Face-

offsetting do result in lesser tight shell region around the face. Thus
increasing overlap with shell region of neighboring faces. This
causes more grid nodes to be scan converted.

3.5 OBB Shell

Using the longest edge, !e, and the orthogonal height vector, !h, a
tight fitting rectangle can be placed in the face plane of the triangle.
Hereafter the rectangle is enlarged by the user-specified narrow-
band size, ε . Finally the four vertices of the rectangle are extruded
ε-distance outward and inward along the face normal, !n, in order
to produce an enclosing OBB around the triangle face. Figure 19
illustrates the steps involved. The OBB can be directly decomposed
into 5 tetrahedra. This is very simple to implement and nearly
impossible to get wrong. It does ensure a complete coverage of
the narrow-band, although large parts may stick outside or overlap.
Thus simplicity comes at a performance degradation.
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Figure 18: Using face-offsetting to minimize chance of leaking and
creating a more evenly thick narrow-band. Grey area show the re-
dundant region.
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Figure 19: Fitting an OBB around a triangle face.

4 Results

All measurements were performed on a 2.4 GHz P4, with 4GB
RAM, running Gentoo Linux. The graphics card installed is a
Geforce 6800GT with 256MB RAM. We used a narrow-band size
corresponding to 10% of the maximum mesh extend.
We have plotted performance measurements in Figures 20, 21,

22, 23, 24, 25, and 26. As expected all figures shows linear com-
plexity that scales with mesh sizes.
Figures 22, 23, 24, and 25 show the CPU time overhead for the

4 different configurations. A clear bottleneck in our implementa-
tion is the lookup operations in our tetrahedra mesh. Next most
expensive operation is surface mesh lookup of vertex coordinates
and normals.
Figure 26 shows the GPU time overhead. It shows that the frag-

ment program is computationally most expensive and out-weights
the frame-buffer read back for large mesh sizes.
In Figure 27 we have shown a few of our signed distance field

results using OBB shell creation method. Left column shows the
sign computation. Middle column shown the signed distance field.
Right column has the mesh super-imposed. Note that no leaking
is present, and that the signed distance field appears smooth every-
where.
Figure 28 shows the different narrow-bands obtained using the

different shell creation methods. Here it is clearly seen that pseudo-
normal extrusion, thin-shell extrusion, and face-offsetting creates a
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Figure 20: Time used totally.
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Figure 21: Time used to create the shell.

somewhat jagged narrow-band. The OBB creation method clearly
yields the best quality, however it is also the one with worst scan
conversion performance as seen in Figure 20. This is due to the too
large OBBs extending far beyond the narrow-band size and having
large overlaps.

5 Conclusion

We have presented an approach for scan conversion of signed dis-
tance fields.

• It is based on a single type of simple geometry: a tetrahedron.

• It uses pseudo normals to handle correct sign computations.

We have presented several shell generation methods and dis-
cussed drawbacks and benefits. They are all simple to understand
easy to implement. All put together our work yields a robust, sim-
ple, and efficient system for computing signed distance fields.
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(a) Cow

(b) Knot

(c) Propeller

(d) armadillo

Figure 27: Sign verification and Signed Distance Field Results. Red is negative and blue is positive.
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(a) Pseudo normal (b) Thin shell with face offset (c) OBB shell

Figure 28: Differences in shell creation method illustrated using a cylinder. Red is negative and blue is positive.
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Figure 22: Time used to process the geometry on the CPU for
pseudo normal extrusion and anti-aliasing.

0.5 1 1.5 2 2.5 3
x 105

0

20

40

60

80

100

120

140

160

Face count

Se
co

nd
s

CPU Time − Thin Shell

 

 

Status Set Init
Vertex Extraction
Local Frame Init
Slicing
Normal Extraction
Normal Transform
Status Set Update
T4 Overhead

Figure 23: Time used to process the geometry on the CPU for thin
shell extrusion length.
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Figure 24: Time used to process the geometry on the CPU for the
addition of face offsetting.
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Figure 25: Time used to process the geometry on the CPU for the
OBB shell creation method.
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Figure 26: Time used to process the geometry on the GPU.

There is still room for improvements in this work. Faster meth-
ods of generating tight fitting tetrahedral shell meshes could boost
the performance.
Although we have presented a shell generation method not re-

lying on pseudo normals, the fragment program does need the
pseudo normals. This may be an disadvantage for several degener-
ate meshes, that have redundant vertices creating open boundaries,
which meet, but are not topologically connected. Other than that,
the method is capable of handling open boundaries, even overlap-
ping faces. Future work could focus on the dependence on pseudo
normals, for instance by an algorithm capable of computing mean-
ingful pseudo normals for degenerate meshes.
Besides, we have shown that folding cannot be handled with

pseudo-normals. We speculate that a solution to folding problems
requires a two-pass method. This is left as future work.
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