
“book” — 2005/9/30 — 15:44 — page i — #1✐
✐

✐
✐

✐
✐

✐
✐

Physics-Based Animation

Kenny Erleben Jon Sporring Knud Henriksen
Henrik Dohlmann

“book” — 2005/9/30 — 15:44 — page ii — #2✐
✐

✐
✐

✐
✐

✐
✐

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN INVOLVED IN
THE WRITING, CREATION OR PRODUCTION OF THE ACCOMPANYING CODE IN THE TEX-
TUAL MATERIAL IN THE BOOK, CANNOT AND DO NOT WARRANT THE PERFORMANCE
OR RESULTS THAT MAY BE OBTAINED BY USING THE CONTENTS OF THE BOOK. THE AU-
THOR AND PUBLISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE ACCURACY
AND FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS DESCRIBED HEREIN.
WE HOWEVER, MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, REGARDING
THE PERFORMANCE OF THESE PROGRAMS OR CONTENTS. THE BOOK IS SOLD “AS IS”
WITHOUT WARRANTY (EXCEPT FOR DEFECTIVE MATERIALS USED IN MANUFACTURING
THE BOOK OR DUE TO FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, AND ANYONE INVOLVED IN THE PRODUCTION AND MAN-
UFACTURING OF THIS WORK SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND ARIS-
ING OUT OF THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE,
OR TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS INCLUDES, BUT IS NOT
LIMITED TO, LOSS OF REVENUE OR PROFIT, OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY LIMITED TO
REPLACEMENT OF THE BOOK, AND ONLY AT THE DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM STATE TO
STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

“book” — 2005/9/30 — 15:44 — page iii — #3✐
✐

✐
✐

✐
✐

✐
✐

Physics-Based Animation

Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts

“book” — 2005/9/30 — 15:44 — page iv — #4✐
✐

✐
✐

✐
✐

✐
✐

iv

Copyright 2005 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

Publisher: Jenifer Niles
Cover Design: Tyler Creative
Cover Image: Kenny Erleben
Graphical Consultant: André Tischer Poulsen

CHARLES RIVER MEDIA, INC.
10 Downer Avenue
Hingham, Massachusetts 02043
781-740-0400
781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann. Physics-Based Animation.
ISBN: 1-58450-380-7

All brand names and product names mentioned in this book are trademarks or service marks of their re-
spective companies. Any omission or misuse (of any kind) of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Physics-based animation / Kenny Erleben . . . [et al.]. — 1st ed.

p. cm.
Includes index.
ISBN 1-58450-380-7 (hardcover : alk. paper)
1. Computer animation. I. Erleben, Kenny, 1974-
TR897.7.P525 2005
006.6’96–dc22

2005017654

05 7 6 5 4 3 2 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups,
corporations, etc. For additional information, please contact the Special Sales Department at 781-740-
0400.

“book” — 2005/9/30 — 15:44 — page v — #5✐
✐

✐
✐

✐
✐

✐
✐

Contents

Preface xi

1 Introduction 1
1.1 The Computer Graphics Model . 2
1.2 The Taxonomy of Physics-Based Animation Methods 3
1.3 Scientific Computing versus Computer Graphics in Practice 5
1.4 Future Points of Study . 7
1.5 Readers Guide . 9

I The Kinematics 11

2 Articulated Figures 15
2.1 Links and Joints . 15
2.2 Paired Joint Coordinates . 17
2.3 Denavit-Hartenberg . 22

3 Forward and Inverse Kinematics 45
3.1 End Effector . 45
3.2 Forward Kinematics . 51
3.3 Inverse Kinematics . 52

4 Motion Interpolation 71
4.1 Key-Framing . 71
4.2 Scripted Motion Using Splines . 76

II Multibody Animation 85

5 Penalty-Based Multibody Animation 89
5.1 The Basics . 89
5.2 The Harmonic Oscillator . 94
5.3 Picking Parameter Values . 99
5.4 Solving Harmonic Oscillators Numerically . 104

v

“book” — 2005/9/30 — 15:44 — page vi — #6✐
✐

✐
✐

✐
✐

✐
✐

vi CONTENTS

5.5 Using the Penalty Method in Practice . 106
5.6 Secondary Oscillations . 109
5.7 Inverse Dynamics Approach . 112
5.8 Modeling Friction . 120
5.9 Survey on Past Work . 122

6 Impulse-Based Multibody Animation 125
6.1 Single-Point Collision . 125
6.2 Multiple Points of Collision . 152
6.3 Conservative Advancement . 166
6.4 Fixed Stepping with Separation of Collision and Contacts 172

7 Constraint-Based Multibody Animation 183
7.1 Equations of Motion . 184
7.2 The Contact Condition . 189
7.3 Linearizing . 191
7.4 The Frictional Case . 193
7.5 Joints . 197
7.6 Joint Modeling . 205
7.7 Joint Types . 208
7.8 Joint Limits . 222
7.9 Joint Motors . 227
7.10 Time-Stepping Methods . 229
7.11 A Unified Object-Oriented Constraint Design . 238
7.12 Modified Position Update . 241
7.13 Constraint Force Mixing . 246
7.14 First-Order World . 247
7.15 Previous Work . 254

III The Dynamics of Deformable Objects 257

8 Particle Systems 265
8.1 Newtonian Particle Systems . 265
8.2 Solving Ordinary Differential Equations . 266
8.3 Hooke’s Spring Law . 268
8.4 Particle Forces . 270
8.5 Energy Systems . 292
8.6 Constraint Dynamics . 295
8.7 Large Steps in Cloth Simulation . 299

“book” — 2005/9/30 — 15:44 — page vii — #7✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION vii

9 Continuum Models with Finite Differences 305
9.1 A Model for Deformable Objects . 305
9.2 Model Relaxation . 310
9.3 Discretizing the Model Relaxation . 317
9.4 The External Forces . 331

10 The Finite Element Method 335
10.1 Tetrahedral Geometry . 335
10.2 Elastic Solids with Finite Element Models . 340
10.3 Stiffness Warping . 358
10.4 Time Integration . 366
10.5 Mesh Coupling . 367
10.6 Finite Element Method in the Literature . 368

11 Computational Fluid Dynamics 371
11.1 Waves . 371
11.2 Fluid Motion . 378
11.3 Smoothed Particle Hydrodynamics . 391

IV Collision Detection 397

12 Broad-Phase Collision Detection 401
12.1 The Four Principles for Dynamic Algorithms . 403
12.2 Exhaustive Search . 413
12.3 Sweep and Prune . 416
12.4 Hierarchical Hash Tables . 421
12.5 Using the Kinematics Principle . 427

13 Introduction to Narrow-Phase Collision Detection 433

14 Contact Determination 437
14.1 Contact Regions, Normals, and Planes . 437
14.2 A Geometrical Algorithm . 445
14.3 A Contact Tracking Algorithm . 447

15 Bounding Volume Hierarchies 451
15.1 Tandem Traversal . 451
15.2 Coordinate Space Updates . 458
15.3 Approximating and Hybrid BVHs . 462
15.4 Performance and Complexity . 465
15.5 Hierarchy Construction Methods . 471
15.6 Smallest Enclosing Volume . 483

“book” — 2005/9/30 — 15:44 — page viii — #8✐
✐

✐
✐

✐
✐

✐
✐

viii CONTENTS

15.7 Handling Deformable Objects . 492
15.8 Contact Determination with BVHs . 504
15.9 Previous Work . 521

16 Feature-Based Algorithms 525
16.1 CULLIDE . 525
16.2 Optimal Spatial Hashing . 530
16.3 The Voronoi-Clip Algorithm . 533
16.4 Recursive Search Algorithms . 552

17 Volume-Based Algorithms 557
17.1 Distance Maps . 557
17.2 Layered Depth Image . 559
17.3 Previous Work . 564

V Mathematics and Physics for Animation 567

18 Vectors, Matrices, and Quaternions 571
18.1 Vectors . 571
18.2 Matrices . 575
18.3 Scalar and Vector Fields . 587
18.4 Functional Derivatives . 597
18.5 Quaternions . 600

19 Solving Linear Systems of Equations 605
19.1 Gauss Elimination . 605
19.2 LU Decomposition . 608
19.3 Singular Value Decomposition . 611
19.4 Linear Least Squares . 612
19.5 The Jacobi and Gauss-Seidel Methods . 613
19.6 Successive Over Relaxation . 616
19.7 Stopping Criteria for Iterative Solvers . 619
19.8 The Gradient Descent Method . 621
19.9 The Conjugate Gradient Method . 624
19.10 The Linear Complementarity Problem . 629

20 Taylor Expansion and Derivative Approximations 635
20.1 Taylor Series . 635
20.2 Finite Differences by Forward, Backward, and Central Approximations 637

“book” — 2005/9/30 — 15:44 — page ix — #9✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION ix

21 Calculus of Variation 641
21.1 Deriving the Euler-Lagrange Equation . 641
21.2 Equation for Many Independent and High-Order Derivatives of 1 Dependent Variable . . 643
21.3 Equation for Many Dependent Variables . 645

22 Basic Classical Mechanics 647
22.1 The Newton-Euler Equations of Motion . 647
22.2 Coulomb’s Friction Law . 667
22.3 Work and Energy . 670
22.4 The Harmonic Oscillator . 675
22.5 The Lagrange Formulation . 682
22.6 Principle of Virtual Work . 688
22.7 Stress and Strain . 690

23 Differential Equations and Numerical Integration 695
23.1 Ordinary Differential Equations . 695
23.2 Partial Differential Equations . 703
23.3 Level-Set Methods . 724

24 Open Nonuniform B-Spline Theory 727
24.1 The B-Spline Basis Functions . 727
24.2 The B-Spline . 738
24.3 Global Interpolation . 741
24.4 Cubic Curve Decomposition . 745
24.5 Accumulated Arc Length Table . 756
24.6 The Regular Cubic Nonuniform B-Spline . 757
24.7 The de Boor Algorithm . 762
24.8 Repeated Knot Insertion . 764

25 Software: OpenTissue 769
25.1 Background History of OpenTissue . 769
25.2 Obtaining OpenTissue . 770
25.3 Using OpenTissue . 771

26 Notation, Units, and Physical Constants 777

Bibliography 782

Index 803

“book” — 2005/9/30 — 15:44 — page x — #10✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page xi — #11✐
✐

✐
✐

✐
✐

✐
✐

Preface

Physics-based animation is becoming increasingly popular due to its use in computer games, for producing
special effects in movies, and as part of surgical simulation systems. Over the past decade the field has
matured, and today there is a wealth of simulation methods solving many simulation problems. There is a
vast amount of examples where physics-based animation is used, e.g., rigid bodies stumbling around (The
Hulk R⃝, Grand Turismo R⃝, Medal of Honor R⃝, Half-Life R⃝); skin and muscle deformations (Shrek R⃝, the
Nutty Professor R⃝, Jurassic Park R⃝, the Mummy R⃝); water splashing (Shrek R⃝, Titanic R⃝, Finding Nemo R⃝);
jelly blobs dancing around (Flopper R⃝); death-like animations (Hitman R⃝); hair blowing in the wind or
bending due to motion of a character (Monsters Inc R⃝); cloth moving (Monsters Inc R⃝); and melting robots
and cyborg parts of characters (Terminator3 R⃝, Treasure Island R⃝), just to mention a few.

There is an ongoing quest for exploiting physics-based animation. While it was a computationally
heavy burden 10–20 years ago to kinetically animate a linked character consisting of no more than a hand-
ful of limbs [Wellman, 1993], today this is considered a trivial task due to the large increase of computer
power. The increase of computer power allows us to simulate increasingly complex scenarios, in an appar-
ently never-ending spiral, and it appears that there will always be a demand for faster methods,with more
details, larger scenes, etc. Nevertheless, a major part of such animations will always be a physical model
of the world constructed from the laws of physics and solved numerically. A major part of the physical
models and their numerical solutions were developed prior to the twentieth century. Clever algorithms for
solving geometrically-complex systems are less than 40 years old and still part of a very active research
field.

The widespread use of physics-based animation, especially in the entertainment industry, has resulted
in a strong demand for education in these topics, both from students and industry. Quite a few books on
computer animation such as [Watt et al., 1992, Parent, 2001] and computer games such as [Eberly, 2000,
Eberly, 2003b] introduce the reader to physics-based animation, but these books often refrain from cov-
ering advanced topics, either because they only consider real-time computations, or because of space
limitations. The details of the simulation methods used in big commercial productions are usually not
accessible by the general public, since they are kept as business secrets. Most of the advanced litera-
ture on these topics is written as scientific papers addressing specific problems e.g., [Baraff et al., 2003a,
Osher et al., 2003, Bergen, 2003a], which requires a broad basic education in physics, mathematics, and
computer science to read and understand. Finally most “tricks of the trade” are not published in scientific
papers, but learned through experience and word of mouth in the graphics community.

These are the reasons that motivated us to write an advanced textbook on physics-based animation
with a focus on the theory. We wanted to create an advanced textbook for computer science graduate
students, teaching them the basis while at the same time teaching them the thin red line that separates the
different simulation methods. Our pedagogical goal is to prepare readers for a commercial or academic

xi

“book” — 2005/9/30 — 15:44 — page xii — #12✐
✐

✐
✐

✐
✐

✐
✐

xii PREFACE

career on the subject of physics-based animation, rather than to produce yet another code-hacker for the
gaming industry.

Almost all of the methods described in this book have been tested as implementation in the open source
project OpenTissue. Major parts of this book and the OpenTissue project have been used in our classes
during the last two years, from which we have gotten much feedback, and for which we are very grateful.
Special thanks should be given to Andrè Tischer Poulsen, Katrine Hommelhoff Jensen, Anders Holbøll,
Micky Kelager Christensen, and Anders Fleron who have served as our student reading committee. Andrè
Tischer has also given invaluable help with improving the visual appeal of many of the figures. We would
also like to thank our ever-patient publisher Jenifer Niles from Charles River Media, together with her
anonymous reviewing panel and technical writers. Finally, we wish to thank our respective families,
without whose support, we would not have been able to complete this project.

Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann.
30th September 2005

“book” — 2005/9/30 — 15:44 — page 1 — #13✐
✐

✐
✐

✐
✐

✐
✐

1

Introduction

A long-term goal in computer graphics is to increase realism and believability in computer generated
animations and pictures. Some original work includes [Armstrong et al., 1985, Terzopoulos et al., 1987,
Moore et al., 1988, Hahn, 1988, Barzel et al., 1988, Platt et al., 1988, Baraff, 1989, Barsky et al., 1991].
The general belief is that as we get better and better at rendering images, the lack of physical realism
and believability will be more obvious and therefore more annoying to the common observer. The main
argument for achieving the goal of more realism has been to use physics to model the behavior and
movement of computer models. Today these efforts have culminated in what is usually referred to as
physics-based animation or modeling.

Physics-based animation is a highly-interdisciplinary field, which is based on theories from engi-
neering [Zienkiewicz et al., 2000, Stewart et al., 1996, Pfeiffer et al., 1996b, Enright et al., 2002], from
physics [Baraff, 2001], and from mathematics. Some of the most noteworthy simulation models are based
on robotics [Craig, 1986, Featherstone, 1998] and solid mechanics [House et al., 2000, Teran et al., 2003].
To our knowledge, the field of physics-based animation was first named in a course in the 1987 ACM SIG-
GRAPH (the Association for Computing Machinery’s Special Interest Group on Computer Graphics) con-
ference, “Topics in Physically-Based Modeling” organized by Alan H. Barr. In recent years the emphasis
in physics-based animation on computationally efficient algorithms has spawned a new field: plausible
simulation [Barzel et al., 1996].

In a movie production pipeline, it is generally believed that using physics inhibits the creativity and
aesthetics of an animator. The reason is quite obvious: it is hard to be true toward a physical model, while
at the same time using every aspect of the Principles of Animation [Lassiter, 1987, Frank et al., 1995].
While some of the principles focus on implementing the physical reality such as squash and stretch,
timing and motion, and slow in and out, most of the principles are about exaggerating motion to entertain
an audience and keeping the audience’s attention. Hence, animators have a preference for surrealistic
movement in lieu of entertainment, and they have no shame in putting their characters in unnatural poses.
They often apply a lazy approach to render only what is visible, as long as the motion and the scene
conveys an interesting story.

This book is not concerned with the Principles of Animation, nor does it attempt to qualify or quantify
believability or plausibility of the presented methods and algorithms. It is not concerned with the ren-
dering process or animation systems. Instead, this book is first devoted to giving the reader a firm and
solid foundation for understanding how the mathematical models are derived from physical and mathe-
matical principles, and second, how the mathematical models are solved in an efficient, robust, and stable
manner on a computer. As such, the book introduces the reader to physics, mathematics, and numerics,
nevertheless this book is not a substitute for text books in these fields.

1

“book” — 2005/9/30 — 15:44 — page 2 — #14✐
✐

✐
✐

✐
✐

✐
✐

2 CHAPTER 1. INTRODUCTION

Mathematical�
Tools�

Physical Laws�

Geometry/Shape�

Mathematical�
Model�

Computer�
Graphics�

Model�

Numerical Model�

Prediction� Visualization�

Data Acquisition� Program�

Figure 1.1: Schematic overview of physics-based animation and simulation. The white arrows are typical
of the engineering disciplines, whereas the black arrows are typical extra steps taken in computer graphics.

1.1 The Computer Graphics Model

One perspective of physics-based animation is that it consists of many theoretical laws and tools from
physics and mathematics with some geometry added to it, and these are all mixed together to obtain a
mathematical model of the real world. Once this model is obtained, it can be remodeled into a numerical
model, which in turn may be programmed on a computer. The program is then able to make predictions
about the real world, and these predictions may be used to estimate where objects are expected to move
(forward kinematics and dynamics), or they may be used to calculate how objects should be handled in
order to obtain some desired movement (inverse kinematics and dynamics). This view of the world is
schematized in Figure 1.1 with the white arrows and is typical of the engineering disciplines. In engineer-
ing, the goal is often to make highly accurate predictions about the real world in the long term e.g., to
ensure the stability of a bridge or to predict the efficiency of a heating system. Using a surgical simulator
as an example, we will describe typical steps covered by Figure 1.1: the initial point is typically some
kind of data acquisition and modeling step, where a patient is scanned, and the resulting 3-dimensional
image is segmented into meaningful anatomical objects and represented as geometrical shapes. These
objects are then augmented with relevant physical laws often in the form of an energy system. To perform
a physical simulation, the energy system is analyzed with mathematical tools such as calculus of variation,
and the system is converted into a set of partial differential equations. The mathematical model is often
a set of partial differential equations together with a detailed description of geometry acting as boundary
conditions. To implement the mathematical model on a computer, the equations are often discretized e.g.,

“book” — 2005/9/30 — 15:44 — page 3 — #15✐
✐

✐
✐

✐
✐

✐
✐

1.2 PHYSICS-BASED ANIMATION 3

using the appropriate finite differences method, which in turn can be programmed in C++ or a similar
programming language. Finally, the simulator is able to be run, and be used to make predictions about the
future, i.e., what will happen if certain structures are changed or removed.

In spite of the impressive accomplishments of physical, mathematical, and engineering disciplines, it
is often the case that neither the mathematical model nor the numerical techniques are useful for computer
animation. Computer animation favors high visual detail, high performance, and low memory consump-
tion. In contrast, the engineering approach is often not interested in momentary visual details, since its
primary goal is often to predict long-term behavior and/or high precision. Hence, computation time and
memory consumption is often high, since if the task is to predict whether a bridge will stand for 100
years, then it might easily be justified to have tens or hundreds of computers work on the problem over
several days or weeks. In computer animation however, we would rather be able to visualize the crash of
a bridge with visual appeal on a laptop computer in real time. Due to these differences between engineer-
ing and computer graphics, computer scientists remodel the mathematical models to favor visual details,
and choose numerical techniques favoring speed, robustness, and stability over accuracy and convergence.
These tradeoffs may be called the computer graphics model. To summarize, the goals of physics-based
animation is to model the physical world, but in contrast to engineering disciplines, the computer graphical
approach favors visual flair and low computational resources.

1.2 The Taxonomy of Physics-Based Animation Methods
At the highest level, the field of physics-based animation and simulation can roughly be subdivided into
two large groups:

Kinematics is the study of motion without consideration of mass or forces.

Dynamics is the study of motion taking mass and forces into consideration.

But the story does not end here, because kinematics and dynamics come in two flavors or subgroups:

Inverse is the study of motion knowing the starting and ending points.

Forward is the study of motion solely given the starting point.

In the first subgroup, one typically knows where to go, but needs to figure out how to do it. As an example,
one might know the end position of a tool frame of a robot manipulator, without knowing what forces and
torques to apply at the actuators in order to get to the final destination. In other words, inverse kinematics
and dynamics computes the motion “backwards”. Forward kinematics and dynamics work exactly the
opposite. Using the same example as before, one typically knows the starting position of the tool frame
and the forces and torques acting through the actuators. The goal is then to predict the final destination.
The difference between inverse and forward kinematics/dynamics is illustrated in Figure 1.2.

There are numerous techniques and methods in physics-based animation and simulation, and you
probably already have heard several buzzwords. In Table 1.1 we have tried to classify some of the most
popular techniques and methods according to the four subgroups introduced above.

“book” — 2005/9/30 — 15:44 — page 4 — #16✐
✐

✐
✐

✐
✐

✐
✐

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Example showing the difference in forward and inverse kinematics and dynamics. In the case
of inverse motion, the starting and ending positions of the robot gripping tool is given, whereas in the case
of forward motion, only the starting position is given.

Inverse Forward

Kinematics • Cyclic Coordinate Descent

• Jacobian Method

• Spline Driven Animation

• Key Frame Animation (Interpolation)

• Closed-Form Solutions

• Free-Form Deformation

Dynamics • Recursive Newton Euler
Method

• Optimization Problems

• Featherstone’s Method (The Articulated-
Body Method)

• Composite-Rigid-Body Method

• Particle Systems, Mass-Spring Systems

• Finite Element Method

• Constraint-Based Simulation

Table 1.1: Common methods and their classification into inverse/forward kinematics/dynamics.

“book” — 2005/9/30 — 15:44 — page 5 — #17✐
✐

✐
✐

✐
✐

✐
✐

1.3 PHYSICS-BASED ANIMATION 5

1.3 Scientific Computing versus Computer Graphics in Practice
The engineering methods are dominated by the field of scientific computing. Looking at some of the
applications, it becomes clear that the diversity is large. Examples of current simulators for real projects
follow. Since the authors are Danish, most of the examples are Danish, however, we strongly suspect that
the range of problems and their computational demands are international.

Numerical wind tunnels at RISOE:
The numerical wind tunnel at RISOE (www.risoe.dk/vea-aed/numwind) uses a hyperbolic
grid generator for both two-dimensional and three-dimensional domains. Navier-Stokes is solved
using EllipSys2D/3D code, which is an incompressible finite volume code. The computation of a
stationary windmill rotor takes roughly 50 CPU hours. Using 14 CPUs (3.2GHz Pentium M, 2GB
RAM) in a cluster the simulation takes about four hours. Nonstationary computations take three to
four times longer [Johansen, 2005].

Deformation of atomic-scale materials:
In atomic-scale materials physics simulations of plastic deformation in nano crystalline copper are
done on a cluster (Niflheim, 2.1 Teraflops) of everyday PCs. A simulation involves 100 nodes
running in parallel and often takes weeks to complete (www.dcsc.dk). In quantum chemistry,
problems often involve 109 variables and simulations can take up to 10 days or more to complete
[Rettrup, 2005].

Computational fluid mechanics
Fluid mechanics involves a wide range of flow problems. Three dimensional nonstationary flows
typically require 10−−100× 106 grid nodes and use up to 1000 CPU hours per simulation (www.
dcsc.dk). Solid mechanics are also simulated (www.dcsc.sdu.dk) but often not visualized
[Vinter, 2005].

Computational astrophysics:
Computational astrophysics (www.nbi.ku.dk/side22730.htm) involves simulating the for-
mation of Galaxy, Star, and Planet. Smoothed Particle Hydrodynamics and Adaptive Mesh Re-
finement are some of the methods used. Computations often take weeks or months to complete
[Nordlund, 2005].

Weather reports:
Weather reports are simulated continuously and saved to disk regularly at DMI (www.dmi.dk).
Information is saved every three hours. Forty-eight-hour reports are computed on 2.5 grid nodes
using time-step size of two minutes. The total number of computations are in the order of 1012 and
solved on very large supercomputers [Sørensen, 2005].

From this short survey of scientific computing it is evident that the simulations rely on large supercomput-
ers, often in clusters. The amount of data is astronomical and computation times that cover a wide range
from minutes to hours, from hours to days, weeks, and even months are not unheard of. Visualization
ranges from simple arrows illustration flow fields to quite advanced scientific visualization.

“book” — 2005/9/30 — 15:44 — page 6 — #18✐
✐

✐
✐

✐
✐

✐
✐

6 CHAPTER 1. INTRODUCTION

A noteworthy point is that the concept of real time is often not a very useful term in scientific comput-
ing. For instance, in chemistry, simulated time is the order of pico seconds but the computation takes days
to complete. The main idea of the simulations is often to see a chemical process in slow motion in order
to observe what is happening. This is not doable in a laboratory. In contrast, astro and sea simulations are
too slow and are therefore simulated at higher rates. In sea-flow simulations a couple of hundred years
are simulated per day. In conclusion, turn-around time in scientific computing is often of the order of 24
hours to 30 days [Vinter, 2005].

Looking at physics-based animation from a computer graphical perspective gives a slightly different
picture.

Fluid phenomena:
Smoke simulation for large-scale phenomena [Rasmussen et al., 2003] using half a million parti-
cles takes 2–10 secs. of simulation time per frame, and rendering time takes 5–10 minutes per
frame (2.2 GHz Pentium 4). In [McNamara et al., 2003], key frame control of smoke simulations
takes between 2–24 hours to perform on a 2 GHz Pentium 4. Target-driven smoke simulation
[Fattal et al., 2004] on a 2.4 GHz Pentium 4 in 2D on a 2562 grid takes 50 secs. for a 1 second
animation in 3D on a 1283 grid it takes 35 minutes.

Particle systems:
In [Feldman et al., 2003] suspended particle explosions are animated. The simulation time ranges
from 4–6 secs. per frame on a 3GHz Pentium 4. With render times included, a simulated second is
in order of minutes. Animation of viscoelastic fluids [Goktekin et al., 2004] using a 403 grid runs
at half an hour per second of animation on a 3 GHz Pentium 4. Animation of two-way interaction
between rigid objects and fluid [Carlson et al., 2004] using a 64× 68× 84 grid on a 3GHz Pentium
4 with 1 GB RAM takes 401 simulation steps for one second of animation with average CPU time
per simulation step of 27.5 secs.

Cloth animation:
Robust cloth simulation without penetration [Bridson et al., 2002] of a 150 × 150 nodes piece of
cloth runs at two minutes per frame on a 1.2 GHz Pentium3. Untangling cloth [Baraff et al., 2003b]
for a cloth model with 14 K vertices yields additional cost of 0.5 secs simulation time per frame
on a 2 GHz Pentium 4. Changing mesh topology [Molino et al., 2004] during simulation for 1 K
triangles runs at 5–20 minutes per frame, 380 K tetrahedra runs at 20 minutes per frame. Stacked
rigid body simulation [Guendelman et al., 2003] with simulations of 500–1000 objects takes 3–7
minutes per frame on average.

Computer Games
Game consoles such as Play Station 2 (www.playstation.com) has only 32 MB RAM and 6.2
GFLOPS and common home PCs are for the most part inferior to the computers used by computer
graphics researchers. This has called for some creative thinking in computer game development to
reach the performance requirements. Furthermore, there must be time set aside for other tasks in
such applications as computer games. For instance, in Hitman from IO-Interactive, only 5–10% of
the frame time is used for physics simulation [Jakobsen, 2005]. The future may change these hard-
ware limitations. For instance, recent GPUs do not suffer from latency problems and promise 60

“book” — 2005/9/30 — 15:44 — page 7 — #19✐
✐

✐
✐

✐
✐

✐
✐

1.4 PHYSICS-BASED ANIMATION 7

GFLOPS (www.nvidia.com), also PPUs (www.ageia.com) seems to be an emerging tech-
nology. Finally cell chips (www.ibm.com/news/us/en/2005/02/2005_02_08.html)
are also promising.

From this short literature survey of recent work on physics-based animation in computer graphics, it is
evident that frame times ranging from the order of seconds to hours running on single PCs are used.
In conclusion, design-work both in computer graphics and scientific computing requires reasonably low
turn-around times.

1.4 Future Points of Study
Physics-based animation is a large field, and it is growing rapidly. Every year new techniques are presented
for animating new phenomena, and existing methods are improved both in speed, accuracy, and visual
detail. Covering everything is not possible in one book, needless to say that keeping up-to-date is an
important job of any physics-based animator. A good place to start for industry standards are the Physics
Engines, many of which are shown in Table 1.2.

In the following we will briefly mention some topics we find interesting, but will not cover in this
book due to space limitations and for pedagogical reasons:

Recursive methods for jointed mechanics.
Recursive methods for jointed mechanics are also called minimal coordinate methods, and the theory
is extensively covered in the literature, see e.g., [Featherstone, 1998].

Mathematical programming.
Mathematical programming is the study of, among other things, complementarity problems. The
field has a history going back to the 1940s. It is a huge field and would justify several textbooks in
itself. In this book we recommend using an existing library such as [Path, 2005] during a course or
confer with e.g., [Cottle et al., 1992, Murty, 1988].

Deformable objects with nonlinear anisotropic material properties.
Nonlinear and large deformations are still very much a problem of ongoing research and not some-
thing we feel fits into an introductory textbook.

Cutting and fracture of deformable objects.
Recently there has been published work on fracture, but both cutting and fracture is just on the brim
for today’s real-time applications.

Particle level set methods and adaptive data structures for water simulation.
We have chosen to focus on the more classical approach, giving the reader a good understanding
of the basics. It should not be difficult to proceed with the recent literature after this, see e.g.,
[Osher et al., 2003].

Control in physical-based animations.
Recently, attempts have been made to include animator control by using inverse dynamics ap-

“book” — 2005/9/30 — 15:44 — page 8 — #20✐
✐

✐
✐

✐
✐

✐
✐

8 CHAPTER 1. INTRODUCTION

Name Notes
DynaMechs Development started in 1991 by S. McMillan,

(dynamechs.sourceforge.net)
Renderware Physics Business unit of Criterion Software established in 1993,

(www.renderware.com/physics.asp)
Havok Founded in 1998, (www.havok.com)
Meqon Started as a university project in 1999, company founded

in 2002 by D. Gustafsson and M. Lysén, (www.meqon.
com)

Ipion Bought by Havok in June 2000, (www.ipion.com)
Open Dynamics Engine Seems to have been around somewhere between 2000–

2001, started by R. Smith former MathEngine employee,
(www.ode.org)

Novodex Started spring 2002 by A. Moravansky and M. Müller,
(www.novodex.com)

Tokamak D. Lam is the original author of Tokamak, appears to have
started in 2003, (www.tokamakphysics.com)

Newton Game Dynamics Appear to have been around since 2003, (www.
physicsengine.com/)

Karma Developed by MathEngine, which was acquired by Crite-
rion Software in July 2003, (www.mathengine.com)

Vortex Developed by CMLabs, (www.cm-labs.com)
Free Cloth Appears to have started around 2002 by D. Pritchard,

(sourceforge.net/projects/freecloth)
OpenTissue Started November 2001 by K. Erleben, H. Dohlmann,

J. Sporring and K. Henriksen, (www.opentissue.
org)

AGEIA Company Founded 2002, March 2005 AGEIA announces
a new class of physics processing unit (PPU) PhysX,
(www.ageia.com)

Table 1.2: A list of commercially and publicly available physics engines.

“book” — 2005/9/30 — 15:44 — page 9 — #21✐
✐

✐
✐

✐
✐

✐
✐

1.5 PHYSICS-BASED ANIMATION 9

proaches. We have omitted all theory and methods regarding how to control and manipulate an
animation, since we do not regard these as part of a low-level physics engine.

Continuous collision detection.
Tunneling effects and overshooting are some tedious problems in animation. One remedy for these
problems is continuous collision detection, which promises better contact point generation and de-
termination of contact areas in dynamic simulations. The field is rather new but very promising.
However, in our opinion there is not yet a firmly established standard, and we have therefore omit-
ted this material. Interested readers may refer to [Redon et al., 2002, Redon, 2004a, Redon, 2004b,
Redon et al., 2004a].

Simplex methods for collision detection.
Simplex-based methods for collision detection are based on the mathematical concept of an affine
linear independent set of variables. It is our experience that these methods are difficult to approach
for students and not essential, which is the main reason why we have omitted these methods. Good
references are [Bergen, 2003b, Bergen, 2001, Bergen, 1999].

1.5 Readers Guide
Having taught advanced computer graphics and animation for several years we found that we lacked a
thorough introduction to physics-based animation. Therefore we started writing notes first on the mathe-
matical tools needed for the simulators, and then notes describing the various animation methods. Hence,
the primary recipients of this book are graduate students in a computer science department. The back-
ground of our students is typically well-versed in the art of programming, introductory computer graphics,
and what we call mathematical maturity. By mathematical maturity we mean that students don’t necessar-
ily have a rigorous mathematical training, but that they are eager to learn new mathematical techniques.
Our approach is then practical: we strive to teach the students theories such as presented in this book, and
we emphasize that they must be able to implement the theories in actual working simulators. We hope the
book reflects these goals, e.g., by the numerous pseudocode examples. Almost all algorithms described
have been implemented in the accompanying open source project [OpenTissue, 2005].

The book contains five parts reflecting the diversity of the field of physics-based animation. There are
therefore several ways to read this book:

Geometry of motion:
For the reader interested in the geometry of motion and kinematics, and those who wish to have
total control of motion patterns, we suggest Part I, which describes the design of motion patterns
regardless of the physics of the real world.

From particles to rigid bodies:
The most common starting point of physics-based animation is to begin with particle systems (Chap-
ter 8), followed by a study of rigid body animation in Part II, then an advanced investigation into
deformable objects in Part III, and ending with a study of Computational Fluid Dynamics in Chap-
ter 11.

“book” — 2005/9/30 — 15:44 — page 10 — #22✐
✐

✐
✐

✐
✐

✐
✐

10 CHAPTER 1. INTRODUCTION

Computational fluid dynamics:
Some readers will find that Computational Fluid Dynamics is simple and choose to read Chapter 8,
followed by Computational Fluid Dynamics in Chapter 11, and Continuum Models with Finite
Differences in Chapter 9. It is our experience that finite element analysis in Chapter 10 poses the
biggest challenges for novices.

Collision detection:
Collision detection covered in Part IV is often treated in parallel with any of the above subjects.

Mathematical and physical compendium:
Part V is written as a very extended appendix, which contains much of the physics and mathematics
needed for understanding the theories in this book.

Happy reading!

“book” — 2005/9/30 — 15:44 — page 11 — #23✐
✐

✐
✐

✐
✐

✐
✐

Part I

The Kinematics

11

“book” — 2005/9/30 — 15:44 — page 12 — #24✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 13 — #25✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 13

Kinematics is the study of the motion of parts without considering mass or forces. Newton’s laws,
therefore, are neglectable. The main application of kinematical methods is preconfigured animation, where
the physical simulation is not required, too complex to bother with, or does not live up to the Principles of
Animation [Frank et al., 1995, Lassiter, 1987]. Many computer films rely heavily on kinematics for mo-
tion; much of the theory may thus be seen as a natural extension to the stop-motion techniques developed
by Disney in the early twentieth century. Kinematics are divided into forward kinematics and inverse
kinematics, depending on whether the end configuration is given or not.

Forward kinematics is characterized by the motion being prescribed by the user or some function.
Therefore, it is often also called direct kinematics. Forward kinematics requires much manual labor; nev-
ertheless, direct kinematics is widely used in movie production. Here animators specify every parameter
as a function of time. Often the animators act out the motion of the figures they are about to animate. To
reduce production time, a computer vision technique called motion capture is often applied.

Motion capture is the process of tracking annotated points on an actor via video, reconstructing the
points location in three dimensions, and using the reconstruction as input to direct kinematics. With this
tool, animators can create astonishing realistic-looking motion that obeys the laws of physics. Motion
capture is a great tool for movie production, where the reconstructed motion is used to specify the param-
eters for a specific motion. Motion capture may also be used as a tool for creating new motion sequences
for computer games. In this case, the motion capture data is seen as a discrete sample of physical motion
and the new motion sequence is obtained by fitting a continuous model to the discrete data. One such
technique is called motion blending or animation blending. Blending techniques are often found in game
engines such as those listed at www.devmaster.net/. There are three basic problems when doing
motion blending:

Motion Time-Warping: How to match to motion sequences so they are aligned in time. In other words,
one has to figure out what frame in one motion corresponds to what frame in another motion.

Motion Alignment: One motion may be heading left and the other right, so what position should the
blending motion have?

Motion Constraint Matching: If we want to blend a running and walking motion, then we should care-
fully match frames where the corresponding feet touch the ground, in order not to make a sliding or
floating motion result.

Motion blending is used in computer games to create motion transitions between motion-captured data
and is seen in many third-person shooter games such as Hitman R⃝etc. The techniques are often ad hoc and
rely heavily on animators to completely specify motion transitions a priori. Recent research focuses on
making the motions blend more naturally by taking the balance of a figure into account.

Parameters for forward kinematics may also be generated using motion programs [Barsky et al., 1991].
In motion programs, joint parameters are given as some continuous function of time, such as cos(t), which
generates an oscillating motion. Motion functions have to be carefully designed for the specific motion
such as biped gait walking [Parent, 2001, Chapter 6.2] or fish swimming [Terzopoulos et al., 1994].

Inverse kinematics deals with the interpolation of a figure from a specified starting and ending point.
This is also often used in animation tools such as Maya R⃝or 3DMax R⃝. Even for simple objects such
as the human arm, there will almost always be several solutions, since the elbow is movable even when

“book” — 2005/9/30 — 15:44 — page 14 — #26✐
✐

✐
✐

✐
✐

✐
✐

14 THE KINEMATICS

the hand and the shoulder are fixed. Hence, a central problem in inverse kinematics is to select one out
of several possible motions. A solution is often sought that generates a natural looking motion. This is
achieved either by augmenting the inverse kinematics with extra constraints or combining with dynamics;
for instance, using minimum energy principles.

Finally, forward and inverse kinematics are often combined in real applications. For example, direct
kinematics may be used to give natural looking motions for some objects and inverse kinematics for
others. Another example is to use motion capture to generate statistics on realistic motions and use this
information to select solutions for inverse kinematical problems. Many physics engines further support
the mixture of forward and inverse kinematics with physically simulated objects. A typical example in
a movie production is to use inverse kinematics or physics-based animation to determine a rough set of
parameters for a given motion. Then the animation is computed in detail, where parameters for all objects
in each frame are recorded. This is called baking [Kačić-Alesić et al., 2003]. After having baked the
animated objects, an animator can fine-tune the motions using the direct kinematics method to produce
entertaining animations. In conclusion, in real applications, techniques are used interchangeably both in
combination, as pre- and postprocessing steps.

In Part I we describe the basics of forward and inverse kinematics of articulated figures in Chapters 2
and 3, and the subject of scripted motion in Chapter 4.

“book” — 2005/9/30 — 15:44 — page 15 — #27✐
✐

✐
✐

✐
✐

✐
✐

2

Articulated Figures

This chapter describes articulated figures and their representation. This representation is used later for
animation and simulation of articulated figures. An articulated figure can be thought of as a robot arm or
a human arm made of a number of solid rods, which are connected to each other by joints that can move
independently. When all the joints move, the overall motion of an articulated figure can be very complex.
The goal of this chapter is to present methods that make it easy to describe the kinematics of articulated
figures, which will be used later for animation and simulation of articulated figures.

The chapter is divided into three sections. Section 2.1 defines precisely what is meant by an articulated
figure, and how it is constructed. The last two sections explain two different methods of describing
articulated figures. Section 2.2 presents a general method named Paired Joint Coordinates, and Section 2.3
presents a specialized method named Denavit-Hartenberg.

2.1 Links and Joints
An articulated figure is a construction made of links and joints. The different links are connected by joints,
which have some degree of freedom. A link can be thought of as a solid rod, which cannot change its shape
nor length. Hence, a link is considered a rigid body that defines the relation between two neighboring joint
axes, see Figure 2.1. A joint can be thought of as a connection between two neighboring links. A joint
might have several degrees of freedom, i.e., it might rotate around one, two, or three axes, or it might
translate along one, two, or three axes.

An example of an articulated figure with one revolute joint is shown in Figure 2.1. One can think of
the links and joints as the building blocks which make up an articulated figure. Examples of articulated
figures are: industrial robots, construction equipment, and the human skeleton.

Links and joints are numbered from 0, . . . ,N , and an articulated figure always starts with joint 0,
which is fixed at some stationary base coordinate system. The numbering of the links and joints is very
important. A joint inside an articulated figure, say joint i connects link i−1 and link i, where link i−1 is
closer to the base.

The joint shown in Figure 2.1 is a revolute joint, i.e., it can rotate around one axis. Generally, joints
are named for what they can do:

revolute joint: A joint that can rotate around one or more axes. Figure 2.2(a) shows a revolute joint with
one degree of freedom, but in general a revolute joint can have up to three degrees of freedom, i.e.,
it can rotate around all three coordinate axes.

prismatic joint: A joint that can translate along one or more axes. Figure 2.2(b) shows a prismatic joint
with one degree of freedom, but in general a prismatic joint can have up to three degrees of freedom,
i.e., it can translate along all three coordinate axes.

15

“book” — 2005/9/30 — 15:44 — page 16 — #28✐
✐

✐
✐

✐
✐

✐
✐

16 CHAPTER 2. ARTICULATED FIGURES

joint i−1

joint axes

joint i

base

joint i+1

End Effector

link i link i−1

Figure 2.1: An example of an articulated figure with one revolute joint. The revolute joint can rotate
around one axis. The numbering of the joints is very important, i.e., joint i connects linki−1 and linki.

joint axisjoint i

link i−1 link i

(a) revolute joint (rotation)

link i−1 link i

joint i joint axis

(b) prismatic joint (translation)

Figure 2.2: Examples of different joints used to construct articulated figures.

“book” — 2005/9/30 — 15:44 — page 17 — #29✐
✐

✐
✐

✐
✐

✐
✐

2.2 PHYSICS-BASED ANIMATION 17

kBF i

iBF i

jBF i

kIF i

jIF iiIF i

kOF i

iOF i
jOF i

oIF i
oOF i

oBF i

link i

Figure 2.3: The three coordinate systems associated with each link i: BF i, IF i, and OF i. The origins and
coordinate axes of the inner-frame IF i, and the outer-frame OF i are specified in the body-frame BF i.

2.2 Paired Joint Coordinates
As mentioned previously, an articulated figure is constructed of links and joints. Because each joint can
either rotate or translate, the motion of the individual links and joints can be very complex. This is because
the motion of joint j and link j affect the motion of joint i and link i for i > j. An example of this is: if
the base joint rotates or translates its motion affects all other joints and links of the articulated figure.
Therefore, it is very complicated to describe the motion of an articulated figure in a coordinate system
common to all joints and links. This difficulty can be overcome by introducing local coordinate systems
for all joints and links, and establishing transformations between the local coordinate systems.

An articulated figure can be described using the paired joint coordinates method [Featherstone, 1998].
The method is very general and it is based on associating three predefined coordinate systems with each
link. For link i these coordinate systems are named: body frame (BF i), inner frame (IF i), and outer
frame (OF i), and they are all associated with link i. The origins of the inner-frame and outer-frame are
located on the respective joint axes. This makes it easy to transform entities between successive links, as
we will show later. These coordinate systems are illustrated in Figure 2.3 and explained below.

The Body Frame (BF i): is a local coordinate system that is associated with link i. The geometry of link i

is described in this local coordinate system. Generally, the origin and the axes of this coordinate
system can be chosen arbitrarily, but in order to handle articulated figures easily, it is recommended
that you choose the origin of BF i to be the center of mass of link i. Also, it is recommended that you
choose an orthogonal coordinate system. If link i has some symmetry axes, it is recommended that
you choose some of them as basis axes for the local orthogonal coordinate system. In the following

“book” — 2005/9/30 — 15:44 — page 18 — #30✐
✐

✐
✐

✐
✐

✐
✐

18 CHAPTER 2. ARTICULATED FIGURES

it is assumed that all coordinate systems are orthogonal.

The Inner Frame (IF i): is a local coordinate system that is associated with link i. Usually, this coor-
dinate system is associated with joint i. It has its origin located on the axis of joint i, and has one
axis parallel to the direction of motion of the joint. Both the origin and the coordinate axes of this
coordinate system are specified in the body frame.

The Outer Frame (OF i): is a local coordinate system that is associated with link i. Usually, this coor-
dinate system is associated with joint i+1. It has its origin located on the axis of joint i+1, and has
one axis parallel to the direction of motion of the joint. Both the origin and the coordinate axes of
this coordinate system are specified in the body frame.

The rest of this section contains subsections that derive transformations between the different frames

1. Compute the transformation BFiT IFi from inner frame to body frame (Section 2.2.1).

2. Compute the transformation BFiT OFi from outer frame to body frame (Section 2.2.2).

3. Compute the transformation OFi−1T IFi from inner frame of link i to outer frame of link i−1.

4. Compute the transformation (i−1)T i which transforms entities from the body frame of link i to the
body frame of link i−1.

The notation TOT FROM means that the transformation transforms an entity given in frame FROM
coordinates to coordinates in the TO frame.

When all these transformations are derived, it is possible to transform the coordinates of a point p
specified in the body frame of link i to coordinates in any other body frame, e.g., the body frame of link j .
This is very general. But it makes it easy to transform the coordinates of a point p specified in any body
frame of link i to the base coordinate frame, the body frame of link 0. This makes it possible to transform
positions, orientations, velocities, and accelerations of a point p, specified in any body frame to the base
frame, which can be used as a coordinate system common to all joints and links.

2.2.1 The Transformation BF iT IF i

This section describes how to make a mapping from the inner frame to the body frame. To be more
specific, the problem is: given a point p in inner frame coordinates, determine its coordinates in the body
frame.

With the definitions from Section 2.2 for link i, let oIF i , iIF i , jIF i
, and kIF i be the origin and the

basis vectors of the inner frame expressed in the body frame, see Figure 2.4.
The relation between the inner frame and the body frame is as follows: given a point p = [x, y, z]T in the
inner frame IF i its coordinates in the body frame, BF i, can be expressed by an angular rotation ϕ around
some axis u followed by a translation rIF i . This transformation is denoted BF iT IF i , where the subscript
IF i and the superscript BF i indicate that the coordinates of a point p specified in inner frame coordinates
is transformed to body frame coordinates.

“book” — 2005/9/30 — 15:44 — page 19 — #31✐
✐

✐
✐

✐
✐

✐
✐

2.2 PHYSICS-BASED ANIMATION 19

jBF i

iBF i
kBF i

rIF i

iIF i
kIF i

jIF i
jOF i

kOF i

iOF i

oBF i

oIF i
oOF i

BF iT IF i

link i

Figure 2.4: The mapping between the inner frame IF i and the body frame BF i for link i. The origin and
coordinate axes of the inner frame IF i are specified in the body frame BF i.

In homogeneous coordinates the transformation from the inner frame to the body frame is given by a
matrix

BF iT IF i = T IF i(rIF i)RIF i(ϕIF i ,uIF i) (2.1)

The translation and rotation matrices are given below

T IF i(rIF i) =

[
1 rIF i

0T 1

]
(2.2a)

RIF i(ϕIF i ,uIF i) =

[
iIF i jIF i

kIF i 0
0 0 0 1

]
(2.2b)

where the symbol 1 denotes a 3 × 3 identity matrix, and the vectors iIF i , jIF i
,kIF i , and 0 are 3 × 1

column vectors. This makes both matrices 4 × 4. Both the translation matrix and the rotation matrix
are constant, depending only on the relative position and orientation of the inner frame and body frame.
Therefore, the resulting transformation BF iT IF i is also constant.

2.2.2 The Transformation BF iT OF i

In this section it is described how to make a mapping from the inner frame to the body frame. To be more
specific, the problem is: given a point p in outer frame coordinates, determine its coordinates in the body
frame.

Recall the definitions from Section 2.2 for link i, and let oOF i , iOF i , jOF i
, and kOF i be the origin

and the basis vectors of the outer frame expressed in the body frame, see Figure 2.5. A transformation
can be specified between the outer frame OF i and the body frame, BF i by defining the origin and the
basis vectors of the outer frame in the body frame coordinate system. Let this transformation be denoted
BF iT OF i , where the subscript OF i and the superscript BF i indicate that the coordinates of a point p
given in outer frame coordinates is transformed to body frame coordinates.

“book” — 2005/9/30 — 15:44 — page 20 — #32✐
✐

✐
✐

✐
✐

✐
✐

20 CHAPTER 2. ARTICULATED FIGURES

jBF i

iBF i
kBF i

rIF i

iIF i
kIF i

jIF i

rOF i

jOF i

kOF i

iOF i

oBF i

oIF i
oOF i

BF iT OF i

BF iT IF i

link i

Figure 2.5: The mapping between the outer frame OF i and the body frame BF i for link i. The origin and
coordinate axes of the outer frame OF i are specified in the body frame BF i.

In homogeneous coordinates the transformation from the outer frame to the body frame is given by a
matrix

BF iT OF i = T OF i(rOF i)ROF i(ϕOF i ,uOF i) (2.3)

The translation and rotation matrices are given below

T OF i(rOF i) =

[
1 rOF i

0T 1

]
(2.4a)

ROF i(ϕOF i ,uOF i) =

[
iOF i jOF i

kOF i 0
0 0 0 1

]
(2.4b)

where 1 is a 3×3 identity matrix, and the vectors iOF i , jOF i
,kOF i , and 0 are 3×1 column vectors, which

makes both matrices 4 × 4. Both the translation matrix and the rotation matrix are constant, depending
only on the relative position and orientation of the inner frame and body frame. Therefore, the resulting
transformation BF iT OF i is also constant.

2.2.3 The Transformation OF i−1T IF i(di, ϕi, ui)

In previous sections the link transformations BF iT IF i and BF iT OF i were derived, see Sections 2.2.1
and 2.2.2. These transformations are local to the link in question, namely link i. In this section a transfor-
mation from the inner frame of link i to the outer frame of link i−1 will be derived. Let this transformation
be denoted OF i−1T IF i .

The links link i−1 and link i are connected by joint i. The relation between the inner frame of link i

and the outer frame of link i−1 is given by a joint-transformation consisting of a rotation (ϕi,ui) and a
translation di

OF i−1T IF i(di,ϕi,ui) = T i(di)Ri(ϕi,ui) (2.5)

where ϕi is the rotation angle, ui is the rotation axis, and di is the translation vector, see Figure 2.6. To
make the notation easier, the index i is omitted in the following two equations. This means that ϕi = ϕ,

“book” — 2005/9/30 — 15:44 — page 21 — #33✐
✐

✐
✐

✐
✐

✐
✐

2.2 PHYSICS-BASED ANIMATION 21

joint axis

joint i

BF iT IF i

BF i−1T OF i−1

OF i−1T IF i

oBFi−1

oBFi

oIFi

oOFi−1

link i−1

link i

Figure 2.6: Link i−1 and link i are connected by joint i, and an associated joint-transformation OF i−1T IF i .
The figure shows a revolute joint, but the transformation OF i−1T IF i can be any transformation.

ui = [ux, uy, uz]T , and di = [dx, dy, dz]T . With this notation the translation matrix T (di) and the
rotation matrix R(ϕi,ui) are given by

T (di) =

⎡

⎢⎢⎣

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎤

⎥⎥⎦ (2.6a)

R(ϕi,ui) =

⎡

⎢⎢⎣

u2
x + (1− u1

x)cϕ uzuy(1− cϕ) − uzsϕ uxuz(1− cϕ) + uysϕ 0
uxuy(1− cϕ) + uzsϕ u2

y + (1− u2
y)cϕ uyuz(1− cϕ)− uxsϕ 0

uxuz(1− cϕ)− uysϕ uyuz(1− cϕ) + uxsϕ u2
z + (1− u2

z)cϕ 0
0 0 0 1

⎤

⎥⎥⎦ (2.6b)

where sϕ is shorthand for sinϕ, and cϕ for cosϕ. The parameters (di,ϕi,ui) are denoted joint parame-
ters.

“book” — 2005/9/30 — 15:44 — page 22 — #34✐
✐

✐
✐

✐
✐

✐
✐

22 CHAPTER 2. ARTICULATED FIGURES

2.2.4 The Transformation (i−1)T i(di, ϕi, ui)

From Figure 2.6 it can be seen that the transformation between the body frame of link i and the body frame
of link i−1 is given by

(i−1)T i(di,ϕi,ui) =
(
BF i−1T OF i−1

)(
OF i−1T IF i(di,ϕi,ui)

)(
BF iT IF i

)−1 (2.7)

By specifying the transformation (i−1)T i(di,ϕi,ui) for all links, i = 1, . . . ,N a transformation from link
N to the base, link 0 can be written

0T N = 0T N (d1,ϕ1,u1, . . . ,dN ,ϕN ,uN)

= 0T 1(d1,ϕ1,u1)
1T 2(d2,ϕ2,u2) · · · N−1T N (dN ,ϕN ,uN) (2.8)

Let θi denote the generalized joint parameters for joint i, i.e., θ i = (di,ϕi,ui). Then (2.8) may be written
in a more compact form

0T N = 0T N (θ1, . . . ,θN) = 0T 1(θ1)
1T 2(θ2) · · · (N−1)T N (θN) (2.9)

This is a very general approach. It is possible to use it, but it is not very easy to use. In the next section it
is shown how the approach can be specialized, so it is much easier to use.

2.3 Denavit-Hartenberg
The Denavit-Hartenberg notation [Craig, 1986] is a very specialized description of an articulated figure.
It is specialized such that each joint has only one degree of freedom: it can either translate along its z-axis
or rotate around its z-axis. If a joint needs more degrees of freedom, several joints with link lengths equal
to zero are located on top of each other.

Because each joint has only one degree of freedom, the Denavit-Hartenberg notation is very compact.
There are only four parameters to describe a relation between two links. These parameters are the link
length, link twist, link offset, and link rotation. The parameters are also known as the Denavit-Hartenberg
parameters. The Denavit-Hartenberg notation is a specialization of the Paired Joint Coordinates method
for describing an articulated figure, see Section 2.2.

Consider an articulated figure as the one shown in Figure 2.7. The Denavit-Hartenberg parameters of
this articulated figure are defined below and summarized in Table 2.1. The Denavit-Hartenberg parameters
used to describe an articulated figure can be computed by the following steps:

1. Compute the link vector ai and the link length ai = ai.

2. Attach coordinate frames to the joint axes.

3. Compute the link twist αi.

4. Compute the link offset di.

5. Compute the joint angle ϕi.

6. Compute the transformation (i−1)T i, which transforms entities from link i to link i−1.
The rest of this section contains subsections that describe how to perform each of the steps listed above.

“book” — 2005/9/30 — 15:44 — page 23 — #35✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 23

ai−1

ai

xi+1

yi+1

zi+1

yi

zi

xi

xi−1

zi−1

yi−1

⋄

⋄ ••

link i−1 link i+1

joint i

joint i+1
joint i−1

link i−2

joint axes

αi

ϕi

link i

di

Figure 2.7: This figure shows all the symbols used for the Denavit-Hartenberg notation and the physical
meaning of those symbols. It should be noticed that the straight lines marked with the symbols • are
parallel, and this is also true for the straight lines marked with the symbol ⋄. This means that the line
marked with • is parallel to the axis of joint i, and the line marked with the symbol ⋄ is parallel to the
coordinate axis xi−1. Use this figure as a reference. All the details are explained below.

“book” — 2005/9/30 — 15:44 — page 24 — #36✐
✐

✐
✐

✐
✐

✐
✐

24 CHAPTER 2. ARTICULATED FIGURES

link length ai The perpendicular distance between the axes of joint i and joint i+1.
link twist αi The angle between the axes of joint i and joint i+1. The angle αi is mea-

sured around the xi-axis. Positive angles are measured counterclockwise
when looking from the tip of vector xi toward its foot.

link offset di The distance between the origins of the coordinate frames attached to joint
joint i−1 and joint i measured along the axis of joint i. For a prismatic joint
this is a joint parameter.

joint angle ϕi The angle between the link lengths ai−1 and ai. The angle ϕi is measured
around the zi-axis. Positive angles are measured counterclockwise when
looking from the tip of vector zi toward its foot. For a revolute joint this
is a joint parameter.

Table 2.1: Denavit-Hartenberg parameters.

2.3.1 The Link Vector ai and the Link Length ai = ∥ai∥2

Consider the axes of joint i and joint i+1. The link length ai is the shortest distance between these axes.
This can also be formulated as: the link length ai is the distance between the closest point pi on the axis
of joint i and pi+1 on the axis of joint i+1. Let the joint axes be given by the parametric vector equations

li(s) = pi + sui (2.10a)
li+1(t) = pi+1 + tui+1 (2.10b)

where pi is a point on axis of joint i, and ui is a direction vector of that axis. Analogous for pi+1 and
ui+1. This is shown in Figure 2.8. The following three sections describe three different methods for
computing the link vector ai.

2.3.1.1 Method 1: The Pseudonaive Approach

The shortest distance, ai, between the axes of joint i and joint i+1 is given by the length of the vector
which connects the axes and which is perpendicular to both of them. That distance can be computed as
the dot product between the vector pi+1 − pi and a unit vector in the direction of ui × ui+1

ai = (pi+1 − pi) ·
ui × ui+1

∥ui × ui+1∥2
(2.11)

To find the locations of the points oi and oai where this distance exists, one can go some distance s from
point pi along joint axis i, and then the distance ai along the unit vector ui × ui+1/ ∥ui × ui+1∥2 , and
finally some distance t along joint axis i+1 to arrive at point pi+1. This results in the following equation

pi + sui + ai
ui × ui+1

∥ui × ui+1∥2
= pi+1 + tui+1 =⇒ (2.12a)

sui − tui+1 = pi+1 − pi − ai
ui × ui+1

∥ui × ui+1∥2
(2.12b)

“book” — 2005/9/30 — 15:44 — page 25 — #37✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 25

joint i

oi

ui+1

joint i+1

ai

oai

pi+1

pi+1 − pi

joint axes

pi

ui

Figure 2.8: The shortest distance between the axes of joint i and joint i+1 is given by the vector ai, which
is perpendicular to both joint axes. The length of ai is denoted the link length.

Computing the dot products of (2.12b) and the vectors ui and ui+1, and recalling that the dot product
between ui × ui+1 and ui and ui+1 vanish, the following equations in the unknowns s, t are obtained.

s ∥ui∥22 − t(ui · ui+1) = (pi+1 − pi) · ui (2.13a)

s(ui · ui+1)− t ∥ui+1∥22 = (pi+1 − pi) · ui+1 (2.13b)

The solution s, t of this linear system of equations is given by

s =
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.14a)

t =
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.14b)

“book” — 2005/9/30 — 15:44 — page 26 — #38✐
✐

✐
✐

✐
✐

✐
✐

26 CHAPTER 2. ARTICULATED FIGURES

Using (2.10) the points oi and oai can be computed as

oi = li(s) = pi +
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui (2.15a)

oai = li+1(t) = pi+1 +
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui+1 (2.15b)

2.3.1.2 Method 2: The Geometric Approach

The vector, which is perpendicular to both joint axes is given by the cross product of the direction vectors
ui×ui+1, but it is not known where this vector is located on the joint axes. To find this location, one can
go some distance s from point pi along the axis of joint i, and then go some distance k along ui × ui+1,
and finally go some distance t along the axis of joint i+1 to arrive at point pi+1. This can be expressed in
the following equation

pi + sui + kui × ui+1 = pi+1 + tui+1 (2.16)

This is a vector equation in three unknowns s, t, k. To solve this equation, first eliminate the unknown k
by computing the dot product of (2.16) and vector ui.

pi · ui + sui · ui + k(ui × ui+1) · ui = pi+1 · ui + tui+1 · ui, (2.17a)
pi · ui + sui · ui = pi+1 · ui + tui+1 · ui, (2.17b)

s ∥ui∥22 − t(ui · ui+1) = (pi+1 − pi) · ui (2.17c)

Second, eliminate the unknown k by computing the dot product of (2.16) and vector ui+1.

pi · ui+1 + sui · ui+1 + k(ui × ui+1) · ui+1 = pi+1 · ui+1 + tui+1 · ui+1, (2.18a)
pi · ui+1 + sui · ui+1 = pi+1 · ui+1 + tui+1 · ui+1, (2.18b)

s(ui · ui+1)− t ∥ui+1∥22 = (pi+1 − pi) · ui+1 (2.18c)

Finally, eliminate the unknowns s, t by computing the dot product of (2.16) and vector ui × ui+1.

pi · (ui × ui+1) + sui · (ui × ui+1) + k(ui × ui+1) · (ui × ui+1)

= pi+1 · (ui × ui+1) + tui+1 · (ui × ui+1), (2.19a)
pi · (ui × ui+1) + k(ui × ui+1) · (ui × ui+1) = pi+1 · (ui × ui+1), (2.19b)

k ∥ui × ui+1∥22 = (pi+1 − pi) · (ui × ui+1) (2.19c)

The equations (2.17c), (2.18c) and (2.19a) form a system of three equations in the unknowns s, t, k.

s ∥ui∥22 − t(ui · ui+1) = (pi+1 − pi) · ui (2.20a)

s(ui · ui+1)− t ∥ui+1∥22 = (pi+1 − pi) · ui+1 (2.20b)

k ∥ui × ui+1∥22 = (pi+1 − pi) · (ui × ui+1) (2.20c)

“book” — 2005/9/30 — 15:44 — page 27 — #39✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 27

It can be seen that only (2.20a) and (2.20b) are needed to solve for the unknowns s, t, and (2.20c) yields
k directly.

From (2.20c) it can be seen that the shortest distance between the axes of joint i and joint i+1 is given
by the vector

ai =
(pi+1 − pi) · (ui × ui+1)

∥ui × ui+1∥22
(ui × ui+1) (2.21a)

=
(pi+1 − pi) · (ui × ui+1)

∥ui × ui+1∥2

ui × ui+1

∥ui × ui+1∥2
(2.21b)

= ai
ui × ui+1

∥ui × ui+1∥2
(2.21c)

where the link length ai is given by

ai =
(pi+1 − pi) · (ui × ui+1)

∥ui × ui+1∥2
(2.22a)

From (2.20a) and (2.20b) the unknowns s, t can be computed

s =
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.23a)

t =
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.23b)

Using (2.10) and the solution s, t the points oi and oai can be computed as

oi = li(s) = pi +
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui (2.24a)

oai = li+1(t) = pi+1 +
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui+1 (2.24b)

The point oi is the origin of the coordinate system attached to the axis of joint i, and the point oai is the
intersection between the axis of joint i+1 and the vector ai when it starts at point oi.

2.3.1.3 Method 3: The Analytic Approach

The distance between two arbitrary points located on the axes of joint i and joint i+1 respectively is given
by the expression

d(s, t) =
√(

li+1(t)− li(s)
)
·
(
li+1(t)− li(s)

)
(2.25a)

=
√(

pi+1 + tui+1 − pi − sui
)
·
(
pi+1 + tui+1 − pi − sui

)
(2.25b)

“book” — 2005/9/30 — 15:44 — page 28 — #40✐
✐

✐
✐

✐
✐

✐
✐

28 CHAPTER 2. ARTICULATED FIGURES

The link length of link i, ai, is given as minimum distance between the joint axes. Therefore, ai is the
solution to the minimization problem

ai = min d(s, t) = min
√(

li+1(t)− li(s)
)
·
(
li+1(t)− li(s)

)
(2.26a)

= min
√(

pi+1 + tui+1 − pi − sui
)
·
(
pi+1 + tui+1 − pi − sui

)
(2.26b)

A necessary condition for (2.26a) to have an extrema is that it has the stationary points

∂d(s, t)

∂s
=

(pi+1 + tui+1 − pi − sui) · ui√(
pi+1 + tui+1 − pi − sui

)
·
(
pi+1 + tui+1 − pi − sui

) = 0 (2.27a)

∂d(s, t)

∂t
=

(pi+1 + tui+1 − pi − sui) · ui+1√(
pi+1 + tui+1 − pi − sui

)
·
(
pi+1 + tui+1 − pi − sui

) = 0 (2.27b)

The requirement that (2.27) vanish is equivalent to their numerators being equal to zero

(pi+1 + tui+1 − pi − sui) · ui = 0 (2.28a)
(pi+1 + tui+1 − pi − sui) · ui+1 = 0 (2.28b)

Rewriting this system of equations yields

s ∥ui∥22 − t(ui · ui+1) = (pi+1 − pi) · ui (2.29a)

s(ui · ui+1)− t ∥ui+1∥22 = (pi+1 − pi) · ui+1 (2.29b)

The solution s, t of this linear system of equations is given by

s =
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.30a)

t =
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.30b)

Using (2.10) and the solution s, t the points oi and oai can be computed as

oi = li(s) = pi +
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui (2.31a)

oai = li+1(t) = pi+1 +
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui+1 (2.31b)

These two points are the closest points on the axes of joint i and joint i+1. Therefore, the link vector ai

and the link length ai are given by

ai = oai − oi (2.32a)
ai = ∥ai∥2 = ∥oai − oi∥2 (2.32b)

“book” — 2005/9/30 — 15:44 — page 29 — #41✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 29

The Link Vector ai

The link vector ai is the vector that connects the two closest points on the axes of joint i and joint i+1
respectively. Therefore, the link vector ai is the difference between the points oai and oi from (2.31).

ai = oai − oi (2.33a)

=

(
pi+1 +

(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)
∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2

ui+1

)

−
(

pi +
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui

)
(2.33b)

= (pi+1 − pi)−
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui

+
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
ui+1 (2.33c)

In the next section it will be shown that the link vector ai is perpendicular to the axes of joint i and
joint i+1.

The Dot Products ai · ui and ai · ui+1

In this section it is shown that the link vector ai is perpendicular to both axes of joint i and joint i+1. The
dot product between the link vector ai and the direction vector ui of the axis of joint i is equal to

ai · ui = (pi+1 − pi) · ui −
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(ui · ui)

+
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(ui+1 · ui) (2.34a)

= (pi+1 − pi) · ui −
(pi+1 − pi) · (ui ∥ui∥22 ∥ui+1∥22 − ui+1 ∥ui∥22 (ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2

+
(pi+1 − pi) · (ui(ui · ui+1)2 − ui+1 ∥ui∥22 (ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.34b)

= (pi+1 − pi) · ui + (pi+1 − pi) · ui

(−∥ui∥22 ∥ui+1∥22 + (ui · ui+1)2

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2

)
(2.34c)

= (pi+1 − pi) · ui − (pi+1 − pi) · ui = 0 (2.34d)

“book” — 2005/9/30 — 15:44 — page 30 — #42✐
✐

✐
✐

✐
✐

✐
✐

30 CHAPTER 2. ARTICULATED FIGURES

Analogously, it can be shown that the dot product between the link vector ai and the direction vector ui+1

of the axis of joint i+1 is then equal to 0, i.e., ai · ui+1 = 0.

ai · ui+1 = (pi+1 − pi) · ui+1 −
(pi+1 − pi) · (ui ∥ui+1∥22 − ui+1(ui · ui+1))

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(ui · ui+1)

+
(pi+1 − pi) · (ui(ui · ui+1)− ui+1 ∥ui∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(ui+1 · ui+1) (2.35a)

= (pi+1 − pi) · ui+1 −
(pi+1 − pi) · (ui ∥ui+1∥22 (ui · ui+1)− ui+1(ui · ui+1)2)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2

+
(pi+1 − pi) · (ui ∥ui+1∥22 (ui · ui+1)− ui+1 ∥ui∥22 ∥ui+1∥22)

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2
(2.35b)

= (pi+1 − pi) · ui+1 + (pi+1 − pi) · ui+1

(−∥ui∥22 ∥ui+1∥22 + (ui · ui+1)2

∥ui∥22 ∥ui+1∥22 − (ui · ui+1)2

)
(2.35c)

= (pi+1 − pi) · ui+1 − (pi+1 − pi) · ui+1 = 0 (2.35d)

Thus, the link vector ai is perpendicular to both axes of joints joint i and joint i+1. This means that there
exists a plane πi with normal vector ai which contains the axis of joint i. Also, there exists a plane πi+1

with the same normal vector ai which contains the axis of joint i+1, see Figure 2.9.

2.3.1.4 The Easy Way to Compute ai and ∥ai∥2
The link vector ai is perpendicular to both of the axes of joint i and joint i+1 as shown in (2.34) and (2.35)
and in Figure 2.9. The unit vector ci given by the cross product between the direction vectors ui and of
the ui+1 of the joint axes

ci =
ui × ui+1

∥ui × ui+1∥2
(2.36)

is parallel to the link vector ai.
Given two points pi and pi on the axes of joint i and joint i respectively, the link length can be

computed as

∥ai∥2 =
∥∥(pi+1 − pi) · ci

∥∥
2

=

∣∣∣∣(pi+1 − pi) ·
ui × ui+1

∥ui × ui+1∥2

∣∣∣∣ (2.37)

and the link vector ai can be computed as

ai =
(
(pi+1 − pi) · ci

)
ci =

(
(pi+1 − pi) ·

ui × ui+1

∥ui × ui+1∥2

)
ui × ui+1

∥ui × ui+1∥2
(2.38)

These computations are illustrated in Figure 2.10. It can be shown by simple but very many algebraic
manipulations that the link vectors computed by (2.33) and (2.38) are identical.

“book” — 2005/9/30 — 15:44 — page 31 — #43✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 31

πi

joint i

joint i+1πi+1

oi

oaiui

ui+1
ai

Figure 2.9: The axes of joint i and joint i+1 are contained in two parallel planes πi and πi+1 respectively.
The perpendicular distance between the planes πi and πi+1 is equal to ∥ai∥2 .

The vector ci = ui × ui+1/ ∥ui × ui+1∥2 can either point from the axis of joint i to the axis of
joint i+1 or in the opposite direction depending on the orientations of the vectors ui and ui+1. If the
vector ci points from the axis of joint i+1 to the axis of joint i, the dot product (pi+1−pi) · ci is negative,
and the link vector ai will get the right orientation.

In the other case where the vector ci points from the axis of joint i to the axis of joint i+1, the one
shown in Figure 2.10, the orientation will obviously be right.

2.3.1.5 Special Case: The Joint Axes Intersect

If the axes of jointi and joint i+i intersect then the shortest distance between the axes, ai is equal to zero,
and the link vector is the null vector, which has any direction. In this case, choose the link length, a i = 0
and the link vector to be equal to the cross product between the direction vectors, ui and ui+1 between
the axes of joint i and joint i+1. That is, choose

ai =
ui × ui+1

∥ui × ui+1∥2
(2.39a)

ai = 0 (2.39b)

“book” — 2005/9/30 — 15:44 — page 32 — #44✐
✐

✐
✐

✐
✐

✐
✐

32 CHAPTER 2. ARTICULATED FIGURES

πi

joint i+1πi+1

oi

oaiui

ui+1

pi+1 − pi

pi+1
joint i

pi

ci

ai

Figure 2.10: An easy way of computing the link length ai. Let the vector c be equal to the unit cross
product between the direction vectors of the axes, i.e., the vector ci is given as ci = ui×ui+1

∥ui×ui+1∥2

, and let
the points pi and pi+1 be arbitrary points on the axes, e.g., the points given in (2.10). Then the link length
is equal to the dot product between the vector ci and the vector (pi+1−pi). That is ai = (pi+1−pi) · ci.

For this special case it is convenient to choose such a strange link vector that does not conform to (2.38),
because the link length ai is a Denavit-Hartenberg parameter, and the link vector ai is used to attach the
coordinate frame, the xi-axis of link i. Furthermore, the origin oi and the point oai are uniquely defined
as the intersection point.

2.3.1.6 Special Case: The Joint Axes are Parallel

If the axes of jointi and joint i+i are parallel, there is no unique shortest distance between the axes, see
Figure 2.11. In this case, compute the link vector and the link length as follows

ai = (pi+1 − pi)−
(

(pi+1 − pi) ·
ui

∥ui∥2

)
ui

∥ui∥2
(2.40a)

ai = ∥ai∥2 (2.40b)

where pi and pi+1 are known points, and ui and ui+1 are known direction vectors of the axes of joint i
and joint i+1, see (2.10). The origin oi can be chosen arbitrarily, and the point oai is obviously given by

“book” — 2005/9/30 — 15:44 — page 33 — #45✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 33

joint i joint i+1

pi+1 − pi

joint axes

(pi+1 − pi) ·
ui

∥ui∥

ai = (pi+1 − pi) −
(

(pi+1 − pi) ·
ui

∥ui∥

)
ui

∥ui∥

pi

ui

ui

∥ui∥

ui+1

pi+1

Figure 2.11: The joint axes are parallel, so there is no unique shortest distance between them.

oi and ai. Since the origin oi can be chosen arbitrarily, it might be clever to choose it such that most of
the Denavit-Hartenberg parameters will be equal to zero.

2.3.1.7 Special Case: The First Joint

An articulated figure must start at some place, and therefore there is a problem with the very first joint,
because there is no link preceding it. Therefore, a base link is introduced, denoted link 0. The link frame
for link 0 can be chosen arbitrarily, but it is clever to let it coincide with the link frame of link 1 when the
articulated figure is in its rest position. Then most of the Denavit-Hartenberg parameters will be equal to
zero.

2.3.1.8 Special Case: The Last Joint

An articulated figure must stop at some place, and therefore there is a problem with the very last joint,
because there is no link following it. Generally, the coordinate frame of the last link can be chosen
arbitrarily, because there is no physical link, i.e., the articulated figure stops at the axis of joint N , so there
is no link vector aN . The only thing that is given is the axis of jointN which becomes the zN -axis. But it
is clever to choose the origin oN , the link vector aN (the xN -axis), the link offset dN , and the link twist
αN so that most of the Denavit-Hartenberg parameters are equal to zero.

2.3.2 Coordinate-Frame Attachment

Given an articulated figure, the first thing to do is to attach one coordinate system to each link. These
coordinate systems are called link frames. The procedure for attaching the link frames is as follows:

“book” — 2005/9/30 — 15:44 — page 34 — #46✐
✐

✐
✐

✐
✐

✐
✐

34 CHAPTER 2. ARTICULATED FIGURES

pi+1

pipi−1

ui−1

ui
ui+1

joint i−1

joint i

joint i+1

Figure 2.12: The joint axes of an articulated figure. The axes are given by the parametric equations
li(s) = pi + sui. Think of the joint axes as the vectors ui.

1. Identify the joint axes.

2. Identify the common perpendiculars of successive joint axes.

3. Attach coordinate frames to each joint axis.

In the following will each of the above steps be performed.
First, identify the joint axes of the articulated figure (see Figure 2.12). The axis of joint i is given by

(2.10a), and repeated here for convenience.

li(s) = pi + sui (2.41)

Next, identify the common perpendicular between neighboring joint axes. That is, identify the com-
mon perpendicular ai between the axes of joint i and joint i+1. Also, identify the point oi where the
common perpendicular intersects the axis of joint i. This is illustrated in Figure 2.13.

In Section 2.3.1.3 we showed how to compute the shortest distance ai between the axes of joint i and
joint i+1. We also showed that the shortest distance is along the common perpendicular between the axes
of joint i and joint i+1. Finally, we showed how to compute the location of the shortest distance oi on the

“book” — 2005/9/30 — 15:44 — page 35 — #47✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 35

pi+1

pipi−1

ui−1

ui
ui+1

joint i−1

joint i

joint i+1

ai

ai−1

oi

oi−1

Figure 2.13: The link vectors ai and the origins oi.

axis of joint i. What is needed here is the link vector ai and its intersection oi with the axis of joint i, see
(2.31) and (2.32a) in Section 2.3.1.3.

Finally, the ith link frame, shown in Figure 2.14, can be constructed in as follows:

1. The Origin: Let the origin of the ith link frame be at the point oi on the axis of joint i.

2. The zi-axis: Let the zi-axis be along the ith joint axis. That is, let the zi be parallel to vector ui

from (2.41)
zi =

ui

∥ui∥2
(2.42)

3. The xi-axis: Let the xi-axis be along the link vector ai from (2.32a)

xi =
ai

∥ai∥2
(2.43)

4. The yi-axis: Let the xi-axis be such that the vectors xi,yi,zi form a right-handed orthogonal
coordinate system. That is, let yi be given as

yi =
zi × xi

∥zi × xi∥2
(2.44)

“book” — 2005/9/30 — 15:44 — page 36 — #48✐
✐

✐
✐

✐
✐

✐
✐

36 CHAPTER 2. ARTICULATED FIGURES

pi+1

ui
ui+1

joint i−1

joint i

joint i+1

ai−1

oi−1

zi−1

pipi−1

ui−1

ai

zi

yi−1

xi−1

yioi

xi

oi+1

yi+1

xi+1

zi+1

Figure 2.14: The articulated figure and its link frames oi,xi,yi,zi.

2.3.3 The Link Twist αi

The link twist is the angle αi between axes of joint i and joint i+1. The angle αi is measured around the
xi-axis. Positive angles are measured counterclockwise when looking from the tip of vector xi toward its
foot, see Figure 2.15. More specifically, the link twist αi is the angle between the direction vectors of the
joint axes ui and ui+1 measured around the link vector ai.

Recall some properties of the scalar and vector products.

ui · ui+1 = ∥ui∥2 ∥ui+1∥2 cosαi 0 ≤ αi ≤ π (2.45a)

∥ui × ui+1∥2 = ∥ui∥2 ∥ui+1∥2 sinαi 0 ≤ αi ≤ π (2.45b)

which is equivalent to

cosαi =
ui · ui+1

∥ui∥2 ∥ui+1∥2
0 ≤ αi ≤ π (2.46a)

sinαi =
∥ui × ui+1∥2
∥ui∥2 ∥ui+1∥2

0 ≤ αi ≤ π (2.46b)

“book” — 2005/9/30 — 15:44 — page 37 — #49✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 37

pi+1

ui+1

joint i−1

joint i

joint i+1

ui

oi−1

zi−1

pi−1

ui−1

ai

yi−1

xi−1

ai−1

yi

xi

zi

pi

oi

yi+1

xi+1

zi+1

oai

oai−1

oi+1

αi

Figure 2.15: The link frames and link twist αi. In the figure, the link twist αi is negative.

Notice, since 0 ≤ sinαi ≤ 1 while −1 ≤ cosαi ≤ 1, the angle αi will always be in the interval
0 ≤ αi ≤ π, see Figure 2.16. In the following we show how to compute the link twist αi correctly.

Recall that the mathematical function arctan : R −→ R returns a value in the interval [−π,π]. Let
the function arctan2 : R2 −→ R be defined as

arctan2(n, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

(
n

d

)
if n > 0 ∧ d > 0

arctan

(
n

d

)
if n < 0 ∧ d > 0

arctan

(
n

d

)
+ π if n > 0 ∧ d < 0

arctan

(
n

d

)
− π if n < 0 ∧ d < 0

(2.47)

That is, if the link twist αi is naively computed as

αi = arctan2

(∥ui × ui+1∥2
∥ui∥2 ∥ui+1∥2

,
ui · ui+1

∥ui∥2 ∥ui+1∥2

)
(2.48)

“book” — 2005/9/30 — 15:44 — page 38 — #50✐
✐

✐
✐

✐
✐

✐
✐

38 CHAPTER 2. ARTICULATED FIGURES

α(1)
i

α(2)
i

sin αi

cos α(2)
i cos α(1)

i

Figure 2.16: The twist angle αi is always positive and in the interval 0 ≤ αi ≤ π. Since 0 ≤ sinαi ≤ 1

and −1 ≤ cosαi ≤ 1 there are two possible angles α(1)
i and α(2)

i depending on the sign of cosαi.

the result will sometimes be wrong, because sinαi from (2.46b) is always positive. That means, the angle
αi will always be one of the two positive angles α(1)

i or α(2)
i shown in Figure 2.16, i.e., αi will always be

positive.

The angle αi in the cross product, (2.46b), is measured around the axis ui × ui+1. If the vector
ui×ui+1 has the same direction as the link vector ai then the angle αi in (2.48) is correct, see Figure 2.17
If the vector ui × ui+1 has the opposite direction as the link vector ai then the angle αi in (2.48) is not
correct. The correct angle αi is the negative of the angle in (2.48), see Figure 2.18.

To distinguish between the two cases where the vectors ui × ui+1 and ai have the same or opposite
directions, it suffices to check the sign of their dot product (ui × ui+1) · ai. That can be expressed in the
following equation

αi =

⎧
⎪⎪⎨

⎪⎪⎩

+ arctan2

(∥ui × ui+1∥2
∥ui∥2 ∥ui+1∥2

,
ui · ui+1

∥ui∥2 ∥ui+1∥2

)
if (ui × ui+1) · ai ≥ 0

− arctan2

(∥ui × ui+1∥2
∥ui∥2 ∥ui+1∥2

,
ui · ui+1

∥ui∥2 ∥ui+1∥2

)
if (ui × ui+1) · ai < 0

(2.49)

“book” — 2005/9/30 — 15:44 — page 39 — #51✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 39

ui

ui+1ai

αi

ui × ui+1

Figure 2.17: The twist angle is positive because the direction of the vector ui×ui+1 has the same direction
as the link vector ai.

ui

ui+1

αi

ui × ui+1

ai

Figure 2.18: The twist angle αi is negative because the direction of the vector ui ×ui+1 has the opposite
direction of the link vector ai.

“book” — 2005/9/30 — 15:44 — page 40 — #52✐
✐

✐
✐

✐
✐

✐
✐

40 CHAPTER 2. ARTICULATED FIGURES

pi+1

ui+1

joint i−1

joint i

joint i+1

ui

oi−1

zi−1

pi−1

ui−1

ai

yi−1

xi−1

ai−1

yi

xi

zi

pi

oi

yi+1

xi+1

zi+1

oai

oai−1

oi+1

{
di

αi

Figure 2.19: The link offset is the distance between the origins of the coordinate frames attached to joint
joint i−1 and joint i measured along the axis of joint i.

2.3.4 The Link Offset di

The link offset is the distance between the origins of the coordinate frames attached to joint joint i−1 and
joint i measured along the axis of joint i. More specific, it is the distance between the point oai−1 where
the xi−1-axis intersects the axis of joint i and the origin oi of the link frame of link i, see Figure 2.19. The
points oi and oai are given by (2.31) for any i. That is

di =

{
+
∥∥oi − oai−1

∥∥
2

if (oi − oai−1) · ui ≥ 0

−
∥∥oi − oai−1

∥∥
2

if (oi − oai−1) · ui < 0
(2.50)

2.3.5 The Joint Angle ϕi

The joint angle ϕi is the angle between the link vectors ai−1 and ai. The angle ϕi is measured around
the zi-axis. Positive angles are measured counterclockwise when looking from the tip of vector z i toward
its foot, see Figure 2.20. The joint angle ϕi is computed the same way as the link twist αi, which was
described in Section 2.3.3. The difference between the computations are the vectors which are involved.

“book” — 2005/9/30 — 15:44 — page 41 — #53✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 41

pi+1

ui+1

joint i−1

joint i

joint i+1

ui

oi−1

zi−1

pi−1

ui−1

ai

yi−1

xi−1

ai−1

yi

xi

zi

pi

oi

yi+1

xi+1

zi+1

oai

oai−1

oi+1

{
di

αi

ϕi

Figure 2.20: The coordinate frames of the links and the joint angle. In the figure, the joint angle ϕi is
negative.

The joint angle ϕi is the angle between the link vectors ai−1 and ai measured around the axis zi

which is parallel to the joint axis ui. Using the same arguments as in Section 2.3.3 the joint angle is
computed as follows

ϕi =

⎧
⎪⎪⎨

⎪⎪⎩

+ arctan2

(∥ai−1 × ai∥2
∥ai−1∥2 ∥ai∥2

,
ai−1 · ai

∥ai−1∥2 ∥ai∥2

)
if (ai−1 × ai) · zi ≥ 0

− arctan2

(∥ai−1 × ai∥2
∥ai−1∥2 ∥ai∥2

,
ai−1 · ai

∥ai−1∥2 ∥ai∥2

)
if (ai−1 × ai) · zi < 0

(2.51)

2.3.6 The Link Transformation (i−1)T i

The transformation (i−1)T i transforms entities from one frame to the preceding frame. This can be ex-
plained as follows. Given the coordinates of a point pi specified in linkframe i, the transformation (i−1)T i

transforms point pi such that its coordinates are specified in linkframe i−1.
The idea is to transform the point pi with coordinates in linkframe i with a transformation that

makes linkframe i−1 coincide with linkframe i. The transformation of the coordinates of point pi from

“book” — 2005/9/30 — 15:44 — page 42 — #54✐
✐

✐
✐

✐
✐

✐
✐

42 CHAPTER 2. ARTICULATED FIGURES

pi+1

ui+1

joint i−1

joint i

joint i+1

ui

oi−1

zi−1

pi−1

ui−1

ai

xi−1

ai−1

yi

xi

zi

pi

oi

yi−1

yi+1

xi+1

zi+1

oai

oai−1

oi+1

{
di

ϕiαi−1

αi

Figure 2.21: The coordinate frames of the links and the joint angle.

linkframe i to linkframe i−1 is done in several steps:

1. Rotate the joint angle ϕi around the axis zi.

2. Translate the link offset di along the axis zi.

3. Translate the link length ai−1 along the axis xi.

4. Rotate the link twist angle αi−1 around the axis xi.

That is, the transformation (i−1)T i has the form
(i−1)T i(ϕi, di, ai−1,αi−1) = Rxi(αi−1)T xi(ai−1)T zi(di)Rzi(ϕi) (2.52)

A detailed description of the transformations Rxi(αi−1),T xi(ai−1),T zi(di),Rzi(ϕi) is given in the
following sections.

2.3.6.1 The Transformation Rzi(ϕi)

Consider Figure 2.21. The angle between the xi and xi−1 is equal to ϕi measured around the axis zi. So,
by rotating the angle ϕi around the axis zi we make the coordinate axes xi and xi−1 parallel. The actual

“book” — 2005/9/30 — 15:44 — page 43 — #55✐
✐

✐
✐

✐
✐

✐
✐

2.3 PHYSICS-BASED ANIMATION 43

transformation is given as

Rzi(ϕi) =

⎡

⎢⎢⎣

cosϕi − sinϕi 0 0
sinϕi cosϕi 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (2.53)

After this transformation, the axes xi and xi−1 are parallel, i.e., xi ∥ xi−1.

2.3.6.2 The Transformation T zi(di)

Still consider Figure 2.21, but remember that the axis xi has been rotated such that it is parallel to the axis
xi−1. By translating the distance di along the zi-axis the axes xi and xi−1 will not only be parallel, they
will lie on the same line. The actual transformation is given as

T zi(di) =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

⎤

⎥⎥⎦ (2.54)

After this transformation, the axes xi and xi−1 are not only parallel, but they are located on the same line
i.e., xi = λxi−1.

2.3.6.3 The Transformation T xi(ai−1)

Still consider Figure 2.21, but remember that after the previous transformations the axes xi and xi−1 are
now on the same line. By translating the distance ai−1 along the xi-axis, the origins oi and oi−1 will
coincide. The actual transformation is given as

T xi(ai−1) =

⎡

⎢⎢⎣

1 0 0 ai−1

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (2.55)

After this transformation, the axes xi and xi−1 are on the same line, and the origins oi and oi−1 coincide,
i.e., oi = oi−1

2.3.6.4 The Transformation Rxi(αi)

Still consider Figure 2.21, but remember that the axes xi and xi−1 are now on the same line and that
the origins oi and oi−1 are coincident. The only thing that needs to be taken care of is to transform the
zi−1-axis into the zi-axis. This is done by rotating the angle αi−i around the axis xi ≡ xi−1. The actual
transformation is given as

Rxi(αi−1) =

⎡

⎢⎢⎣

1 0 0 0
0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1

⎤

⎥⎥⎦ (2.56)

“book” — 2005/9/30 — 15:44 — page 44 — #56✐
✐

✐
✐

✐
✐

✐
✐

44 CHAPTER 2. ARTICULATED FIGURES

After these transformations the two coordinate systems coincide and the final transformation (i−i)T i from
linkframe i to linkframe i−1 is established.

2.3.6.5 The Transformation (i−1)T i(di,ϕi)

As shown in the previous sections, the transformation (i−1)T i is given as
(i−1)T i(di,ϕi, ai−1,αi−1) = Rxi(αi−1)T xi(ai−1)T zi(di)Rzi(ϕi) (2.57)

Usually, the link parameters ai−i and αi−1 are constant for a given articulated figure, so the transformation
(i−1)T i is really only a function of the two parameters di and ϕi. Multiplying the matrices yields the
following expression for the transformation (i−1)T i

(i−1)T i(di,ϕi) =

⎡

⎢⎢⎣

cosϕi − sinϕi 0 ai−1

cosαi−1 sinϕi cosαi−1 cosϕi − sinαi−1 −di sinαi−1

sinαi−1 sinϕi sinαi−1 cosϕi cosαi−1 di cosαi−1

0 0 0 1

⎤

⎥⎥⎦ (2.58)

In some literature, it is often seen that the transformation (i−1)T i is written in a different way. Omitting
the parameters, the transformation has the form

(i−1)T i = RxiT xiT ziRzi (2.59)

from which it can be seen that there are only translation and rotation matrices. Furthermore, it can be seen
that they can be written in two groups

(i−1)T i = (RxiT xi)(T ziRzi) (2.60)

By inspection, it can be seen that this special matrix product commutes

RxiT xi = T xiRxi (2.61)

and that is because the matrix T xi does only change the x-coordinate, and the matrix Rxi does not change
the x-coordinate.

By specifying the transformation i−1T i(di,ϕi) for all links, i = 1, . . . ,N a transformation from link
N to the base, link 0 can be written

0T N = 0T N (d1,ϕ1, . . . , dN ,ϕN) = 0T 1(d1,ϕ1)
1T 2(d2,ϕ2) · · · N−1T N (dN ,ϕN) (2.62)

Let θi denote the generalized joint parameters for joint i, i.e., θ i = (di,ϕi). Then (2.8) may be written
0T N = 0T N (θ1, . . . ,θN) = 0T 1(θ1)

1T 2(θ2) · · · (N−1)T N (θN) (2.63)

When using the Denavit-Hartenberg description of an articulated figure, usually each joint is restricted
to having only one degree of freedom. That is, each joint has only a translatory parameter di along its
z-axis if it is a prismatic joint, or it has one rotational parameter ϕi around its z-axis if it is a revolute
joint. If a joint needs more degrees of freedom, several joints with link lengths equal to zero are located
on top of each other.

This means that the generalized parameter vector θi = (ϕi, di)T becomes an ordinary parameter, i.e.,
the generalized parameter θi becomes di for a prismatic joint, and it becomes ϕi for a revolute joint.

“book” — 2005/9/30 — 15:44 — page 45 — #57✐
✐

✐
✐

✐
✐

✐
✐

3

Forward and Inverse Kinematics

Kinematics is the study of the motion of rigid bodies without consideration of Newtonian laws. This and
the following chapter describe methods of how to manipulate an articulated figure. Recall from Chapter 2
the definition of an articulated figure, its notation, and how to navigate the structure.

Forward kinematics , Section 3.2, is the most basic way to animate an articulated figure. All the joint
parameters are set manually and the result is the placement of all the links and joints in the whole figure.
This method is not very practical if one wants to have the end-point of the articulated figure touching some
specific point; for example, if a character in a computer game is to grab the door handle when opening the
door. It is almost impossible to calculate the parameters of each joint in order to get the arm and hand in
the position where they align with the door handle.

An easier way is to use inverse kinematics, Section 3.3. This method, as the name suggests, starts with
the end-point of an articulated figure and uses that to calculate each joint parameter. So an animator only
has to worry about this end-point. In forward kinematics, one specifies each joint variable and the result
is the end-point. In inverse kinematics the end-point is specified and the result is the joint variable. The
end-point is most often called the end effector. This chapter starts by giving a description of the properties
of this end effector.

3.1 End Effector

The end effector is defined to be the last coordinate system of an articulated figure. Notice that a compli-
cated structure like a hand will have end effectors at the tip of each finger.

In the notation in Chapter 2, the end effector is located in joint N . Usually, an animator is interested
in the position and orientation of the end effector specified in base coordinates for easy use.

Sections 2.2 and 2.3 derived two expressions (2.9) and (2.63) for the transformation 0T N , which
transforms the N th link frame to the base coordinate frame. The transformation is given by a 4×4 matrix,
which is parameterized by the generalized joint parameters θ i. This transformation is repeated here for
convenience.

0T N = 0T N (θ1, . . . ,θN) = 0T 1(θ1)
1T 2(θ2) · · · (N−1)T N (θN) (3.1a)

=

⎡

⎢⎢⎣

m11(θ1, . . . ,θN) m12(θ1, . . . ,θN) m13(θ1, . . . ,θN) m14(θ1, . . . ,θN)
m21(θ1, . . . ,θN) m22(θ1, . . . ,θN) m23(θ1, . . . ,θN) m24(θ1, . . . ,θN)
m31(θ1, . . . ,θN) m32(θ1, . . . ,θN) m33(θ1, . . . ,θN) m34(θ1, . . . ,θN)

0 0 0 1

⎤

⎥⎥⎦ . (3.1b)

The location and orientation of the N th link frame might also be expressed relative to the base coordinate
frame as three rotations, one around each of the coordinate axes followed by a translation. This results in

45

“book” — 2005/9/30 — 15:44 — page 46 — #58✐
✐

✐
✐

✐
✐

✐
✐

46 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

First: Yaw Ψ Rotate the angle Ψ around the x-axis
Second: Pitch Θ Rotate the angle Θ around the y-axis
Third: Roll Φ Rotate the angle Φ around the z-axis

Table 3.1: Order, name, and definition of the rotations.

an alternative expression for the transformation 0T N

0T N = 0T N (p,Φ,Θ,Ψ) = T (p)Rz(Φ)Ry(Θ)Rx(Ψ) (3.2)

where T (p) is a translation matrix, and Rz(Φ),Ry(Θ),Rx(Ψ) are rotation matrices. This expression is
a 4 × 4 matrix, where the elements are functions of the translation vector p and the Euler angles Φ, Θ,
and Ψ.

The following sections will compute the transformation T (p)Rz(Φ)Ry(Θ)Rx(Ψ) and establish the
relations to the transformation 0T N (θ1, . . . ,θN) given by (3.1). Finally, the notion of a state vector
is defined. The state vector relates the position p and orientation Φ,Θ,Ψ of the end effector to the
generalized joint parameters θ1, . . . ,θN .

3.1.1 Location of the End Effector T (p)

The origin of the coordinate frame relative to some base coordinate frame can be specified by a translation
by a vector p =

[
px py pz

]T . Using homogeneous coordinates, the corresponding transformation
matrix T (p) is given by

T (p) =

⎡

⎢⎢⎣

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

⎤

⎥⎥⎦ . (3.3)

3.1.2 Orientation of the End Effector—Roll, Pitch, and Yaw
Any 3D orientation relative to some base coordinate frame can be specified by three rotations, one around
each of the coordinate axes. These rotations are named roll, pitch, and yaw respectively, and are shown in
Figure 3.1.

The order in which these rotations are performed must be fixed. In the following, the order is: first
rotate around the x-axis, second rotate around the y-axis, and finally rotate around the z-axis. The order
and names of these rotations are summarized in Table 3.1, and described in the following sections.

3.1.2.1 The Yaw Transformation Y (Ψ) = Rx(Ψ)

The Yaw transformation is a rotation by the angle Ψ around the x-axis, and it can be expressed as

Y (Ψ) = Rx(Ψ) =

⎡

⎢⎢⎣

1 0 0 0
0 cos Ψ − sin Ψ 0
0 sin Ψ cos Ψ 0
0 0 0 1

⎤

⎥⎥⎦ . (3.4)

“book” — 2005/9/30 — 15:44 — page 47 — #59✐
✐

✐
✐

✐
✐

✐
✐

3.1 PHYSICS-BASED ANIMATION 47

x

z

y

Roll Φ

Pitch Θ

Yaw Ψ

Figure 3.1: Any orientation can be specified by three rotations, the Roll, Pitch, and Yaw around the x,y,
and z axes respectively. The order of rotations are: rotate around the axis x,y,z.

3.1.2.2 The Pitch Transformation P (Θ) = Ry(Θ)

The Pitch transformation is a rotation by the angle Θ around the y-axis, and it can be expressed as

P (Θ) = Ry(Θ) =

⎡

⎢⎢⎣

cos Θ 0 sin Θ 0
0 1 0 0

− sin Θ 0 cos Θ 0
0 0 0 1

⎤

⎥⎥⎦ . (3.5)

3.1.2.3 The Roll Transformation R(Φ) = Rz(Φ)

The Roll transformation is a rotation by the angle Φ around the z-axis, and it can be expressed as

R(Φ) = Rz(Φ) =

⎡

⎢⎢⎣

cos Φ − sin Φ 0 0
sin Φ cos Φ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (3.6)

“book” — 2005/9/30 — 15:44 — page 48 — #60✐
✐

✐
✐

✐
✐

✐
✐

48 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

3.1.2.4 The Roll, Pitch, and Yaw Transformation T RPY (Φ,Θ,Ψ)

The Roll, Pitch, and Yaw transformation denoted T RPY is the composition of the three rotations described
above. The order of the composition is as follows

T RPY (Φ,Θ,Ψ) = R(Φ)P (Θ)Y (Ψ) = Rz(Φ)Ry(Θ)Rx(Ψ) (3.7a)

=

⎡

⎢⎢⎣

cΦ −sΦ 0 0
sΦ cΦ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

cΘ 0 sΘ 0
0 1 0 0
−sΘ 0 cΘ 0

0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 0 0 0
0 cΨ −sΨ 0
0 sΨ cΨ 0
0 0 0 1

⎤

⎥⎥⎦ (3.7b)

=

⎡

⎢⎢⎣

cΦcΘ cΦsΘsΨ− sΦcΨ cΦsΘcΨ + sΦsΨ 0
sΦcΘ sΦsΘsΨ + cΦcΨ sΦsΘcΨ− cΦsΨ 0
−sΘ cΘsΨ cΘcΨ 0

0 0 0 1

⎤

⎥⎥⎦ (3.7c)

where sΦ is shorthand for sin Φ, and cΦ for cos Φ, etc.
The order of the rotations is essential: reading from right to left, first rotate around the x-axis, second

rotate around the y-axis, and finally rotate around the z-axis.

3.1.3 The Transformation of the End Effector 0T N (p, Φ, Θ, Ψ)

As outlined in the previous sections the 3D location and orientation of the end effector in some coordinate
frame can be expressed as three rotations and a translation. Specifically, the coordinate frame of the end
effector can be expressed in the base coordinate frame of the articulated figure as

0T N = 0T N (p,Φ,Θ,Ψ) = T (p)T RPY (Φ,Θ,Ψ) (3.8a)

=

⎡

⎢⎢⎣

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

cΦcΘ cΦsΘsΨ− sΦcΨ cΦsΘcΨ + sΦsΨ 0
sΦcΘ sΦsΘsΨ + cΦcΨ sΦsΘcΨ− cΦsΨ 0
−sΘ cΘsΨ cΘcΨ 0

0 0 0 1

⎤

⎥⎥⎦ (3.8b)

=

⎡

⎢⎢⎣

cΦcΘ cΦsΘsΨ− sΦcΨ cΦsΘcΨ + sΦsΨ px

sΦcΘ sΦsΘsΨ + cΦcΨ sΦsΘcΨ− cΦsΨ py

−sΘ cΘsΨ cΘcΨ pz

0 0 0 1

⎤

⎥⎥⎦ (3.8c)

where sΦ is shorthand for sin Φ, and cΦ for cos Φ, etc.

3.1.4 Computation of the Parameters p, Φ, Θ, Ψ

This section describes the relation between the general transformations 0T N given by (2.9) or (2.58) in
Sections 2.2.4 and 2.58 respectively, and the transformation (3.8c) from the previous section.

More specifically, it describes how to compute the parameters, p,Φ,Θ,Ψ, of the Roll, Pitch, and Yaw
model described in Section 3.1.3, given an arbitrary transformation matrix 0T N which is a composition of

“book” — 2005/9/30 — 15:44 — page 49 — #61✐
✐

✐
✐

✐
✐

✐
✐

3.1 PHYSICS-BASED ANIMATION 49

translations and rotations. Such a transformation matrix could be obtained as described in Sections 2.2.4
and 2.3.6.5.

A transformation 0T N , which transforms points in the end effector’s coordinate frame to the base
coordinate frame of the articulated figure (see (2.9) or (2.58)), can be represented as a 4 × 4 matrix,
where the elements of the matrix mij are functions of the joint parameters θ1, . . . , θN . Omitting the joint
parameters θi for readability, the matrix has the form

0T N =

⎡

⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

⎤

⎥⎥⎦ . (3.9)

The reason why the last row in this matrix is equal to
[
0 0 0 1

]
is that the computations are done in

homogeneous coordinates and that translations and rotations are isomorphisms. Therefore, there are no
perspective effects of this transformation.

The matrix (3.9) and the matrix resulting from the Roll, Pitch, and Yaw model (3.8c) do the same
thing. They transform entities specified in the coordinate system of the end effector to the coordinate
system of the base of the articulated figure. Therefore, these matrices must be identical

⎡

⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

cΦcΘ cΦsΘsΨ− sΦcΨ cΦsΘcΨ + sΦsΨ px

sΦcΘ sΦsΘsΨ + cΦcΨ sΦsΘcΨ− cΦsΨ py

−sΘ cΘsΨ cΘcΨ pz

0 0 0 1

⎤

⎥⎥⎦ . (3.10)

By observation several relations can be found. The following sections show how to express the parameters
p,Φ,Θ, and Ψ as functions of the matrix elements {mij | i, j = 1, . . . , 4}.

3.1.4.1 The Translation p

From (3.10) it can be seen directly that the translation vector p =
[
px py pz

]T is given by

p =

⎡

⎣
px

py

pz

⎤

⎦ =

⎡

⎣
m14

m24

m34

⎤

⎦ (3.11)

3.1.4.2 The Yaw Angle Ψ

The angle Ψ can be computed as follows by inspection of (3.10)

Ψ = arctan

(
m32

m33

)
. (3.12)

This is possible because the following relations hold

Ψ = arctan

(
m32

m33

)
= arctan

(
cos Θ sin Ψ

cos Θ cos Ψ

)
= arctan

(
sin Ψ

cos Ψ

)
(3.13)

“book” — 2005/9/30 — 15:44 — page 50 — #62✐
✐

✐
✐

✐
✐

✐
✐

50 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

The function tan has a period of π which might cause problems. In order to get the angle right, it is better
to use the function arctan2 given by (2.47). The result then becomes

Ψ = arctan2(m32,m33). (3.14)

3.1.4.3 The Pitch Angle Θ

At this point, the angle Ψ is known, and it can by used for further computations. By inspection of (3.10),
and the knowledge of the value of the angle Ψ, the angle Θ can be computed as follows:

Θ = arctan

(
−m31

m32 sin Ψ + m33 cos Ψ

)
. (3.15)

This can be seen because the following relations hold

Θ = arctan

(
−m31

m32 sin Ψ + m33 cos Ψ

)
= arctan

(
sinΘ

cos Θ sin2 Ψ + cos Θ cos2 Ψ

)
(3.16a)

= arctan

(
sinΘ

cos Θ(sin2 Ψ + cos2 Ψ)

)
= arctan

(
sin Θ

cos Θ

)
. (3.16b)

The function tan has a period of π, so in order to get the angle right it is better to use the function arctan2
given by (2.47). The result is

Θ = arctan2(−m31,m32 sin Ψ + m33 cos Ψ) (3.17)

3.1.4.4 The Roll Angle Φ

The angle Ψ can be computed as follows by inspection of (3.10)

Φ = arctan

(
m21

m11

)
. (3.18)

This can be done because the following relations hold

Φ = arctan

(
m21

m11

)
= arctan

(
sin Φ cosΘ

cos Φ cosΘ

)
= arctan

(
sin Φ

cos Φ

)
. (3.19)

The function tan has a period of π. This might cause problems in some cases, so in order to get the angle
right, it’s better to use the function arctan2 given by (2.47)

Φ = arctan2(m21,m11) (3.20)

“book” — 2005/9/30 — 15:44 — page 51 — #63✐
✐

✐
✐

✐
✐

✐
✐

3.2 PHYSICS-BASED ANIMATION 51

3.1.5 The State Vector

Let the state vector s be defined as follows:

s =

⎡

⎢⎢⎢⎢⎢⎢⎣

Xposition
Yposition
Zposition

Yaw
Pitch
Roll

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

px

py

pz

Ψ
Θ
Φ

⎤

⎥⎥⎥⎥⎥⎥⎦
(3.21)

where the vector p =
[
px py pz

]T is given by (3.11), and the angles Ψ, Θ, and Φ are given by (3.12),
(3.15), and (3.18).

As shown previously, the elements of the state vector s are computed from the elements of the trans-
formation matrix 0T N given by (3.9), and the transformation matrix is a function of the joint parameters
θ1, . . . ,θN

0T N (θ1, . . . ,θN) = 0T 1(θ1) · · · (i−1)T i(θi) · · · (N−1)T N (θN) =
⎡

⎢⎢⎣

m11(θ1, . . . ,θN) m12(θ1, . . . ,θN) m13(θ1, . . . ,θN) m14(θ1, . . . ,θN)
m21(θ1, . . . ,θN) m22(θ1, . . . ,θN) m23(θ1, . . . ,θN) m24(θ1, . . . ,θN)
m31(θ1, . . . ,θN) m32(θ1, . . . ,θN) m33(θ1, . . . ,θN) m34(θ1, . . . ,θN)

0 0 0 1

⎤

⎥⎥⎦ .
(3.22)

Because all the elements of the state vector s are computed from the elements of this matrix, the state
vector s is also a function of the joint parameters θi, . . . ,θN , which yields

s(θ1, . . . ,θN) =

⎡

⎢⎢⎢⎢⎢⎢⎣

px(θ1, . . . ,θN)
py(θ1, . . . ,θN)
pz(θ1, . . . ,θN)
Ψ(θ1, . . . ,θN)
Θ(θ1, . . . ,θN)
Φ(θ1, . . . ,θN)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.23)

3.2 Forward Kinematics

Forward kinematics can be explained as follows: given all the link and joint parameters of an articulated
body, determine the 3D position and orientation of the link farthest away from the base, the end effector.

The assumption is that the link and joint parameters are known. Therefore, the generalized joint pa-
rameters θ1, . . . ,θN are known, and the transformation from the end effector to the base of the articulated

“book” — 2005/9/30 — 15:44 — page 52 — #64✐
✐

✐
✐

✐
✐

✐
✐

52 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

figure 0T N (θ1, . . . ,θN) can be computed as

0T N (θ1, . . . ,θN) = 0T 1(θ1) · · · (i−1)T i(θi) · · · (N−1)T N (θN) =
⎡

⎢⎢⎣

m11(θ1, . . . ,θN) m12(θ1, . . . ,θN) m13(θ1, . . . ,θN) m14(θ1, . . . ,θN)
m21(θ1, . . . ,θN) m22(θ1, . . . ,θN) m23(θ1, . . . ,θN) m24(θ1, . . . ,θN)
m31(θ1, . . . ,θN) m32(θ1, . . . ,θN) m33(θ1, . . . ,θN) m34(θ1, . . . ,θN)

0 0 0 1

⎤

⎥⎥⎦ .
(3.24)

The elements of the matrix {mij(θ1, . . . ,θN)} | i, j = 1, . . . , 4} can be computed as described in Sec-
tions 2.2 and 2.3. From the transformation 0T N (θ1, . . . ,θN), the state vector s(θ1, . . . ,θN) can be
computed as

s(θ1, . . . ,θN) =

⎡

⎢⎢⎢⎢⎢⎢⎣

px(θ1, . . . ,θN)
py(θ1, . . . ,θN)
pz(θ1, . . . ,θN)
Ψ(θ1, . . . ,θN)
Θ(θ1, . . . ,θN)
Φ(θ1, . . . ,θN)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.25)

The elements of the state vector are functions of the matrix elements mij(θ1, . . . ,θN) and therefore also
of the generalized joint parameters θ1, . . . ,θN . The individual elements of the state vector s are computed
as described in Section 3.1.4.

Hence, by specifying all the generalized joint parameters θ i the position p and orientation Ψ,Θ,Φ of
the end effector can be computed by computing the state vector s.

3.3 Inverse Kinematics

Inverse kinematics can be explained as follows: given a 3D position and orientation of the link furthest
away from the base, the end effector determines the parameters of the individual links and joints.

In forward kinematics, all parameters are given, and the only real work is to fill in all the values and
calculate the state vector. In contrast, inverse kinematics is more challenging. Given an end effector
position, there can be numerous valid solutions for the state of the remaining states of the articulated
figure. This can be verified by a simple test: place your index finger on a hard surface and move your
elbow. All positions the elbow passes through presents valid solutions of the articulated system (the whole
arm).

The first part of this section describes the theory, shows how to set up an equation system, and how to
reach valid solutions. Finally, a complete walk through is given using the Denavit-Hartenberg notation.

3.3.1 Computation of the Joint Parameters θi

Assume that one wants to locate the end effector at some goal position pg with some goal orientation
Φg,Θg,Ψg. This results in a goal state vector sg which the end effector should move to. The problem is

“book” — 2005/9/30 — 15:44 — page 53 — #65✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 53

now how to compute the joint parameters θi, i = 1, . . . ,N such that the end effector reaches its goal.
Stated mathematically, it means: determine a vector

[
θ1, . . . ,θN

]T such that the function

f(θ1, . . . ,θN) = s(θ1, . . . ,θN)− sg = 0. (3.26)

We will now study the Taylor expansion of s−sg, but for convenience this will be done using the function
f . The Taylor series is discussed in detail in Chapter 20. The following sections describes a method that
uses an iterative process that slowly crawls toward the goal where f is sufficiently close to zero.

At each step in the iteration scheme presented, one has to calculate a new guess for the joint param-
eters. This is done via a Taylor expansion and the derivative of the state vector seeded with the old joint
parameter values. These values are then fed to the next iteration.

In this section, we present the Taylor expansion together with the step equation. The following three
sections present three special cases for computing the new guess for the joint parameters. Finally, we walk
through how to compute the derivative matrix of the state vector.

The Taylor expansion of the function f is equal to

f
(
(θ1, . . . ,θN)+∆(θ1, . . . ,θN)

)
=

f(θ1, . . . ,θN) +
∂f(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
∆(θ1, . . . ,θN)+

o(∥∆(θ1, . . . ,θN)∥2
2
).

(3.27)

Considering only the first two terms yields

f
(
(θ1, . . . ,θN) + ∆(θ1, . . . ,θN)

)
≈ f(θ1, . . . ,θN) +

∂f(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
∆(θ1, . . . ,θN). (3.28)

The goal is that for some ∆(θ1, . . . ,θN) the result should be zero, in which case the end effector is at the
right position and has the right orientation. Therefore, let the new value of f be equal to zero

f
(
(θ1, . . . ,θN) + ∆(θ1, . . . ,θN)

)
= 0. (3.29)

Substituting this into (3.28) yields the following equation

0 ≈ f(θ1, . . . ,θN) +
∂f(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
∆(θ1, . . . ,θN) (3.30)

which can also be written

f(θ1, . . . ,θN) ≈ −∂f(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
∆(θ1, . . . ,θN). (3.31)

The function f only differs from the function s by a constant sg. Differentiating a constant yields zero,
so the Jacobian matrix is equal to

∂f(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
=
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
(3.32)

“book” — 2005/9/30 — 15:44 — page 54 — #66✐
✐

✐
✐

✐
✐

✐
✐

54 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

where

∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂px

∂θ1
(θ1, . . . ,θN) . . .

∂px

∂θN
(θ1, . . . ,θN)

∂py

∂θ1
(θ1, . . . ,θN) . . .

∂py

∂θN
(θ1, . . . ,θN)

∂pz

∂θ1
(θ1, . . . ,θN) . . .

∂pz

∂θN
(θ1, . . . ,θN)

∂Ψ

∂θ1
(θ1, . . . ,θN) . . .

∂Ψ

∂θN
(θ1, . . . ,θN)

∂Θ

∂θ1
(θ1, . . . ,θN) . . .

∂Θ

∂θN
(θ1, . . . ,θN)

∂Φ

∂θ1
(θ1, . . . ,θN) . . .

∂Φ

∂θN
(θ1, . . . ,θN)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.33)

Therefore (3.31) can now be written

s(θ1, . . . ,θN)− sg ≈ −
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
∆(θ1, . . . ,θN). (3.34)

The difference joint parameters vector ∆(θ1, . . . ,θN) is equal to

∆(θ1, . . . ,θN) =

⎡

⎢⎣
∆θ1

...
∆θN

⎤

⎥⎦ =

⎡

⎢⎣
θnew

1 − θ1
...

θnew
N − θN

⎤

⎥⎦ =

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦

new

−

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦ (3.35)

and we conclude that

s(θ1, . . . ,θN)− sg ≈ −
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)

⎛

⎜⎝

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦

new

−

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦ .

⎞

⎟⎠ (3.36)

This equation is derived using only the two first terms of the Taylor expansion of s, and it forms the basis
of the following derivations. It is only an approximation, but it can be used as an iteration scheme; see
Section 19, to obtain the desired solution. This will be shown in the following sections.

3.3.2 The Regular Case
If the Jacoby matrix ∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN) of the vector function s is invertible, the matrix

(
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)

)−1

(3.37)

exists, and (3.36) can be rewritten
⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦

new

=

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦−
(
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)

)−1(
s(θ1, . . . ,θN)− sg

)
(3.38)

“book” — 2005/9/30 — 15:44 — page 55 — #67✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 55

Because the matrix ∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN) is a function of (θ1, . . . ,θN), it must be inverted and
evaluated at each iteration.

3.3.3 The Over-Determined Case
If the Jacoby matrix ∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN) is over-determined, then it has more rows than
columns, and it can not be inverted. In this case the pseudoinverse can be used to obtain a least-squares
solution. To make the notation readable, let

J =
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
. (3.39)

In the over-determined case, the pseudoinverse has the form (see Chapter 19.4)

J+ =
(
JT J

)−1
JT . (3.40)

Insert J+ instead of (∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN))−1 in (3.38) yielding
⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦

new

=

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦− J+
(
s(θ1, . . . ,θN)− sg

)
. (3.41)

The matrix T+ is a function of (θ1, . . . ,θN). Therefore, it must be evaluated at each iteration.

3.3.4 The Under-Determined Case
If the Jacoby matrix ∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN) is under-determined, it has more columns than rows,
and is not be invertible. In this case the pseudoinverse can be used to obtain the least-squares solution,
which has the smallest norm. To make the notation more readable, let

J =
∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
. (3.42)

In the under-determined case, the pseudoinverse has the form

J+ = JT
(
JJT

)−1
. (3.43)

Inserting J+ instead of (∂s(θ1, . . . ,θN)/∂(θ1, . . . ,θN))−1 in (3.38) results in the following equation
⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦

new

=

⎡

⎢⎣
θ1
...
θN

⎤

⎥⎦− J+
(
s(θ1, . . . ,θN)− sg

)
. (3.44)

Because the matrix J+ is a function of (θ1, . . . ,θN), it must be evaluated at each iteration.

“book” — 2005/9/30 — 15:44 — page 56 — #68✐
✐

✐
✐

✐
✐

✐
✐

56 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

3.3.5 Computing the Jacobian of the State Vector

In Section 3.3.1 we showed generally how to set up an iteration scheme (see Section 19), to compute the
joint parameters θ1, . . . ,θN . The only thing that is missing is how to compute the Jacoby matrix of the
state vector s. The Jacobian of s is equal to

∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂px

∂θ1
(θ1, . . . ,θN) . . .

∂px

∂θN
(θ1, . . . ,θN)

∂py

∂θ1
(θ1, . . . ,θN) . . .

∂py

∂θN
(θ1, . . . ,θN)

∂pz

∂θ1
(θ1, . . . ,θN) . . .

∂pz

∂θN
(θ1, . . . ,θN)

∂Ψ

∂θ1
(θ1, . . . ,θN) . . .

∂Ψ

∂θN
(θ1, . . . ,θN)

∂Θ

∂θ1
(θ1, . . . ,θN) . . .

∂Θ

∂θN
(θ1, . . . ,θN)

∂Φ

∂θ1
(θ1, . . . ,θN) . . .

∂Φ

∂θN
(θ1, . . . ,θN)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.45)

From (3.22) it can be seen that the transformation 0T N has a special form

0T N (θ1, . . . ,θN)

= 0T 1(θ1) · · · (i−2)T (i−1)(θ(i−1))
(i−1)T i(θi)

iT (i+1)(θ(i+1)) · · · (N−1)T N (θN).
(3.46)

When computing the partial derivative of the transformation 0T N (θ1, . . . ,θN) with respect to some vari-
able θi, only one matrix (i−1)T i depends on the variable θi. This observation will be used in the following
to compute the elements of the Jacoby matrix of the state vector.

Considering partial differentiation with respect to the joint variable θ i, let the matrices P and C be
given as

P = 0T (i−1)(θ1, . . . ,θi−1) = 0T 1(θ1) · · · (i−2)T i(θi−1) (3.47a)

C = iT N (θ(i+1), . . . ,θN) = iT (i+1)(θ(i+1)) · · · (N−1)T N (θN). (3.47b)

The choice of name P indicates that the matrix contains the transformations of all the links that are
parents to link i, and the name C indicates that the matrix contains the transformations of the links that
are children of link i.

It can be seen that the matrices P and C are constant with respect to the variable θ i. Therefore,
partial differentiation of the matrices with respect to the variable θ i yields zero. With these assumptions,
the transformation 0T N can be written

0T N (θi) = P

(
(i−1)T i(θi)

)
C (3.48)

“book” — 2005/9/30 — 15:44 — page 57 — #69✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 57

which is a product of three matrices where only the one matrix {mij | i, j = 1, . . . , 4} is a function of
joint variable θi

⎡

⎢⎢⎣

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

m11(θi) m12(θi) m13(θi) m14(θi)
m21(θi) m22(θi) m23(θi) m24(θi)
m31(θi) m32(θi) m33(θi) m34(θi)

0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

0 0 0 1

⎤

⎥⎥⎦ . (3.49)

Under these assumptions, the (kj)th element of the matrix 0T N , denoted
(
0T N

)
kj

, can be written

0T N (θi)kj =
4∑

l=1

4∑

h=1

pkhmhl(θi)clj (3.50)

and its partial derivative with respect to θi is equal to

∂
(
0T N (θi)kj

)

∂θi
=

l=4∑

l=1

h=4∑

h=1

pkh

(
∂mhl(θi)

∂θi

)
clj (3.51)

which is equivalent to
∂
(
0T N (θi)kj

)

∂θi
= P k∗

(
∂
(
(i−1)T i(θi)

)

∂θi

)
C∗j (3.52)

where P k∗ denotes the kth row of matrix P , and C∗j denotes the jth column of matrix C, and

∂
(
(i−1)T i(θi)

)

∂θi
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂m11(θi)

∂θi

∂m12(θi)

∂θi

∂m13(θi)

∂θi

∂m14(θi)

∂θi
∂m21(θi)

∂θi

∂m22(θi)

∂θi

∂m23(θi)

∂θi

∂m24(θi)

∂θi
∂m31(θi)

∂θi

∂m32(θi)

∂θi

∂m33(θi)

∂θi

∂m34(θi)

∂θi
∂m41(θi)

∂θi

∂m42(θi)

∂θi

∂m43(θi)

∂θi

∂m44(θi)

∂θi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.53)

With (3.53) and either (3.38), (3.41), or (3.44), we can now solve the iterative scheme of (3.36).
When using the Denavit-Hartenberg description of an articulated figure, each joint is restricted to have

only one degree of freedom: it has either a translatory parameter di along its z-axis if it is a prismatic joint,
or it has one rotational parameter ϕi around its z-axis if it is a revolute joint. If a joint needs more degrees
of freedom, several joints with link lengths equal to zero are located on top of each other. This means that
the generalized parameter vector θi = (ϕi, di)T becomes an ordinary parameter. For a prismatic joint, the
generalized parameter θi becomes di, and for a revolute joint it becomes ϕi.

The following sections show examples of how to compute the Jacoby matrix of a prismatic and a
revolute joint.

“book” — 2005/9/30 — 15:44 — page 58 — #70✐
✐

✐
✐

✐
✐

✐
✐

58 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

3.3.6 Example Using Denavit-Hartenberg
Recall that the state vector s is given by

⎡

⎢⎢⎢⎢⎢⎢⎣

px(θi)
py(θi)
pz(θi)
Ψ(θi)
Θ(θi)
Φ(θi)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m14(θi)
m24(θi)
m34(θi)

arctan

(
m32(θi)

m33(θi)

)

arctan

(
−m31(θi)

m32(θi) sin Ψ(θi) + m33(θi) cos Ψ(θi)

)

arctan

(
m21(θi)

m11(θi)

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.54)

where mkj(θi) is the kjth element of the matrix given by (3.48). The matrix is repeated here for conve-
nience

0T N (θi) = P

(
(i−1)T i(θi)

)
C (3.55)

where the matrices P and C are given by (3.47).
When using the Denavit-Hartenberg notation, the generalized parameter is equal to θ i =

[
ϕi di

]T ,
and the transformation matrix (i−1)T i(θi) is given as

(i−1)T i(di,ϕi) =

⎡

⎢⎢⎣

cosϕi − sinϕi 0 ai−1

cosαi−1 sinϕi cosαi−1 cosϕi − sinαi−1 −di sinαi−1

sinαi−1 sinϕi sinαi−1 cosϕi cosαi−1 di cosαi−1

0 0 0 1

⎤

⎥⎥⎦ . (3.56)

The Jacobian of the state vector s is given as

∂s(θ1, . . . ,θN)

∂(θ1, . . . ,θN)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂px

∂θ1
(θ1, . . . ,θN) . . .

∂px

∂θN
(θ1, . . . ,θN)

∂py

∂θ1
(θ1, . . . ,θN) . . .

∂py

∂θN
(θ1, . . . ,θN)

∂pz

∂θ1
(θ1, . . . ,θN) . . .

∂pz

∂θN
(θ1, . . . ,θN)

∂Ψ

∂θ1
(θ1, . . . ,θN) . . .

∂Ψ

∂θN
(θ1, . . . ,θN)

∂Θ

∂θ1
(θ1, . . . ,θN) . . .

∂Θ

∂θN
(θ1, . . . ,θN)

∂Φ

∂θ1
(θ1, . . . ,θN) . . .

∂Φ

∂θN
(θ1, . . . ,θN)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.57)

where the kjth entry is the partial derivative with respect to the variable θk

∂
(
0T N (θi)

)
kj

∂θi
= P k∗

(
∂
(
(i−1)T i(θi)

)

∂θi

)
C∗j (3.58)

“book” — 2005/9/30 — 15:44 — page 59 — #71✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 59

The matrices P and C are given by (3.47).
In the following sections, the matrix ∂

(
(i−1)T i(θi)

)
/∂θi is computed for both a prismatic and a

revolute joint.

3.3.6.1 A Prismatic Joint

The general transformation matrix (i−1)T i is given by (3.56). For a prismatic joint, the generalized joint
parameter θi is equal to θi = di. Therefore, the partial derivative of (i−1)T i given by the matrix (3.56)
reduces to

∂
(
(i−1)T i(θi)

)

∂di
=

⎡

⎢⎢⎣

0 0 0 0
0 0 0 − sinαi−1

0 0 0 cosαi−1

0 0 0 0

⎤

⎥⎥⎦ . (3.59)

The State Variable p(di) The state variable p is given by (3.11) as

p(di) =

⎡

⎣
px

py

pz

⎤

⎦ =

⎡

⎣
m14

m24

m34

⎤

⎦ =

⎡

⎣

(
0T N (di)

)
14(

0T N (di)
)
24(

0T N (di)
)
34

⎤

⎦ . (3.60)

Computing the transformation matrix 0T N (di) using (3.55) and (3.56) yields the following expression for
the location vector p

px(di) = ai−1p11 + p14 − p12c34 sinαi−1 − dip12 sinαi−1

+ (p11c14 + p13c24 sinαi−1) cosϕi − p11c24 sinϕi + p13c14 sinαi−1 sinϕi

+ (p13 (c34 + di) + p12c24 cosϕi + p12c14 sinϕi) cosαi−1 (3.61a)
py(di) = ai−1p21 + p24 − p22c34 sinαi−1 − dip22 sinαi−1

+ (p21c14 + p23c24 sinαi−1) cosϕi − p21c24 sinϕi + p23c14 sinαi−1 sinϕi

+ (p23 (c34 + di) + p22c24 cosϕi + p22c14 sinϕi) cosαi−1 (3.61b)
pz(di) = ai−1p31 + p34 − p32c34 sinαi−1 − dip32 sinαi−1

+ (p31c14 + p33c24 sinαi−1) cosϕi − p31c24 sinϕi + p33c14 sinαi−1 sinϕi

+ (p33 (c34 + di) + p32c24 cosϕi + p32c14 sinϕi) cosαi−1. (3.61c)

The partial derivative of the location p with respect to the variable di is equal to

∂p(di)

∂di
=

⎡

⎢⎢⎢⎢⎢⎣

∂px(di)

∂di
∂py(di)

∂di
∂pz(di)

∂di

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

∂
(
0T N (di)

)
14

∂di
∂
(
0T N (di)

)
24

∂di
∂
(
0T N (di)

)
34

∂di

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

P 1∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗4

P 2∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗4

P 3∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.62)

“book” — 2005/9/30 — 15:44 — page 60 — #72✐
✐

✐
✐

✐
✐

✐
✐

60 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(di)

)
/∂di is given by (3.59).

Multiplying the matrices yields the following expressions for the partial derivative ∂p/∂di of the state
variable p with respect to the joint parameter di

∂px(di)

∂di
= p13 cosαi−1 − p12 sinαi−1 (3.63a)

∂py(di)

∂di
= p23 cosαi−1 − p22 sinαi−1 (3.63b)

∂pz(di)

∂di
= p33 cosαi−1 − p32 sinαi−1. (3.63c)

The Yaw Angle Ψ(di) The state variable Ψ is given by (3.12) as

Ψ(di) = arctan

(
m32(di)

m33(di)

)
(3.64)

and its partial derivative with respect to the variable di is equal to

∂Ψ(di)

∂di
=

∂

∂di
arctan

(
m32(di)

m33(di)

)
(3.65a)

=
1

1 +

(
m32(di)

m33(di)

)2

∂

∂di

(
m32(di)

m33(di)

)
(3.65b)

=
1

1 +

(
m32(di)

m33(di)

)2

m33(di)
∂m32(di)

∂di
−m32(di)

∂m33(di)

∂di

m33(di)2
(3.65c)

=
1

1 +

(
m32(di)

m33(di)

)2

(
1

m33(di)

∂m32(di)

∂di
− m32(di)

m33(di)2
∂m33(di)

∂di

)
= 0 (3.65d)

The elements mkj(di) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Computing
0T N yields the following expressions for the elements m32(di) and m33(di)

m32(di) = −p32c32 sinαi−1 + (p31c12 + p33c22 sinαi−1) cosϕi

− p31c22 sinϕi + p33c12 sinαi−1 sinϕi

+ (p33c32 + p32c22 cosϕi + p32c12 sinϕi) cosαi−1 (3.66a)
m33(di) = −p32c33 sinαi−1 + (p31c13 + p33c23 sinαi−1) cosϕi

− p31c23 sinϕi + p33c13 sinαi−1 sinϕi

+ (p33c33 + p32c23 cosϕi + p32c13 sinϕi) cosαi−1 (3.66b)

“book” — 2005/9/30 — 15:44 — page 61 — #73✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 61

The elements ∂mkj(di)/∂di are given by

∂mkj

∂di
= P k∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗j (3.67)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(di)

)
/∂di is given by (3.59).

This yields

∂m32(di)

∂di
= P 3∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗2 = 0 (3.68a)

∂m33(di)

∂di
= P 3∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗3 = 0 (3.68b)

from which it can be seen that (3.65d) is equal to zero

∂Ψ(di)

∂di
= 0 (3.69)

The Pitch Angle Θ(di) The state variable Θ is given by (3.15) as

Θ(di) = arctan

(
−m31(di)

m32(di) sin Ψ(di) + m33(di) cos Ψ(di)

)
. (3.70)

The expression for Θ has the form

Θ(di) = arctan

(
N(di)

D(di)

)
(3.71)

where the numerator N and the denominator D are equal to

N(di) = −m31(di) (3.72a)
D(di) = m32(di) sin Ψ(di) + m33(di) cos Ψ(di) (3.72b)

where the angle Ψ is given by (3.64) and (3.66).
The elements mkj(di) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Com-

puting 0T N yields the following expressions for the elements m31(di), m32(di), and m33(di)

m31(di) = −p32c31 sinαi−1 + (p31c11 + p33c21 sinαi−1) cosϕi

− p31c21 sinϕi + p33c11 sinαi−1 sinϕi

+ (p33c31 + p32c21 cosϕi + p32c11 sinϕi) cosαi−1 (3.73a)
m32(di) = −p32c32 sinαi−1 + (p31c12 + p33c22 sinαi−1) cosϕi

− p31c22 sinϕi + p33c12 sinαi−1 sinϕi

+ (p33c32 + p32c22 cosϕi + p32c12 sinϕi) cosαi−1 (3.73b)
m33(di) = −p32c33 sinαi−1 + (p31c13 + p33c23 sinαi−1) cosϕi

− p31c23 sinϕi + p33c13 sinαi−1 sinϕi

+ (p33c33 + p32c23 cosϕi + p32c13 sinϕi) cosαi−1 (3.73c)

“book” — 2005/9/30 — 15:44 — page 62 — #74✐
✐

✐
✐

✐
✐

✐
✐

62 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

Using this simplified notation, the partial derivative of Θ with respect to the joint variable di can be
written

∂Θ(di)

∂di
=

1

1 +

(
N(di)

D(di)

)2

∂

∂di

(
N(di)

D(di)

)
(3.74a)

=
1

1 +

(
N(di)

D(di)

)2

D(di)
∂N(di)

∂di
−N(di)

∂D(di)

∂di

D(di)2
(3.74b)

=
1

1 +

(
N(di)

D(di)

)2

(
1

D(di)

∂N(di)

∂di
− N(di)

D(di)2
∂D(di)

∂di

)
(3.74c)

where expressions for N and D have already been derived in (3.72). Expressions for ∂N(di)/∂di and
∂D(di)/∂di will be derived in the following

∂N(di)

∂di
= −∂m31(di)

∂di
(3.75a)

∂D(di)

∂di
= m32(di) sin Ψ(di) + m33(di) cos Ψ(di) (3.75b)

=
∂m32(di)

∂di
sin Ψ(di) + m32(di) cos Ψ(di)

∂Ψ(di)

∂di
(3.75c)

+
∂m33(di)

∂di
cos Ψ(di)−m33(di) sin Ψ(di)

∂Ψ(di)

∂di
(3.75d)

The elements ∂mkj(di)/∂di are given by

∂mkj

∂di
= P k∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗j (3.76)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(di)

)
/∂di is given by (3.59).

This yields
∂m31(di)

∂di
= P 3∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗1 = 0 (3.77)

from which it follows that the partial derivative of the numerator ∂N(di)/∂di is equal to zero. In (3.65d)
it was shown that the partial derivative ∂Ψ(di)/∂di is equal to zero, and (3.68) shows that the partial
derivatives ∂m32/∂di and ∂m33/∂di are also equal to zero. Therefore, the partial derivative ∂D(di)/∂di

is equal to zero

∂m31(di)

∂di
=
∂m32(di)

∂di
=
∂m33(di)

∂di
=
∂Ψ(di)

∂di
= 0 =⇒ ∂N(di)

∂di
=
∂D(di)

∂di
= 0 (3.78)

“book” — 2005/9/30 — 15:44 — page 63 — #75✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 63

from which it can be seen that (3.74c) is equal to zero

∂N(di)

∂di
=
∂D(di)

∂di
= 0 =⇒ ∂Θ(di)

∂di
= 0 (3.79)

The Roll Angle Φ(di) The state variable Φ is given by (3.18) as

Φ(di) = arctan

(
m21(di)

m11(di)

)
(3.80)

and its partial derivative with respect to the variable ϕi is equal to

∂Φ(di)

∂di
=

∂

∂di
arctan

(
m21(di)

m11(di)

)
(3.81a)

=
1

1 +

(
m21(di)

m11(di)

)2

∂

∂di

(
m21(di)

m11(di)

)
(3.81b)

=
1

1 +

(
m21(di)

m11(di)

)2

m11(di)
∂m21(di)

∂di
−m21(di)

∂m11(di)

∂di

m11(di)2
(3.81c)

=
1

1 +

(
m21(di)

m11(di)

)2

(
1

m11(di)

∂m21(di)

∂di
− m21(di)

m11(di)2
∂m11(di)

∂di

)
= 0. (3.81d)

The elements mkj(di) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Computing
0T N yields the following expressions for the elements m21(di) and m11(di)

m11(di) = −p12c31 sinαi−1 + (p11c11 + p13c21 sinαi−1) cosϕi

− p11c21 sinϕi + p13c11 sinαi−1 sinϕi

+ (p13c31 + p12c21 cosϕi + p12c11 sinϕi) cosαi−1 (3.82a)
m21(di) = −p22c31 sinαi−1 + (p21c11 + p23c21 sinαi−1) cosϕi

− p21c21 sinϕi + p23c11 sinαi−1 sinϕi

+ (p23c31 + p22c21 cosϕi + p22c11 sinϕi) cosαi−1 (3.82b)

The elements ∂mkj(di)/∂di are given by

∂mkj

∂di
= P k∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗j (3.83)

“book” — 2005/9/30 — 15:44 — page 64 — #76✐
✐

✐
✐

✐
✐

✐
✐

64 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(di)

)
/∂di is given by (3.86).

This yields

∂m11(di)

∂di
= P 1∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗1 = 0 (3.84a)

∂m21(di)

∂di
= P 2∗

(
∂
(
(i−1)T i(di)

)

∂di

)
C∗1 = 0 (3.84b)

from which it can be seen that (3.81d) is equal to zero

∂Φ(di)

∂di
= 0 (3.85)

3.3.6.2 A Revolute Joint

The general transformation matrix (i−1)T i is given by (3.56). For a revolute joint, the generalized joint
parameter θi is equal to θi = ϕi. Therefore, the partial derivative of (i−1)T i given by the matrix (3.56)
reduces to

∂
(
(i−1)T i(θi)

)

∂di
=

⎡

⎢⎢⎣

− sinϕi − cosϕi 0 0
cosαi−1 cosϕi − cosαi−1 sinϕi 0 0
sinαi−1 cosϕi − sinαi−1 sinϕi 0 0

0 0 0 0

⎤

⎥⎥⎦ . (3.86)

The State Variable p(di) The state variable p is given by (3.11) as

p(ϕi) =

⎡

⎣
px

py

pz

⎤

⎦ =

⎡

⎣
m14

m24

m34

⎤

⎦ =

⎡

⎣

(
0T N (ϕi)

)
14(

0T N (ϕi)
)
24(

0T N (ϕi)
)
34

⎤

⎦ (3.87)

Computing the transformation matrix 0T N (ϕi) using (3.55) and (3.56) yields the following expression
for the location vector p

px(ϕi) = ai−1p11 + p14 − p12c34 sinαi−1 − dip12 sinαi−1

+ (p11c14 + p13c24 sinαi−1) cosϕi − p11c24 sinϕi + p13c14 sinαi−1 sinϕi

+ (p13 (c34 + di) + p12c24 cosϕi + p12c14 sinϕi) cosαi−1 (3.88a)
py(ϕi) = ai−1p21 + p24 − p22c34 sinαi−1 − dip22 sinαi−1

+ (p21c14 + p23c24 sinαi−1) cosϕi − p21c24 sinϕi + p23c14 sinαi−1 sinϕi

+ (p23 (c34 + di) + p22c24 cosϕi + p22c14 sinϕi) cosαi−1 (3.88b)
pz(ϕi) = ai−1p31 + p34 − p32c34 sinαi−1 − dip32 sinαi−1

+ (p31c14 + p33c24 sinαi−1) cosϕi − p31c24 sinϕi + p33c14 sinαi−1 sinϕi

+ (p33 (c34 + di) + p32c24 cosϕi + p32c14 sinϕi) cosαi−1 (3.88c)

“book” — 2005/9/30 — 15:44 — page 65 — #77✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 65

The partial derivative of the location p with respect to the variable ϕi is equal to

∂p(ϕi)

∂ϕi
=

⎡

⎢⎢⎢⎢⎢⎣

∂px(ϕi)

∂ϕi
∂py(ϕi)

∂ϕi
∂pz(ϕi)

∂ϕi

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

∂
(
0T N (ϕi)

)
14

∂di
∂
(
0T N (ϕi)

)
24

∂di
∂
(
0T N (ϕi)

)
34

∂di

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

P 1∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗4

P 2∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗4

P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.89)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(ϕi)

)
/∂ϕi is given by (3.86).

Multiplying the matrices yields the following expressions for the partial derivative ∂p/∂ϕi of the state
variable p with respect to the joint parameter ϕi

∂px(ϕi)

∂ϕi
= (−p11c24 + p12c14 cosαi−1 + p13c14 sinαi−1) cosϕi

− (p11c14 + p12c24 cosαi−1 + p13c24 sinαi−1) sinϕi (3.90a)
∂py(ϕi)

∂ϕi
= (−p21c24 + p22c14 cosαi−1 + p23c14 sinαi−1) cosϕi

− (p21c14 + p22c24 cosαi−1 + p23c24 sinαi−1) sinϕi (3.90b)
∂pz(ϕi)

∂ϕi
= (−p31c24 + p32c14 cosαi−1 + p33c14 sinαi−1) cosϕi

− (p31c14 + p32c24 cosαi−1 + p33c24 sinαi−1) sinϕi (3.90c)

The Yaw Angle Ψ(ϕi) The state variable Ψ is given by (3.12) as

Ψ(ϕi) = arctan

(
m32(ϕi)

m33(ϕi)

)
(3.91)

“book” — 2005/9/30 — 15:44 — page 66 — #78✐
✐

✐
✐

✐
✐

✐
✐

66 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

and its partial derivative with respect to the variable ϕi is equal to

∂Ψ(ϕi)

∂ϕi
=

∂

∂ϕi
arctan

(
m32(ϕi)

m33(ϕi)

)
(3.92a)

=
1

1 +

(
m32(ϕi)

m33(ϕi)

)2

∂

∂ϕi

(
m32(ϕi)

m33(ϕi)

)
(3.92b)

=
1

1 +

(
m32(ϕi)

m33(ϕi)

)2

m33(ϕi)
∂m32(ϕi)

∂ϕi
−m32(ϕi)

∂m33(ϕi)

∂ϕi

m33(ϕi)2
(3.92c)

=
1

1 +

(
m32(ϕi)

m33(ϕi)

)2

(
1

m33(ϕi)

∂m32(ϕi)

∂ϕi
− m32(ϕi)

m33(ϕi)2
∂m33(ϕi)

∂ϕi

)
(3.92d)

The elements mkj(ϕi) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Computing
0T N yields the following expressions for the elements m32(ϕi) and m33(ϕi)

m32(ϕi) = −p32c32 sinαi−1 + (p31c12 + p33c22 sinαi−1) cosϕi

− p31c22 sinϕi + p33c12 sinαi−1 sinϕi

+ (p33c32 + p32c22 cosϕi + p32c12 sinϕi) cosαi−1 (3.93a)
m33(ϕi) = −p32c33 sinαi−1 + (p31c13 + p33c23 sinαi−1) cosϕi

− p31c23 sinϕi + p33c13 sinαi−1 sinϕi

+ (p33c33 + p32c23 cosϕi + p32c13 sinϕi) cosαi−1 (3.93b)

The elements ∂mkj(ϕi)/∂ϕi are given by

∂mkj

∂ϕi
= P k∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗j (3.94)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(ϕi)

)
/∂ϕi is given by (3.86).

This yields

∂m32(ϕi)

∂ϕi
= P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗2 (3.95a)

= (−p31c22 + p32c12 cosαi−1 + p33c12 sinαi−1) cosϕi

− (p31c12 + p32c22 cosαi−1 + p33c22 sinαi−1) sinϕi (3.95b)

∂m33(ϕi)

∂ϕi
= P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗3 (3.95c)

= (−p31c23 + p32c13 cosαi−1 + p33c13 sinαi−1) cosϕi

− (p31c13 + p32c23 cosαi−1 + p33c23 sinαi−1) sinϕi (3.95d)

“book” — 2005/9/30 — 15:44 — page 67 — #79✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 67

The Pitch Angle Θ(ϕi) The state variable Θ is given by (3.15) as

Θ(ϕi) = arctan

(
−m31(ϕi)

m32(ϕi) sin Ψ(ϕi) + m33(ϕi) cos Ψ(ϕi)

)
(3.96)

The expression for Θ has the form

Θ(ϕi) = arctan

(
N(ϕi)

D(ϕi)

)
(3.97)

where the numerator N and the denominator D are equal to

N(ϕi) = −m31(ϕi) (3.98a)
D(ϕi) = m32(ϕi) sin Ψ(ϕi) + m33(ϕi) cos Ψ(ϕi) (3.98b)

where the angle Ψ is given by (3.91) and (3.93).
The elements mkj(ϕi) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Com-

puting 0T N yields the following expressions for the elements m31(ϕi), m32(ϕi), and m33(ϕi)

m31(ϕi) = −p32c31 sinαi−1 + (p31c11 + p33c21 sinαi−1) cosϕi

− p31c21 sinϕi + p33c11 sinαi−1 sinϕi

+ (p33c31 + p32c21 cosϕi + p32c11 sinϕi) cosαi−1 (3.99a)
m32(ϕi) = −p32c32 sinαi−1 + (p31c12 + p33c22 sinαi−1) cosϕi

− p31c22 sinϕi + p33c12 sinαi−1 sinϕi

+ (p33c32 + p32c22 cosϕi + p32c12 sinϕi) cosαi−1 (3.99b)
m33(ϕi) = −p32c33 sinαi−1 + (p31c13 + p33c23 sinαi−1) cosϕi

− p31c23 sinϕi + p33c13 sinαi−1 sinϕi

+ (p33c33 + p32c23 cosϕi + p32c13 sinϕi) cosαi−1 (3.99c)

Using this simplified notation, the partial derivative of Θ with respect to the joint variable ϕi can be
written

∂Θ(ϕi)

∂ϕi
=

1

1 +

(
N(ϕi)

D(ϕi)

)2

∂

∂ϕi

(
N(ϕi)

D(ϕi)

)
(3.100a)

=
1

1 +

(
N(ϕi)

D(ϕi)

)2

D(ϕi)
∂N(ϕi)

∂ϕi
−N(ϕi)

∂D(ϕi)

∂ϕi

D(ϕi)2
(3.100b)

=
1

1 +

(
N(ϕi)

D(ϕi)

)2

(
1

D(ϕi)

∂N(ϕi)

∂ϕi
− N(ϕi)

D(ϕi)2
∂D(ϕi)

∂ϕi

)
(3.100c)

“book” — 2005/9/30 — 15:44 — page 68 — #80✐
✐

✐
✐

✐
✐

✐
✐

68 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

where expressions for N and D have already been derived in (3.98). Expressions for ∂N(ϕi)/∂ϕi and
∂D(ϕi)/∂ϕi will be derived in the following

∂N(ϕi)

∂ϕi
= −∂m31(ϕi)

∂ϕi
(3.101a)

∂D(ϕi)

∂ϕi
= m32(ϕi) sin Ψ(ϕi) + m33(ϕi) cos Ψ(ϕi) (3.101b)

=
∂m32(ϕi)

∂ϕi
sin Ψ(ϕi) + m32(ϕi) cos Ψ(ϕi)

∂Ψ(ϕi)

∂ϕi
(3.101c)

+
∂m33(ϕi)

∂ϕi
cos Ψ(ϕi)−m33(ϕi) sin Ψ(ϕi)

∂Ψ(ϕi)

∂ϕi
(3.101d)

The elements ∂mkj(ϕi)/∂ϕi are given by

∂mkj

∂ϕi
= P k∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗j (3.102)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(ϕi)

)
/∂ϕi is given by (3.86).

This yields

∂m31(ϕi)

∂ϕi
= P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗1 (3.103a)

= (−p31c21 + p32c11 cosαi−1 + p33c11 sinαi−1) cosϕi

− (p31c11 + p32c21 cosαi−1 + p33c21 sinαi−1) sinϕi (3.103b)

∂m32(ϕi)

∂ϕi
= P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗2 (3.103c)

= (−p31c22 + p32c12 cosαi−1 + p33c12 sinαi−1) cosϕi

− (p31c12 + p32c22 cosαi−1 + p33c22 sinαi−1) sinϕi (3.103d)

∂m33(ϕi)

∂ϕi
= P 3∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗3 (3.103e)

= (−p31c23 + p32c13 cosαi−1 + p33c13 sinαi−1) cosϕi

− (p31c13 + p32c23 cosαi−1 + p33c23 sinαi−1) sinϕi (3.103f)

The Roll Angle Φ(ϕi) The state variable Φ is given by (3.18) as

Φ(ϕi) = arctan

(
m21(ϕi)

m11(ϕi)

)
(3.104)

“book” — 2005/9/30 — 15:44 — page 69 — #81✐
✐

✐
✐

✐
✐

✐
✐

3.3 PHYSICS-BASED ANIMATION 69

and its partial derivative with respect to the variable di is equal to

∂Φ(ϕi)

∂ϕi
=

∂

∂ϕi
arctan

(
m21(ϕi)

m11(ϕi)

)
(3.105a)

=
1

1 +

(
m21(ϕi)

m11(ϕi)

)2

∂

∂ϕi

(
m21(ϕi)

m11(ϕi)

)
(3.105b)

=
1

1 +

(
m21(ϕi)

m11(ϕi)

)2

m11(ϕi)
∂m21(ϕi)

∂ϕi
−m21(ϕi)

∂m11(ϕi)

∂ϕi

m11(ϕi)2
(3.105c)

=
1

1 +

(
m21(ϕi)

m11(ϕi)

)2

(
1

m11(ϕi)

∂m21(ϕi)

∂ϕi
− m21(ϕi)

m11(ϕi)2
∂m11(ϕi)

∂ϕi

)
(3.105d)

The elements mkj(ϕi) are elements of the matrix 0T N , which are given by (3.55) and (3.56). Computing
0T N yields the following expressions for the elements m21(ϕi) and m11(ϕi)

m11(ϕi) = −p12c31 sinαi−1 + (p11c11 + p13c21 sinαi−1) cosϕi

− p11c21 sinϕi + p13c11 sinαi−1 sinϕi

+ (p13c31 + p12c21 cosϕi + p12c11 sinϕi) cosαi−1 (3.106a)
m21(ϕi) = −p22c31 sinαi−1 + (p21c11 + p23c21 sinαi−1) cosϕi

− p21c21 sinϕi + p23c11 sinαi−1 sinϕi

+ (p23c31 + p22c21 cosϕi + p22c11 sinϕi) cosαi−1 (3.106b)

The elements ∂mkj(ϕi)/∂ϕi are given by

∂mkj

∂ϕi
= P k∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗j (3.107)

where the matrices P and C are given by (3.47), and the matrix ∂
(
(i−1)T i(ϕi)

)
/∂ϕi is given by (3.86).

This yields

∂m11(ϕi)

∂ϕi
= P 1∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗1 (3.108a)

= (−p11c21 + p12c11 cosαi−1 + p13c11 sinαi−1) cosϕi

− (p11c11 + p12c21 cosαi−1 + p13c21 sinαi−1) sinϕi (3.108b)

∂m21(ϕi)

∂ϕi
= P 2∗

(
∂
(
(i−1)T i(ϕi)

)

∂ϕi

)
C∗1 (3.108c)

= (−p21c21 + p22c11 cosαi−1 + p23c11 sinαi−1) cosϕi

− (p21c11 + p22c21 cosαi−1 + p23c21 sinαi−1) sinϕi (3.108d)

“book” — 2005/9/30 — 15:44 — page 70 — #82✐
✐

✐
✐

✐
✐

✐
✐

70 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

3.3.6.3 Summary

From the above it can be seen that, for a prismatic joint, the partial derivatives of the state variables Ψ,Θ,Φ
with respect to the joint parameter di all vanish, that is,

∂Ψ

∂di
=
∂Θ

∂di
=
∂Φ

∂di
= 0 (3.109)

This should come as no surprise, because the state variables Ψ,Θ,Φ describe the orientation of the end
effector. A prismatic joint performs only translation, and a translation can only change the position of the
end effector, but it can not change its orientation.

“book” — 2005/9/30 — 15:44 — page 71 — #83✐
✐

✐
✐

✐
✐

✐
✐

4

Motion Interpolation

An animation can be defined as “a motion picture made by photographing successive positions of inani-
mate objects (as puppets or mechanical parts).” The first animations were drawn by hand and then pho-
tographed onto a film strip. In this way, Walt Disney made Mickey Mouse come to life. It is a very
time-consuming task to draw all the frames by hand, and in the beginning of this industry, cartoon films
only had twelve frames per second as opposed to the 25–30 frames per second of modern films. A time
and money saver was the use of in-betweeners. An in-betweener was a less-known artist whose job was
to fill in the blanks left by the famous artists. So the expensive artist would draw up Donald Duck in
the meaningful poses (key frames), and the in-betweeners would draw all the in-between less important
frames, thereby making sure that Donald Duck was animated from key-frame to key-frame.

Today computers are the in-betweeners. The animation artist places the character or object in the
key positions and tells the system when the model should be in a specific position. Then the computer
calculates the positions of the model at each frame, renders it, and saves it.

In the previous chapters, we showed how to model a complex model and how to help the computer
calculate specific positions for each object in the model. That is just one example of an automated calcula-
tion. One could also use a simulator to estimate the position and shape of the model. The most basic way
to animate is to use forward kinematics and no automation, just like the old Disney animators did. The
focus of this chapter is how to calculate the frames without a simulator or an automated system—although
they are often used in conjunction with each other.

The most basic way to calculate the in-between frames is to interpolate the storytelling poses, the
key-frames. Simple linear interpolation results in a jerky result. The character will walk like a stiff robot,
or if one is animating a color, it will flicker.

The first part of this chapter explores how to use higher-order splines instead of simple linear interpo-
lation so as to preserve the continuity over the key-frames and hide the key-frames. The parameter of the
interpolating curve has no physical meaning. This can present some difficulty to the animator. A more
intuitive way to think about the interpolating parameter is by using time or traveled distance along the
spline. The latter part of this chapter shows how to reparameterize the splines so they become a motion
function of time instead of the spline parameter and have some sort of physical meaning.

4.1 Key-Framing
In this section we will show how forward kinematics can be used to animate articulated bodies. It has just
been shown how the state vector s specifies the position and orientation of the end effector given values
for the generalized joint parameters θ1, . . . ,θN . By varying the joint parameters, the articulated figure
will move. So, by letting the joint parameters be functions of time t, that is, θ1(t), . . . ,θN (t), the state
vector will also be a function of time, s(t), and the articulated figure can be animated by stepping the time
parameter t, and computing the state vector s(t).

71

“book” — 2005/9/30 — 15:44 — page 72 — #84✐
✐

✐
✐

✐
✐

✐
✐

72 CHAPTER 4. MOTION INTERPOLATION

4.1.1 Key-Frames

In practice, it is not easy for an animator to specify all the joint parameters as functions of time, that is,
θ1, . . . ,θN . A helpful tool is to specify the joint parameters by using what is known as key-frames or the
storytelling poses. The animator only has to specify the most important configurations of the articulated
figure and also at what time ti they occur, see Figure 4.1. Having specified the key-frames, that is, the
joint parameters θi at some discrete times ti, the joint parameters at the key-frames can be plotted on a
timeline, see Figure 4.2. The idea behind using key-frames is that the animator should not specify a huge
number of joint parameters, but only the ones that are important for the animation. The joint parameters
that are in between the key-frames should be calculated automatically such that the animation looks like
the animator imagined when he specified the key-frames.

The only thing that is known is the joint parameters at the key-frames, but the joint parameters between
the key-frames are not known, so this suggests an interpolation between the joint parameters at the key-
frames.

4.1.2 Linear Interpolation

The first idea that comes to mind is linear interpolation. If linear interpolation is used, the functions that
represent the joint parameters will look like the ones shown in Figure 4.3. As it can be seen from the
figure, the joint parameters make some very abrupt changes at some of the key-frames. The functions for
the joint parameters are continuous, but not differentiable. Especially, it can be seen for joint parameter
θ0 at the key-frame at time t1. The joint parameter θ0 varies linearly from 45 ◦ to 90 ◦, and then it abruptly
changes and returns to 45 ◦. The same can be seen at time t2 where the joint parameter θ0 varies linearly
from 90 ◦ to 45 ◦ and then it stops immediately.

At the key-frames, the function is continuous but not differentiable, and that might look unnatural to
the beholder of the animation. Worse, if the joint parameter functions of the animation was to be used for
an actual industrial robot, the forces at time t1 might be so big that the robot would break.

4.1.3 Spline Interpolation

As it was discussed in Section 4.1.2 linear interpolation is neither adequate for animation nor for sim-
ulation of industrial robots. The reason is that the functions representing the joint parameters must be
differentiable. Otherwise, the animation will look unnatural or the industrial robot will break.

The idea is now to make a continuous differentiable curve, which passes through the joint parameters
at the key-frames, that is, the curve must be continuously differentiable and also pass through the points
specified by the joint parameters at the key-frames.

To do this job there is a family of curves named interpolating splines. So, in order to get a smooth
function for the joint parameters, we use the parameters at the key-frames as points that must be interpo-
lated and use a spline to interpolate them. A result of such a spline-interpolation is shown in Figure 4.4.
At first, it seems strange that the curves of the joint parameters have some strange bends. They are nec-
essary because the curves must be continuously differentiable. How much the spline bends and wiggles
depends on which type of spline and how many control points are used for controlling the spline, see
Figure 4.5, where there are used as extra control points for the spline. Given access to an interactive tool

“book” — 2005/9/30 — 15:44 — page 73 — #85✐
✐

✐
✐

✐
✐

✐
✐

4.1 PHYSICS-BASED ANIMATION 73

θ1

θ0

(a) t0 : θ0 = 45 ◦, θ1 = −135 ◦

θ0

θ1

(b) t1 : θ0 = 90 ◦, θ1 = −90 ◦

θ1

θ0

(c) t2 : θ0 = 45 ◦, θ1 = −45 ◦

θ0

θ1

(d) t3 : θ0 = 45 ◦, θ1 = −90 ◦

Figure 4.1: The configuration of an articulated figure at times t0, . . . , t3.

“book” — 2005/9/30 — 15:44 — page 74 — #86✐
✐

✐
✐

✐
✐

✐
✐

74 CHAPTER 4. MOTION INTERPOLATION

90 ◦

45 ◦

0 ◦

−45 ◦

−90 ◦

−135 ◦

θi

t
t0 t1 t2

θ0(t0)

θ0(t1)

θ0(t2)

θ1(t0)

θ1(t1)

θ1(t2)

t3

θ0(t3)

θ1(t3)

Figure 4.2: The joint parameters at the key-frames plotted against time.

90 ◦

45 ◦

0 ◦

−45 ◦

−90 ◦

−135 ◦

θi

t
t0 t1 t2

θ0(t1)

θ0(t2)

θ1(t0)

θ1(t1)

t3

θ0(t3)

θ0(t0)

θ1(t2)

θ1(t3)

Figure 4.3: The functions of the joint parameters if linear interpolation is used between the joint parame-
ters at the key-frames.

“book” — 2005/9/30 — 15:44 — page 75 — #87✐
✐

✐
✐

✐
✐

✐
✐

4.1 PHYSICS-BASED ANIMATION 75

90 ◦

45 ◦

0 ◦

−45 ◦

−90 ◦

−135 ◦

θi

t
t0 t1 t2

θ0(t1)

θ0(t2)

θ1(t0)

θ1(t1)

t3

θ0(t3)

θ0(t0)

θ1(t2)

θ1(t3)

Figure 4.4: The functions of the joint parameters are interpolated between the joint parameters at the key-
frames by a smooth interpolating spline. The control polygons used are those from the linear interpolation
shown in Figure 4.3, i.e., just the known joint parameters at the key-frames. The control polygons are
shown as dashed lines.

90 ◦

45 ◦

0 ◦

−45 ◦

−90 ◦

−135 ◦

θi

t
t0 t1 t2

θ0(t1)

θ0(t2)

θ1(t0)

θ1(t1)

θ1(t2)

t3

θ0(t3)

θ1(t3)

θ0(t0)

Figure 4.5: The functions of the joint parameters are interpolated between the joint parameters at the key-
frames by a smooth interpolating spline. Here, extra control points are used to control the spline, which
gives a more smooth curve without wiggles. The control polygons are shown as dashed lines.

“book” — 2005/9/30 — 15:44 — page 76 — #88✐
✐

✐
✐

✐
✐

✐
✐

76 CHAPTER 4. MOTION INTERPOLATION

where it is possible to choose the type of interpolating spline and to adjust the chosen splines parameters,
an experienced animator might obtain very visually pleasing results.

However, using spline interpolation introduces a little inconvenience for the animator. Looking at
Figures 4.4 and 4.5 the curves for the joint parameters θ1 and θ2 look as if they are functions of time t, but
they are not. The curves are given as a vector function (t(u), θi(u))T , where the coordinate functions are
functions of the spline parameter u, which is not necessarily intuitive for an animator.

That means if the animator wants to compute the value of a joint parameter θi at some given time t̂,
this must be done in two steps:

1. Compute the spline parameter û corresponding to the time t̂. This can be done numerically as a
root-finding problem, and because the function t(u) is a monotone increasing function, there is a
unique solution. That is, find û such that

∥∥t(û)− t̂
∥∥

2
< ϵ using any root-finding algorithm.

2. Compute the joint parameter θi corresponding to the spline parameter û, i.e., θi(û).

4.2 Scripted Motion Using Splines
Imagine the following scenario: an elevator is riding up and down between the first and fifth floor in a
house. Inside the elevator is a person who throws a ping-pong ball against the elevator floor and catches
it when it pops back up. When the ping-pong ball and the elevator floor collide, the ball is affected very
much by the collision, but the elevator is not. The elevator will continue to move as if the ball had not hit
the floor.

To animate such a scenario on a computer, it would be a waste of computer power to animate both
the elevator and the ping-pong ball as physically correct. Only the ping-pong ball should be animated
physically correct. The motion of the elevator could be modeled by a 3D curve, e.g., a spline, describing
the location of the elevator during the animation.

A rigid body whose motion is described this way is called a scripted body. Modeling a scripted body
as described above might be done by key-frames analogous to the description in Section 4.1. Specify some
3D positions the scripted body must pass through, and then compute an interpolating spline to describe
the trajectory of the scripted body.

4.2.1 The Basic Idea

The trajectory is a 3D curve C(u) =
[
x(u) y(u) z(u)

]T parameterized by the spline parameter u, and
it has the same inconveniences as described in Section 4.1.3. The spline is parameterized by u and not
time t.

Animation is about how a point p moves in time. More specifically, it can be stated:

1. What is the location of point p at time t?

2. What is the velocity v of point p at time t?

3. What is the acceleration a of point p at time t?

In order to make it easier for an animator to control the scripted body, the spline C can be reparame-

“book” — 2005/9/30 — 15:44 — page 77 — #89✐
✐

✐
✐

✐
✐

✐
✐

4.2 PHYSICS-BASED ANIMATION 77

terized such that it becomes a function of time t.
This reparameterization can be done in two steps. First, express the spline C as a function of the arc

length s, and then express the arc length s as a function of time t.

1. Express the spline C as a function the arc length s. That is, construct a function U : R −→ R
which maps the arc length to the corresponding spline parameter u.

2. Express the arc length s as a function of time t. That is, construct a function S : R −→ R which
maps time t to arc length s.

Using the above reparameterizing, the original spline C(u) can be expressed as a function of time t

C(U(S(t))) ,−→ p =

⎡

⎣
x(U(S(t)))
y(U(S(t)))
z(U(S(t)))

⎤

⎦ (4.1)

This means that an animator can control the position p, the velocity v, and the acceleration a as shown
below

p(t) = C(U(S(t))) (4.2a)

v(t) =
dp(t)

dt
=

d

dt
(C(U(S(t)))) =

dC

du

dU

ds

dS

dt
(4.2b)

a(t) =
d2p(t)

dt2
=

d2

dt2
(C(U(S(t)))) =

d

dt

(
dC

du

dU

ds

dS

dt

)
(4.2c)

=
d2C

du2

(
dU

ds

)2(dS

dt

)2

+
dC

du

dU

ds

d2S

dt2
+

dC

du

d2U

ds2

(
dS

dt

)2

. (4.2d)

Some of the derivatives
dC

du
and

d2C

du2
(4.3)

are easy to compute, because they are given directly by the definition of the original spline C. The symbol
dC/du means the spline C differentiated with respect to the original spline parameter u, analogous to the
symbol d2C/du2. The other derivatives

dU

ds

d2U

ds2

dS

dt
and

d2S

dt2
(4.4)

are difficult to compute because the functions U(s) and S(t) can not be expressed analytically, but must
be computed numerically.

The following sections will describe how to reparameterize the spline C with the arc length s, how to
reparameterize the arc length with time t, and how to compute the derivatives in (4.4).

“book” — 2005/9/30 — 15:44 — page 78 — #90✐
✐

✐
✐

✐
✐

✐
✐

78 CHAPTER 4. MOTION INTERPOLATION

u

s

û = U(ŝ)

ŝ

Figure 4.6: The arc length s as a function of the spline parameter u.

4.2.2 Reparameterizing with Arc Length

Let the trajectory of some point p =
[
x y z

]T be given by a space-spline C : R −→ R3, and let the
spline be parameterized by a global parameter u

C(u) ,−→ p(u) =
[
x(u) y(u) z(u)

]T (4.5)

However, the parameter u is not intuitive to use for humans. It is quite difficult for a human to predict
exactly which point on the spline corresponds to a given value of the parameter u. Humans are much
better at thinking in terms of the arc length s of the spline C. The arc length s of the spline C can also be
explained as the distance traveled along the spline. The arc length s of C is given as the integral

s(u) =

∫ u

0

∥∥∥∥
C(u)

du

∥∥∥∥
2

du (4.6)

where ∥C(u)/du∥
2

is the length of the derivative of C with respect to the parameter u.
In order to reparameterize the spline C with the arc length s a function U : R −→ R was introduced

in Section 4.2.1. The function U(s) maps the arc length s to the corresponding spline parameter u. This
means that the function U is really the inverse of the arc length function from (4.6).

As we will show later, the arc length function (4.6) can not be computed analytically for a spline curve.
Therefore, it is not possible to obtain an analytical expression for the inverse function U . The arc length
(4.6) is a monotone function as shown in Figure 4.6, so the value u = U(s) can be computed numerically
as follows:

1. For some specified arc length ŝ find the corresponding parameter value û such that s(û) = ŝ.

2. Given ŝ compute û such that ∥s(û)− ŝ∥
2

< ϵ using a root-finding algorithm and (4.6).

“book” — 2005/9/30 — 15:44 — page 79 — #91✐
✐

✐
✐

✐
✐

✐
✐

4.2 PHYSICS-BASED ANIMATION 79

3. Having computed the value û, compute C(û). Using this procedure, points on the spline C can be
computed using the arc length s as parameter.

This corresponds to expressing the spline parameter u as a function of the arc length s

u = U(s) (4.7)

and use it to compute a point p on the spline p(s) = C(U(s)).
This reparameterization makes it easier to predict how the scripted body moves along the spline,

because the spline parameter used is the arc length, which is the traveled distance along the spline.

4.2.2.1 The Arc Length Integrand

Let C(u) be a cubic spline in 3-dimensional space

C(u) =

⎡

⎣
x(u)
y(u)
z(u)

⎤

⎦ =

⎡

⎣
axu3 + bxu2 + cxu + dx

ayu3 + byu2 + cyu + dy

azu3 + bzu2 + czu + dz

⎤

⎦ . (4.8)

Alternatively in matrix notation

C(u) =

⎡

⎣
ax bx cx dx

ay by cy dy

az bz cz dz

⎤

⎦

⎡

⎢⎢⎣

u3

u2

u
1

⎤

⎥⎥⎦ (4.9)

The arc length function (4.6) of the cubic curve then becomes

s(u) =

∫ u

0

∥∥∥∥
dC(u)

du

∥∥∥∥
2

du (4.10a)

=

∫ u

0

√
Au4 + Bu3 + Cu4 + Du + Edu (4.10b)

where

A = 9(a2
x + a2

y + a2
z) (4.11a)

B = 12(axbx + ayby + azbz) (4.11b)

C = 6(axcx + aycy + azcz) + 4(b2
x + b2

y + b2
z) (4.11c)

D = 4(bxcx + bycy + bzcz) (4.11d)

E = (c2
x + c2

y + c2
z) (4.11e)

Unfortunately, it is not possible to find an analytical expression for this integral, so it is necessary to do a
numerical integration in order to find the value of s(u) for a given a value of u. The function

∥∥∥∥
dC(u)

du

∥∥∥∥
2

=
√

Au4 + Bu3 + Cu2 + Du + E (4.12)

“book” — 2005/9/30 — 15:44 — page 80 — #92✐
✐

✐
✐

✐
✐

✐
✐

80 CHAPTER 4. MOTION INTERPOLATION

t

s

t0 t1 t2 t3

s0

s3

s1

s2

Figure 4.7: The traveled distance s plotted against time t as a number of discrete (ti, si) pairs.

is the arc length integrand. By applying Horner’s rule for factoring polynomials (4.12) can be rewritten to
a more computationally friendly form

∥∥∥∥
dC(u)

du

∥∥∥∥
2

=
√

(((Au + B)u + C)u + D)u + E. (4.13)

With the theory developed so far, one can pick any numerical integration method, which fulfills the re-
quirements to performance and accuracy and then apply it in order to compute the arc length s(u).

4.2.3 Reparameterizing with Time

To obtain an even better feeling of how the scripted body moves let S : R −→ R be the arc length
expressed as a function of time t.

An animator knows how a point p should move over time, so the function S can be specified by
a number of time-distance pairs (ti, si) at discrete points in time as shown in Figure 4.7. The discrete
(ti, si) pairs might be interpolated by a spline V : R −→ R2 whose coordinates are functions of the spline
parameter v as shown in Figure 4.8.

V (v) =
[
t(v) s(v)

]T (4.14)

Now, the arc length function S(t) can be computed as a function of t as follows:

1. Given a value t̂ find the corresponding value v̂ such that
∥∥t(v̂)− t̂

∥∥
2

< ϵ, using a root-finding
algorithm. Time t is a monotone increasing function, so a unique solution exists.

2. Compute the second coordinate function s(v̂) of V .

“book” — 2005/9/30 — 15:44 — page 81 — #93✐
✐

✐
✐

✐
✐

✐
✐

4.2 PHYSICS-BASED ANIMATION 81

t

s

t0 t1 t2 t3

s0

s3

s1

s2

Figure 4.8: The discrete (ti, si) pairs are interpolated by a spline V : R −→ R2 yielding a continuous
function (t(v), s(v))T which can be used to compute the traveled distance S(t) as a function of time t.
The slope of the spline is equal to the velocity of the point traveling along the curve.

This corresponds to expressing the spline parameter v as a function of t, and use it to compute the arc
length s = s(v(t)) = S(t). This arc length can now be used to compute the parameter u for the spline
C(u) as described previously. What has been obtained is the computation C(U(S(t))), which computes
points on the trajectory of the scripted body using time t as parameter.

An articulated figure might be animated using scripted motion as follows. Consider the end effector
of an articulated figure as a scripted body, and let its trajectory be specified by a space-spline C(t) as
explained previously.

Then, by incrementing the time parameter t with small time steps ∆t, the corresponding points on
the space-spline C(t) might be computed as described above. Finally, the actual joint parameters can be
computed using inverse kinematics. This way, it is possible to animate the articulated figure as a scripted
body.

4.2.4 Computing the Derivatives

From (4.3) and (4.4) it is seen that the following values need to be computed

dC

du

d2C

du2

dU

ds

d2U

ds2

dS

dt
and

d2S

dt2
(4.15)

The derivatives dC/du and d2C/du2 are easily computed from the analytic expression of the spline
C(u). This leaves the remaining four derivatives

dU

ds

d2U

ds2

dS

dt
and

d2S

dt2
(4.16)

“book” — 2005/9/30 — 15:44 — page 82 — #94✐
✐

✐
✐

✐
✐

✐
✐

82 CHAPTER 4. MOTION INTERPOLATION

Analytic expressions for the functions S and U are not available, but fortunately this is not the case for
their derivatives, which can be computed analytically.

Starting with (4.6) the integrand can be rewritten as the dot product of the derivative of the space-spline

s(u) =

∫ u

0

∥∥∥∥
C(u)

du

∥∥∥∥
2

du =

∫ u

0

√
dC(u)

du
· dC(u)

du
du, (4.17)

which is a more convenient form. Differentiating the arc length function s(u) with respect to the parameter
u, is the same as differentiating the integral as a function of its limits. This yields

ds(u)

du
=

√
dC(u)

du
· dC(u)

du
(4.18)

Recall, the function U(s) is the inverse of the arc length function s(u) given in (4.17). Therefore, the
derivative of U(s) with respect to the arc length s is equal to

dU(s)

ds
=

1
ds

du
(U(s))

=
1√

dC(U(s))

du
· dC(U(s))

du

(4.19)

From the above, it can be seen that although the function U(s) can only be computed numerically, it is
possible to compute its derivative, because dC/du is given by an analytic expression, and U(s) can be
computed numerically. Differentiating this derivative with respect to s yields

d2U(s)

ds2
=

d

ds

⎛

⎜⎜⎝
1√

dC(U(s))

du
· dC(U(s))

du

⎞

⎟⎟⎠ (4.20a)

= −

d

ds

(
dC(U(s))

du
· dC(U(s))

du

)

2

(
dC(U(s))

du
· dC(U(s))

du

)3/2
(4.20b)

= −

(
d2C(U(s))

du2
· dC(U(s))

du
+

dC(U(s))

du
· d2C(U(s))

du2

)
dU(s)

ds

2

(
dC(U(s))

du
· dC(U(s))

du

)3/2
(4.20c)

After some rearranging of terms it is found that

d2U(s)

ds2
= −

dC(U(s))

du
· d2C(U(s))

du2
(

dC(U(s))

du
· dC(U(s))

du

)2 (4.21)

“book” — 2005/9/30 — 15:44 — page 83 — #95✐
✐

✐
✐

✐
✐

✐
✐

4.2 PHYSICS-BASED ANIMATION 83

The derivatives dC/du and d2C/du2 are given by analytic expressions and U(s) can be computed nu-
merically, so the derivative d2U(s)/ds2 can also be computed.

Recall that the reparameterization of the arc length with the time S(t) was done using a spline V given
by (4.14) and repeated here for convenience

V (v) =
[
t(v) s(v)

]T (4.22)

Since the function V is a spline, so is each of its coordinate functions. This implies that analytic expres-
sions for

dt(v)

dv
and

ds(v)

dv
(4.23)

can be found by straight forward computations. In fact, these would be second-order polynomials when
V is a cubic spline.

Recall that given a value of t the corresponding value of the spline parameter v could be found nu-
merically by a root search. This corresponds to expressing the spline parameter v as a function of time
t. Denote this function v(t). With this notation the arc length can be expressed as a function of time
S(t) = s(v(t)). The derivatives of S with respect to time is then given by

dS(t)

dt
=

ds(v(t))

dt
=

ds(v(t))

dv

dv(t)

dt
(4.24)

Looking at the last term, it can be seen that this is in fact the inverse mapping of (4.23). Therefore, the
above expression can be written

dS(t)

dt
=

ds(v(t))

dv

1
dt

dv
(v(t))

(4.25)

The value of v(t) is already known. It was found by the root search that was performed in the time
reparameterization phase of the space-spline.

The second derivative of the function S with respect to t can be computed as follows. From (4.25) it
is found that

d2S(t)

dt2
=

d2s(v(t))

dt2
(4.26a)

=
d2s(v(t))

dv2

dv(t)

dt

1
dt(v(t))

dv

+
ds(v(t))

dv

−1
(

dt(v(t))

dv

)2

d

dt

(
dt(v(t))

dv

)
(4.26b)

=

d2s(v(t))

dv2
(

dt(v(t))

dv

)2 −

ds(v(t))

dv(
dt(v(t))

dv

)2

d2t(v(t))

dv2

dv(t)

dt
(4.26c)

=

d2s(v(t))

dv2
(

dt(v(t))

dv

)2 −

ds(v(t))

dv

d2t(v(t))

dv2
(

dt(v(t))

dv

)3 (4.26d)

“book” — 2005/9/30 — 15:44 — page 84 — #96✐
✐

✐
✐

✐
✐

✐
✐

84 CHAPTER 4. MOTION INTERPOLATION

The value v(t) is known so the above expression is an analytic expression evaluated at v(t).
Looking at all the equations for the derivatives, it is realized that whenever

dC(U(s))

du
= 0, or

dt(v(t))

dv
= 0, (4.27)

might cause problems. However, it turns out these degenerate cases do not cause any problems in practice.

“book” — 2005/9/30 — 15:44 — page 85 — #97✐
✐

✐
✐

✐
✐

✐
✐

Part II

Multibody Animation

85

“book” — 2005/9/30 — 15:44 — page 86 — #98✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 87 — #99✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 87

Simulation of multibody dynamics deals with simulating the motion of multiple rigid bodies, possi-
bly connected to each other through joints. The various fields concerned with multibody dynamics have
developed slightly different language usages. The computer graphics literature often uses the term rigid
body simulation and the applied mathematical and engineering literature uses the term multibody dynam-
ics. Therefore, it is appropriate to begin our discussion on multibody dynamics with a clarification of the
terms we have decided to use in this book: multibody simply means multiple bodies. Multibody Dynamics
is the physics of multiple bodies all in mutual contact with each other or possibly connected to each other
by joints. By simulation of the multibody dynamics we get a Multibody Animation.

The terms articulated figure, articulated body, or jointed mechanism are often used for rigid bodies
connected by joints. Sometimes the term rigid body simulation is used for those simulators that do not
handle jointed mechanisms. Thus, multibody animation is the most general term covering every topic and
scenario you can think of concerning rigid bodies.

Particles and rigid bodies are often the first concepts introduced in physics, and they are regarded as
the basic theoretical building blocks. The same view is also often applied in physics-based animation:
rigid body simulation is considered the basic starting point for many practitioners.

Many consider multibody dynamics to be simpler to simulate than chaotic and turbulent natural phe-
nomena such as water, smoke, or fire. In our opinion this is a misconception, and although the free motion
of a single rigid body floating in empty space is embarrassingly simple to simulate, rigid bodies are ideal
real-world models. However, in the real world everything deforms. For rigid bodies, this idealization
results in difficult discontinuities, causing the numerics to become ill-conditioned and sometimes even
unsolvable.

The dynamics and mathematics of rigid bodies have been known since Newton. Nevertheless, nearly
400 years later it is still a topic of active interest and scientific publication. Since the 80s there have been
papers on rigid body simulation in every ACM SIGGRAPH Proceedings. The explanation is that even
though the physics and mathematics is well established, it is not easily solved on a computer. Further-
more, there is a continuous demand to simulate more and more rigid bodies faster and faster. Finally,
in animation we often want to simulate unreal things that should appear plausible. Hence methods are
needed that are incredibly fast, stable, robust, and tolerant for faulty configurations, none of which is the
main focus in classical mechanics.

The traditional approach for analyzing systems in classical mechanics often deals with systems in
equilibrium. This is of little interest in animation, where we want to see objects in motion and colliding
with each other. At equilibrium, the animation is usually over. In contrast, robotics has a long tradition of
simulating mechanics; an equilibrium state is often the goal. Further problems are more concerned with
kinematics of a single mechanism, controlling, planning, or computing the motion trajectory in a known
and controlled environment. In animation, nothing is known about what should happen, and often only
animation of several mechanisms is interesting. Besides, robotics tends to be aimed at only simulating the
joints of a mechanism, not contact forces with the environment or other mechanisms.

The quest for bigger and faster simulators seems endless and is mainly driven forward by the computer
gaming industry and the movie industry. Rigid bodies are attractive in computer games, since they fit in
nicely with the level of realism, and they are fairly easy to use to plan game events and build game
levels. Basically, the industry knows how to use rigid bodies to create interesting game effects. The movie
industry has moved beyond multibody animation to deformable objects, natural phenomena, humans, etc.

“book” — 2005/9/30 — 15:44 — page 88 — #100✐
✐

✐
✐

✐
✐

✐
✐

88 MULTIBODY ANIMATION

This part is a thorough introduction to multibody animation. The theory and methods we present are
highly biased toward our own work in the field, and readers should not expect a complete, in-depth, and
detailed walk-through of every method and paradigm.

Our contribution on multibody animation in this book begins with the simplest possible approach to
model multibody dynamics: the so-called penalty-based methods. Penalty-based methods were among
the first to appear and are still in use today. Then we will turn our attention toward the impulse-based
methods, which are considered easy to implement compared to other methods. Impulse-based methods
are characterized by the fact that they represent every interaction between bodies in the world through
collisions; even a cup resting on a table is modeled by a series of highly-frequent collisions. Constraint-
based methods are probably the kind of method that resembles a physicist’s view of the world. Constraint-
based methods set up the motion of equations, and solve explicitly for the contact and constraint forces,
considering that Newton’s second law can be integrated to calculate the complete motion of the objects.

After we have introduced the reader to the three traditional “main-stream” methods for simulating
rigid bodies, we will describe a formal, conceptual module design. The module design is used to explain
many details of rigid body simulators, such as interaction with the collision detection engine or the time-
stepping strategies. Finally we will present contact graphs, a convenient data structure to store information
about contact points.

Our aim with the multibody dynamics theory presented in this book is to equip the reader with the
skills for building stable and robust multibody simulators capable of simulating large configurations with-
out breaking down or giving up on unexpected errors or faulty starting conditions. We have focused on
high performance, but it’s more from an algorithmic point of view, and not our most important concern.

“book” — 2005/9/30 — 15:44 — page 89 — #101✐
✐

✐
✐

✐
✐

✐
✐

5

Penalty-Based Multibody Animation

Rigid bodies in the real world do not penetrate each other, and the penetration is impossible due to the
contact forces between rigid bodies. In penalty-based multibody animation, a spring-damper system is
used for penalizing penetrations. A spring-damper system behaves like a harmonic oscillator in classical
mechanics, which will be reviewed here. For full detail see Section 22.4.

Penalty methods have a lot in common with mass-spring systems, because all effects are modeled by
springs and dampers, see for instance [Provot, 1995], and they are generally applicable to both deformable
and rigid objects. Spring-damper models are even found in biomechanical muscle models such as Hill’s
muscle model and Zajac’s force model, see [Chen et al., 1992].

This chapter covers rigid bodies, but the theory is generally applicable. We strongly encourage readers
new to the subject of classical mechanics to examine Section 22.1 for basic theory of the motion of rigid
bodies.

5.1 The Basics
The motion of a single rigid body is described in the Newton-Euler equations. These are derived in full
detail in Section 22.1. Here, we will briefly review the notation and equations.

The center of mass is given by r, the orientation is given by the quaternion q and the linear and angular
velocities are given by v and ω

d

dt

⎡

⎢⎢⎣

r
q
v
ω

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

v
1
2ωq
a
α

⎤

⎥⎥⎦ , (5.1)

where a and α are the linear and angular acceleration, and can be found by

a =
F

m
and α = I−1 (τ + ω × Iω) . (5.2)

Here m is the total mass and I is the inertia tensor. Furthermore, F is the total linear force acting on the
center of mass and τ is the torque w.r.t./ the center of mass. The ordinary differential equation (ODE) in
(5.1) is called a Lagrangian formulation. Given initial conditions, one can use a numerical integrator to
integrate the motion of the rigid body. See Chapter 23 for details about numerical integration.

The Hamiltonian formulation of the motion of the rigid body is an alternative to the Lagrangian for-
mulation and is given by

d

dt

⎡

⎢⎢⎣

r
q
P
L

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

v
1
2ωq
F
τ

⎤

⎥⎥⎦ , (5.3)

89

“book” — 2005/9/30 — 15:44 — page 90 — #102✐
✐

✐
✐

✐
✐

✐
✐

90 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

Figure 5.1: Penalizing penetration by insertion of springs.

where P and L are the linear and angular momentum respectively. In the Hamiltonian formulation v and
ω is found by

v =
P

m
and ω = I−1L (5.4)

As with the Lagrangian formulation the Hamiltonian formulation can also be numerically integrated.
Regardless of the chosen formulation, one needs to find the values of the force F and torque τ at a

given instant in time in order to perform the numerical integration. These values would include contri-
butions from external forces, such as gravity, and contact forces stemming from contact with other rigid
bodies.

In order to compute, the contact forces springs with rest-length zero are inserted at all penetrations as
shown in Figure 5.1. The springs will try to remove the penetrations, which is why they are called penalty
forces. Furthermore, larger penetrations means larger spring forces. That is, springs penalize penetrations,
hence the name penalty method. The contact force from each point of contact is thus computed as a spring
force. Call the external contributions f ext and τ ext and the i’th spring force f springi

and τ springi
. Now the

total force and torque are computed as

F = f ext +
∑

i

f springi
(5.5)

τ = τ ext +
∑

i

τ springi
(5.6)

“book” — 2005/9/30 — 15:44 — page 91 — #103✐
✐

✐
✐

✐
✐

✐
✐

5.1 PHYSICS-BASED ANIMATION 91

In case of gravity being the only external force, we have

f ext = mg (5.7)
τ ext = 0 (5.8)

where g = [0,−9.81, 0]T is the gravitational acceleration.
In its most pure form the simulation loop of the penalty method can be summarized as

• Detect contact points (run collision detection)

• Compute and accumulate spring forces

• Integrate equations of motion forward in time

This is the pure form of the penalty method. In practice, it is combined with several other techniques,
some of these are surveyed in Section 5.9.

Now we’ll turn our attention toward the actual computation of the penalty forces in a general simulator.
Let the k’th contact point between the two bodies i and j with center of mass at r i and rj respectively be
at position pk given in 3D world coordinates. The k’th contact point has the contact normal, nk, also in
3D world space, pointing from body i toward body j, and a measure of penetration depth, dk. Then the
penalty force acting on body j is given by

F j = (−kdk − buk · nk) nk, (5.9)

where uk denotes the relative contact velocity at the k’th contact point, i.e.,

uk = (vi + ωi × rki)− (vj + ωj × rkj) , (5.10)

where rki = pk−ri and rkj = pk−rj . For uk ·nk < 0 objects are approaching each other, uk ·nk = 0
there is no relative movement, and if uk · nk > 0 objects are moving away from each other. Notice how
carefully the viscosity is modeled only to work in the direction of the contact normal. It was pointed out
in [Baraff et al., 2003a], that damping should only work in the constraint direction. The force acting on
body i is by Newton’s third law,

F i = −F j. (5.11)

Besides the linear force terms arising from the penalty force, there are also some torque terms which must
be taken into account.

T j = rkj × F j (5.12a)
T i = rki × F i. (5.12b)

So far we have derived what can be termed the simple or classical penalty method. There are, however,
several difficulties associated with it.

“book” — 2005/9/30 — 15:44 — page 92 — #104✐
✐

✐
✐

✐
✐

✐
✐

92 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

Figure 5.2: Figure illustrating that it is not always easy to determine penetration depths and contact nor-
mals based on local information only.

• First of all it is not trivial to compute satisfactory contact normals or penetration depths. This is
illustrated by Figure 5.2. Distance fields are ideal for these computations, but they lack global
knowledge about the entire state.

The problem of determining meaningful contact normals and penetration depths is mostly caused
by the use of local computations as shown in the figure. If a global computation [Kim et al., 2002]
is used instead, these problems can be resolved.

• Some contact points like the face-face case appearing in a box stack is difficult to handle by applying
a penalty force at the contact point of deepest penetration [Hasegawa et al., 2003], as illustrated in
Figure 5.3. To alleviate this problem, researchers have tried to sample the entire contact region with
contact points as shown in Figure 5.4. There also exist methods, that integrate over the intersection
area and/or volume.

• Figure 5.2 illustrates another problem with contact normals, in the left column a “healthy” state is
shown, the right column shows a slightly more displaced state. Observe that from the left to the
right state, the contact normals make a discontinuous change; the problem is treated in detail by
[Hirota, 2002, Hirota et al., 2001].

“book” — 2005/9/30 — 15:44 — page 93 — #105✐
✐

✐
✐

✐
✐

✐
✐

5.2 PHYSICS-BASED ANIMATION 93

Figure 5.3: Figure illustrating a resting box, undergoing an unwanted and endless wiggling.

Figure 5.4: Figure illustrating the idea of oversampling to alleviate the wiggling problem.

“book” — 2005/9/30 — 15:44 — page 94 — #106✐
✐

✐
✐

✐
✐

✐
✐

94 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

Figure 5.5: The one mass harmonic oscillator.

5.2 The Harmonic Oscillator
In Section 5.1 we showed how penetrations were penalized with spring-damper systems. A spring-damper
system is equivalent to a damped harmonic oscillator. In order to study the behavior of the penalty method
we should study the behavior of the harmonic oscillator.

In this section we will briefly review the harmonic oscillator. The reader is referred to Section 22.4
for more detailed treatment.

5.2.1 The One Object Harmonic Oscillator
Consider a particle attached to a wall of infinite mass with a spring as shown in Figure 5.5. The spring
force given by

Fspring = −kx, (5.13)

is called Hooke’s Spring Law, and k > 0 is called the spring coefficient. Newton’s second law of motion,
dictates the motion of the particle as,

mẍ = −kx, (5.14)

which yields the second-order ordinary differential equation

mẍ + kx = 0. (5.15)

An analytical solution to this equation exists and can be shown to be

x = B sin (ω0t) + C cos (ω0t) , (5.16)

“book” — 2005/9/30 — 15:44 — page 95 — #107✐
✐

✐
✐

✐
✐

✐
✐

5.2 PHYSICS-BASED ANIMATION 95

0 5 10 15 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Undamped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A cos(ω0 t)

k = 20
m = 10

Figure 5.6: An undamped harmonic oscillator

where

ω0 =

√
k

m
(5.17)

is known as the natural frequency. The constants B and C can be evaluated from the initial position and
velocity of the particle. The analytical solution (5.16) can be rewritten as a single cosine function,

x = A cos (ω0t + φ) , (5.18)

The particle follows a cosine motion with amplitude A, frequency ω0, and phase φ. The motion is conse-
quently repetitive with a period T ,

T =
2π

ω0
, (5.19a)

=
2π√

k
m

. (5.19b)

Figure 5.6 shows an example of a harmonic oscillator. The idealized harmonic oscillator assumes that
there is no loss in energy over time. This is physically unrealistic, and practically not as useful as a
damped harmonic oscillator. A typical damping force is given by

Fdamping = −bẋ, (5.20)

which is commonly referred to as a linear viscosity force, and the coefficient b > 0 is called the damping
or viscosity coefficient. From Newton’s second law of motion, the motion of the damped particle must
obey,

mẍ = −kx− bẋ, (5.21)

“book” — 2005/9/30 — 15:44 — page 96 — #108✐
✐

✐
✐

✐
✐

✐
✐

96 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

which is equivalent to the second-order ordinary differential equation

mẍ + bx′ + kx = 0, (5.22)

or
ẍ +

b

m
ẋ +

k

m
x = 0. (5.23)

Using the natural frequency ω2
0 = k

m and introducing γ = b
m , this may be written as,

ẍ + γẋ + ω2
0x = 0. (5.24)

An analytical solution exists and is simply stated here as,

x = A exp
(
−γ

2
t
)

cos (ω1t + φ) , (5.25)

where A and φ are constants determined from initial conditions, and

ω1 =

√
ω2

0 −
γ2

4
(5.26)

is the frequency. The frequency ω1 has real solutions when

ω2
0 −

γ2

4
≥ 0 (5.27a)

⇒ k

m
− b2

4m2
≥ 0 (5.27b)

⇒ 4km− b2 ≥ 0 (5.27c)

Comparing the damped harmonic oscillator (5.25) with the undamped harmonic oscillator (5.18) it is seen
that the amplitude of the damped oscillator is exponentially decaying and that the frequency ω1 of the
damped oscillator is less than the frequency, ω0, of the undamped oscillator.

The zero-crossings of the damped harmonic oscillator naturally occurs at equal time intervals by the
period

T =
2π

ω1
. (5.28)

Surprisingly, the peaks of the motion do not lie halfway between the zero-crossings as illustrated in Fig-
ure 5.7. The damped motion may be described qualitatively by examining the value of b2 − 4mk and the
ratio of γ

ω1
. (5.29)

The motion is:

Overdamped, when b2 − 4mk > 0. Two cases of over-damping can be distinguished:

“book” — 2005/9/30 — 15:44 — page 97 — #109✐
✐

✐
✐

✐
✐

✐
✐

5.2 PHYSICS-BASED ANIMATION 97

0 2 4 6 8 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Lightly Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A exp(−γ t) cos(ω1 t)

k = 20
b = 1
m = 10γ / ω1 = 0.0707549137677225

Figure 5.7: A lightly damped harmonic oscillator

Lightly damped, if γ
ω1
≪ 1 then A(t) decays very little during the time the cosine makes many

zero-crossings.

Heavy damped, if γ
ω1

is large then A(t) rapidly goes to zero while the cosine makes only a few
oscillations.

Critical damped, when b2 − 4mk = 0. In this case the amplitude tends most rapidly to zero (without
crossing zero) and flattens out.

Underdamped, when b2 − 4mk < 0. In this case the amplitude decays even faster than in the case of
critical damping, but the amplitude will cross zero and increase again before flattering out.

Examples of the four categories are illustrated in Figure 5.8. Using a harmonic oscillator for a mass-
spring system to model penalty forces, reasonable motion is obtained for heavily damped or at best critical
damped, since oscillating forces such as oscillating contact forces are often undesirable. Furthermore, it is
often desirable to require that the amplitude should decay to zero within a time-step, since this will make
objects appear rigid.

5.2.2 The Two Object Harmonic Oscillator

Consider a two-body system, as shown in Figure 5.9, where two particles are connected with a spring.
Hooke’s law for this system is given as the following two equations,

miẍi = k (xj − xi) , (5.30a)
mjẍj = −k (xj − xi) . (5.30b)

“book” — 2005/9/30 — 15:44 — page 98 — #110✐
✐

✐
✐

✐
✐

✐
✐

98 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

0 2 4 6 8 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Lightly Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A exp(−γ t) cos(ω1 t)

k = 20
b = 1
m = 10γ / ω1 = 0.0707549137677225

0 5 10 15 20
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Heavily Damped Harmonic Oscillator

time (seconds)
P

en
et

ra
tio

n
de

pt
h

(c
m

)

A exp(−γ t) cos(ω1 t)

k = 20
b = 10
m = 10
γ / ω1 = 0.755928946018454

0 5 10 15 20
0

0.005

0.01

0.015

0.02
Critically Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t)

k = 10

b = 20

m = 10

0 5 10 15 20
−5

0

5

10

15

20 x 10−3 Under−Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t) cos(ω1 t)

k = 20
b = 20
m = 10
γ / ω1 = 2

Figure 5.8: A qualitative analysis of a damped harmonic oscillator.

Figure 5.9: The two-mass harmonic oscillator.

“book” — 2005/9/30 — 15:44 — page 99 — #111✐
✐

✐
✐

✐
✐

✐
✐

5.3 PHYSICS-BASED ANIMATION 99

Dividing the first equation by mi and the second by mj , yields

ẍi = k
1

mi
(xj − xi) , (5.31a)

ẍj = −k
1

mj
(xj − xi) , (5.31b)

and subtracting the first from the second, yields

ẍj − ẍi = −k
1

mj
(xj − xi)− k

1

mi
(xj − xi) (5.32a)

= −k

(
1

mj
+

1

mi

)
(xj − xi) . (5.32b)

The two-object harmonic oscillator has the same motion as the one-object harmonic oscillator. This may
be seen by setting, x = xj − xi, in (5.32b), such that

ẍ = −k

(
1

mj
+

1

mi

)
x (5.33)

Introducing the reduced mass as,
µ =

mimj

mi + mj
(5.34)

it is discovered that
µẍ = −kx. (5.35)

We conclude that the two-object harmonic oscillator behaves as a one-object system of mass µ.

5.3 Picking Parameter Values

Using a harmonic oscillator to model penalty forces, reasonable motion is obtained in case of a heavily
damped or critical damped harmonic oscillator, since oscillating forces such as oscillating contact forces
are undesirable. Furthermore, it is desirable to require that the amplitude should decay to zero within a
single frame computation, since this will make objects appear rigid and ensure that an observer will not
notice any oscillating behavior.

Thus we need a method for picking the values of the spring and damping coefficients, so that we can
control the behavior of the harmonic oscillator to achieve the desired motion. That is, we want to pick
parameter values such that we are not able to see the springiness of the corresponding mass-spring system.

The oscillation cycle of a harmonic oscillator, i.e., the time period (5.28), is given by

T =
2π

ω1
. (5.36)

“book” — 2005/9/30 — 15:44 — page 100 — #112✐
✐

✐
✐

✐
✐

✐
✐

100 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

To avoid temporal aliasing the time-step ∆t between two frames must be smaller than 1
2T according to

Nyquist sampling theory [McClellan et al., 1998]. That is

∆t ≤ T

2
. (5.37)

This knowledge can, for instance, be used to determine a suitable spring coefficient k, that will allow us
to use the maximum frame time-step without temporal aliasing. That is

∆t =
T

2
=

π

ω1
=

π√
ω2

0 −
γ2

4

(5.38)

Rearranging, we find that

∆t

√
ω2

0 −
γ2

4
= π. (5.39)

Squaring both sides and isolating ω2
0 we get,

∆t2
(
ω2

0 −
γ2

4

)
= π2. (5.40)

Using ω2
0 = k

m and γ = b
m we find that

k

m
=

π2

∆t2
+

b2

4m2
. (5.41)

It is thus concluded that

k =
mπ2

∆t2
+

b2

4m
. (5.42)

This approach is used in [Hasegawa et al., 2003], but it does not provide us with any means for picking
the coefficient of damping b, i.e., it is impossible to control the rate of the decay.

In order to get a method that also allows control of the coefficient of damping, we will start by deriving
the conditions for a highly damped oscillator. For such an oscillator we must have that the ratio in (5.29)
goes to infinity,

γ

ω1
= c→∞. (5.43)

Substituting γ = b
m and (5.26) we derive

b

m
= c

√
ω2

0 −
b2

4m2
. (5.44)

Squaring yields (
b

m

)2

= c2ω2
0 − c2 b2

4m2
. (5.45)

“book” — 2005/9/30 — 15:44 — page 101 — #113✐
✐

✐
✐

✐
✐

✐
✐

5.3 PHYSICS-BASED ANIMATION 101

Substituting (5.17) and collecting terms gives
(

1 +
c2

4

)(
b

m

)2

= c2 k

m
(5.46a)

⇒
(

1

c2
+

1

4

)(
b

m

)2

=
k

m
. (5.46b)

Taking the limit for c going to infinity, gives

k =
b2

4m
. (5.47)

Observe that this is in fact a critically damped oscillator, because we have b2 − 4mk = 0, so we have
shown that the limiting case of the heavily damped oscillator is in fact the critical damped oscillator, as
expected.

We’ll investigate the critical damped harmonic oscillator further by looking at the frequency of it

ω1 =

√
ω2

0 −
γ2

4
(5.48a)

=

√
k

m
− b2

4m2
(5.48b)

=
1

2m

√
4mk − b2 (5.48c)

= 0. (5.48d)

This means that the frequency vanishes, and there is no oscillation. Observe that this indicates an infinite
long period, since

lim
ω1→0

T = lim
ω1→0

2π

ω1
=∞. (5.49)

Using these facts about the critical damped harmonic oscillator, we see that the equation describing the
motion of the harmonic oscillator (5.25) reduces to a simple exponential decay:

x = A exp
(
−γ

2
t
)

cos (ω1t + φ) . (5.50)

In our case ω1 = 0, and the phase shift is zero since at time t = 0 the spring will have maximum amplitude
equal to the penetration depth between two rigid bodies. Thus we conclude that

x = A exp
(
−γ

2
t
)

. (5.51)

Exponential decay is often characterized by the time τ required for the amplitude of the signal to drop to
e−1 ≈ 0.37 of its initial value. That is

exp (−1) = exp
(
−γ

2
τ
)

(5.52)

“book” — 2005/9/30 — 15:44 — page 102 — #114✐
✐

✐
✐

✐
✐

✐
✐

102 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

This time is called the characteristic time or the damping time [Kleppner et al., 1978]. For our purpose τ
becomes a parameter for controlling the rate by which the signal tends to zero. For the moment we will
let the value of τ be a user-specified parameter. By the definition of τ in (5.52) we derive

−1 = −γ
2
τ, (5.53a)

⇒ γ =
2

τ
, (5.53b)

which yields a formula for selecting the value of the viscosity coefficient

b =
2m

τ
. (5.54)

Knowing that we want critical damping, indicating that b2 − 4mk = 0, we can derive a formula for
selecting the value of the spring coefficient

k =
m

τ2
. (5.55)

Although our derivations differ from the ones given in [Barzel et al., 1988], the approaches are identical.
The problem that remains is a method for picking the value of τ . We will derive such a method in the
following.

We want the amplitude to drop to a fraction 0 < ε < 1 within a single frame computation. Thus we
need to determine how many steps n of τ are needed before the amplitude decays to a fraction below ε,

exp
(
−γ

2
nτ
)

=
(
e−1
)n ≤ ε, (5.56)

from this we derive
(
e−1
)n ≤ ε (5.57a)
⇓

n ln
(
e−1
)
≤ ln ε (5.57b)
⇓

n ≥ − ln ε (5.57c)

In conclusion, we see that we must pick n = ⌈− ln ε⌉. Given the time-step ∆t between two frames we
can compute τ as

τ =
∆t

n
(5.58)

This completes the derivation for our method of picking parameter values. Pseudocode is listed in Fig-
ure 5.10. In Figure 5.11 is shown a piece of Matlab code, illustrating how parameters could be picked,
such that the amplitude drops to below one percent of its initial value within a single simulation time-step.
In Figure 5.12 is shown the output from the Matlab code from Figure 5.11. Note the values of the coeffi-

“book” — 2005/9/30 — 15:44 — page 103 — #115✐
✐

✐
✐

✐
✐

✐
✐

5.3 PHYSICS-BASED ANIMATION 103

Algorithm pick-parameter-values(∆t, ε,m)
n = ⌈− ln ε⌉
τ = ∆t/n
b = 2m/τ
k = m/τ 2

End algorithm

Figure 5.10: Pseudocode for picking parameter values of a spring. The time-step between two frames is
given by ∆t, the decay fraction of the amplitude is given by ε and the mass is given by m. In general m
would be the reduced mass (see Section 5.2.2).

dt = 0.01; % Time-step size
tau = dt/6; % Damping time
A = 0.02; % Initial Amplitude
m = 10; % Mass
gamma = 2/tau;
delta = 1/tau^2;
b = 2*m/tau; % Damping Coefficient
k = m/tau^2; % Spring Coefficient
omega_0 = sqrt(delta); % Natrual Frequency
omega_1 = sqrt(omega_0^2 - gamma^2/4); % Frequency
t = 0:tau/100:6*tau;
x = A * exp(-(gamma * t)/2).*cos(omega_1*t); % Signal of harmonic oscillator
plot(t,x);
title(’Critical Damped Harmonic Oscillator’);
xlabel(’time (seconds)’);
ylabel(’Penetration depth (cm)’);
text(tau,0.5*A,textlabel(’A *exp(-gamma*t)*cos(omega_1*t)’));
text(tau,0.4*A,[’k = ’ mat2str(k)]);
text(tau,0.3*A,[’b = ’ mat2str(b)]);

Figure 5.11: Matlab code for picking spring- and damper-parameter values of a critical damped oscillator
with a controlled decay.

“book” — 2005/9/30 — 15:44 — page 104 — #116✐
✐

✐
✐

✐
✐

✐
✐

104 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

0 0.002 0.004 0.006 0.008 0.01
0

0.005

0.01

0.015

0.02
Critically Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t) cos(ω1 t)

k = 3600000

b = 12000

Figure 5.12: Plot showing the amplitude of the critical damped harmonic oscillator from Figure 5.11.
Notice that the amplitude, i.e., the penetration depth, drops to almost zero within a single time-step ∆t =
0.01 seconds.

cients, k and b. The half-life time is an alternative time constant, which is defined as the value τ for which
the signal has dropped to one half of its initial value, that is

exp
(
−γ

2
τ
)

=
1

2
. (5.59)

If preferred, one could use the half-life time instead of the damping time, to derive formulas for picking
the values of k and b.

5.4 Solving Harmonic Oscillators Numerically

In the previous section we worked directly with the analytical solution to the damped harmonic oscillator.
This is seldom possible in a simulator, which must rely on numerical methods. This section is devoted to
the task of applying a numerical method to a spring-damper system. Two methods are essentially studied:
the explicit Euler method and the implicit Euler method. The interested reader is referred to Chapter 23.1
for more details.

According to (5.51) we have x(t) = A exp
(
−γ

2 t
)
. Differentiating w.r.t. time yields

ẋ(t) = −γ
2
x(t), (5.60)

which is the ordinary differential equation we will try to solve numerically.
For the explicit first-order Euler scheme, the numerical approximation, xi+1, at time ti+1 = ti + h to

“book” — 2005/9/30 — 15:44 — page 105 — #117✐
✐

✐
✐

✐
✐

✐
✐

5.4 PHYSICS-BASED ANIMATION 105

the analytical solution x(ti+1) is given by

xi+1 = xi + h
−γ
2

xi (5.61a)

=

(
1 + h

−γ
2

)
xi. (5.61b)

Initially x0 = A, from which we get

xi+1 =

(
1 + h

−γ
2

)i+1

x0 = A
(
1− h

γ

2

)i+1
. (5.62)

Since the exact solution is x(t) = A exp
(
−γ

2 t
)

then the absolute error is given by

|x(ti)− xi| =

∣∣∣∣A exp
(
−γ

2
ih
)
−A

(
1− h

γ

2

)i
∣∣∣∣ (5.63a)

= |A|
∣∣∣∣exp

(
−γ

2
h
)i
−
(
1− h

γ

2

)i
∣∣∣∣ , (5.63b)

from which we see that the accuracy of the numerical solution is determined by how well 1− h γ
2 approx-

imates exp
(
−γ

2h
)
. Furthermore, the numerical solution will only converge to the analytical solution if

∣∣∣1− h
γ

2

∣∣∣ < 1, (5.64)

see Chapter 23.1 for more details. This effectively restricts the time-step h for the numerical method:
since h, γ > 0 then there are two cases to consider. First, if hγ < 1, then numerical convergence may
only occur, when 1− h γ2 < 1, hence

0 < hγ < 2. (5.65)

Second, if hγ > 1, then numerical convergence may only occur, when 1− h γ
2 > −1, hence

2 < hγ < 4. (5.66)

Notice, if in the first case h > 2
γ then we are in second case. Thus from

∣∣1− hγ2
∣∣ < 1 and h, γ > 0 we

have
h <

4

γ
=

4µ

b
, (5.67)

where µ is the reduced mass of a two object harmonic oscillator as described in Section 5.2.2. From (5.67)
two things become clear:

• The greater mass ratios there are present in the system, i.e., mi ≪ mj , the smaller time-step is
required.

• More damping requires less time-step size as well.

“book” — 2005/9/30 — 15:44 — page 106 — #118✐
✐

✐
✐

✐
✐

✐
✐

106 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

An alternative to the explicit Euler is the implicit first-order Euler scheme in more depth. It is defined
as

xi+1 = xi + hẋi+1. (5.68)

Since we know the analytical solution to the problem x(t) = A exp(− γ
2 t), this is easily evaluated to

xi+1 = xi − h
γ

2
xi+1. (5.69)

A little mathematical manipulation yields
(
1 + h

γ

2

)
xi+1 = xi, (5.70a)

⇒ xi+1 =
xi

1 + hγ2
. (5.70b)

Remembering that the analytical solution has x(t)→ 0 for t→∞, but in contrast to the explicit method,
the implicit method converges even as h→∞:

lim
h→∞

(
xi

1 + hγ2

)
= 0. (5.71)

This effectively means that the stability requirements do not require a bound on the time-step of the
implicit method. We say that the implicit method is unconditionally stable.

Comparing the explicit with the implicit methods for a spring-damper system, the implicit method is
obviously superior, since it will always converge to the correct solution regardless of the chosen time-step.
Figure 5.13 compares the implicit and explicit method for different values of the time-step. However,
while the implicit method always converges to the correct solution, it does so at a slower rate than the
exact solution. The explicit method gets into more and more trouble the closer h gets to 4

γ ; when h passes
this value the numerics simply explode. Furthermore for those time-step sizes where the explicit method
is stable, it will converge to zero even faster than the analytical solution.

5.5 Using the Penalty Method in Practice
The previous section appears to supply bulletproof values for the coefficients of the spring-damper sys-
tem, nevertheless practitioners report that massive amounts of parameter tuning is needed for mass-spring
systems. Surprisingly enough, they are still widely used and very popular—soft bodies in tools such as
Maya or 3DMax clearly illustrate this. We believe this popularity is mainly due to the simplicity of mass-
spring systems; they seem easy to understand and implement. However, there is also a computational
justification for using penalty methods. If a configuration has k contact points, the collision response
only takes O(k) time and has very low time constants. In comparison, a constraint-based simulation to
be discussed in Chapter 7 has at least O(k3) expected average time for an exact solution, and with quite
high time-constants and some constraint-based methods, only guarantees expected polynomial time, that
is O(kn) for some n ≫ 1. Although recent research in iterative numerical methods for constraint-based

“book” — 2005/9/30 — 15:44 — page 107 — #119✐
✐

✐
✐

✐
✐

✐
✐

5.5 PHYSICS-BASED ANIMATION 107

0 1 2 3 4
0

0.5

1

1.5

2

t

x(
t)

stable: h = 0.05, 4/γ = 0.2, ω0
2 = 100, m = 1

Correct
Explicit
Implicit

0 1 2 3 4
0

0.5

1

1.5

2

t
x(

t)

still stable: h = 0.1, 4/γ = 0.2, ω0
2 = 100, m = 1

Correct
Explicit
Implicit

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x(
t)

begining to oscillate: h = 0.15, 4/γ = 0.2, ω0
2 = 100, m = 1

Correct
Explicit
Implicit

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x(
t)

unstable: h = 0.2, 4/γ = 0.2, ω0
2 = 100, m = 1

Correct
Explicit
Implicit

0 1 2 3 4
−3

−2

−1

0

1

2

3

t

x(
t)

explode: h = 0.202, 4/γ = 0.2, ω0
2 = 100, m = 1

Correct
Explicit
Implicit

Figure 5.13: Comparison of explicit and implicit Euler method, and exact solution of x(t) =
A exp

(
−γ

2 t
)
.

“book” — 2005/9/30 — 15:44 — page 108 — #120✐
✐

✐
✐

✐
✐

✐
✐

108 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

methods yields much better results [Erleben, 2005], the penalty-based approach is still a computationally
cheap method. Impulse-based simulation, to be discussed in Section 6, is in some cases comparable to
the O(k) running time of the penalty-based method. However, in some cases it is possible to design
configurations that have O(∞) running time with an impulse-based simulator. With some tricks of the
trade it is possible to enforce a O(ck) running time for an impulse-based simulator with some constant
c ≫ 1. Other simulation methods solve QP optimization problems. For instance, optimization-based an-
imation [Schmidl, 2002], which is an NP-hard problem. So in short, there is a performance benefit from
using penalty-based methods, because even though the other methods have worse time complexities, they
can be numerically more pleasant, allowing them to take larger time-steps. Penalty methods are known
to produce stiff, ordinary differential equations, which requires small time-steps to satisfactory solve the
equation numerically, whereas, for instance, a velocity-based complementarity formulation, as described
in Section 7, can take extremely large time-steps in order of thousands times that of the penalty method,
without ever becoming unstable.

It is not just the problem of stiff ordinary differential equations that can make penalty methods in-
tractable, they can also suffer from a secondary oscillations. These are resonance effects, which occur in
forced and possibly damped harmonic oscillators, i.e., where some external time dependent force, F (t) is
affecting the system,

ẍ + γẋ + ω2
0x = F (t) . (5.72)

In classical mechanics the behavior of this system is often studied with

F (t) = F0 cos (ωt) . (5.73)

Here F0 is some constant, and ω is the driving frequency. F (t) is called the driving force. Secondary
oscillation is seen when ω is close to the frequency of the oscillator i.e., ω0 for undamped and ω1 for
damped. The effect is seen as an increase in amplitude. For the undamped oscillator the amplitude goes
to infinity as ω → ω0, physically this is not a problem, since no real-world systems are undamped, but in
a simulator this might occur, since we are working on an ideal world. In the damped case, the amplitude
cannot go to infinity, but is limited by γ, see [Kleppner et al., 1978, pp. 427]. In other words, secondary
oscillation can amplify the penalty force in a simulator, such that the amplification can kick objects away
from surfaces. One way to combat this is to make γ as large as possible, and one way to detect such a
phenomena is to track the total energy of the system—if it suddenly increases, this might be hint of such
problems.

The observant reader might at this point claim that it is very unlikely that there is a driving force in
form of (5.25), and in most cases, we will often only have to deal with three kinds of driving forces:

Imprecision: In cases of imprecision, ϵ, the equation of motion becomes

ẍ + γẋ + ω2
0x = ϵ. (5.74)

We have no way to predict what kind of function ϵ is, we only know it is very small valued, and
unlikely to be periodic.

Gravity: Gravity is another force acting on the system, so the equations of motion become

ẍ + γẋ + ω2
0x = ϵ+ mg. (5.75)

“book” — 2005/9/30 — 15:44 — page 109 — #121✐
✐

✐
✐

✐
✐

✐
✐

5.6 PHYSICS-BASED ANIMATION 109

This is a constant force and should not prove to be a problem.

Contact: There is also the contact forces from all other objects, such as in a box stack. This is equivalent
to a serial connection of springs as can be seen in Figure 5.14. Looking at the equation of motion
for a single spring in such a system gives

ẍ + γẋ + ω2
0x = ϵ+ mg + Fcontact . (5.76)

Since all other contact forces are also modeled by spring-damper systems, these forces will act
as a damped driving force. There might be more than one object in contact, which means that
the driving force might contain many different frequencies. Multiple contacts might even cause
a damped driving frequency close to the oscillators frequency, in which case an effect similar to
secondary oscillation can be expected to occur.

Looking at all the spring-damper systems as a whole system, the energy is shifted from one spring-
damper system to another, and the damping will dissipate energy over time and the system will
eventually settle in equilibrium. Thus, from this viewpoint, there is no secondary oscillation effect,
instead a wobbly elastic effect may be seen.

In conclusion, we do not know if numerical issues might cause secondary oscillation, nor whether multiple
contact formations are likely to cause a local effect for each spring similar to secondary oscillation. It is
therefore likely to expect problems similar to secondary oscillation the more complex the configuration
gets. These secondary oscillations are another source for parameter tuning, generally speaking, increasing
the value of γ should help alleviate the problem. Increasing γ can only be done by increasing b, which
means that the system is likely to become over-damped instead of critical damped.

5.6 Secondary Oscillations
A secondary oscillation is a resonance phenomena. To gain more insight into the significance of the
secondary oscillation in the penalty method, we will study the case of a idealized box stacking as shown
in Figure 5.14. We have three boxes denoted by the numbers 1, 2, and 3. Each box is described by three
positions, x1, x2, and x3. Horizontal movement is ignored. The contact forces between the boxes are
modeled by a critical damped spring system, that is two springs, a and b, are inserted between the boxes
as shown in the figure. The springs and damping coefficients are determined as outlined in Section 5.3.
The boxes are given a size of 1 meter, and initially they are displaced such that there is 1 cm empty space
between them. The bottommost box is fixed, meaning it has infinite mass and therefore is immovable.
Damped springs are inserted between two neighboring boxes whenever they penetrate each other. As
soon as neighboring boxes are touching or separated, the springs are removed.

Figure 5.15 shows a Matlab implementation of a box stack simulation. In Figure 5.16(a) the simulation
result of the stack of 3 boxes is shown. The simulation is done perfectly, in Figure 5.16(a) no oscillation
can be seen, and as verified in Figure 5.16(b) the deviation from equilibrium position is small and boxes
quickly come to rest. Notice however, that when the upper box comes in contact with the box beneath
it, then it is thrown upward. This indicates a small energy gain. The damped secondary oscillation that
was previously discussed is not seen in Figure 5.16. However, let us increase the complexity of the

“book” — 2005/9/30 — 15:44 — page 110 — #122✐
✐

✐
✐

✐
✐

✐
✐

110 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

x�
a�

b�

1�

2�

3�

Figure 5.14: Idealized box-stack example, used for analyzing secondary oscillations. Notice that penalty
springs are a serial connection of a mass-spring system.

configuration by increasing the stack height. Simulation results are shown in Figures 5.17 and 5.18 for
box stacks of 5, 10, 20, and 40 boxes. For a stack of 5 boxes we see nearly the same results as we
did for a stack of 3 boxes, however some small jittering is slowly becoming noticeable. It takes roughly
0.2 seconds before the jittering vanishes, which corresponds to 20 frames of the animation. The jittering
becomes worse and longer as the box stack is increased. For 20 and 40 boxes it has become so clear
that it will catch the eye of an observer. If we look at the deviation from the equilibrium positions, the
damped secondary oscillation is clearly seen as we increase the height of the box stack, starting to be
noticeable around a stack of 10 boxes. Notice also that the oscillations are orders of magnitude larger than
the simulation time. For stack heights of 20 and 40 another effect of the penalty method becomes evident:
when the system reaches equilibrium there are still errors in the simulation. Notice that for a box of 40
objects the topmost box deviates from its expected equilibrium position by 5 cm, i.e., 5% error. Of course
this an accumulated error, due to the errors in the positions of the 39 boxes below the topmost box. The
deviations for the stack height of 40 boxes also shows that within the first second of simulation, we will
see a single oscillation of the topmost box with an amplitude of 10 cm. This will definitely be noticeable
by an observer.

Another interesting effect of a penalty-based method is seen if the initial conditions of the box stack
is changed slightly, such that the boxes are initially penetrating by 1 cm instead of being separated. Fig-
ure 5.19 shows the simulation results of a box stack with seven initial penetrating boxes. Notice how
objects are being thrown up in the air. The initial penetrations make the springs work like a spring gun on
the boxes. Even a small penetration as the one in the example can make the topmost box fly up in the air
at a height of the same order as the size of the box itself.

In our simulations shown in Figures 5.16, 5.17, 5.18, and 5.19, the mass properties of the boxes were
chosen in a favorable way, the masses were all equal and small in magnitude. If a box stack has large

“book” — 2005/9/30 — 15:44 — page 111 — #123✐
✐

✐
✐

✐
✐

✐
✐

5.6 PHYSICS-BASED ANIMATION 111

function x_plot = boxstack(N)
x_equilibrium = 0:1.:N; %--- Equilibrium of N boxes width of 1 m.
x = 1.01*x_goal; %--- Setup initial positions, 1 cm space.
v = zeros(size(x)); %--- initial velocity of boxes
m = ones(size(x)); %--- masses of boxes
m(1) = realmax; %--- First box is fixed
mu = (m(1:end-1).*m(2:end))./(m(1:end-1)+m(2:end)); %--- Reduced masses
timestep = 0.01; %--- Simulation time-step
tau = timestep/6; %--- Damping time
kc = mu/(tau*tau); %--- Spring coefficients
bc = 2*mu/tau; %--- Viscosity coefficients
h = min(mu./bc); %--- Integration time-step (<4 mu/b)
i = 0; %--- Iteration counter
F = zeros(size(x)); %--- Total external force
x_plot = x’; %--- Results
while (i<maxsteps)

dx = x(2:end) - x(1:end-1) - 1;
dv = v(2:end) - v(1:end-1);
S = zeros(size(dx));
if max(dx<0)
S(dx<0) = S(dx<0) - kc(dx<0).*dx(dx<0) - bc(dx<0).*dv(dx<0);

end
F(2:end) = -m(2:end)*9.81; %--- Gravity
F(2:end) = F(2:end) + S(1:end);
F(2:end-1) = F(2:end-1) - S(2:end);
F(1) = 0; %--- First box is fixed
x = x + h*v;
v = v + (h * (F./m));
i = i +1;
if (mod(i,20)==0)
x_plot = [x_plot,x’];

end
end

Figure 5.15: Matlab code for resonance phenomena analysis of box stack.

“book” — 2005/9/30 — 15:44 — page 112 — #124✐
✐

✐
✐

✐
✐

✐
✐

112 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3
Center of mass positions

time (seconds)

le
ng

th
 (m

)

(a)

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

0.025

0.03
Deviation from equilibrium positions

time (seconds)

di
st

an
ce

 (m
)

(b)

Figure 5.16: Simulation result for stack of 3 boxes.

ratios in masses, the same effects as we have shown can appear for even small box stacks of height 2 or
3. Besides the large mass ratios will make the ordinary differential equations describing the box motions
become even stiffer.

5.7 Inverse Dynamics Approach
In this section we will embark upon a quite different approach originally presented in [Barzel et al., 1988].
The approach taken here does not suffer from the secondary oscillation problems described earlier. The
general idea is to set up the desired motion, by using the critical damped spring system, and then solve for
the penalty forces required for this desired motion to occur, this is called inverse dynamics. After having
solved for the penalty forces, the total force acting on each object can be computed and the equations of
motion can be integrated forward in time (forward dynamics). We devote this section to outline the system
of equations that needs to be solved for the inverse dynamics problem.

Consider a total of n rigid bodies and K contacts, and assign a unique number k to each contact. Then
assign a unique index for each object in our scene, and let ik and jk denote the indices of the two incident
bodies in contact k. We use the convention that ik < jk. We also have a contact normal nk and a contact
point pki with respect to body ik (similar for body jk). Both contact normal and points are given in the
world coordinate system, and with the convention that the contact normal points from the body with the
smallest index to the body with the largest index. This is illustrated in Figure 5.20. Note that we can never
have ik = jk. For each contact we can compute a vector from the center of mass, r i, of an incident body
with index i, to the point of contact pki, that is

rki = pki − ri (5.77)

From classical mechanics we have the Newton-Euler equations (see Section 22.1 for details) describing
the motion for all bodies. For the i’th body, the mass of body i is given by mi and the inertia tensor by Ii,

“book” — 2005/9/30 — 15:44 — page 113 — #125✐
✐

✐
✐

✐
✐

✐
✐

5.7 PHYSICS-BASED ANIMATION 113

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5
Center of mass positions

time (seconds)

le
ng

th
 (m

)

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Deviation from equilibrium positions

time (seconds)

di
st

an
ce

 (m
)

(a)

0 0.5 1 1.5
0

2

4

6

8

10
Center of mass positions

time (seconds)

le
ng

th
 (m

)

0 0.5 1 1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Deviation from equilibrium positions

time (seconds)

di
st

an
ce

 (m
)

(b)

Figure 5.17: Simulation results for box stacks of (a) 5 and (b) 10 boxes.

“book” — 2005/9/30 — 15:44 — page 114 — #126✐
✐

✐
✐

✐
✐

✐
✐

114 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

0 1 2 3 4
0

5

10

15

20
Center of mass positions

time (seconds)

le
ng

th
 (m

)

0 1 2 3 4

0

0.05

0.1

0.15

Deviation from equilibrium positions

time (seconds)

di
st

an
ce

 (m
)

(a)

0 2 4 6 8
0

5

10

15

20

25

30

35

40
Center of mass positions

time (seconds)

le
ng

th
 (m

)

0 2 4 6 8

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Deviation from equilibrium positions

time (seconds)

di
st

an
ce

 (m
)

(b)

Figure 5.18: Simulation results for box stacks of (a) 20 and (b) 40 boxes.

“book” — 2005/9/30 — 15:44 — page 115 — #127✐
✐

✐
✐

✐
✐

✐
✐

5.7 PHYSICS-BASED ANIMATION 115

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8
Center of mass positions

time (seconds)

le
ng

th
 (m

)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

Deviation from equilibrium positions

time (seconds)
di

st
an

ce
 (m

)

(b)

Figure 5.19: Simulation results for stack of seven boxes with initial penetration of 1 cm.

p�ki�

n�k�
r�ki�

r�kj�

r�i�
p�kj�

r�j�

wcs�
Figure 5.20: Notation for the k’th contact point.

“book” — 2005/9/30 — 15:44 — page 116 — #128✐
✐

✐
✐

✐
✐

✐
✐

116 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

the position is given by ri and the velocity of the center of mass as vi, the orientation is represented by the
quaternion qi and the angular velocity by ωi. The acceleration of the center of mass is denoted by ai and
the angular acceleration by αi. The Newton-Euler equations for the i’th body look like this (summations
are taken over all contact points):

ṙi = vi (5.78a)

q̇i = 1
2ωiqi (5.78b)

v̇i = m−1
i

∑

jk=i

fk −m−1
i

∑

ik=i

fk + m−1
i f ext

i (5.78c)

ω̇i = I−1
i

∑

jk=i

rkj × fk − I−1
i

∑

ik=i

rki × fk (5.78d)

− I−1
i ωi × Iiωi + I−1

i τ ext
i (5.78e)

The dot notation means the time derivative d
dt , and is used to ease readability. Observe that f k denotes the

contact force at the k’th contact. The effect of all external forces on the center of mass is given by f ext
i

and the total torque from external forces are given by τ ext
i .

We will start with defining two position vectors,

pj =

⎡

⎢⎢⎢⎣

rj1 + r1j

rj2 + r2j
...

rjK + rKj

⎤

⎥⎥⎥⎦
(5.79)

pi =

⎡

⎢⎢⎢⎣

ri1 + r1i

ri2 + r2i
...

riK + rKi

⎤

⎥⎥⎥⎦
. (5.80)

The concatenated separation vector now simply reads

d = pj − pi. (5.81)

In practice, the separation vector is more easily computed by concatenating the contact normals multiplied
by the corresponding penetration depths. Introducing the “contact” matrix C ∈ R6n×3K defined as,

Chk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 for h = 2ik − 1

−r×
ki for h = 2ik

1 for h = 2jk − 1

r×
kj for h = 2jk

0 otherwise

(5.82)

“book” — 2005/9/30 — 15:44 — page 117 — #129✐
✐

✐
✐

✐
✐

✐
✐

5.7 PHYSICS-BASED ANIMATION 117

where a× is the cross product matrix (see Proposition 18.4) and the generalized velocity vector u ∈ R6n

as
u = [v1,ω1,v2,ω2, · · · ,vn,ωn]T . (5.83)

Then the derivative of the separation vector is simply written as

ḋ = CT u. (5.84)

By the product rule we find the second derivative to be

d̈ = Ċ
T
u + CT u̇, (5.85)

where

Ċhk =

⎧
⎪⎨

⎪⎩

−(ωik)
×r×

ki for h = 2ik
(ωjk)

×r×
kj for h = 2jk

0 otherwise
. (5.86)

Now using the generalized mass matrix M ∈ R6n×6n,

M =

⎡

⎢⎢⎢⎢⎢⎣

m11 0
I1

. . .
mn1

0 In

⎤

⎥⎥⎥⎥⎥⎦
, (5.87)

and the external forces, torques, and velocity dependent forces, f ext ∈ R6n,

f ext =
[
f ext

1 , τ ext
1 − ω1 × I1ω1, · · · ,f ext

n , τ ext
n − ωn × Inωn

]T
. (5.88)

The Newton-Euler equation reads,

u̇ = M−1
(
Cfpenalty + f ext

)
. (5.89)

Here fpenalty ∈ R3K is the concatenation of all the contact forces f h, using this in our derivative formula
results in

d̈ = Ċ
T
u + CT M−1

(
Cfpenalty + f ext

)
, (5.90)

which is rewritten into,

d̈ = Ċ
T
u + CT M−1Cf penalty + CT M−1f ext. (5.91)

Requiring all contacts to be critical damped results in the simultaneous vector equation,

d̈ +
2

τ
ḋ +

1

τ2
d = 0. (5.92)

“book” — 2005/9/30 — 15:44 — page 118 — #130✐
✐

✐
✐

✐
✐

✐
✐

118 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

Substitution of our past results yields the matrix equation,
(
Ċ

T
u + CT M−1Cf penalty + CT M−1f ext

)
+

2

τ
CT u +

1

τ2
d = 0. (5.93)

Rearranging a little yields,

CT M−1C︸ ︷︷ ︸
A

f penalty + Ċ
T
u + CT M−1f ext +

2

τ
CT u +

1

τ2
d

︸ ︷︷ ︸
b

= 0 (5.94)

Af penalty − b = 0. (5.95)

This is a linear system, which can be solved for the penalty forces. Observe that A might not be invertible;
multiple contact points will result in linearly dependent rows. Multiple solutions can exist; a method like
singular value decomposition (SVD) can therefore be applied to solve for the penalty forces. Given the
generalized position and orientation vector, s ∈ R7n:

s = [r1, q1, r2, q2, · · · , rn, qn]T , (5.96)

and the matrix S ∈ R7n×6n,

S =

⎡

⎢⎢⎢⎢⎢⎣

1 0
Q1

. . .
1

0 Qn

⎤

⎥⎥⎥⎥⎥⎦
, (5.97)

where qi = [si, xi, yi, zi]
T ∈ R4 and Qi ∈ R4×3:

Qi =
1

2

⎡

⎢⎢⎣

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

⎤

⎥⎥⎦ . (5.98)

The matrix Qi is derived from the relation 1
2ωiqi = Qiωi, as shown in Proposition 18.47. The Newton-

Euler equations, see Section 22.1, can now be written as

ṡ = Su (5.99)

u̇ = M−1
(
Cfpenalty + f ext

)
. (5.100)

Now all that remains is to solve these ordinary differential equations with a suitable numerical integration
method, see Section 23.1.

If we restrict the penalty forces to work only in the normal direction, that is

fh = nhfh, (5.101)

“book” — 2005/9/30 — 15:44 — page 119 — #131✐
✐

✐
✐

✐
✐

✐
✐

5.7 PHYSICS-BASED ANIMATION 119

and by introducing the matrix of contact normals N ∈ R3K×K ,

N =

⎡

⎢⎢⎢⎣

n1 0
n2

. . .
0 nK

⎤

⎥⎥⎥⎦
, (5.102)

this is simply written for all contact points as the matrix equation

fpenalty = N

⎡

⎢⎢⎢⎣

f1

f2
...

fK

⎤

⎥⎥⎥⎦
= Nf . (5.103)

Now (5.81) changes slightly, and instead we will have,

d = NT
(
pj − pi

)
. (5.104)

The vector d is now simply a vector of penetration depths measured along the contact normals. Perform-
ing the double differentiation again, this time remembering that the newly added term N is also time
dependent, yields

ḋ = Ṅ
T (

pj − pi

)
+ NT CT u, (5.105a)

d̈ = N̈
T (

pj − pi

)
+ Ṅ

T
CT u + Ṅ

T
CT u + NT Ċ

T
u + NT CT u̇ (5.105b)

= N̈
T (

pj − pi

)
+ 2Ṅ

T
CT u + NT Ċ

T
u + NT CT u̇. (5.105c)

Using d̈ + 2
τ ḋ + 1

τ2 d = 0 and u̇ = M−1 (CNf + f ext) together with some mathematical manipulation
yields the linear system,

Af + b = 0, (5.106)

where
A = NT CT M−1CN , (5.107)

and

b = NT CT M−1f ext + N̈
T (

pj − pi

)
+ 2Ṅ

T
CT u + NT Ċ

T
u

+
2

τ

(
Ṅ

T (
pj − pi

)
+ NT CT u

)
+

2

τ2

(
NT

(
pj − pi

))
.

(5.108)

The only difficult things to handle in (5.108) are the terms Ṅ and N̈ . However, since their elements are
vectors each describing only a direction, we can compute these matrices by taking the cross product of the

“book” — 2005/9/30 — 15:44 — page 120 — #132✐
✐

✐
✐

✐
✐

✐
✐

120 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

individual elements with the respective angular velocities. That is,

Ṅ =

⎡

⎢⎢⎢⎣

ωi1 × n1 0
ωi1 × n2

. . .
0 ωiK × nK

⎤

⎥⎥⎥⎦
, (5.109)

where ωik denotes the angular velocity of body i at the k’th contact point. By differentiation w.r.t. time
we have

N̈ =

⎡

⎢⎣
αi1 × n1 + ωi1 × (ωi1 × n1) 0

. . .
0 αiK × nK + ωiK × (ωiK × nK)

⎤

⎥⎦ , (5.110)

where αik denotes the angular acceleration of body i at the k’th contact point. Having solved for f , we
can write the equations of motion as

u̇ = M−1 (CNf + f ext) , (5.111)

and the forward dynamics problem can be solved by integration of (5.111).

5.8 Modeling Friction
Previously we have only been concerned with normal forces, that is forces that should prevent penetration
of the rigid bodies, however another important contact force is friction. Coulomb’s friction law as de-
scribed in Section 22.2 is a popular choice. It consists of two kinds of friction static friction and dynamic
friction. The latter occurs in the case when objects are relatively sliding.

Friction is very important for the motion to seem physically plausible for a human observer. The
reason is that friction is an important part of our everyday life. In fact we are so used to friction that we
often don’t even think about it. How should one go about modeling friction in a penalty-based simulator?
It seems reasonable to use a spring-damper system for the friction force as well [Hasegawa et al., 2003,
Pedersen et al., 2004]. This is done by tracking the contact points.

At first point of contact, an anchor point, a, is saved. This is an unmovable point in the world
coordinate system. Subsequently the friction is determined by the spring force stemming from the zero-
length spring with spring coefficient k between the anchor point and the current position p of the contact
point that caused the creation of the anchor point.

F friction = k (a− p) . (5.112)

During the simulation we keep an eye on whether the following condition holds

∥F friction∥ ≤ µ ∥F normal∥ . (5.113)

“book” — 2005/9/30 — 15:44 — page 121 — #133✐
✐

✐
✐

✐
✐

✐
✐

5.9 PHYSICS-BASED ANIMATION 121

first�
point�

 of�
contact�

current point�
of�

 contact�

frictional�
spring�

first�
point�

 of�
contact�

current point�
of�

 contact�

frictional�
spring�

dynamic friction�
moves anchor�

point�

Figure 5.21: Figure illustrating the idea of frictional springs.

Here µ is the coefficient of friction, and F normal is the normal force, where the penalty force often may be
used as the normal force. If the condition is fulfilled we say that we have static friction and we do nothing,
if, on the other hand, the condition is broken we say that we have dynamic friction, and the anchor point
is moved such that the following condition holds,

∥F friction∥ = µ ∥F normal∥ . (5.114)

The general idea is illustrated in Figure 5.21. The frictional spring force model can be physical justified
as a crude model of the external shear stresses acting between two bodies [Lautrup, 2005]. Since it is the
external shear stresses that we experience as friction in our everyday life. As such, the friction model adds
an element of compliance to the rigid bodies.

Another approach to model friction is simply to use (5.114) as used in [McKenna et al., 1990], i.e.,

F friction = −µ
∥∥F penalty

∥∥ ut

∥ut∥
, (5.115)

where ut is the tangential relative sliding velocity. This approach only models dynamic friction, thus
static friction is ignored.

“book” — 2005/9/30 — 15:44 — page 122 — #134✐
✐

✐
✐

✐
✐

✐
✐

122 CHAPTER 5. PENALTY-BASED MULTIBODY ANIMATION

5.9 Survey on Past Work
Moore and Wilhelms [Moore et al., 1988] were among the first to model contact forces by springs in
computer animation. They used a simple linear spring, but added a twist of letting the spring constant
depend on whether the motion is receding or approaching. The relationship is as follows

krecede = εkapproach, (5.116)

where ε describes the elasticity of the collision, ε = 0 corresponds to totally inelastic collisions, and ε = 1
to perfectly elastic collisions.

Furthermore, Moore and Wilhelms extended the penalty method with an algebraic collision resolving
method, similar to Newton’s collision law, as described in Section 6.1.4.1. The main idea is to handle
colliding contacts before applying springs. This is because colliding contacts requires very stiff springs,
which are numerically intractable.

Terzopoulos, et al. [Terzopoulos et al., 1987] used another kind of penalty force. The main idea
behind their derivation comes from conservative forces, which are known to be the negative gradient of a
energy potential, i.e., the negative gradient of a scalar function, see Section 22.3. A scalar energy function
is then designed, which penalizes penetration:

E = c exp

(
ddepth

ε

)
, (5.117)

where c and ε are constants used to determine the specific shape of the energy potential. The penalty force
is then

F = −
(
∇E

ε
exp

(
−ddepth

ε

)
· n
)

n, (5.118)

where n is the unit contact normal. Such penalty forces are called exponential springs. Exponential
springs are stiffer for large displacement than linear springs. However, for small displacements exponen-
tial springs are less stiff than linear springs [McKenna et al., 1990].

Barzel and Barr [Barzel et al., 1988] used a constraint force equation,

D̈ +
2

τ
Ḋ +

1

τ2
D = 0, (5.119)

where D is a function measuring the constraint deviation, i.e., the penetration depth, τ is a specified time
constant, used for controlling the rate of constraint satisfaction. Comparing with our damped harmonic
oscillator, we see that

γ =
2

τ
=

b

m
(5.120a)

ω2
0 =

1

τ2
=

k

m
. (5.120b)

The criteria for critical damping is,
b2 − 4mk = 0. (5.121)

“book” — 2005/9/30 — 15:44 — page 123 — #135✐
✐

✐
✐

✐
✐

✐
✐

5.9 PHYSICS-BASED ANIMATION 123

Dividing by m2 gives,

b2

m2
− 4

k

m
= 0 (5.122a)

γ2 − 4ω2
0 = 0. (5.122b)

Substituting the γ = 2
τ , and ω2

0 = 1
τ2 we see that the model used by Barzel and Barr is critical damped.

Furthermore the paper [Barzel et al., 1988] formulates an inverse dynamics problem which handles simul-
taneous constraints.

In [McKenna et al., 1990], a twist on penalty forces is introduced to model collisions, inspired by
Newton’s impact law, described in Section 6.1.4.1, which relates pre- and postvelocities through a coeffi-
cient of restitution, ε, where a value of zero corresponds to completely inelastic collisions and a value of
1 corresponds to fully elastic collisions. For interpenetrating contacts, moving away from each other, the
penalty force is multiplied by ε.

if ddepth < 0 and u · n > 0 then
F penalty = εF penalty

end if

In Hirota et al. [Hirota et al., 2001, Hirota, 2002] a penalty force is integrated over the intersecting
polygon and combined with an implicit finite element method.

In Jansson and Vergeest [Jansson et al., 2002a], a mass-spring model is used for modeling both rigid
and deformable objects, here simple springs are created when particles move within a nominal distance,
and springs are deleted again when their incident particles move further away than a given fracture dis-
tance. The spring force is simply modeled as

F = −k(∥xi − xj∥ − l)
xi − xj

∥xi − xj∥
, (5.123)

where k, is the spring constant, xi and xj are the particle positions, and l is the nominal distance. Details
for determining nominal and fracture distances can be found in [Jansson et al., 2002b].

“book” — 2005/9/30 — 15:44 — page 124 — #136✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 125 — #137✐
✐

✐
✐

✐
✐

✐
✐

6

Impulse-Based Multibody Animation

Impulse-based simulators [Hahn, 1988, Mirtich, 1996, Guendelman et al., 2003] simulates all physical
interactions between the objects in the configuration by collision impulses. Static contacts such as one
object resting on another are modeled as a series of collision impulses occurring at a very high frequency.
Except for static contacts, impulse-based simulators are computationally effective for systems having
many objects moving at high speeds.

Constraint-based simulators, as described in Chapter 7, solve for the time-integral impulse in order
to determine the final velocities of objects. This is not to be confused with the impulse-based paradigm
described in this chapter, which uses collision impulses to model physics. To make the distinction clear,
we refer to these constraint-based simulators as velocity-based simulators, and simulators using collision
impulses as impulse-based simulators.

In an impulse-based simulator a one-sided-approach to advance the simulation time is typically used
together with a sequential collision resolving method based on some incremental collision law. In this
chapter, we will introduce the reader to these concepts and their theories.

It is worth noting that impulses often need only to be applied at the closest points between two objects.
The contact determination or spatial-temporal coherence analysis [Erleben, 2005], therefore may often be
completely omitted from the collision detection pipeline. This greatly simplifies the implementation of an
impulse-based simulator compared to a constraint-based simulator, as described in Chapter 7.

We will start by studying the physics and mathematics behind a single point of collision, followed by
an explanation of how general-purpose simulators can be built using only single-point collisions to model
all physical interactions.

6.1 Single-Point Collision
A single-point collision means that if we have two objects, A and B, then they touch each other at exactly
one point. We call this point p. We will assume that we have some method for computing a unique normal
vector, n, at the point p. This is explained in detail in Chapter 14. We call this vector the contact normal.
For objects with continuous smooth surfaces, the contact normal is parallel to the surface normals of the
two objects at the point p. Note that under this condition, the two surface normals of the two objects are
parallel but pointing in opposite directions. In the following, we will use the convention that the normal
n always points from B toward A. The contact normal n and the contact point p define a contact plane
consisting of all points that fulfill the equation

∀x ∈ R3 where n · x− n · p = 0. (6.1)

Alternatively, we can represent this contact plane by two orthogonal unit vectors t1 and t2, both lying in
the contact plane and both orthogonal to the contact normal. We will use the convention that these vectors

125

“book” — 2005/9/30 — 15:44 — page 126 — #138✐
✐

✐
✐

✐
✐

✐
✐

126 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

B�

A�

r�A�

r�B�

n�

t�

r�A�
cm�

r�B�
cm�

WCS�

Figure 6.1: An example of a single-point collision with the origin of the World Coordinate System (WCS)
indicated.

form a right-hand coordinate system with the contact normal. That is

n = t1 × t2. (6.2)

For 2D, we will simply drop the subscript on the tangent vectors and use t. Knowing the position and
orientation of object A and B, we can compute the contact points w.r.t. for either one of these objects, that
is,

p A = r A + r A
cm, (6.3a)

p B = r B + r B
cm, (6.3b)

p A = p B . (6.3c)

The superscript refers to the object, rcm is the position of the center of mass, and r is a vector from the
center of mass to the contact position. The notation is illustrated in Figure 6.1. We’ll look at the contact
point on body X, this is given by

p X = r X + r X
cm , (6.4)

using the body frame BFX , as described in Section 22.1.4, we can rewrite r X as

r X = RX
[
r X
]

BFX
, (6.5)

“book” — 2005/9/30 — 15:44 — page 127 — #139✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 127

where RX is the orientation of the body frame of object X represented as a rotation matrix. Now using
(6.5) in (6.4) we have

p X = RX
[
r X
]

BFX
+ r X

cm . (6.6)

If we differentiate (6.6) with respect to time, we get the contact velocity of the contact point on body X,
that is,

ṗ X = Ṙ
X [

r X
]

BFX
+ ṙ X

cm . (6.7)

The columns of RX are unit vectors along the axes of BFX . These are body-fixed vectors. So using what
we know from (22.27) we can write the time derivative of a body-fixed vector as the cross product of the
angular velocity and the body-fixed vector, that is (6.6) is rewritten as

ṗ X = Ṙ
X [

r X
]

BFX
+ v X

cm , (6.8a)

ṗ X =
[
ω X ×RX

x ω X ×RX
y ω X ×RX

z

] [
r X
]

BFX
+ v X

cm , (6.8b)

ṗ X = ω X ×
(
RX

[
r X
]

BFX

)
+ v X

cm , (6.8c)

where we have introduced the notation ṙ X
cm = v X

cm for the linear velocity of the center of mass. Now we
do a mathematical trick of adding zero to (6.8c) and obtain

ṗ X = ω X ×

⎛

⎜⎜⎝RX
[
r X
]

BFX
+ r X

cm︸ ︷︷ ︸
p X

−r X
cm

⎞

⎟⎟⎠+ v X
cm . (6.9)

We recognize the (6.6) and reduce (6.9) to

ṗ X = ω X ×
(
p X − r X

cm
)

+ vcm, (6.10)

using (6.4) we have
r X = p X − r X

cm , (6.11)

substituting into (6.10), we have
ṗ X = ω X × r X + v X

cm . (6.12)

We can now write a formula for the relative contact velocity, u, between the two objects A and B.

u = ṗ A − ṗ B. (6.13)

The relative contact velocity tells us something about how the two objects are moving relative to each
other. For instance, if we look at the relative contact velocity in the normal direction,

un = nT
(
ṗ A − ṗ B

)
, (6.14)

“book” — 2005/9/30 — 15:44 — page 128 — #140✐
✐

✐
✐

✐
✐

✐
✐

128 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

then we know that

relative contact =

⎧
⎪⎨

⎪⎩

Separating if un > 0

Resting if un = 0

Colliding if un < 0

. (6.15)

A separating contact means that in the future, no matter how small a time-step we look forward, the
objects will no longer be touching at the contact point p. Resting contact means that the contact point
p will persist in the future regardless of how small a time-step we take. Colliding contact means that if
we do not take any counter action, such as applying a collision impulse at the contact point, then the two
objects will penetrate in the future no matter how small a time-step we look ahead.

We are interested in the colliding case, thus we have derived an equation telling us when we need to
apply a collision impulse to a single point of contact in order to avoid penetration.

Theorem 6.1 (The Collision Test)
Two bodies A and B are colliding, if, and only if,

un = nT
((
ω A × r A + v A

cm
)
−
(
ω B × r B + v B

cm
))

< 0. (6.16)

In the real world, a collision will not happen at a single point of contact, but it will occur over a small area.
Actually, what happens is that when real objects come into contact, they deform slightly to accommodate
each other’s shape. During this deformation the kinetic energy of the objects is transformed into internal
elastic energy in the objects and some of the energy is dissipated as heat. When the kinetic energy reaches
a minimum, the objects will have come to a stop relative to each other. We say that we have reached the
point of maximum compression between the two objects. Now the buildup elastic energy is converted to
kinetic energy. While doing so, the objects will begin to move away from each other and the deformation
will reverse. This real-world model of a collision is depicted in Figure 6.2. The above description is still
a very simplified view about what is going on in the real world. We have neglected many small details,
such as plasticity of the deformation, fracture, and chemical and thermo-dynamical effects going on in the
materials. However, for our purpose of computer animation, it suffices to understand the real world just a
little better.

In particular, we should note two things: first, the collision occurs over a small time duration; it starts
at time ti and ends at time tf . Somewhere in between we have the time of maximum compression tmc. In
particular, we know that for these times, we have

t =

⎧
⎪⎨

⎪⎩

ti ⇒ un = nT
(
ṗ A − ṗ B

)
< 0

tmc ⇒ un = nT
(
ṗ A − ṗ B

)
= 0

tf ⇒ un = nT
(
ṗ A − ṗ B

)
> 0

. (6.17)

Second, two phases take place, a compression phase where energy is built up in objects, then a restitu-
tion phase where internal energy is released back as kinetic energy. As we will see later, most physical
laws describe this process by a coefficient of restitution, which indicates the amount of energy that is
transformed into kinetic energy during the restitution phase.

From our everyday experience, we do not usually notice the deformation process taking place in
what we understand as a rigid body collision. This is because the time-duration of the collision becomes

“book” — 2005/9/30 — 15:44 — page 129 — #141✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 129

A�

B�

A�

B�

A�

B�

Compression� Restitution�
t�i� t�mc� t�f�

p�A�
p�B�

p�B�

p�B�

p�A�

p�A�

Figure 6.2: A real-world collision consisting of two phases: a compression and a restitution phase.

smaller and smaller the more rigid an object is. In the limiting case of an infinitely rigid object, we have
a mathematical model of a rigid body. This model is often referred to as the rigid body assumptions. To
make it perfectly clear, when those of us in physics, simulation or animation use the term rigid body, we
assume the rigid body. There do not exist any such objects in the real world that actually behave according
to these assumptions; however, the approximated behavior of many objects can be explained by them.

Definition 6.1 (The Rigid Body Assumptions)
During a collision, the following four assumptions apply to rigid bodies:

• The duration of the collision is zero, that is tf − ti → 0.

• Only impulsive forces must be used to avoid penetration.

• Positions and orientations are the same before and after the collision.

• Non impulsive forces have no effect during the collision.

Definition 6.1 has many consequences. In practice it implies that there are no wave “effects” in the
collision, such as the deformation. We can ignore gravity and velocity-dependent forces such as Coriolis
forces etc.

Impulse is defined as the time integral of force. Given the net force, F , acting under a collision, the
collision impulse is therefore

J =

∫ tf

ti

F dt. (6.18)

“book” — 2005/9/30 — 15:44 — page 130 — #142✐
✐

✐
✐

✐
✐

✐
✐

130 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Note that the collision impulse has units of force×time. From Newton’s second law we have

F =
dP

dt
, (6.19a)

∫ tf

ti

F dt =

∫ tf

ti

dP , (6.19b)

J = P (tf)− P (ti), (6.19c)
J = ∆P . (6.19d)

In the above, we have only considered linear motion, but it is clear that the collision impulse corresponds
to a change in the momentum of a rigid body. Since P = mvcm, we see that the impulse is equivalent to a
change in the velocity of the rigid body, when the mass of the rigid body is considered to be constant. The
exact relationship between impulse and change in rigid body velocities is derived in Theorem 6.2. From
Newton’s third law it follows

JA = −JB . (6.20)

Mathematically it is difficult to work with (6.18), when tf−ti → 0. In order to circumvent this problem, a
reparameterization is used when deriving equations. Any legal parameter γ must by monotonically strictly
increasing, that is,

dγ

dt
> 0. (6.21)

This requirement comes from the equivalent real-world model, where time always runs forward, never
pauses, or stops. If we have a γ parameter with the same property, then there is a one-to-one correspon-
dence between the γ-parameter and the time-parameter. Therefore, it does not matter with which one we
choose to parameterize our motion. Looking at a real-world collision, we know that the impulse in the
normal direction has

dJn

dt
> 0. (6.22)

This means for any legal parameter γ the following condition must also hold

dγ

dJn
> 0. (6.23)

This follows from the same argumentation that we used to explain the requirement in (6.21).
In order to compute an impulse, we need a method called a Collision Law. There are basically four

different kinds of Collision Laws:

• Algebraic Collision Laws

• Incremental Collision Laws

• Full Deformation Collision Laws

• Compliant Contact Model Collision Laws

“book” — 2005/9/30 — 15:44 — page 131 — #143✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 131

A�

B�

Figure 6.3: A Simple Compliant Contact Model.

Algebraic laws are characterized by the fact that they consist of an algebraic equation. Given the initial
conditions of a collision, we immediately know the collision impulse by evaluating an algebraic equation.
Therefore, algebraic laws are computational inexpensive and for the same reason, they are attractive in
computer games and computer animation. They do, however, lack some realism, which is captured by the
three alternative collision laws.

Incremental laws, are characterized by having some microscopic contact model, described as an ordi-
nary differential equation. The resulting impulse is then computed by integration over the compression
and restitution phases. Incremental laws are computationally more expensive than algebraic laws, but they
produce more realistic results. For an example of an incremental law we refer the reader to [Mirtich, 1996].

Full-deformation laws are properly the computationally most expensive of all the four kinds of col-
lision laws. Full-deformation laws are based on continuum mechanics equations for the complete body,
such as linear elasto-dynamic equations. Here a partial differential equation is solved using appropriate
material properties. Full-deformation laws are not really usable in computer animation for two reasons:
first they are too computationally expensive and second, it is impossible to determine the initial conditions
for the multitude of material properties that need to be specified. Thus, algebraic laws are prevalent and in-
cremental laws are used to some extent. See [Chatterjee et al., 1998] for references about full-deformation
laws.

Finally, there are compliant contact model laws, which we mention for completeness only. These
collision laws can be thought of as a kind of spring-damper system, which describes the deformation
process that takes place during a real-world collision, similar to the penalty-based methods described in
Chapter 5. One has to determine stiffness and damping terms for this kind of collision law. Figure 6.3
illustrates a compliant contact model. We refer the interested reader to [Kraus et al., 1997] for more
details. The theme of this book is animation, therefore we will limit ourselves to treat only algebraic
collision laws. The general recipe for a collision law consists of combining a contact model with one or

“book” — 2005/9/30 — 15:44 — page 132 — #144✐
✐

✐
✐

✐
✐

✐
✐

132 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

more physical laws.

Definition 6.2 (Collision Law)
A collision law is

Collision Law⇐ Physical Law + Contact Model (6.24)

Physical laws are often used in one of two ways: either as stop criteria in an incremental law or to eliminate
unknown variables in an algebraic law. Usually there are also some assumptions, such as the impulse is
only pointing in the contact normal direction or something similar.

In computer animation we are interested in: how fast can we compute an impulse? How difficult is
it to set up the collision law? How realistic are the effects a collision law can give? In the following, we
will derive theory and tools that can help the reader evaluate these three questions, and finally we will end
with some examples on typical used algebraic collision laws.

6.1.1 Impact and Friction Laws
Four physical laws are often encountered in collision laws: Newton’s impact law, Poisson’s hypothesis,
Stronge’s hypothesis, and Coulomb’s friction law.

Newton’s impact law defines a simple linear relation between the initial relative contact normal veloc-
ity, un(γi), and the final relative contact normal velocity, un(γf),

un(γf) = −eun(γi), (6.25)

where e is the normal restitution coefficient with values limited to the interval

0 ≤ e ≤ 1. (6.26)

The restitution coefficient can be thought of as a measure of bounce. A value of one corresponds to a
complete elastic collision. That is, if a ball is released over a table, the ball will bounce back from the
table and jump back to the same height it was released from, before falling back down toward the table.
This bouncing up and down will continue forever. If the value is set to zero, then the ball will hit the table
in a perfect inelastic collision, that is, the ball will hit the table bluntly and just stop moving upon impact.
This is perhaps best described as a dead ball.

In practice, neither setting the coefficient of restitution to zero nor one yields very realistic behavior.
However, some algorithms use these extreme cases to model certain aspects. Also these two extreme cases
are very useful when testing a simulator.

Newton’s impact law is considered the most simple physical law that describes the effect of a rigid
body collision. It is commonly used in computer games, but when combined with friction it suffers
from serious problems, such as a breakdown of energy conservation, That is, adding frictional impulses
according to Coulomb’s friction law could result in energy gain.

Poisson’s hypothesis describes a linear relationship between the normal compression impulse Jn(γmc)
and the normal restitution impulse Jn(γf)− Jn(γmc)

Jn(γf)− Jn(γmc) = eJn(γmc), (6.27)

“book” — 2005/9/30 — 15:44 — page 133 — #145✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 133

where e is the normal restitution coefficient with values limited to the interval

0 ≤ e ≤ 1. (6.28)

By the normal impulse, we mean the size of the projection of the impulse onto the contact normal. That
is, Jn(γ) = n · J(γ). Poisson’s hypothesis is a little more advanced than Newton’s impact law, however
it suffers from the same problem. Energy conservation breaks down when friction is added.

Stronge’s hypothesis describes a quadratic relationship between the work done by the normal impulse
during the compression phase Wn(γmc) and the work done by normal impulse during the restitution phase
Wn(γf)−Wn(γmc)

Wn(γf)−Wn(γmc) = −e2Wn(γmc), (6.29)

where e is the normal restitution coefficient with values limited to the interval

0 ≤ e ≤ 1. (6.30)

The work done by the collision force F over the duration of a real-world collision is by definition work
(see Section 22.3):

W =

∫ tf

ti

F (t) · ẋ(t)dt. (6.31)

Reparameterization gives us a workable model applicable under the rigid body assumptions

W =

∫ γf

γi

F (γ) · ẋ(γ)

(
dt

dγ

)
dt. (6.32)

According to Newton’s second law F (γ) = d
dtJ(γ), and without loss of generality, we assume γi = 0.

Furthermore, ẋ(γ) is the velocity of the contact point, thus with respect to body A we have ẋ(γ) = uA(γ).
Therefore the work done on object A is

WA =

∫ γf

0
uA(γ) · d

dγ
J(γ)dγ. (6.33)

Similarly, the work done on object B is

WB = −
∫ γf

0
uB(γ) · d

dγ
J(γ)dγ. (6.34)

Since u = uA − uB, we end up with the total work

W =

∫ γf

0
u(γ) · d

dγ
J(γ)dγ. (6.35)

Taking the dot product n · J(γ) gives the amount of work done in the normal direction. When we have
derived the Impulse-Momentum Law in Section 6.1.2 the work (6.35) can be written in terms of the relative
contact velocity only.

“book” — 2005/9/30 — 15:44 — page 134 — #146✐
✐

✐
✐

✐
✐

✐
✐

134 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

To our knowledge, Stronge’s hypothesis is considered the most accurate physical law describing a
rigid body collision today. The major benefit of Stronge’s hypothesis is that energy conservation holds
when friction is added. This means in terms of physics, it is superior to both Newton’s impact law and
Poisson’s hypothesis.

Coulomb’s friction law describes a relationship between the frictional force and the magnitude of the
normal force. A more detailed description of Coulomb’s friction law can be found in Chapter 22.2. If we
know the force of the normal direction, F n, and the relative velocity in the contact plane ut is nonzero,
then we have dynamic friction, also called sliding friction. In this case the friction force F t is given by

F t = −µ
ut

∥ut∥
∥F n∥ , (6.36)

where µ is the coefficient of friction. If the relative velocity in the contact plane is zero then we have static
friction; also called dry friction. We distinguish between two cases of static friction: stable and unstable.
If the time derivative of the contact velocity in the contact plane is zero, that is

u̇t = 0, (6.37)

then we have stable static friction and the magnitude of the friction force is given as

∥F t∥ ≤ µ ∥F n∥ . (6.38)

However, unlike dynamic friction, we cannot say anything about the direction. If, on the other hand,
u̇t ̸= 0, then we have unstable static friction and the friction force is given by

∥F t∥ = µ ∥F n∥ and F t · u̇t ≤ 0. (6.39)

Thus, in this case, we know that the friction force obtains its maximum magnitude and that it opposes the
relative acceleration in the contact plane. However, the friction force is still not uniquely determined. The
name “unstable” means that a transition can occur either to dynamic or stable static friction.

It should be mentioned that the coefficient of friction often has different values under static and dy-
namic friction. In computer animation, this is often overlooked and the same value is used for both the
static and the dynamic case.

6.1.2 Contact Model

From Newton’s second law we have

F A(γ) = mAa A
cm(γ), (6.40)

and from Euler’s equation we have

τ A(γ) = r A × F A(γ) = IAα
A(γ) + ω A(γ)× IAω

A(γ). (6.41)

“book” — 2005/9/30 — 15:44 — page 135 — #147✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 135

The term ω A(γ) × IAω A(γ) can be ignored during collision, since it is only dependent on velocity
terms. So we have the more simple equations

F A(γ) = mAa A
cm(γ), (6.42a)

r A × F A(γ) = IAα
A(γ). (6.42b)

Integrating from γi to γ ≤ γf , we have
∫ γ

γi

F A(γ)dγ =

∫ γ

γi

mAa A
cm(γ)dγ, (6.43a)

∫ γ

γi

r A × F A(γ)dγ =

∫ γ

γi

IAα
A(γ)dγ. (6.43b)

Using the definition of impulse (6.18) on the left-hand side and noticing that mass terms on the right-hand
side are constant, we have

J A(γ) = mA
(
v A

cm(γ)− v A
cm(γi)

)
︸ ︷︷ ︸

∆v A
cm (γ)

, (6.44a)

r A × J A(γ) = IA
(
ω A(γ)− ω A(γi)

)
︸ ︷︷ ︸

∆ω A(γ)

. (6.44b)

By the rigid body assumptions, we can disregard any integration constants. These will be finite and thus
insignificant during a infinitesimal time duration. Now we have a simple relation between the collision
impulse and the changes in linear and angular velocities

J A(γ) = mA∆v A
cm(γ), (6.45a)

r A × J A(γ) = IA∆ω A(γ). (6.45b)

Rewriting, we end up with a couple of equations telling us how to compute the effect of an impulse on a
rigid body.

Theorem 6.2 (Applying Impulse to a Rigid Body)
Applying impulse J to a rigid body changes the linear velocity v and the angular velocity ω, with the
amounts:

∆v =
J

m
, (6.46a)

∆ω = I−1 (r × J) . (6.46b)

We have omitted the γ-parameter and A-object label in Theorem 6.2 to make it more readable.
Previously from (6.12), we know how to compute the contact-point velocity on object A

ṗ A(γ) = ω A(γ)× r A + v A
cm(γ). (6.47)

“book” — 2005/9/30 — 15:44 — page 136 — #148✐
✐

✐
✐

✐
✐

✐
✐

136 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Therefore, the change in contact-point velocity must be

∆ṗ A(γ) = ∆ω A(γ)× r A + ∆v A
cm(γ), (6.48)

substituting (6.46) for ∆ω A and ∆v A
cm, we have

∆ṗ A(γ) =
(
I−1

A

(
r A × J A(γ)

))
× r A +

J A(γ)

mA
, (6.49)

using the cross product matrix (18.65) and letting 1 be the identify matrix, we have

∆ṗ A(γ) =

(
1

mA
1−

(
rA
)×

I−1
A

(
rA
)×
)

J A(γ). (6.50)

If we do the same thing for object B, then we have

∆ṗ B(γ) =

(
1

mB
1−

(
rB
)×

I−1
B

(
rB
)×
)

J B(γ). (6.51)

Recall that JB = −JA so

∆ṗ B(γ) = −
(

1

mB
1 +

(
rB
)×

I−1
B

(
rB
)×
)

J A(γ). (6.52)

Using (6.13), we can write the change in relative contact velocity as

∆u(γ) = ∆ṗ A(γ)−∆ṗ B(γ), (6.53)

substitution of (6.50) and (6.52) into (6.53), we have

∆u(γ) =

((
1

mA
+

1

mB

)
1−

((
rA
)×

I−1
A

(
rA
)×

+
(
rB
)×

I−1
B

(
rB
)×)

)

︸ ︷︷ ︸
K

J A(γ). (6.54)

We have derived the algebraic form of the impulse-momentum relation.

Theorem 6.3 (The Impulse-Momentum Relation)
The change in relative contact velocity between two rigid bodies is given by

∆u(γ) = KJ(γ), (6.55)

where K is the collision matrix and is given by

K =

(
1

mA
+

1

mB

)
1−

((
rA
)×

I−1
A

(
rA
)×

+
(
rB
)×

I−1
B

(
rB
)×)

. (6.56)

“book” — 2005/9/30 — 15:44 — page 137 — #149✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 137

In this form the impulse-momentum relation is often used as the contact model for algebraic collision
laws.

Theorem 6.4 (Properties of the Collision Matrix)
The collision matrix K is

• constant

• symmetric

• positive definite

• invertible

Properties of the Collision Matrix:
Looking at (6.56) we see that the collision matrix is constant because all terms in this equation are constant
before, during, and after a collision according to the rigid body assumptions in Definition 6.1.

Looking closely at (6.56) we see that it consists of the summation of three kinds of matrices, that is,
we can write the collision matrix as

K = M + AA + AB , (6.57)

where

M =

(
1

mA
+

1

mB

)
1, (6.58a)

AA = −
(
rA
)×

I−1
A

(
rA
)×

, (6.58b)

AB = −
(
rB
)×

I−1
B

(
rB
)×

. (6.58c)

Looking closely at the types (6.58b) and (6.58c), we see that the transpose of AX is

AT
X = −

((
rX
)×

I−1
X

(
rX
)×)T

, (6.59a)

= −
((

rX
)×)T (

I−1
X

)T ((
rX
)×)T

, (6.59b)

= −
(
rX
)×

I−1
X

(
rX
)×

, (6.59c)
= AX . (6.59d)

The last step in the derivation follows from the fact that the inertia tensor is a symmetric matrix and the
cross product matrix is skew symmetric. In conclusion, the AX-matrices are symmetric. The K-matrix
consists of the sum of three symmetric matrices and is therefore itself symmetric.

“book” — 2005/9/30 — 15:44 — page 138 — #150✐
✐

✐
✐

✐
✐

✐
✐

138 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Now we will show that AX-matrices are positive semidefinite. Given any v ̸= 0, we have

vT AXv = vT
(
−
(
rX
)×

I−1
X

(
rX
)×)

v, (6.60a)

= −vT
(
rX
)×

I−1
X

(
rX
)×

v, (6.60b)

=

⎛

⎝(rX
)×

v
︸ ︷︷ ︸

w

⎞

⎠
T

I−1
X

⎛

⎝(rX
)×

v
︸ ︷︷ ︸

w

⎞

⎠ , (6.60c)

= wT I−1
X w ≥ 0. (6.60d)

The inertia tensor is known to be positive definite, that means for any vector w ̸= 0, we have wT I−1
X w >

0, if w = 0, then obviously wT I−1
X w = 0. Thus, we realize that

vT AXv = wT I−1
X w ≥ 0, (6.61)

which is the definition of a positive semidefinite matrix. In conclusion, the AX-matrix is positive semidef-
inite.

This means that K-matrix is the sum of a positive definite matrix M -matrix and two positive semidef-
inite matrices AA and AB , from which we conclude that the K-matrix is positive definite. And since K
is positive definite it is also invertible. !
From (6.55), we have

∆u(γ) = KJ(γ), (6.62a)
u(γ)− u(γi) = KJ(γ). (6.62b)

If we differentiate with respect to γ, then we get
d

dγ
u(γ)− d

dγ
u(γi) = K

d

dγ
J(γ), (6.63a)

d

dγ
u(γ) = K

d

dγ
J(γ), (6.63b)

because u(γi) and K are constants. Since K is invertible, we have
d

dγ
J(γ) = K−1 d

dγ
u(γ). (6.64)

These are the differential forms of the impulse-momentum relation.
Theorem 6.5 (Differential Form of Impulse-Momentum Relation)
Given two objects, the impulse-momentum relation can be written in differential form as either of the
equations

d

dγ
u(γ) = K

d

dγ
J(γ), (6.65)

d

dγ
J(γ) = K−1 d

dγ
u(γ). (6.66)

“book” — 2005/9/30 — 15:44 — page 139 — #151✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 139

This form is often used as the contact model in incremental laws. Note that substitution of (6.66) into
(6.35) yields

W =

∫ γf

0
u(γ) · K−1 d

dγ
u(γ)dγ, (6.67)

thus it becomes an integral only in the variable u(γ).

6.1.3 The Permissible Region in Impulse Space
Now we will start to describe the region in impulse space, where collision impulses yield physically
plausible results. For this we will need two reference impulses and a definition of kinetic contact energy.
Before doing so, we will introduce the shorthand notation ui = u(γi) and uf = u(γf).

Theorem 6.6 (Plastic Sliding Impulse)
A perfect plastic sliding impulse is given by

J I = −
(

nT ui

nT Kn

)
n. (6.68)

The relative normal contact velocity is zero and tangential contact velocity is unchanged when this impulse
is applied.
Plastic Sliding Impulse:
Substitution of (6.68) into (6.55) yields

uf = KJI + ui, (6.69a)

= K

(
−nT ui

nT Kn

)
n + ui. (6.69b)

We’ll take the dot product with n, that is

uf · n =

(
K

(
−nT ui

nT Kn

)
n

)
· n + ui · n, (6.70a)

= −nT ui
(Kn)T n

nT Kn
+ ui · n, (6.70b)

= −nT ui
nT Kn

nT Kn
+ ui · n = 0. (6.70c)

In the last step we used that K-matrix is symmetric. From the above, we see that the J I impulse results
in a final zero relative contact normal velocity as wanted. Now we’ll take the dot product with a contact
plane tangent vector, t

uf · t =

(
K
−nT ui

nT Kn

)
n · t︸︷︷︸

0

+ui · t, (6.71a)

= ui · t. (6.71b)

We see that the relative contact velocity in the contact plane is unchanged by the impulse J I . !

“book” — 2005/9/30 — 15:44 — page 140 — #152✐
✐

✐
✐

✐
✐

✐
✐

140 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Before�

After�

J�I�

Figure 6.4: Perfect plastic sliding impulse makes normal relative contact velocity, but leaves tangential
relative contact velocity unchanged.

A perfectly plastic sliding impulse is illustrated in Figure 6.4.

Theorem 6.7 (Plastic Sticking Impulse)
A perfect plastic sticking impulse is given by

J II = −K−1ui. (6.72)

The relative normal contact velocity is zero and so is the tangential contact velocity after applying this
impulse.

Plastic Sticking Impulse:
Substitution of (6.72) into (6.55) yields

uf = KJ II + ui, (6.73a)

= K
(
−K−1ui

)
+ ui, (6.73b)

= −KK−1ui + ui, (6.73c)
= −ui + ui = 0. (6.73d)

That is, the final relative contact velocity is zero, which is what we wanted to show. !

A perfectly plastic sticking impulse is illustrated in Figure 6.5. We can define a quantity called the kinetic
contact energy as follows.

“book” — 2005/9/30 — 15:44 — page 141 — #153✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 141

Before�

After�

J�
I I�

Figure 6.5: Perfect plastic sticking impulse makes relative contact velocity zero.

Definition 6.3 (The Kinetic Contact Energy)
Given the relative contact velocity u and the collision matrix K, the kinetic contact energy Ec, is defined
as

Ec ≡
1

2
uT

f K−1uf . (6.74)

The kinetic contact energy looks nothing like the kinetic energy, as described in Section 22.3, which is

Ekin =
1

2
mAv A

cm · v A
cm +

1

2

(
ω A

)T
IAω

A +
1

2
mBv B

cm · v B
cm +

1

2

(
ω B

)T
IBω

B . (6.75)

In fact, it is quite trivial that Ec ̸= Ekin, however, we are interested in measuring changes in energy, not
absolute values. It turns out that a change in the kinetic contact energy is equal to a change in the kinetic
energy. Thus, the two types of energy are equivalent except for a constant offset.

Theorem 6.8 (Change in Ekin is equal to change in Ec)
If the change in relative contact velocity is ∆u, then the change in kinetic contact energy

∆Ec =
1

2
∆uT K−1∆u, (6.76)

and the change in kinetic energy ∆Ekin are equal, that is,

∆Ekin = ∆Ec, (6.77)

as mentioned in [Chatterjee et al., 1998].

“book” — 2005/9/30 — 15:44 — page 142 — #154✐
✐

✐
✐

✐
✐

✐
✐

142 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

From the impulse-momentum relation (6.55), we have

J = K−1 (u− ui) , (6.78a)

J = K−1u−K−1ui, (6.78b)

J = K−1u + J II, (6.78c)

J − J II = K−1u, (6.78d)
u = K (J − J II) . (6.78e)

Inserting (6.78e) into (6.76) yields

Ec =
1

2
(K (J − JII))

T K−1 (K (J − J II)) , (6.79a)

Ec =
1

2
(J − JII)

T K (J − J II) . (6.79b)

Now we have an expression for the kinetic contact energy, Ec, in impulse space.

Theorem 6.9 (The Kinetic Contact Energy in Impulse Space)
Given the collision impulse J between two objects, the kinetic contact energy is given by

Ec =
1

2
(J − J II)

T K (J − J II) . (6.80)

The impulse J II works as a reference point for kinetic contact energy.

Image J = 0, then inserting into (6.80) gives

Ec =
1

2
JT

IIKJ II, (6.81a)

=
1

2

(
K1ui

)T
KK1ui, (6.81b)

=
1

2
uT

i K1ui = Ei. (6.81c)

We have discovered the initial kinetic contact energy Ei, that is, the available amount of energy. It would
be very unphysical if Ec ever were larger than Ei, since it would indicate an energy gain coming from
nowhere.
Theorem 6.10 (The initial Kinetic Contact Energy)
The initial kinetic contact energy, Ei, is given by

Ei =
1

2
uT

i K1ui. (6.82)

If we keep a fixed value of energy E, and try to find all vectors J yielding that energy, we will find an
elliptical surface in impulse space. This follows from the fact that K-matrix is positive definite, as was
proven in Theorem 6.4, and Proposition 18.11.

“book” — 2005/9/30 — 15:44 — page 143 — #155✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 143

n�

E�i�

J�I�
I�

2�
J�I�I�

t�

Figure 6.6: Elliptic level set surface corresponding to the initial kinetic contact energy.

Theorem 6.11 (Elliptical Kinetic Contact Energy Level Set Surface)
Given a fixed value of kinetic energy E, all impulse vectors J yielding this energy lie on an elliptical
surface in impulse space.

The fact that a given energy level is an ellipsoid is very useful for a geometric interpretation of a collision.
We can simply draw elliptic level set surfaces for fixed values of E. In particular, Ei is interesting because
if it has an impulse outside this initial energy ellipsoid, it indicates an energy gain, which is unphysical.
Figure 6.6 illustrates the initial energy ellipsoid in two dimensions. Notice that the impulse J = 0 lies on
the level set surface of Ei and the impulse JII lies at the center of the ellipsoid. It is easily verified that the
impulse 2J II also lies on Ei

Ec =
1

2
(2J II − J II)

T K (2J II − J II) , (6.83a)

=
1

2
JT

IIKJ II, (6.83b)

=
1

2

(
K1ui

)T
KK1ui, (6.83c)

=
1

2
uT

i K1ui = Ei. (6.83d)

“book” — 2005/9/30 — 15:44 — page 144 — #156✐
✐

✐
✐

✐
✐

✐
✐

144 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

J�

u�
f�

n�

E�i�

J�I�
I�

2�
J�I�I�

t�

Figure 6.7: Given impulse J , resulting relative contact velocity from applying that impulse is equal to
normal of energy level set surface.

Given any collision matrix K, one can easily draw the initial energy ellipsoid by computing J II, then
perform an eigenvalue decomposition on K. The eigenvectors will yield the orientation of the axes of the
ellipsoid, and the eigenvalues the scalings along these axes (see Proposition 18.12). This implies that one
draws a unit sphere, scales it by the eigenvalues of the K-matrix, uses the eigenvectors of the K-matrix
as columns in a rotation matrix, applies the rotation to the sphere, and finally performs a translation by the
impulse J II.

We’ll try to compute the normal of an energy level set surface Ec,

∇Ec = K (J − J II) , (6.84a)

∇Ec = KK−1u, (6.84b)
∇Ec = u. (6.84c)

So given an impulse J we can find the resulting relative contact velocity by looking at the normal at the
point of the level set surface where J touches. This is illustrated in Figure 6.7.
Theorem 6.12 (The Normal of the Elliptical Kinetic Contact Energy Surface)
Given an impulse J , resulting in the kinetic contact energy Ec, the resulting relative contact velocity is
given by the normal to the elliptical surface corresponding to Ec at the point where J touches the level

“book” — 2005/9/30 — 15:44 — page 145 — #157✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 145

n�

-n�

Line of Sticking�

n�

E�i�

J�I�
I�

2�
J�I�I�

t�

Figure 6.8: Line of sticking, corresponding to impulses that results in zero final relative tangential contact
velocity.

set surface. That is
u = ∇Ec. (6.85)

Theorem 6.12 gives us another powerful tool for interpreting the effect of certain impulses by geometric
constructs. In the following, we will apply this tool to find a line of sticking and a plane of maximum
compression.

We define a line running through the point J II in impulse space and crossing all the kinetic energy
level set surfaces at the two points where their normals are parallel to the contact normal. Every impulse
that lies on this line yields a resulting final relative contact velocity with no components in the contact
plane. This implies that the two objects will not move relatively in the tangent plane after the collision. In
other words, they are sticking. We therefore call the line: line of Sticking.

Theorem 6.13 (Line of Sticking)
The line of sticking runs through the point J II and cuts the energy level set surfaces where their normal is
parallel with the contact normal.

The line of sticking is illustrated in Figure 6.8. Observe that on the line of sticking we always have uf ∥ n.

“book” — 2005/9/30 — 15:44 — page 146 — #158✐
✐

✐
✐

✐
✐

✐
✐

146 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

In similar fashion to the line of sticking, we define a plane in impulse space. The plane has the point
J II lying on it, and every point belonging to the plane results in final relative contact velocity that is
orthogonal to the contact normal. We can write this as

nT u = nT (KJ + ui) = 0. (6.86)

Looking at a specific energy level set surface in 3D, all points on the surface having a normal orthogonal
to the contact normal lie on an elliptical circle and the circle is planar. According to (6.15), we call this
plane the Plane of Maximum Compression.

Theorem 6.14 (Plane of Maximum Compression)
The plane of maximum compression is given by all points in impulse space where the normal of the kinetic
contact energy level set surfaces are orthogonal to the contact normal.

Note that in 2D, the plane of maximum compression is a line and not a plane. Another property of the
plane of maximum compression is that it corresponds to impulses where the coefficient of restitution is
zero.

Theorem 6.15 (Zero Restitution)
For all points J on a plane of maximum compression, the coefficient of restitution e, has the value

e = 0. (6.87)

The plane of maximum compression is illustrated in 2D in Figure 6.9. The impulse J I must lie on the
n-axis and it also must lie in the plane of maximum compression, so we can draw J I where the n-axis
intersects the plane of maximum compression. The impulse 2J I also lies on the n-axis and it conserves
energy, so we can draw it where the n-axis crosses the initial kinetic contact energy level set surface, E i.
Note the coefficient of restitution is one for 2J I . The two impulses J I and 2J I are shown in Figure 6.10
Observe that both J I and J II lie in the plane of maximum compression.

Finally, we will interpret the physical laws in terms of geometry in the impulse space. First there
should not be any energy gain, this is equivalent to

Ec ≤ Ei (6.88)

and implies that any resulting collision impulse must lie inside or on the ellipse given by Ei. Second,
collision impulses cannot attract objects to each other; they must be repulsive. This implies that the
collision impulse must not point in the opposite direction of the contact normal, that is

nT J ≥ 0. (6.89)

Geometrically, this means that collision impulses are restricted to lie above or on the contact plane. Third,
the collision impulse should result in a final relative contact velocity, such that the two objects will not
penetrate, that is, we require nonpenetration, which means that

nT uf ≥ 0. (6.90)

“book” — 2005/9/30 — 15:44 — page 147 — #159✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 147

n�

E�i�

J�I�
I�

2�
J�I�I�

t�

n�

-n�

Line of Sticking�

t�

-t�

Line of Maximum�
Compression�

Figure 6.9: Plane of Maximum Compression. This corresponds to zero restitution.

This implies that the impulse must lie on or above the plane of maximum compression. Finally, Coulomb’s
friction law dictates that the impulse should be inside or on the cone defined by

∥J − (n · J) · n∥ ≤ µ (n · J) . (6.91)

That is, the cone with apex at the origin and sides with slope equal to 1
µ . This cone is called the friction

cone. Applying these four conditions, we end up with a region in impulse space. The region describes the
set of all impulses, which make physical sense to apply in a single-point collision. This permissible region
in impulse space is illustrated in Figure 6.11. We can learn several things from the permissible region
of impulse space; first it is a closed 3D space, in fact it is a spherical bounded cone, intersected by the
contact plane and the plane of maximum compression. To parameterize the permissible region requires
three parameters. This is remarkable because most collision laws in use only have one or two parameters,
which means that they cannot reach the full domain of the permissible region. Often they are limited to a
line or plane in the permissible region.

Another observation is that it is possible to have a restitution value larger than one, without being in
conflict with the physics. This is shown in Figure 6.11, the impulses 2J I and 2J II have e = 1. In fact, all
impulses lying on the line between 2J I and 2J II have e = 1. This means that impulses lying above this
line have e > 1. It is assumed that coefficient of restitution is a measure of how much the relative normal

“book” — 2005/9/30 — 15:44 — page 148 — #160✐
✐

✐
✐

✐
✐

✐
✐

148 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

J�
I�

2J�
I�

n�

E�i�

J�I�
I�

2�
J�I�I�

t�

n�

-n�

Line of Sticking�

t�

-t�

Line of Maximum�
Compression�

Figure 6.10: The two impulses J I and 2J I .

contact velocity is reversed after the collision.
The geometrical interpretation of physically valid impulses can be used to correct physical invalid

collision impulses, simply by projecting these back onto the closest point on the permissible region.

6.1.4 Examples of Algebraic Laws
Now we will derive three examples of simple algebraic collision laws: Newton’s collision law, a two-
parameter frictional law, and a frictional version of Newton’s collision law.

6.1.4.1 Newton’s Collision Law

We assume that the collision impulse is parallel with the n-axis, that is

J = jn, (6.92)

where j is the magnitude of the collision impulse. We will also assume that only the relative contact
velocity in the normal direction changes. From Newton’s impact law we have

un(γf) = −eun(γi). (6.93)

“book” — 2005/9/30 — 15:44 — page 149 — #161✐
✐

✐
✐

✐
✐

✐
✐

6.1 PHYSICS-BASED ANIMATION 149

e = 1�

J�
I�

2J�
I�

n�

E�i�

J�II�
t�

n�

Line�
of�

Sticking�

t�

Line of Maximum�
Compression�

-t�
2J�II�

-n�

Permissible Region�

Figure 6.11: The permissible region in impulse space.

So the change in relative contact velocity in the normal direction can be written as

∆u · n = un(γf)− un(γi), (6.94a)
∆u · n = −eun(γi)− un(γi), (6.94b)
∆u · n = −(1 + e)ui · n. (6.94c)

Looking at the impulse momentum relation we have

∆u = Kjn. (6.95)

We are only interested in the normal direction, so we take the dot product with the contact normal

∆u · n = (Kjn) · n, (6.96a)

∆u · n = nT Knj, (6.96b)

isolating j we get Newton’s collision law

j =
−(1 + e)ui · n

nT Kn
. (6.97)

After we compute j by (6.97) we insert into (6.92) to find the resulting impulse J .

“book” — 2005/9/30 — 15:44 — page 150 — #162✐
✐

✐
✐

✐
✐

✐
✐

150 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

6.1.4.2 A Two-Parameter Frictional and Energy Conserving Law

Now we will look at collision law proposed in [Chatterjee et al., 1998]. It is simple, fast, and includes
friction as well as reversible impacts. Furthermore, it is guaranteed to be in the permissible region of
impulse space. In the Collision Law, one first computes an impulse J according to the equation

J = (1 + en)J I + (1 + et) (J II − JI) , (6.98)

the coefficient en is the coefficient of normal restitution and et is the coefficient of tangential restitution.
The normal restitution coefficient tells us something about how elastic the collision is in the normal direc-
tion. A value of zero means completely inelastic and a value of one means totally elastic. The tangential
restitution coefficient tells us something about how much the tangential velocity is reversed. A value of−1
will completely remove any tangential effects, turning J into a newton impulse. A value of 1 corresponds
to full tangential velocity reversal.

Here the impulse J I and J II are both perfectly elastic collisions in the normal direction. The first
does not affect the tangential direction, whereas the second brings the two bodies into sticking contact in
the tangential direction, as can be seen from Theorems 6.6 and 6.7. For convenience, we will repeat the
equations for the impulses. J I is computed as follows

J I = −
(n · u

nT Kn

)
n, (6.99)

and J II as
J II = −K−1u. (6.100)

As a final step in the Collision Law, it is tested if the impulse J lies outside the friction cone. This can be
done with the following test:

∥J − (n · J)n∥ > µn · J . (6.101)

If the impulse lies outside, then it is projected back onto the friction cone by computing κ,

κ =
µ (1 + en) n · J I

∥JII − (n · JII) n∥ − µn · (J II − JI)
, (6.102)

and finally the impulse J is computed according to

J = (1 + en)J I + κ (J II − JI) . (6.103)

6.1.4.3 Newton’s Collision Law with Friction

The next algebraic law we will describe is based on [Guendelman et al., 2003]. First we will assume
sticking, that means for the final tangential relative contact velocity utf = ut(γf) and the normal contact
velocity unf = un(γf), we require that

utf = 0, (6.104a)

unf = −eun(γi)n. (6.104b)

“book” — 2005/9/30 — 15:44 — page 151 — #163✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 151

Now we can compute the change in relative contact velocity ∆u = uf−ui, and from impulse-momentum
relation (6.55), we have

J = K−1 (uf − ui) . (6.105)

Now we compute the normal and tangent components of the impulse, that is

Jn = (J · n)n, (6.106a)
J t = J − Jn. (6.106b)

If
∥J t∥ ≤ ∥Jn∥ , (6.107)

then the impulse J is in the friction cone and we can use it. Otherwise we need to consider sliding
friction. To consider sliding friction, we first determine the direction of sliding, that is, first we compute
the tangential component of the initial relative contact velocity

uni = (ui · n) n, (6.108a)
uti = ui − uni . (6.108b)

Now the direction of sliding can be computed as the unit vector

t =
uti

∥uti∥
, (6.109)

and we define an impulse as
J = jn− µjt, (6.110)

where j is the magnitude of the normal impulse. If we take dot product of the impulse-momentum relation
and the contact normal we get

unf = uni + nT KJ . (6.111)

Using Newton’s impact law
−euni = uni + nT KJ , (6.112)

substitution of (6.110) yields
−euni = uni + nT K (jn− µjt) . (6.113)

Finally, we can solve for j

− (1 + e) uni = nT K (jn− µjt) , (6.114a)

− (1 + e) uni = nT Knj −nT Ktµj, (6.114b)

− (1 + e) uni = nT K (n− tµ) j, (6.114c)

j =
− (1 + e)uni

nT K (n− µt)
. (6.114d)

Knowing j, we can insert it into (6.110) and compute the impulse J .

“book” — 2005/9/30 — 15:44 — page 152 — #164✐
✐

✐
✐

✐
✐

✐
✐

152 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Figure 6.12: The contact force or impulse equivalence principle. The contact region on the left is replaced
by a discrete finite set of points, consisting only of vertices lying on the convex hull of the contact region.

6.2 Multiple Points of Collision
The most interesting simulations in computer animation involve pairs of objects that touch each other at
more than a single collision point. Even a simple cube falling flat onto a table top, has infinitely many
points of contact on the face touching the table during impact. It seems that all the theories we have from
single-point collisions are useless.

To avoid the problem of having infinitely many contact points, we can use the contact force/impulse
equivalence principle.

Lemma 6.16 (Contact Force and Impulse Equivalence Principle)
Equivalent forces or impulses exist such that when they are applied to the convex hull of the contact region
the same resulting motion is obtained, which would have resulted from integrating the true contact force
or impulse over the entire contact region.

The principle is illustrated in Figure 6.12. This is a very useful principle, especially in computer animation,
where contact regions often are polygonal areas. With this principle we have reduced our problem of
infinitely handling many contact points to having to handle a finite discrete set of contact points only.

In a simulator there are generally two basic types of methods for handling multiple points of collisions:

• Sequential Collisions

• Simultaneous Collisions

The names may be a little misleading. There is no concept of time propagation, as there is in compliant
contact models [Kraus et al., 1997]. The names reflect how impulses are computed or propagated at a
single instance in time. The sequential collision approach is sometimes referred to in the literature as
propagating impulses. The task of computing equivalent contact impulses and applying them to the rigid
bodies is called collision resolving.

“book” — 2005/9/30 — 15:44 — page 153 — #165✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 153

algorithm simple-sequential(C : Contacts)
while collision

collision = false
for each c ∈ C
if c is colliding then

Resolve collision at c
collision = true

end if
next c

end while
end algorithm

Figure 6.13: Pseudocode of simple sequential collision resolver.

We cannot really talk about one method being more correct or better than the other because it is
possible to set up physical configurations of colliding rigid bodies where one of the methods computes the
wanted motion and the other does not and vice versa [Mosterman, 2001].

Most simultaneous collision methods are based on complementarity conditions at the velocity level,
however it has been found that complementarity conditions at the velocity level have no fundamental phys-
ical basis for collisions of even extremely stiff objects [Chatterjee, 1999]. We will only treat simultaneous
collisions superficially, since Chapter 7 is devoted to velocity-based complementarity formulations.

The sequential collision method is based on the idea of treating multiple concurrent single-point colli-
sions as a series of single-point collisions. One can just continue to iterate over the single-point collisions
and resolve them one by one using a suitable collision law until none of them is colliding [Baraff, 1989]. A
simple sequential collision resolving algorithm is shown in Figure 6.13. The sequential collisions method
suffers from some difficulties:

• Different simulation results can occur if collisions are treated in a different order

• Infinite calculations

Recent research on sequential collision resolving [Chatterjee et al., 1998, Mosterman, 2001] is concerned
with the order in which the collisions are resolved and how to avoid infinite calculations. In Section 6.2.4,
we present our own solution to the problem. In [Mosterman, 2001] it is shown that there is a relation-
ship between the values of coefficient of restitution e and whether simultaneous or sequential collision
resolving produces the physical expected results.

Many consider the simultaneous collision resolving to be more physical, but there is no justification
for it, except perhaps that it mimics the way a physicist would solve the problem: determine the degrees of
freedom, analyze forces from a free body diagram, set up equations of motion, and solve for the motion.

However, in comparison with the sequential collision resolving, the simultaneous collision resolving
always produces the same global solution to a given problem. Whether the solution results in the physical
expected motion is another question. The sequential collision resolving, on the other hand, solves the
problem through a series of local solutions, thus there is a risk that it will never converge a global solution
of the system. The sequential collision resolving is often beneficial over the simultaneous approach in

“book” — 2005/9/30 — 15:44 — page 154 — #166✐
✐

✐
✐

✐
✐

✐
✐

154 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

1000M�

M�

v�

Collision�

1�

(a) First colliding contact

1000M�

M�

Collision�

2�
(1000/1001) v�

(1000/1001) v�

(b) Second colliding contact

1000M�

M�

Collision�

3�
(1000/1001) v�

(c) Third colliding contact

1000M�

M�

Collision�

4�
(1000/1001�)�2� v�

(1000/1001�)�2� v�

(d) Fourth colliding contact

Figure 6.14: Two balls on table, causing sequential collision solver to enter an infinite loop.

terms of computational expense. It is also capable of modeling propagation of forces/impulses through
the mechanical system; the simultaneous approach totally lacks this capability.

We’ll study the problems of sequential collision resolving through some simple examples.

6.2.1 Nontermination of Sequential Collision Resolving

A small ball is resting upon a fixed plane, the coefficient of restitution between the small ball and the
plane is zero. A large ball is resting on top of the small ball; the density of the larger ball is 1,000 times
larger than the small ball. The coefficient of restitution between the small and large ball is zero. The
large ball is initially given a downward velocity of v. There is no friction in the configuration. The
example configuration is illustrated in Figure 6.14. The example is completely one-dimensional, and the
balls interact through central frictionless collisions, which mean that we can safely ignore any rotational
motion. We have two contact points, the first contact point is between the table and the small ball, the
second contact point is between the two balls.

“book” — 2005/9/30 — 15:44 — page 155 — #167✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 155

A� B� C� D� E�

Frame�

Figure 6.15: Billiard balls wrapped by a frame. Initially ball E is moving to the right with speed v.

The first colliding contact point is the second contact point between the two balls. Since we have a
completely inelastic collision, from conservation of momentum we have

1000v = 1000vafter + vafter, (6.115a)

vafter =
1000

1001
v, (6.115b)

where we have used v = ∥v∥, after having resolved the collision both balls move downward with the
same speed of 1000

1001v. This means that the next colliding contact point is the first contact point.
The plane has infinite mass, which means that after the collision resolving the small ball and the plane

move downward with zero velocity. The next colliding contact point is now the second contact point. As
before, from conservation of momentum we get

1000
1000

1001
v = 1000vafter + vafter, (6.116a)

vafter =

(
1000

1001

)
v. (6.116b)

Now the two balls move downward with a speed of
(

1000
1001

)2. The pattern repeats itself, and it is easily seen
that after n passes over the two contact points the speed of the large ball will have decreased to

(
1000
1001

)n.
From the example, it is also clear that the speed of the larger ball will never become zero, thus we will

loop infinitely over the two contact points. Of course, in a computer simulation, we will at some point
after a lot of computation time, encounter an underflow error and the computations will blow up in our
face.

As another example, imagine a series of small billiard balls, with a frame wrapped around them. The
balls all have the same mass and the frame has the same mass as a single billiard ball. Furthermore, the
coefficient of restitution is one between all objects and there is no friction. The configuration is shown
in Figure 6.15. Initially, the rightmost ball E is given a speed v to the right. The ball will collide with
the frame in a completely elastic collision, thus after the collision, the ball will have zero speed and the
frame will move to the right with speed v. Now the frame is colliding with ball A in a completely elastic
collision, meaning that afterward the frame will have zero speed and ball A will move to the right with
speed v, ball A will now collide with ball B, and so on until ball D collides with ball E. We are now back
where we started. The pattern can thus repeat itself forever without ever changing.

“book” — 2005/9/30 — 15:44 — page 156 — #168✐
✐

✐
✐

✐
✐

✐
✐

156 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

g�

a�

b� c�

d�

Plane�

Box�

Furture contact points�

Figure 6.16: Box falling onto plane, making completely elastic impacts at the four contact points a, b, c,
and d.

If the experiment is performed in the real world, one sees that the linear momentum will distribute
itself equally over all objects, implying that they will all move to the right with the speed of 1

6v. This is
actually the solution a simultaneous method will compute.

6.2.2 Indeterminacy of Sequential Collision Resolving

Another issue with sequential collision resolving is that different results can be obtained depending on the
order in which collisions are resolved.

As an example, imagine a box falling with one face flat against a fixed plane. For simplicity we will
assume that there is no friction and that the coefficient of restitution is one between the box and the plane.
Therefore, we expect the box to bounce back upward again without changing its orientation. In fact, if
the simulation is run for long enough time, we expect to see the box jumping up and down on the plane
without every changing its orientation. The configuration is shown in Figure 6.16. Upon impact we will
have four contact points. We’ll label these a, b, c, and d. When the box touches the plane all contact points
will collide; therefore we have to choose one contact point. Let’s pick a. Applying a normal impulse at a
will make the box rotate with its axis going in the direction of b and d.

“book” — 2005/9/30 — 15:44 — page 157 — #169✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 157

v� v�

Figure 6.17: Three balls colliding in a completely symmetrical fashion.

By symmetry, two things can happen next, either we choose the contact point c as the next colliding
contact point to treat or we choice one of the b and d contact points. Picking the c contact point will correct
some of the rotational motion that was caused by the normal impulse at a. It is very likely that none of
the contact points will be colliding after having picked c, and the box will bounce upward almost with
unaffected rotational motion. On the other hand, if we choose contact point b, the rotational motion will
become even worse, and we may end up with a rotating box bouncing back from the plane. The point to
be made here is that different things can happen dependent on the order we choose to resolve the contact
points a, b, d, and e in.

Heuristics for picking a deterministic and correct order are available [Chatterjee et al., 1998]. These
heuristics require that one examines the colliding contact points and sorts them according to some physical
measure. This causes the sequential collision resolving to be more computationally expensive.

However, it is possible to come up with configurations that exhibit special geometries, where no
heuristic can be applied to resolve the problem of picking an order. Imagine, for instance, a ball at rest
with a identical ball on its left side moving to the right and another identical ball on the right side moving
to the left. The two balls on the sides are mirror images of each other implying they will hit the center
ball at the exact same time. At the time of impact we will have two completely identical contact points.
There is no preference for choosing the left contact point over the right or vice versa. The configuration is
shown in Figure 6.17. Another commonly encountered case exhibiting special symmetry is a billiard ball
hitting a corner. At the time of impact, the ball touches the corner walls at two different contact points,
but there is no way of favoring which contact point to resolve first.

Notice that in both of the examples of special symmetry, picking one order over the other would lead
to different simulation results. It is important to understand that the cause of this indeterminacy is not
due to our lack of ability to find a good heuristic for picking an order. It is a basic physical problem.
In [Chatterjee et al., 1998] it is suggested that a random ordering is the best way to deal with special
symmetries.

6.2.3 Simple Simultaneous Collision Resolving

As an example of a simultaneous collision resolver we will derive the method proposed in [Baraff, 1989].
It is a simple method in the sense that it only considers normal impulses and normal contact velocities,
and there is no friction. We refer the reader to Chapter 7 for more advanced modeling.

If i is the index of a contact point then the collision impulse J i at that contact is

J i = jini, (6.117)

“book” — 2005/9/30 — 15:44 — page 158 — #170✐
✐

✐
✐

✐
✐

✐
✐

158 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

A� B�

D�

C�

Figure 6.18: Simultaneous Contact. Showing how object B resolves collision between object A, and
objects C and D.

where ni is the contact normal of the i’th contact point. Since impulses are required to be repulsive, we
have

ji ≥ 0. (6.118)

We restate Newton’s impact law as described in Section 6.1.1 for multiple contact points, let uii be the
initial relative contact velocity in the normal direction of the i’th contact point, and similarly u if is the
final relative normal contact velocity, then

uif ≥ −euii , (6.119a)

uif + euii ≥ 0. (6.119b)

The ≥ is needed because more than one object can be pushing on a single object. To make sure we do not
get too much impulse we will require

uif > −euii ⇒ ji = 0. (6.120)

To gain some intuition, it can be helpful to study a small example, as shown in Figure 6.18. Here object
B pushes object A away from object C and object D, so there is no need for impulses between objects A
and C and objects A and D. We can rewrite (6.120) into a complementary condition,

ji
(
uif + euii

)
= 0. (6.121)

Knowing that uif is a linear function of all the impulses, j = [j0 · · · ji · · ·]T , that is, uif (j) to be shown
shortly, we can write a linear complementarity problem, for all i we require

ji ≥ 0, (6.122a)
uif (j) + euii ≥ 0, (6.122b)

ji
(
uif (j) + euii

)
= 0. (6.122c)

Now we will look at how much the i’th impulse changes the contact velocity at the j’th contact point on
X. The situation is depicted in Figure 6.19. The change of contact velocity at the j’th contact point w.r.t.

“book” — 2005/9/30 — 15:44 — page 159 — #171✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 159

i�

j�

X�

Y�

W�

r�
Y�
j�

r�
X�
j�

r�
X�
i�

r�
W�
i�

Figure 6.19: Multiple contact points. The change in relative contact velocity at the j’th contact point
depends on impulses at both j’th and i’th contact points.

to object X due to the impulse at the i’th contact is

∆u X
ji = ∆v X

i + ∆ω X
i × r X

j , (6.123)

where ∆v X
i = ± ni

mX
ji and ∆ω X

i = ±I−1
X

(
r X

i × ni
)
ji, where the sign depends on the direction of the

contact normal. Substituting for ∆vX
i and ∆ωX

i and assuming X plays the role of B at the i’th contact,
we have

∆u X
ji =

−ni

mX
ji +

(
I−1

X

(
r X

i ×−ni
)
ji
)
× r X

j , (6.124)

cleaning up

∆u X
ji =

(
ni

mX
+
(
I−1

X

(
r X

i × ni
))
× r X

j

)
ji. (6.125)

That is,
∆u X

ji = s X
ji ji, (6.126)

where
s X

ji =

(
−ni

mX
+
(
I−1

X

(
r X

i ×−ni
))
× r X

j

)
. (6.127)

“book” — 2005/9/30 — 15:44 — page 160 — #172✐
✐

✐
✐

✐
✐

✐
✐

160 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

If X played the role of A then we should have used ni instead of −ni. To find the total change of the
contact velocity at the j’th contact point we must sum over all the contact points in contact with X,

∆u X
j = ∆u X

j0 + · · · + ∆u X
ji + · · · + ∆u X

jn , (6.128)

with our new notation
∆u X

j = s X
j0 j0 + · · · + s X

ji ji + · · · + s X
jn jn. (6.129)

Now we must also find the change of contact velocity w.r.t. object Y , similar derivation will lead to

∆u Y
j = s Y

j0 j0 + · · · + s Y
ji ji + · · · + s Y

jnjn. (6.130)

Now assume X played the role of A at the j’th contact point, then Y must be B at the j’th contact point,
so the change in relative contact velocity is

∆u X
j −∆u Y

j = (s X
j0 − s Y

j0)j0 + · · · + (s X
ji − s Y

ji)ji + · · · + (s X
jn − s Y

jn)jn. (6.131)

We are only interested in the normal direction, so we can simplify our derivation by taking the dot product
with the contact normal, that is

ujf = Aj0j0 + · · · + Ajiji + · · · + Ajnjn + uji , (6.132)

where
Aji =

(
sX

ji − sY
ji

)
· nj. (6.133)

Writing up the linear system for all contact points results in

Aj + b ≥ 0 compl. j ≥ 0. (6.134)

Figure 6.20 illustrates pseudocode for setting up the A-matrix and the b-vector.

6.2.4 Robust and Stable Sequential Collision Resolving
In this section we give the technical details for an efficient stable and robust implementation of a sequential
collision resolver. It overcomes some of the problems with infinite looping at the price of physical realism.
The method still yields plausible results. The method is based on the ideas in [Chatterjee et al., 1998].

The method described will need a collision law, which has a coefficient of normal restitution, e. Other-
wise any collision law can be used. During initialization all single point collisions, i.e., the contact points,
are inserted into a heap data structure S. The contact points are sorted based on their relative normal
contact velocity, un, computed as in (6.14). If un < 0, then the objects are colliding at the contact point
and we need to apply an impulse J to the objects.

As suggested in [Chatterjee et al., 1998], the contact point with the smallest relative normal contact
velocity is obtained from the heap S. This contact point is called the minimum contact point. Getting the
minimum contact point is a constant time operation, as the minimum element in a heap often is the first
element. If the minimum contact point is colliding, an impulse is applied to resolve the collision. If on
the other hand, the minimum contact point is noncolliding, then by the heap property of S, there cannot

“book” — 2005/9/30 — 15:44 — page 161 — #173✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 161

A = new (n × n)-matrix
b = new n-vector
C = set of all contacts
for each j in C

b[j] = (1 + e)uji

for each i in C
A[j][i] = 0
if one of the bodies of i is body A of j

let X be the body of i that is body A of j
A[j][i] += sX

ji · nj

if one of the bodies of i is body B of j
let Y be the body of i that is body B of j
A[j][i] -= sY

ji · nj

Figure 6.20: Pseudocode for setting up linear complementarity problem for simple simultaneous collision
resolving.

be any other contact points with a relative normal contact velocity less than the minimum contact point.
Therefore, there cannot be any more colliding contact points and the algorithm can terminate. If a collision
impulse is applied, then the relative normal contact velocity is recomputed, for all contact points having at
least one object in common with the minimum contact point. These contact points are said to be affected
by or dependent on the minimum contact point, since their relative contact velocity depends on the two
incident objects at the minimum contact point. After having updated all the dependent contact points,
the heap S needs to be updated, in order for the heap property to be fulfilled. Hereafter, the algorithm
obtains the minimum contact point from the heap S, and repeats the above steps until termination. A
pseudocode version of the algorithm is shown in Figure 6.21. If an implementation is made precisely as
the pseudocode outlines, it will quickly cause trouble in practice. A test like un ≥ 0 is difficult to apply
due to precision errors. One solution to the problem is to use a threshold value, ε > 0, such that the test
becomes

un ≥ −ε. (6.135)

The threshold value ε should be a small positive number indicating the accuracy of the floating-point
operations. In practice, the test works excellently, especially in combination with a collision envelope,
which it magnitudes greater than the precision.

The problem with the pseudocode algorithm is due to the physics. As explained in Section 6.2.1 there
are configurations causing an infinite sequence of collisions. The important thing to notice is that if e < 1,
then the relative contact velocities are always monotonically decreasing. In [Chatterjee et al., 1998] it is
therefore suggested that when infinite loops happen, a truncation or extrapolation can be used to obtain an
answer.

However, it’s not easy to determine when an infinite sequence of collisions occurs. An ad hoc solution
to the problem is to test whether the current value of the relative normal contact velocity has decreased in
absolute value to some specified fraction of the initial smallest relative normal contact velocity. A fraction
of 1/1000 usually works well in practice. A smaller fraction means that the collision resolving will take
more computation time, and a larger fraction means less correct simulation results. Notice that the test for

“book” — 2005/9/30 — 15:44 — page 162 — #174✐
✐

✐
✐

✐
✐

✐
✐

162 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Algorithm sequential1(C:Contacts)
Heap S
for each c ∈ C do

compute un for c
put (un, c) into S

next c
while forever

(un, c) = min(S)
if un ≥ 0 then
return

end if
compute J for c
apply J to objects in c
for ∀c′ ∈ C, c′ sharing object with c do
compute un for c′

update heap with (un, c′)
next c′

end while
End algorithm

Figure 6.21: Sequential collision resolving based on minimum relative normal contact velocity.

an infinite loop is based on a global threshold value and a local test for each contact point. The local test
is performed each time the minimum contact point is obtained from the heap S.

However, the infinite loop test will only detect infinite loops in configurations where truncation could
resolve the problems, such as the two balls on a table configuration, as shown in Figure 6.14. Configu-
rations such as the framed billiard balls in Figure 6.15 will not be detected. To circumvent this problem,
a simple counter test is introduced; each contact point keeps track of the number of times it has been
resolved. When the minimum contact point is obtained from the heap, its counter is incremented by one,
afterward it is tested if the counter exceeds a user-specified maximum count. Care must be taken not to set
the maximum count too high or else an excessive amount of computation time can be wasted. If set too
low the collision resolver may detect perfectly solvable configurations as containing infinite sequences
of colliding contact points. Usually values in the range of 20–100 works well for computer animation
purposes. Initially, the resolving counter is set to zero for all contact points.

Figure 6.22 illustrates the modifications to the pseudocode in Figure 6.21. When an infinite sequence
of colliding contact points is detected, an evasive action has to be performed or else there is a risk for a
never-ending computation. If e < 1, then it seems sensible that kinetic contact energy will continue to
dissipate a little for each an every collision that is resolved, until there is no more kinetic energy left. The
limit at which there is no more kinetic energy corresponds to the relative normal contact velocity being
zero, that is, un = 0. We know from theory that setting the coefficient of restitution to zero, e = 0,
will make un = 0 when resolving one contact point. Therefore, an evasive action is simply to set e = 0
when computing the impulse for a contact point, which has passed the infinite loop test. Setting e is called
truncation and the computed impulse is called a truncated impulse.

Theoretically, setting e = 0 should give un = 0. In practice however, numerical precision often causes

“book” — 2005/9/30 — 15:44 — page 163 — #175✐
✐

✐
✐

✐
✐

✐
✐

6.2 PHYSICS-BASED ANIMATION 163

Algorithm sequential2(C:Contacts)
Heap S
for each c ∈ C do

compute un for c
counter(c) = 0
put (un, c) into S

next c
(un, c) = min(S)
εfraction = (1/1000)un

Nmax = 20
while forever

(un, c) = min(S)
ifun ≥ 0 then
return

endif
counter(c) = counter(c) + 1
if un > εfraction or counter(c) > Nmax then

...handle infnitite loop...
else
...compute impulse as usual...

end if
...

end while
End algorithm

Figure 6.22: Modification of sequential collision resolver to detect infinite sequences of colliding contacts.

un to be slightly nonzero. During the update of contact points in the heap, it is better simply to set un = 0
when updating a contact point that has just been resolved with a truncated impulse. A Boolean flag is
needed on each contact point, so a contact point can be marked as having been resolved by a truncated
impulse or not.

If instead, un is recomputed by (6.14) when a contact point has been truncated it might occur that the
value is slightly lower than the precision threshold limit. This will cause the algorithm to do several series
of truncations on the same contact point before the single-point collision has been resolved. The result is
more iterations and slower simulation.

To counter artifacts from numerical precision it is often also advantageous to truncate the post collision
velocities of the objects from a contact point where a truncation impulse has been applied. Pseudocode
for the velocity truncation is shown in Figure 6.23. The final pseudocode version of sequential collision
resolver algorithm is shown in Figure 6.24.

The sequential collision resolver algorithm in Figure 6.24 will be able to to detect an infinite loop in
configurations like the two balls on the table and the framed billiard balls. It should be noted that truncation
impulses are not the whole answer to making a bulletproof evasive action on an infinite loop. Notice that
the coefficient of restitution is zero for all contact points in the two balls on a table configuration, and this
results in an infinite loop.

The algorithm will not always return the physical expected result. If detection of infinite loops is

“book” — 2005/9/30 — 15:44 — page 164 — #176✐
✐

✐
✐

✐
✐

✐
✐

164 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

algorithm truncate(v, ω)
If |vx| < ε Then

vx = 0
End If
If |vy | < ε Then

vy = 0
End If
If |vz| < ε Then

vz = 0
End If
If |ωx| < ε Then

ωx = 0
End If
If |ωy| < ε Then

ωy = 0
End If
If |ωz| < ε Then

ωz = 0
End If

end algorithm

Figure 6.23: Pseudocode for postvelocity truncation to counter numerical precision artifacts.

over-eager, then the algorithm will have an effect of artificially decreasing the coefficient of restitution.
Typical large values ε > 1

2 returns plausible results, whereas values ε < 1
5 seem to be clamped to zero,

and values in between seem artificially damped. These value ranges are typical for the values listed for the
fraction-test and maximum resolve count test. Other values for these constants would result in different
behavior.

The algorithm is excellent for use in computer games or computer animation, since it is robust and
stable, and can be made to run very fast if one is willing to sacrifice physical realism. It should be noted
that a good heap data structure is crucial for good performance.

It is possible to make variations of the algorithm. For instance, contact points could be sorted in the
heap data structure based on penetration depth or some other physical or geometric quantity. Also, other
evasive actions could be taken in case an infinite loop is detected. For instance, one could switch to a
simultaneous collision resolving method.

The algorithm can have a serious impact on configurations with e = 1; if an infinite loop is detected it
will simply set e = 0. In a configuration like the one shown in Figure 6.15, all objects will come to a halt,
which is not the wanted simulation result. To circumvent this problem one could add an extra test on the
value of the coefficient of restitution to detect what kind of infinite loop that has been detected. If e < 1 it
is safe to apply a truncation impulse, if e = 1, another solution method could be applied.

“book” — 2005/9/30 — 15:44 — page 165 — #177✐
✐

✐
✐

✐
✐

✐
✐

6.3 PHYSICS-BASED ANIMATION 165

Algorithm sequential3(C:Contacts)
Heap S
for each c ∈ C do

compute un for c
counter(c) = 0
truncated(c) =false
put (un, c) into S

next c
(un, c) = min(S)
εfraction = (1/1000)un

Nmax = 20
while forever

(un, c) = min(S)
counter(c) = counter(c) + 1
if un ≥ 0 then
return

endif
if un > εfraction or counter(c) > Nmax then
set e = 0
compute J for c
apply J to objects in c
truncated(c) =true

else
...compute impulse as usual...

end if
for ∀c′ ∈ C, c′ sharing object withc do
if truncated(c′) then

un = 0
truncate(vA, ωA)
truncate(vB, ωB)
truncated(c′) =false

else
compute un for c′

end if
update heap with (un, c′)

next c′

end while
End algorithm

Figure 6.24: Final pseudocode version of sequential collision resolver.

“book” — 2005/9/30 — 15:44 — page 166 — #178✐
✐

✐
✐

✐
✐

✐
✐

166 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

6.3 Conservative Advancement

In the work [Mirtich et al., 1994, Mirtich et al., 1995, Mirtich, 1996] a new simulation paradigm emerged
building on the early ideas of [Hahn, 1988]. The paradigm was named impulse-based simulation. Later,
the work was extended to hybrid simulation [Mirtich, 1995], a paradigm combining constraint-based and
impulse-based simulation. The main focus here is the time-stepping method presented in [Mirtich, 1996].

Looking at rigid bodies at a microscopic level, all kinds of contact can be modeled by collision im-
pulses, even something like a cup at rest on a table. This type of contact is called static contact. Static
contact is modeled as a series of highly-frequent collision impulses occurring between the two objects in
static contact. The frequency of the collision impulses is so high that it is nearly impossible to distinguish
the individual collision impulses. The limiting case with infinite frequency will be equivalent to com-
puting the time-integral of the contact forces (6.18) over a finite time-step ∆t. The force time-integral is
confusingly called impulse, but it is not a collision impulse.

In practice, we do not have the computational resources to compute an infinite series of collision
impulses, therefore we use a collision envelope around each object. The collision envelope can be thought
of as a thick surface of an object. It is a model of the atomic layer of an object that comes into contact
with the atomic layer of another object. Thus, it is the atoms in these layers that are bouncing against each
other during static contact. It is important to realize that objects are defined as touching when they are
within each other’s collision envelopes. An actual distance of zero between the geometries of two objects
is never seen.

Frequent collisions occurring during static contact is now modeled by applying an impulse only at
the closest point between two objects. The closest point will lie inside the collision envelopes of the
objects. After having applied the collision impulse, the velocities of the objects will have changed, such
that if we advance the time of the simulation by integrating the free-moving body state function (22.81)
of the two objects, the objects will move away from each other at the closest point, regardless of how
small a time-step we integrate forward. This will mean that at some point in the future a new closest
point within the collision envelopes will be found. Thus, static contact is modeled as an object that
vibrates on top of another object. If the collision envelope is small enough the vibration will occur at a
frequency where a human observer will not notice it. Figure 6.25 illustrates the idea using an exaggerated
collision envelope. In [Mirtich et al., 1994, Mirtich et al., 1995, Mirtich, 1996] a time-stepping method
is presented that computes an estimate for a time-step, that can be used to integrate the rigid body state
functions describing the free motion of the objects without causing penetration or zero distance of the
object geometries. The time-step is found by computing a conservative lower bound for the Time of
Impact (TOI) between all potential colliding object pairs.

A TOI value should be easy and fast to compute, since it is expected to be recomputed many times. In
fact, it must be recomputed every time two objects collide or whenever the time-stepping has reached the
time of a TOI. Thus due to performance considerations, it is crucial that a TOI value is computationally
inexpensive to compute. A TOI value should always be a lower limit to the true time of impact and the
lower limit should converge toward the true time of impact the closer the objects are. This is what we mean
by a conservative TOI. Computing TOI values in this way will ensure that a collision is never missed, and
that it is safe to integrate forward in time to the minimum TOI value.

Figure 6.26 illustrates the basic idea behind the TOI time-stepping method. Notice that the stepping

“book” — 2005/9/30 — 15:44 — page 167 — #179✐
✐

✐
✐

✐
✐

✐
✐

6.3 PHYSICS-BASED ANIMATION 167

B�B�

A�

Collision Envelope�

Closest Colliding Contact�

(a) First atomic collision

B�B�

A�

Closest Colliding Contact�

(b) Second atomic collision

B�B�

A�

Closest Colliding Contact�

(c) Third atomic collision

Figure 6.25: The collision impulse model of static contact. A box A is resting on top of a fixed box B.
The static contact is modeled as a series of collisions occurring between the closest point between A and
B. Thus, box A is in fact vibrating on top of box B. The smaller the collision envelope, the higher the
vibration frequency, and an end user will not notice the vibration.

“book” — 2005/9/30 — 15:44 — page 168 — #180✐
✐

✐
✐

✐
✐

✐
✐

168 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

algorithm run(t,∆t)
tfinal = t + ∆t
do

do collision detection
resolve colliding contact points
ttoi = min(compute toi’s for all object pairs)
∆t = min(tfinal − ttoi, tfinal − t)
integrate forward by ∆t
t = t + ∆t

while t < tfinal

end algorithm

Figure 6.26: Pseudocode for simple TOI time-stepping.

method is invoked with a wanted time-step size, which indicates the end-time for the next frame of the
simulation. That is the simulation time for the next frame that should be rendered in an animation. The TOI
time-stepping method belongs to a group of time-stepping algorithms termed Conservative Advancement
because time only runs forward, unlike in Retroactive Detection, where time is rewound when a simulation
goes bad. There are two major problems with the time-stepping method outlined in Figure 6.26. First,
how should a TOI value be computed? Second, recomputing TOI values between all pairs of objects takes
quadratic time, which is computationally intractable in large-scale simulations.

6.3.1 Time of Impact (TOI) Computation
Assume that the narrow-phase collision detection algorithm (see Chapter 13) returns the closest points
between two rigid bodies. Unfortunately, these two points do not provide enough information themselves
for estimating the position of an actual future impact between the two objects because the objects may be
moving away from each other at the closest points, which indicates that some other points on the objects
are moving toward each other. This is illustrated in Figure 6.27. However, if we assume that the objects
are convex, the closest points can be used to give us some information. If the objects are convex then any
future colliding points must at least travel the distance between the closest points before they can collide.
This is shown in Figure 6.28. If we let the function dA(·) be the distance traveled by the colliding point
xA as a function of time, and similar dB(·) is the traveling distance for xB , then the distance traveled by
both the colliding points, d(·), at the true time of impact tc is

d(tc) = dA(tc) + dB(tc) ≥ ∥d∥ , (6.136)

where d = pA−pB. If (6.136) is solved for the time t yielding equality, then the solution will be a lower
bound for the true time of impact tc. As objects come closer, the colliding points will end up being the
closest points just before the actual impact. Thus, the lower bound becomes a better and better estimate
for the time of impact the closer the objects come.

Unfortunately, the functions dA(·) and dB(·) are unknown, because the colliding points xA and xB

are not yet known, only the closest points pA and pB are known. To get around the problem, the functions
dA(·) and dB(·) are approximated by two other functions giving a conservative upper limit for the traveling

“book” — 2005/9/30 — 15:44 — page 169 — #181✐
✐

✐
✐

✐
✐

✐
✐

6.3 PHYSICS-BASED ANIMATION 169

A�

B�

v�B�

v�A�
u�A�

u�B�w�
B�

w�
A�

Figure 6.27: A bad case for TOI computation, two closest points are moving away from each other.
However, there exist two other points moving toward each other.

A�
B�

p�B�
p�A�

d�

x�B�

x�A�

Figure 6.28: The actual colliding points xA and xB must at least travel the distance, d, given by the
closest points pA and pB before they can collide.

“book” — 2005/9/30 — 15:44 — page 170 — #182✐
✐

✐
✐

✐
✐

✐
✐

170 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

distance. Notice that it is important that the traveling distance is an upper bound in order for the time
estimate to be a lower bound.

From (6.12) we can write the velocity of any point of the surface of an object X, as

uX(t) = ω X(t)× r X + v X
cm(t), (6.137)

where r X is the body-fixed vector of the surface point.
If we assume that the forces acting on an object are constant during the time-step ∆t and that there

is no torque acting on the object, then the object will move along a ballistic trajectory. This may sound
prohibitive, but it is the same motion as an object moving freely under gravity, thus, it is a good assumption
for computer animation purpose. Under this assumption the linear velocity of the center of mass is given
as

vcm(t) = vcm(tcur) + g [t− tcur] , (6.138)

where tcur is the current simulation time, and g is the gravitational acceleration. The speed of any surface
point on object B in the direction of d can now be found by substituting (6.138) into (6.137) and taking
the dot product with d,

uB(t) · d =
(
ω B(t)× r B

)
· d + v B

cm(tcur) · d + g · d [t− tcur] . (6.139)

The surface velocity of any point on object A is almost identical except that −d should be used. Since the
actual collision points are unknown, r A and r B are unknown. However, since an upper bound is wanted,
any surface point can be used, which maximizes the term

(
ω X(t)× r X

)
· (±d).

The surface point fulfilling this requirement must be the point lying farthest away from the center of
mass. Let the distance of this surface point be given by rX

max, which can easily be precomputed before the
simulation starts. The motion of the object is assumed to be torque free, therefore, it’s possible to compute
an upper bound on the magnitude of the angular velocity, ωX

max, derived in (6.149). Combining these two
facts yields (

ω X(t)× r X
)
· (±d) ≤ ωX

maxr
X
max. (6.140)

Using (6.140) in (6.139) gives the upper bound on the surface point velocity,

uB(t) · d ≤ ωB
maxr

B
max + v B

cm(tcur) · d + g · d [t− tcur] , (6.141)

thus integrating (6.141) from tcur to t, yields an upper bound on the distance traveled by any surface point
on B, that is,
∫ t

tcur

(
u(τ) X · d

)
dτ ≤

∫ t

tcur

((
v X

cm (tcur) + g [t− tcur]
)
· (±d) + ωX

maxr
X
max
)
dτ, (6.142a)

=
1

2
g · (±d) [t− tcur]

2 +
(
v X

cm (tcur) · (±d) + ωX
maxr

X
max
)
[t− tcur] . (6.142b)

Introducing the constants,

AX =
1

2
g · (±d) , (6.143a)

BX = v X
cm(tcur) · (±d) + ωX

maxr
X
max, (6.143b)

“book” — 2005/9/30 — 15:44 — page 171 — #183✐
✐

✐
✐

✐
✐

✐
✐

6.3 PHYSICS-BASED ANIMATION 171

where “+” is used, if X = A, and “−” otherwise, the approximation to (6.136) is

(AA + AB) [t− tcur]
2 + (BA + BB) [t− tcur] = ∥d∥ . (6.144)

This is a second-order polynomial that is easily solved. The TOI value is now given as the smallest positive
root of (6.144) plus the current simulation time. If no such roots exist then the objects cannot collide and
the TOI value can be set to infinity.

Note that if the distance between the two objects ever becomes zero, then d = 0, the trivial solution
to (6.144) is t = 0, causing the algorithm in Figure 6.26 to enter an infinite loop, since the smallest TOI
value will always be the same as the current simulation time.

Computing the value of ωX
max can be done by noting that the rotational kinetic energy of the object must

be conserved, since there is no torque acting on the object. The rotational kinetic energy, E, computed in
the body frame of the object is given by

E =
1

2
ω(t)T Ibodyω(t), (6.145)

for convenience the body label X has been omitted. The term I body is the inertia tensor w.r.t. body frame.
It is thus diagonal and constant. Writing (6.145) element-wise yields

E =
1

2

[
ωx(t) ωy(t) ωz(t)

]
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦

⎡

⎣
ωx(t)
ωy(t)
ωz(t)

⎤

⎦ , (6.146)

which can be reduced to
2E = Ixωx(t)

2 + Iyωy(t)
2 + Izωz(t)

2, (6.147)

this is easily rewritten into the equation of an elliptical level set surface

ωx(t)2

2E
Ix

+
ωy(t)2

2E
Iy

+
ωz(t)2

2E
Iz

= 1. (6.148)

This level set surface defines all possible ω(t), picking the ω(t) with the largest magnitude will yield a
value for ωmax. From geometry it is clear that ∥ω(t)∥ is largest along the major axis of the ellipse, which
means

ωmax =

√
2E

min {Ix, Iy, Iz}
. (6.149)

6.3.2 Time of Impact Heap
The second problem of the algorithm in Figure 6.26 is that it is computationally intractable to compute
TOI values between all pairs of objects. Fortunately, it turns out that this is not necessary.

If a heap data structure is used to store object pairs sorted on their TOI value, then the minimum TOI
value can easily be accessed in constant time. Only the TOI value between the object pairs corresponding

“book” — 2005/9/30 — 15:44 — page 172 — #184✐
✐

✐
✐

✐
✐

✐
✐

172 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

to the minimum TOI needs to be recomputed, as well as all other TOIs having at least one object in
common with the minimum TOI object pair. All other TOI values are known to be larger than the minimum
TOI value and the rigid body states of their object pairs are unaffected by a possible collision taking place
at the contact point corresponding to the minimum TOI. Thus, their future collisions are unaffected and
the TOI values are still valid lower bounds. After having updated the TOI values of all affected object
pairs, the TOI heap needs to be updated in order for the heap property to be fulfilled.

Initially, it is a bad idea to compute TOI values for all object pairs in order to initialize the heap.
Instead, only TOI values for objects that are in close proximity are kept in the heap. If sweeping volumes
are used in the broad-phase collision detection algorithm as described in Section 12.5, then the results
from the broad-phase collision detection algorithm yield object pairs that may collide in the near future.
Whenever an object pair is reported by the broad-phase collision detection algorithm, which is not already
in the heap, it is inserted into the heap.

To keep the storage requirements for the heap from accumulating to quadratic size, it is beneficial to
remove object pairs from the heap when they are far from each other. First intuition might suggest simply
to remove object pairs when they are no longer reported by the broad-phase collision detection algorithm.
However, this can have fatal side-effects. Imagine a ball bouncing up and down on a fixed plane. The
TOI value between the plane and the ball will constantly be added and then removed from the heap, thus
yielding a substantial overhead in maintaining the heap data structure. A better solution is to approach the
removal of heap elements in a lazy manner. That is, TOI values are only removed from the heap if the
object pair of the minimum TOI is no longer close to each other.

Figure 6.29 illustrates how the TOI heap works and Figure 6.30 shows a pseudocode version of the
algorithm.

In most cases, the TOI heap time-stepping method is extremely fast, especially in cases with many
fast-moving objects. It is beneficial in computer games such as flight simulators, where there is almost
no static contact. However, the algorithm will have difficulties with rotating objects that have large aspect
ratios. For instance, a see-saw configuration can exhibit slow convergence for the TOIs corresponding to
impact with the ground. This is because rmax is very large, and d, is small.

The same behavior of slow convergence of the TOIs, can be seen when objects are in static contact.
Here, d becomes very small causing the computed TOI-values to be very small. Stacking of objects can
cause a simulator to come to a halt, due to the computations involved in updating the TOI values and
taking time-steps close to zero.

Note that the entire algorithm actually only needs to resolve a single-point collision between any two
objects. There is no need for sequential or simultaneous collision resolving.

6.4 Fixed Stepping with Separation of Collision and Contacts

Besides the convergence problems of the time-stepping approach described in Section 6.3, it has other
serious flaws. It turns out that these flaws stem from the basic nature of doing time-integrating of the free
motion of the rigid bodies and then resolving collisions. Any time-stepping method taking this approach
to impulse-based simulation will thus suffer from the same flaws. In [Guendelman et al., 2003], the basic
nature and cause of these flaws was explained and a new time-integration method was proposed as a

“book” — 2005/9/30 — 15:44 — page 173 — #185✐
✐

✐
✐

✐
✐

✐
✐

6.4 PHYSICS-BASED ANIMATION 173

1-2�

1-3�

3-4�

2-3�

TOI Heap�

1-4�
2-4�

TOI�
estimator�

Narrow Phase�
Collision Detection�

1�
4�

3�
2�

Bodies�

Closest Points�

TOI�

t�i�

ODE Solver�
Integrate from t�i� to t�i+1�

t�i+1�

Figure 6.29: Conceptual drawing of how the TOI heap works to control the time-stepping.

solution. This new time-stepping method is the subject of this section. We will discuss the problems of
implementing an efficient and robust simulator based on this time-stepping method.

In a traditional time-stepping method, the equations of motion (22.81) are integrated. That is, the
first-order coupled differential equations

d

dt
rcm = vcm

d

dt
q =

1

2
[0,ω] q, (6.150a)

d

dt
vcm =

F

m

d

dt
Lcm = τ cm, (6.150b)

are numerically integrated. Here, rcm is the position of the center of mass, vcm is the linear velocity of the
center of mass, and F is the total force acting on the center of mass, Lcm = Iω is the angular momentum
w.r.t. center of mass, I is the inertia tensor, and ω is the angular velocity. τ cm is the torque. q is the
orientation represented as a quaternion after the numerical integration collision resolving is performed.
In Figure 6.31 an example simulation of a box on an inclined plane using the traditional time-stepping
strategy is shown. In the example, the coefficient of restitution is one, and the coefficient of friction is
large enough to prevent the box from sliding down the plane. Initially the box is at rest, however, after
having performed the first integration the box will have gained linear velocity, due to gravity acting on
the box. During collision resolving a collision impulse is applied to the box and the collision impulse
will change the linear velocity of the box, so it no longer will be colliding with the plane. However, since
the coefficient of restitution is one, the linear velocity after collision resolving is pointing in the normal
direction of the plane. This means when integration is performed again, the box will fly up in the air,

“book” — 2005/9/30 — 15:44 — page 174 — #186✐
✐

✐
✐

✐
✐

✐
✐

174 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

algorithm toi-heap-time-stepping()
while TOI(b, b′) at top of heap=tcur

narrow-collision(b, b′)
contacts = contact-determination(b,b′)
collision-resolve(contacts)
recompute all TOI’s where b is part of
recompute all TOI’s where b′ is part of
if b and b′ no longer close
remove TOI(b, b′) from heap

end if
end while
tnext = TOI at top of heap
∆t = tnext − tcur

overlaps = broad-phase(∆t)
for each overlap(b, b′) in overlaps

if not TOI(b, b′) exist
compute TOI(b, b′)
insert TOI(b, b′) in heap

end if
next overlap(b, b′)
tnext = TOI at top of heap

integrate forward by tnext − tcur

end algorithm

Figure 6.30: Pseudocode illustrating how to use the TOI heap for time-stepping. The pseudocode replaces
the body of the while-loop in Figure 6.26.

gravity will then work on the box, and eventually the box will fall down on the plane again, but it will hit
the plane at a lower position. Thus, the box seems to bounce downward on the plane. The same artifact
causes objects resting on the ground to vibrate, making it impossible to create high stacks of objects.

The novelty of the work in [Guendelman et al., 2003] is to split the numerical integration of (6.150)
into two separate phases causing a separation of the collision resolving from the contact handling to give
the following simulation loop:

1. Collision resolving

2. Advance the velocities using (6.150b)

3. Contact handling

4. Advance the positions using (6.150a)

The step given by (6.150b) is termed the velocity update and the step by (6.150a) the position update.
They are both handled by a single explicit Euler step.

In [Guendelman et al., 2003] a different approach is taken to collision resolving: a fixed number of
iterations are performed over all the contact points. Thus, after having performed the collision resolving,
there might still be colliding contacts.

“book” — 2005/9/30 — 15:44 — page 175 — #187✐
✐

✐
✐

✐
✐

✐
✐

6.4 PHYSICS-BASED ANIMATION 175

g�

(a) Initial state, box at rest

g�

v�

(b) Integration of first time-step

g�

J�n�

J�t�
J�

(c) Collision resolving in first time-step

g�

v�

(d) Result for first time-step

g�

v�

(e) Integration for next time-step

g�

(f) Several time-steps later

Figure 6.31: Box at rest on inclined plane, coefficient of restitution is one, friction is large enough to keep
box from sliding. However, due to the nature of the time-stepping method, box starts to bounce down
inclined plane.

“book” — 2005/9/30 — 15:44 — page 176 — #188✐
✐

✐
✐

✐
✐

✐
✐

176 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

algorithm time-step(∆t)
for 5 iterations

collision resolving
next iteration
velocity-update
tmp = epsilon
epsilon = -1
for 10 iterations

epsilon += 1/10
contact-handling

next iteration
shock-propagation
epsilon = tmp
position-update
tcur = tcur + ∆t

end algorithm

Figure 6.32: Pseudocode of the separated collision and contact time integration method. In
[Guendelman et al., 2003] 5 collision resolving iterations and 10 contact handling iterations are used.

Similarly, when doing the contact handling, a fixed number of iterations is used. Contact handling is
different from collision resolving in several aspects. For instance, the coefficient of restitution is set to 1
and incrementally raised so that in the last iteration it has value zero. This has the effect of slowing down
objects before they are stopped. Also, more iterations are used than in the collision resolving.

Shock propagation is done immediately after the last contact handling iteration. Shock propagation
also uses a restitution coefficient of zero. Furthermore, objects in a stack are cleverly fixated and unfixated
while iterating over the contact points. Together, this has the effect of propagating a shock through a stack
of objects, correcting faulty behavior. Note that contact handling is needed before shock propagation,
otherwise objects will not feel the weight of each other.

As with the collision resolving, colliding contact points are not guaranteed to be completely resolved
after the last contact handling and shock propagation iterations, even though the coefficient of restitution
is zero in these cases. This should be clear from the two balls on the plane example in Section 6.2.1.

Figure 6.32 shows a pseudocode version of the new time-stepping method.
The predicted positions of objects are used for the collision detection queries. This means that before

each iteration of the collision resolver, contact handler, and the shock propagation, the predicted position
is computed before doing a collision detection query. The collision detection query will therefore return
future expected colliding contact points. These contact points are used to change the current velocities
such that penetration is avoided. However, having altered the velocities, one must update the predicted
positions in the following iteration. The predicted positions are computed taking a single explicit Euler
step on (6.150a).

Figure 6.33 shows pseudocode of the collision resolving. Contact handling is similar to collision
resolving. Shock propagation is similar to the contact handling, however there are some significant dif-
ferences. A contact graph is built and contact points are processed in an order corresponding to their

“book” — 2005/9/30 — 15:44 — page 177 — #189✐
✐

✐
✐

✐
✐

✐
✐

6.4 PHYSICS-BASED ANIMATION 177

algorithm collision-resolve
move all bodies to predicted locations
collision detection
order contact points by penetration depth
for each contact point apply collision law

end algorithm

Figure 6.33: Collision resolving consists of a single iteration over all contacts.

algorithm shock-propagation-handling
move all bodies to predicted locations
collision detection
compute contact graph
for each stack layer bottom up order

order contact points in layer by penetration depth
for each contact point apply collision law

next layer
end algorithm

Figure 6.34: Shock propagation. This is similar to collision resolving except that contacts are processed
in a bottom-to-top stack layer fashion.

placement in the contact graph. The contact graph is used to analyze if objects are stacked on top of each
other. Afterward, contact points are organized into disjoint sets representing the stack layers in a stack.
These layers are processed in a bottom-to-top fashion using a coefficient of restitution equal to zero, and
setting lower bodies to be fixed. That is, they have infinite mass for this computation. Figure 6.34 shows
a pseudocode version of shock propagation.

Taking large fixed time-steps is an advantage from a computational viewpoint, and thus very attractive
for large-scale simulations. However, if time-steps are too large, tunneling or overshooting can easily
occur. To reduce the chance of this simulation artifact, the time-step can be limited; for instance, by
making sure that the fastest moving object does not move further than some specified fraction of the
smallest bounding box width of the smallest object. This can definitely be incorrect, but seems to work
well in practice.

In [Guendelman et al., 2003] after having applied an impulse to a contact point, the collision results are
reevaluated between the object pairs for that contact point. That is, the object pairs’ predicted positions are
updated and the narrow-phase collision detection query is repeated. This is done in the hope that resolving
a colliding contact point may change the predicted positions, such that the object pair will no longer be
colliding. The method outlined here corresponds to the optimized method in [Guendelman et al., 2003].

There are a few publicly available implementations of the method using an even more optimized
approach, in the sense that fewer collision detection queries are performed. For instance, one can reduce
the number of iterations to just one for both the collision resolving and contact handling. Furthermore, a
single collision detection query could be run and the same contact points can be reused for the collision

“book” — 2005/9/30 — 15:44 — page 178 — #190✐
✐

✐
✐

✐
✐

✐
✐

178 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Penetration in stack layer 2�

(a) Shock propagation results in Figure 6.35(b)

Penetration in stack layer 1�

(b) Shock propagation results in Figure 6.35(a)

Figure 6.35: Errors cannot be corrected by shock propagation if there are cyclic dependencies.

resolving, the contact handling, and the shock propagation. This, of course, will increase the chance of
artifacts such as penetrations, tunneling, and overshooting. On the other hand, it will yield a speed-up of a
factor of 10–16 depending on the number of iterations and the kind of collision detection algorithms one
chooses to use.

Finally, the purpose of shock propagation is to fix simulation errors. Therefore it can be replaced
by other error-correcting methods, such as the projection error-correction explained in Section 7.10 and
Section 7.14. These have the advantage of being able to completely fix penetration errors. Note that the
propagation that occurs from the bottommost layer of a stack to the top, has trouble fixing errors for cyclic
configurations as illustrated in Figure 6.35.

6.4.1 Computing Stack Layers
Contact graphs are easily computed [Erleben, 2005], a contact group is a subset of objects in the configu-
ration, all in mutual contact with each other. Edges are created between objects if they are in contact and
contact points are stored directly in these edges. Thus, we want to analyze a contact group for its stack
structure and if possible, compute stack layers of the contact group.

A stack is defined as a set of objects being supported by one or more fixed objects. A cup on top of
a table is a stack. The table is the fixed body and the cup is supported by the table. Objects in a stack
can be assigned a number indicating how far away they are from the fixed object supporting them. This
number is an indication of the height of the object in the stack. Thus, all fixed objects in a configuration
have a stack height of zero. Nonfixed objects in direct contact with the fixed objects have a stack height
of one. Nonfixed objects in direct contact with objects with stack height one, but not in contact with any
fixed objects, have a stack height of two. A simple example is shown in Figure 6.36. This definition of
stack height does not give a unique sense of an up-and-down direction as is commonly known from the
real world. This is illustrated in Figure 6.37. Notice the position of the object with the largest stack height.
An object is said to be closer to the bottom of the stack compared to another object if the stack height of
the object is lower than the other object. Similarly, the bottommost objects are those having the lowest

“book” — 2005/9/30 — 15:44 — page 179 — #191✐
✐

✐
✐

✐
✐

✐
✐

6.4 PHYSICS-BASED ANIMATION 179

0�

1�

3�

2�2�

fix
ed

�

Figure 6.36: Simple stacked objects annotated with stack height.

1�

2�

1�3�

2�

?�

?�

0�

fixed�

Figure 6.37: Nonsimple stacked objects annotated with stack height. Free-floating objects are marked
with a question mark.

stack height, that is the fixed objects.
A free-floating object is special, since it is not in contact with any other objects; however, one may

even have an entire group of bodies, all in mutual contact with each other, but none in contact with a fixed
object. In these cases, it does not make sense to talk about assigning a stack height to the objects. Instead,
the convention can be used to assign these kinds of objects an infinite stack height to distinguish them
from objects that are part of a stack. A negative value could also be used, but is not an efficient choice for
the algorithm presented in this section.

The stack height of objects is easily computed by doing a breadth-first traversal on each contact group.
Initially, the stack height of all objects is set to infinity unless they are fixed objects, in which case their
stack height is set to zero. Also, all fixed objects are pushed onto a queue. This queue is used by the
breadth-first traversal. The initialization steps are shown in Figure 6.38.

After the initialization, the breadth-first traversal will pop an object, A, from the queue and iterate
over all incident contact graph edges to object A. For each edge it is tested to determine if the object, B,
at the other end of the edge has been visited by the traversal before. If not, this object is pushed onto the

“book” — 2005/9/30 — 15:44 — page 180 — #192✐
✐

✐
✐

✐
✐

✐
✐

180 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Queue Q
for each body in Group do

if body is fixed then
height(body)=0
Q.push(body)
visit(body) = true

else
height(body) = infinity
visit(body) = false

next body

Figure 6.38: Initialization of stack analysis algorithm. All bodies in a contact group are traversed; fixed
bodies are identified and added to a queue for further processing.

queue. The height hB of the object B is also computed as

hB ← min(hB , hA + 1). (6.151)

That is, either a shorter path to object B is already known, in which case hB is left unchanged, or it is
shorter to get to B, by going from A. The cost of taking this part is one more than the cost of getting to
object A.

During the traversal a stack layer index is computed for the edges as they are being visited. A stack
layer is defined by two succeeding stack heights, such as 0 and 1. These two stack heights define a subset
of objects in the contact group. That is, stack layer 0 is defined as all objects with stack height 0 and stack
height 1, and all edges between these objects. Stack layer 1 is defined by all objects with stack height 1
and stack height 2, and all edges between these objects, and so on. This means that an edge between an
object with height i and another object with height i + 1 is given stack layer index i.

Note that there is some subtlety with edges between objects with the same object height. As an
example, for stack layer i, if we have an edge between two objects both with stack height i + 1, then the
edge belongs to stack layer i. Ideally an edge between two objects with height i should also be added to
stack layer i. However, this is not done because the stack layers are processed in a bottom-up fashion,
thus contact points belonging to the edge between objects at height i were taken care of when stack layer
i− 1 was processed.

Figure 6.39 shows pseudocode for assigning stack heights to objects and stack layer indices to edges.
After having assigned stack heights to objects and stack layer indices to edges, it is a simple matter to

traverse these and assign them to the respective layers they belong to.
Objects are a little special. Given an object, A at stack height i, one must traverse the edges and

examine the stack heights of the objects at the other end. If an object B with stack height i− 1 is found,
then object A is safely added to stack layer i − 1; if an object C is found with stack height i + 1, then
object A is added to stack layer i. Object A can only belong to stack layer i− 1 and i; this means as soon
as two other objects have been found indicating that object A should be in these two stack layers, one can
stop traversing the remaining incident edges of object A.

Figure 6.40 shows the pseudocode for building the stack layers.

“book” — 2005/9/30 — 15:44 — page 181 — #193✐
✐

✐
✐

✐
✐

✐
✐

6.4 PHYSICS-BASED ANIMATION 181

List edges
timestamp = timestamp + 1
height = 0;
while Q not empty

A = pop(Q)
for each edge on A do

B = body on edge that is not A
if not visit(B) then
Q.push(B)
visit(B) = true

end if
height(B) = min(height(B), height(A) + 1)
if height(B) = height(A) and height(B) not 0 then
layer(edge) = height(B) -1

else
layer(edge) = min(height(B), height(A))

height = max(height,layer(edge))
if not timestamp(edge) = timestamp then

timestamp(edge) = timestamp
edges.push(edge)

end if
next edge

end while

Figure 6.39: A breadth-first traversal is performed, assigning a stack height to each body, equal to the
number of edges on the minimum path to any fixed body. Edges of the contact group are collected into a
list for further processing.

“book” — 2005/9/30 — 15:44 — page 182 — #194✐
✐

✐
✐

✐
✐

✐
✐

182 CHAPTER 6. IMPULSE-BASED MULTIBODY ANIMATION

Group layers[height +1]
for each edge in edges do

idx = layer(edge)
add contacts(edge) to layers(idx)

next edge

for each body A in Group do
if height(A)=infinity then

continue
end if
in_lower = false
in_upper = false
for each edge on A do

B = other body on edge
if height(B) > height(A) then
in_upper = true

end if
if height(B) < height(A) then
in_lower = true

end if
if in_upper and in_lower then
break

next edge
if in_upper then

layers[height(A)].push(body)
end if
if in_lower then

layers[height(A) - 1].push(body)
end if

next body
return layers

Figure 6.40: Building stack layers by processing all edges and bodies examining their stack height and
layer indices.

“book” — 2005/9/30 — 15:44 — page 183 — #195✐
✐

✐
✐

✐
✐

✐
✐

7

Constraint-Based Multibody Animation

Constraint-based simulation is usually grouped in four formulations: force-based, velocity-based, kinetic
energy-based, and motion-space based. This chapter will discuss the force- and velocity-based meth-
ods. We refer the reader to [Milenkovic et al., 2001, Schmidl, 2002] for the kinetic energy-method and to
[Redon et al., 2003] for the motion-space method.

In force-based formulations, the exact contact force at a given time is found and then used in an
ordinary differential equation describing the motion of the bodies in the scene. In a sense, a force-based
formulation sees the instantaneous picture of the configuration, while a velocity-based formulation on the
other hand, sees the effect of the dynamics over an entire time interval. Imagine that the true physical
contact force, f true(t), is somehow known. The impulse J in the time interval ∆t is then given as

J =

∫ ∆t

0
f true(t)dt. (7.1)

and with Newton’s second law of motion one can solve for the velocity, v∆t, as follows
∫ ∆t

0
m

dv

dt
dt =

∫ ∆t

0
f true(t) (7.2a)

m (v∆t − v0) = J (7.2b)

A new position can now be found by integrating the velocity. The “force,” f , which we try to solve for in
a velocity-based formulation can be interpreted as

J = ∆tf , (7.3)

which numerically will produce the same movement as if we had known the true contact force and com-
puted the time integral. Since velocity-based formulations solve for impulses, they are also called impulse-
based formulations, not to be mistaken with impulse-based simulation, which is an entirely different sim-
ulation paradigm, as discussed in Chapter 6.

A force-based formulation on the other hand, tries to compute the force, f true(t), then it will use the
force to solve for the acceleration of the motion, which is then integrated once to yield velocities and twice
to yield a new position.

Force-based formulations cannot handle collisions, and we must switch to an impulse-momentum law
at the point of collision [Baraff, 1989, Anitescu et al., 1996, Pfeiffer et al., 1996b, Chatterjee et al., 1998].
Force-based formulations also suffer from indeterminacy and inconsistency [Baraff, 1991, Stewart, 2000].
The velocity-based formulation suffers from none of these drawbacks. Another advantage of the impulse-
based formulation is that it does not suffer from the small time-step problem in the same extent as the
force-based formulation, meaning that larger time-steps can be taken during the simulation. The small
time-step problem is described by Milenkovic and Schmild [Milenkovic et al., 2001, Schmidl, 2002].

183

“book” — 2005/9/30 — 15:44 — page 184 — #196✐
✐

✐
✐

✐
✐

✐
✐

184 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Velocity-based formulations in constraint-based methods are widely popular and used, e.g., Open Dy-
namics Engine [ODE, 2005], Karma from MathEngine [Karma, 2005], and Vortex from Critical Mass
Labs [Vortex, 2005]. In the following, we will present the classical velocity-based constraint formu-
lation [Stewart et al., 1996, Stewart et al., 2000], give a possible object-oriented implementation design,
and discuss various practical issues. Furthermore, we will discuss work presented [Anitescu et al., 1997,
Sauer et al., 1998, ODE, 2005].

Many papers and books written on velocity-based formulations use a rather high and abstract level of
mathematical notation together with a great amount of “long forgotten” analytical mechanics. There is a
widespread notation and many small variations.

7.1 Equations of Motion

From classical mechanics, we have the Newton-Euler equations (see Section 22.1 for details), describing
the motion for all bodies. For the i’th body, the mass of body i is given by mi and the inertia tensor by I i,
the position is given by ri and the velocity of the center of mass as vi, the orientation is represented by
the quaternion qi and the angular velocity by ωi. The Newton-Euler equations for the i’th body look like
this (summations are taken over all contact points):

ṙi = vi (7.4a)

q̇i = 1
2ωiqi (7.4b)

v̇i = m−1
i

∑

jk=i

fk −m−1
i

∑

ik=i

fk + m−1
i f ext

i (7.4c)

ω̇i = I−1
i

∑

jk=i

rkj × fk − I−1
i

∑

ik=i

rki × fk (7.4d)

− I−1
i ωi × Iiωi + I−1

i τ ext
i (7.4e)

The dot-notation means the total time derivative d
dt and is used to ease readability. Observe that f k denotes

the contact force at the k’th contact. For the time being, we will ignore joints and motors. The effect of all
external forces on the center of mass is given by f ext

i and the total torque from external forces is given
by τ ext

i .
For notational convenience, we introduce a contact table. Consider a total of K contacts, and assign

a unique number k to each contact. For each contact, we know the indices ik and jk of the two incident
bodies. We use the convention that ik < jk. We also have a contact normal nk and a contact point pk both
specified in the world coordinate system, and with the convention that the contact normal points from the
body with the smallest index to the body with the largest index. This is illustrated in Figure 7.1. Note that
we can never have ik = jk. For each contact we can compute a vector from the center of mass, r i, of an
incident body with index i, to the point of contact pk, that is,

rki = pk − ri (7.5)

“book” — 2005/9/30 — 15:44 — page 185 — #197✐
✐

✐
✐

✐
✐

✐
✐

7.1 PHYSICS-BASED ANIMATION 185

B�1�

B�2�

B�3�

B�4�

p�1�
p�2�

p�3�

p�4�

n�3� n�4�

n�2� n�1�

r�21� r�11�

r�22�

r�32�

r�34�

r�44�

r�43�

r�13�

r�1�

r�2�

r�4�

r�3�

Figure 7.1: The contact normal convention and notation.

The Newton-Euler equations can now be written as

ṡ = Su (7.6a)

u̇ = M−1 (CNf + fext) . (7.6b)

Now we will introduce some matrix notation, which will allow us to write the Newton-Euler equations for
all bodies in a single equation. The position and orientation of n bodies may be concatenated into a single
generalized position and orientation vector, s ∈ R7n:

s = [r1, q1, r2, q2, · · · , rn, qn]T . (7.7)

Similarly, we can write the generalized velocity vector u ∈ R6n as

u = [v1,ω1,v2,ω2, · · · ,vn,ωn]T . (7.8)

For the time being, the frictional effects will be ignored, implying that the contact force can be written as

fk = fknk. (7.9)

This means that we only need to remember the magnitude, fk, of the normal force, and these can now be
concatenated into a single vector f ∈ RK

f = [f1, f2, · · · , fK]T . (7.10)

“book” — 2005/9/30 — 15:44 — page 186 — #198✐
✐

✐
✐

✐
✐

✐
✐

186 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

The external forces, torques, and velocity-dependent forces can also be concatenated into a vector, f ext ∈
R6n,

f ext =
[
f ext

1 , τ ext
1 − ω1 × I1ω1, · · · ,f ext

n , τ ext
n − ωn × Inωn

]T
. (7.11)

Given qi = [si, xi, yi, zi]
T ∈ R4, we can write the rotation as a matrix Qi ∈ R4×3 as:

Qi =
1

2

⎡

⎢⎢⎣

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

⎤

⎥⎥⎦ . (7.12)

where 1
2ωiqi = Qiωi, as shown in Proposition 18.47. The rotations can now be concatenated into a

matrix S ∈ R7n×6n,

S =

⎡

⎢⎢⎢⎢⎢⎣

1 0
Q1

. . .
1

0 Qn

⎤

⎥⎥⎥⎥⎥⎦
, (7.13)

Matrix S is also illustrated in Figure 7.2. The generalized mass matrix M ∈ R6n×6n is

M =

⎡

⎢⎢⎢⎢⎢⎣

m11 0
I1

...
mn1

0 In

⎤

⎥⎥⎥⎥⎥⎦
(7.14)

where 1 is the identity matrix. The layout of the mass matrix is illustrated in Figure 7.3. The matrix of
contact normals N ∈ R3K×K is

N =

⎡

⎢⎢⎢⎣

n1 0
n2

. . .
0 nk

⎤

⎥⎥⎥⎦
, (7.15)

as shown in Figure 7.4, and the matrix of contact conditions C ∈ R6n×3K is

C lk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 for l = 2ik − 1

−r×
kik

for l = 2ik
1 for l = 2jk − 1

r×
kjk

for l = 2jk

0 otherwise

. (7.16)

“book” — 2005/9/30 — 15:44 — page 187 — #199✐
✐

✐
✐

✐
✐

✐
✐

7.1 PHYSICS-BASED ANIMATION 187

7n�

6n�

S =�

3�

3�

4�

3�

1�

Q�1�

1�

Q�2�

1�

Q�n�

Figure 7.2: The S matrix layout.

Here r× ∈ R3×3 is the skew-symmetric matrix given by

r× =

⎡

⎣
0 −r3 r2

r3 0 −r1

−r2 r1 0

⎤

⎦ . (7.17)

It is easy to show that r×a = r×a (see Chapter 18). Every column of C corresponds to a single contact
and every row to a single body (see Figure 7.5).

Using an Euler scheme as described in Chapter 23, we can write the discretized equations of motion
as follows,

st+∆t = st + ∆tSut+∆t, (7.18a)

ut+∆t = ut + ∆tM−1
(
CNf t+∆t + f ext

)
. (7.18b)

Here, superscript denotes the time at which a quantity is computed. Note that the matrices depend on time
through u and s. If they are evaluated at time t, then we have a semi-implicit method, and if they are
evaluated at time t + ∆t, then we have an implicit method.

“book” — 2005/9/30 — 15:44 — page 188 — #200✐
✐

✐
✐

✐
✐

✐
✐

188 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

m�1�

I�1�

m�2�

I�2�

m�n�

I�n�

6n�

6n�

M =�

3�

3�

3�

3�

Figure 7.3: The M matrix layout.

1�

N =� 3K�

K�

2�

K�

3�

1�

Figure 7.4: The N matrix layout.

“book” — 2005/9/30 — 15:44 — page 189 — #201✐
✐

✐
✐

✐
✐

✐
✐

7.2 PHYSICS-BASED ANIMATION 189

6n�

3K�

-1�

-r�kik�

1�

r�kjk�

k�

i�k�

j�k� 6�

6�

3�

C =�

Figure 7.5: The C matrix layout.

7.2 The Contact Condition

The projection matrix, P k ∈ R3K×3 will be needed for further analysis of the k’th contact point. Its
transpose is defined as

P T
k =

⎡

⎣

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

∣∣∣∣∣∣
. . .

∣∣∣∣∣∣

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

∣∣∣∣∣∣

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

∣∣∣∣∣∣

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

∣∣∣∣∣∣
. . .

∣∣∣∣∣∣

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

⎤

⎦ . (7.19)

That is, the k’th 3×3 submatrix is set to the identity matrix. The normal component of the relative contact
velocity of the k’th contact point is given by

nT
k P T

k CT u = nT
k (vjk + ωjk × rkjk

)− nT
k (vik + ωik × rkik) . (7.20)

Notice that multiplying by the projection matrix will mask out the k’th contact conditions. If body B ik
and Bjk touch at contact point pk at time t, then the complementarity condition for the velocities must

“book” — 2005/9/30 — 15:44 — page 190 — #202✐
✐

✐
✐

✐
✐

✐
✐

190 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

hold
nT

k P T
k CT ut+∆t ≥ 0 compl. to fk ≥ 0. (7.21)

A complementarity condition means that if we have two conditions, then one is nonzero and the other is
zero or vice versa. Stewart and Trinkle [Stewart et al., 1996] originally used a complementarity condition
on position. Anitscu and Potra [Anitescu et al., 1997] discovered that using the velocity complementarity
problem guarantees solution existence. Sauer and Schömer [Sauer et al., 1998] expanded the velocity
formulation further by handling future potential contact points.

If there is no contact at the potential contact point pk at time t, then the following linearized comple-
mentarity condition holds:

nT
k P T

k CT ut+∆t ≥ νk

∆t
compl. to fk ≥ 0. (7.22)

Later we will go into details on the linearizing. If we use νk = 0 for all touching contacts, then we can
formulate a complementarity condition for all contacts (touching and potential ones) as

NT CT ut+∆t ≥ ν

∆t
compl. to f ≥ 0, (7.23)

with ν = [ν1, . . . , νK]T ∈ RK . Inserting (7.18b) into (7.23) gives

NT CT
(
ut + ∆tM−1

(
CNf t+∆t + f ext

))
− ν

∆t
≥ 0. (7.24)

Rearranging yields

NT CT M−1CN︸ ︷︷ ︸
A

∆tf t+∆t

︸ ︷︷ ︸
x

+ NT CT
(
ut + ∆tM−1f ext

)
− ν

∆t︸ ︷︷ ︸
b

≥ 0, (7.25)

which results in a linear complementarity problem (LCP) (see Section 19.10) of the form

Ax + b ≥ 0 compl. to x ≥ 0, (7.26)

where A ∈ RK×K and x, b ∈ RK . Entry l, k of A is

Alk = δiliknT
l

(
1

mik
1− r×

lil
I−1

ik
r×

kik

)
nk

− δiljknT
l

(
1

mjk

1− r×
lil

I−1
jk

r×
kjk

)
nk

− δjliknT
l

(
1

mik

1− r×
ljl

I−1
ik

r×
kik

)
nk

+ δjljkn
T
l

(
1

mjk

1− r×
ljl

I−1
jk

r×
kjk

)
nk, (7.27)

with the Kronecker symbol being

δij =

{
1 for i = j,

0 for i ̸= j.
(7.28)

“book” — 2005/9/30 — 15:44 — page 191 — #203✐
✐

✐
✐

✐
✐

✐
✐

7.3 PHYSICS-BASED ANIMATION 191

7.3 Linearizing
Sauer and Schömer [Sauer et al., 1998] use a linearized contact condition in (7.23). In the following, we
will derive the linearized contact condition. The linearization serves as a measure of when a potential
contact constraint should be switched on. This allows bigger time-steps to be taken while keeping the
error low. Taking the same time-step size without the linearization will imply a larger approximation
error.

The k’th potential contact point may be represented by the closest points pik and pjk
between two

bodies, Bik and Bjk , which eventually meet and form the k’th contact point. The closest points depend on
the position and orientation of the bodies. If we let the vector sk ∈ R14 be the generalized position vector
of the two bodies, where sk’s function dependency of time has been omitted for readability,

sk = [rik , qik , rjk , qjk] , (7.29)

the minimal distance between the two bodies, dk(sk), is

dk(sk) = nT
k (sk)

(
pjk
− pik

)
≥ 0, (7.30)

where nk is a unit vector pointing from pik to pjk
. A first-order Taylor-expansion of dk(sk) at s ′

k is

dk(sk) = dk(s
′

k) +
(
∇skdk(s

′
k)
)T (

sk − s ′
k

)
+ O(∆t2). (7.31)

Notice that ∇sk is the functional derivative introduced in Section 18.4. If we look at the backward differ-
ence of the time derivative of the generalized position vector, we find

d

dt

(
s t+∆t

k

)
=

s t+∆t
k − s t

k

∆t
+ O(∆t). (7.32)

Rearranging yields

s t+∆t
k = s t

k +
d

dt

(
s t+∆t

k

)
∆t + O(∆t2) (7.33)

Again, we approximate ∇skdk(s ′
k) at s t+∆t

k using Taylor’s Theorem by taking the zeroth order expan-
sion to get

∇skdk(s
′

k) = ∇skdk(s
t+∆t

k) + O(∆t). (7.34)

Substituting (7.33) for sk in (7.31) gives

dk(s
t+∆t

k) ≈ dk(s
′

k) +
(
∇skdk(s

′
k)
)T
(

s t
k +

d

dt

(
s t+∆t

k

)
∆t− s ′

k

)
(7.35)

= dk(s
′

k) +
(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

)

+ ∆t
(
∇skdk(s

′
k)
)T d

dt

(
s t+∆t

k

)
. (7.36)

“book” — 2005/9/30 — 15:44 — page 192 — #204✐
✐

✐
✐

✐
✐

✐
✐

192 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Now we insert (7.34) in the last term and get

dk(s
t+∆t

k) ≈ dk(s
′

k) +
(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

)

+ ∆t
(
∇skdk(s

t+∆t
k)

)T d

dt

(
s t+∆t

k

)
.

(7.37)

Recall that the distance function is actually a function of time, dk(sk(t)), so by the chain rule we have

d

dt

(
dk(s

t+∆t
k)

)
=
(
∇dk(s

t+∆t
k)

)T d

dt

(
st+∆t

k

)
. (7.38)

Inserting (7.38) into (7.37) yields

dk(s
t+∆t

k) ≈ dk(s
′

k) +
(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

)

+ ∆t
d

dt

(
dk(s

t+∆t
k)

)
.

(7.39)

From past work such as [Baraff, 2001, Baraff, 1994], we know

d

dt
(dk(t)) = nT

k ((vjk + ωjk × rjk)− (vik + ωik × rik)) . (7.40)

Using this in (7.39) together with (7.30), we derive

dk(s
′

k) +
(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

)

+ ∆tnT
k

((
v t+∆t

jk
+ ω t+∆t

jk
× r t+∆t

jk

)

−
(
v t+∆t

ik
+ ω t+∆t

ik
× r t+∆t

ik

))
≥ 0.

(7.41)

Rearranging, we have

nT
k

((
v t+∆t

jk
+ ω t+∆t

jk
× r t+∆t

jk

)
−
(
v t+∆t

ik
+ ω t+∆t

ik
× r t+∆t

ik

))

≥ − 1

∆t

(
dk(s

′
k) +

(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

))
.

(7.42)

Recall that the left side of this equation is in fact nT
k P T

k CT u t+∆t. It now follows that

nT
k P T

k CT u t+∆t ≥ − 1

∆t

(
dk(s

′
k) +

(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

))
. (7.43)

Comparing with (7.22), we write

νk = −
(
dk(s

′
k) +

(
∇skdk(s

′
k)
)T (

s t
k − s ′

k

))
. (7.44)

All curvature information is lost with the linearized constraints, which implies that a step of length O(∆t)
introduces errors of O(∆t2). Hence the approach of Sauer and Schömer prevents the penetration of
increasing to more than O(h2).

“book” — 2005/9/30 — 15:44 — page 193 — #205✐
✐

✐
✐

✐
✐

✐
✐

7.4 PHYSICS-BASED ANIMATION 193

Figure 7.6: The friction pyramid approximation. We have chosen η = 6; observe that the dhk
’s positively

span the friction pyramid.

7.4 The Frictional Case
In this section we will expand the formulation given in (7.26) to include friction. For each contact, we use
two orthogonal unit vectors t1k and t2k , which span the tangential plane at the k’th contact. Together with
the normal vector nk, the three vectors form an orthogonal coordinate system (see Definition 18.6). The
friction cone at the k’th contact is approximated by a discretized version having η direction vectors dhk

with h = 1, . . . , η, where η = 2i for all i ∈ N and i ≥ 2. The direction vectors are concatenated into a
matrix Dk ∈ R3×η

Dk = [d1k , . . . ,dηk] , (7.45)

where
dhk

= cos

(
2(h − 1)π

η

)
t1k + sin

(
2(h− 1)π

η

)
t2k . (7.46)

We have transformed the spatial cone limiting the friction force due to Coulomb’s friction law and called
the friction cone into a friction pyramid with η facets, as illustrated in Figure 7.6. For each direction vector
we will use βhk

for the magnitude of the component of friction force in the direction of dhk
. As before,

we can build up a vector of all friction components βk ∈ Rη,

βk = [β1k , . . . ,βηk]T . (7.47)

The modification of the equations of motion (7.6) is the definition of contact force f k from (7.9), which
we now write as

fk = fknk + Dkβk. (7.48)

“book” — 2005/9/30 — 15:44 — page 194 — #206✐
✐

✐
✐

✐
✐

✐
✐

194 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

1�

2�

K�

3K�

eta K�

eta�

3�

D =�

Figure 7.7: The D matrix layout.

As before, we use matrix notation, which will allow us to write the equations of motion in a single matrix
equation. The generalized acceleration is again described by the Newton-Euler equations

u̇ = M−1 (C (Nf + Dβ) + f ext) . (7.49)

We need a vector, β ∈ RηK

β =
[
βT

1 , . . . ,βT
K ,
]T (7.50)

That is the concatenation of the βk-vectors; we also need the matrix D ∈ R3K×ηK

D =

⎡

⎢⎢⎢⎣

D1 0
D2

...
0 DK

⎤

⎥⎥⎥⎦
(7.51)

Figure 7.7 illustrates the D matrix layout. Using an Euler scheme gives us the discretized approximation

u t+∆t = u t + ∆tM−1 (C (Nf + Dβ) + f ext) . (7.52)

In order to model the relationship between the normal force and the friction, known as Coulomb’s friction
law, we need to add two complementarity conditions for the friction forces in addition to the previous
complementarity condition for the normal force. We have a total of three complementarity conditions for
the k’th contact:

λkek + DT
k P T

k CT u t+∆t ≥ 0 compl. to βk ≥ 0, (7.53a)

µkfk − eT
k βk ≥ 0 compl. to λk ≥ 0, (7.53b)

nT
k P T

k CT u t+∆t − νk

∆t
≥ 0 compl. to fk ≥ 0. (7.53c)

where µk is the friction coefficient at the k’th contact point and ek = [1, . . . , 1]T ∈ Rη. The symbol λk

is a Lagrange multiplier with no real physical meaning, but it is an approximation to the magnitude of the
relative tangential contact velocity. Possible contact states modeled by (7.53) are:

“book” — 2005/9/30 — 15:44 — page 195 — #207✐
✐

✐
✐

✐
✐

✐
✐

7.4 PHYSICS-BASED ANIMATION 195

Separation: In this case, nT
k P T

k CT u t+∆t − νk
∆t > 0, and (7.53c) implies that fk = 0. Substitution of

this into (7.53b), implies that βk = 0, i.e. there is no friction force. From (7.53a) we see that λk

can take on any value without violating the conditions.

Sliding: For sliding, DT
k P T

k CT u t+∆t is nonzero, since the columns of Dk positively span the entire
contact plane. There must be at least one direction vector such that dT

hk
P T

k CT u t+∆t < 0, and
since the corresponding βhk

> 0, we must have λk > 0 for (7.53a) to hold, and (7.53b) implies that
βhk

= µkfk.

Rolling: In this case, DT
k P T

k CT u t+∆t is zero, and (7.53a) implies that λk ≥ 0. There are two interest-
ing cases:

Case 1: Choosing λk = 0 (7.53a) implies that βk ≥ 0. This means that the contact impulse can
range over the interior and the surface of discretized friction cone.

Case 2: Choosing λk > 0 (7.53a) implies that βk = 0, (7.53b) will only be fulfilled if µkfk = 0.
This is a nongeneric case that occurs by chance in the absence of a frictional impulse, that is,
when µk = 0.

We can now proceed analogously to the frictionless case and try to insert (7.52) into (7.53a) and (7.53c):

λkek + DT
k P T

k CT
(
u t + ∆tM−1 (C (Nf + Dβ) + f ext)

)
≥ 0

compl. to βk ≥ 0, (7.54a)

nT
k P T

k CT
(
u t + ∆tM−1 (C (Nf + Dβ) + f ext)

)
− νk

∆t
≥ 0

compl. to f k ≥ 0. (7.54b)

Rearranging provides us with two new complementarity conditions, which replace those in (7.53a) and
(7.53c):

∆tDT
k P T

k CT M−1CNf + ∆tDT
k P T

k CT M−1CDβ

+λkek + DT
k P T

k CT u t + ∆tDT
k P T

k CT M−1f ext ≥ 0

compl. to βk ≥ 0, (7.55a)

∆tnT
k P T

k CT M−1CNf + ∆tnT
k P T

k CT M−1CDβ

+nT
k P T

k CT u t + ∆tnT
k P T

k CT M−1f ext −
νk

∆t
≥ 0

compl. to f k ≥ 0. (7.55b)

“book” — 2005/9/30 — 15:44 — page 196 — #208✐
✐

✐
✐

✐
✐

✐
✐

196 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

By rearranging the complementarity conditions (7.53b), (7.55a), and (7.55b), we can formulate the LCP-
formulation (see Section 19.10) on matrix from as

⎡

⎣
DT CT M−1CD DT CT M−1CN E
NT CT M−1CD NT CT M−1CN 0

−ET µ 0

⎤

⎦ ·

⎡

⎣
∆tβ
∆tf
λaux

⎤

⎦

+

⎡

⎣
DT CT

(
u t + ∆tM−1f ext

)

NT CT
(
u t + ∆tM−1f ext

)
− ν

∆t
0

⎤

⎦ ≥ 0

compl. to

⎡

⎣
∆tβ
∆tf
λaux

⎤

⎦ ≥ 0, (7.56)

where the diagonal matrix µ ∈ RK×K is given as

µ =

⎡

⎢⎢⎢⎣

µ1 0
µ2

...
0 µK

⎤

⎥⎥⎥⎦
, (7.57)

and the matrix e ∈ RηK×K is given by

E =

⎡

⎢⎢⎢⎣

e1 0
e2

...
0 eK

⎤

⎥⎥⎥⎦
. (7.58)

That is, E consist of Rη dimensional submatrices. All submatrices on the diagonal consist of ones and of
diagonal submatrices that are 0 (see Figure 7.8). Finally, the vector λaux ∈ RK is given as

λaux = [λ1, . . . ,λK]T . (7.59)

Let the matrix A ∈ R(η+2)K×(η+2)K be defined as

A =

⎡

⎣
DT CT M−1CD DT CT M−1CN E
NT CT M−1CD NT CT M−1CN 0

−ET µ 0

⎤

⎦ , (7.60)

and the vector x ∈ R(η+2)K as

x =

⎡

⎣
∆tβ
∆tf
λaux

⎤

⎦ , (7.61)

“book” — 2005/9/30 — 15:44 — page 197 — #209✐
✐

✐
✐

✐
✐

✐
✐

7.5 PHYSICS-BASED ANIMATION 197

Figure 7.8: The E matrix layout.

and the vector b ∈ R(η+2)K as

b =

⎡

⎣
DT CT

(
u t + ∆tM−1f ext

)

NT CT
(
u t + ∆tM−1f ext

)
− ν

∆t
0

⎤

⎦ (7.62)

then we see that we have a typical LCP formulation (see Section 19.10) of the form

Ax + b ≥ 0 compl. to x ≥ 0. (7.63)

The above formulation can further be extended to include torsional friction [Trinkle et al., 2001].
Because of real-time demands, a scalable friction model for time-critical computing is important; the

constraint-based method is easily adopted to a scalable friction model by controlling the number of facets,
η, used in the friction pyramid approximation.

Several methods could be used for setting the value of η; a global control could be used based on the
amount of computation time or the total number of variables in the LCP problem (see Section 19.10). If
either of these exceed some given limits, η is decreased correspondingly.

However, local control could also be used. Often only visualization is important; accurate friction is
therefore only needed for objects seen by a user. In such cases, it is reasonable to use a low η for all
objects outside the view-frustum, and for those objects inside the view-frustum a higher η value is used.

7.5 Joints
In the previous sections we have treated the problem of contact mechanics using classical mechanics
taught in first-year undergraduate physics and linear algebra. The approach is straightforward and easy
to understand even though there are many symbols and much notation. Until now we have treated what

“book” — 2005/9/30 — 15:44 — page 198 — #210✐
✐

✐
✐

✐
✐

✐
✐

198 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

is called unilateral contacts, where unilateral refers to the “≥”-constraints on the contact forces. In this
section, we will try to generalize our formulation and include bilateral constraints. Here bilateral refers
to a “=”-constraint on the constraint forces. Bilateral constraints are used for modeling joints between the
bodies, such as hinges and ball-in-socket connections.

In this section, we will show how we can go from the formulation based on classical mechanics into a
formulation based on analytical mechanics. To achieve a more abstract and general formulation, we need
to introduce concepts of holonomic and non-holonomic constraints and Jacobians.

The analytical mechanics approach for complementarity problems has been studied amply in the liter-
ature, [Pfeiffer et al., 1996b, Anitescu et al., 1996, Anitescu et al., 1997, Anitescu et al., 2002]. A useful
reference for further reading on analytical mechanics is [Goldstein et al., 2002].

7.5.1 Holonomic Constraints

Working with constraints, we are particularly interested in the number of degrees of freedom (DOF), that
is, the minimum set of parameters needed to describe the motion in our system. For instance, a free-
moving body has six DOFs because we need at least three parameters to describe its position and at least
three parameters to describe its orientation. For two free-floating rigid bodies we have 12 DOFs, from
which we conclude that the smallest possible generalized position vector we can find will have 12 entries.

Following the conventions from previous sections, the spatial position vector sl =∈ R14 for the l’th
joint between the two bodies Bil and Bjl can be written as

sl = [ril , qil , rjl , qjl]
T . (7.64)

To facilitate notation we will not bother to write the subscript indicating the joint number or the contact
number in the following sections, so we simply write

s = [ri, qi, rj , qj]
T . (7.65)

The position vector s is not the minimum set of parameters, since we use quaternions for the represen-
tation of the orientations, and thus use four parameters instead of the minimal three for each orientation.
For describing velocities and accelerations we could use time derivatives of the quaternions, but this is
tedious, since the physics laws use angular velocities ω. Instead, we need a transformation like the one
we introduced in Section 7.1

ṡ = Su, (7.66)

where
u = [vi,ωi,vj,ωj]

T , (7.67)

and

S =

⎡

⎢⎢⎣

1 0
Qi

1
0 Qj

⎤

⎥⎥⎦ . (7.68)

“book” — 2005/9/30 — 15:44 — page 199 — #211✐
✐

✐
✐

✐
✐

✐
✐

7.5 PHYSICS-BASED ANIMATION 199

We write the position vector r ∈ R12 associated with the integrals of u as

r = [ri,θi, rj ,θj]
T , (7.69a)

= [xi, yi, zi,αi,βi, γi, xj , yj , zj ,αj ,βj , γj]
T . (7.69b)

Here θi is the integral quantities of ωi, that is,

u =
d

dt
r. (7.70)

In general, the quantities θi and θj in r do not give meaning as finite quantities, and in plain computer
graphics language you cannot use them like Euler angles to make a rotation matrix. Nevertheless, r is a
minimum spatial position vector.

When we link two rigid bodies together by a joint, then we are removing DOFs from the system,
and we can therefore find an even smaller generalized position vector. For instance, if we make a rigid
connection between the two free-floating bodies, then we can remove six DOFs because we only need to
describe the movement of one of the bodies, and the movement of the other body will follow immediately
from the movement of the first body. This means that the smallest possible generalized position vector has
six entries. From the example we see that we can at most remove six DOFs from any joint.

By definition, a holonomic constraint between two bodies Bi and Bj can be written as a function Φ
of time and spatial position vector s =∈ R14, such that we always have

Φ(t, s) = 0. (7.71)

All joint types presented by us can be modeled by time-independent holonomic constraints, meaning that
for the l’th joint we have m holonomic constraints

Φ1(s) = 0, (7.72a)
Φ2(s) = 0, (7.72b)

...
Φm(s) = 0, (7.72c)

where m is the number of degrees of freedom removed by the constraints. This type of holonomic con-
straint is called a scleronomous constraint.

Assume that the l’th joint is a ball-in-socket joint between the two bodies Bi and Bj . A ball-in-socket
joint is characterized by the fact that two points, one from each body, are always connected to each other,
meaning that we have one constraint saying the x-coordinates of the two points must be equal, another
constraint requiring equality of the y-coordinates, and a third one for equality of the z-coordinates. That
is, if we let the two points be specified by two fixed vectors r i

anc and rj
anc in the respective body frames of

“book” — 2005/9/30 — 15:44 — page 200 — #212✐
✐

✐
✐

✐
✐

✐
✐

200 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

B�i�

B�j�

l'th Joint�

r�anc�
i� r�anc�

j�

Figure 7.9: A ball in a socket joint in 2D.

the two bodies as shown in Figure 7.9, then we can formulate the geometric constraint as follows
[(

ri + R(qi)r
i
anc
)
−
(
rj + R(qj)r

j
anc
)]

x︸ ︷︷ ︸
Φ1

= 0, (7.73a)

[(
ri + R(qi)r

i
anc
)
−
(
rj + R(qj)r

j
anc
)]

y︸ ︷︷ ︸
Φ2

= 0, (7.73b)

[(
ri + R(qi)r

i
anc
)
−
(
rj + R(qj)r

j
anc
)]

z︸ ︷︷ ︸
Φ3

= 0, (7.73c)

where R(q) is the corresponding rotation matrix of the quaternion q. From the equations above it is clear
that the geometric constraint characterizing the ball-in-socket joint can be expressed as three holonomic
constraints on vector form as

Φ(s) =

⎡

⎣
Φ1(s)
Φ2(s)
Φ3(s)

⎤

⎦ = 0. (7.74)

Note that the small example is not only illustrative; it actually provides us with a recipe for deriving
different joint types. In conclusion, a holonomic constraint is equivalent to removing a degree of freedom
from the system, which means that we can find a generalized position vector with one less entry than the
spatial position vector.

By differentiation with respect to time, we can derive a kinematic constraint from each holonomic
constraint

d

dt
Φl(s) =

∂Φ

∂s

ds

dt
(7.75a)

=
∂Φ

∂s
S

︸ ︷︷ ︸
JΦ

u (7.75b)

= 0. (7.75c)

“book” — 2005/9/30 — 15:44 — page 201 — #213✐
✐

✐
✐

✐
✐

✐
✐

7.5 PHYSICS-BASED ANIMATION 201

The matrices ∂Φ
∂s ∈ Rm×14 and JΦ ∈ Rm×12 are called Jacobians; they describe relations between

velocities in different coordinate representations. Finally, we have the kinematic constraint

JΦul = 0. (7.76)

Performing another differentiation w.r.t. time leads us to the acceleration constraint

d2

dt2
Φ(s(t)) =

d

dt
(JΦu) (7.77a)

=
d

dt
(JΦ) u + JΦ

d

dt
(u) (7.77b)

= 0, (7.77c)

from which we conclude that
JΦu̇ = − ˙JΦu. (7.78)

For our velocity-based formulation we have no use for the acceleration constraint; however, if we set up a
force-based formulation, we would need to augment the Newton-Euler equations with these acceleration
constraints.

It is well known that the generalized constraint force exerted by a holonomic constraint can be written
as

F Φ = J T
ΦλΦ. (7.79)

This follows from the principle of virtual work described in Section 22.6. The λΦ ∈ Rm is a vector of
Lagrange multipliers. They account for the reaction forces coming from the joint bearings; the Lagrange
multipliers can take any real value, both positive and negative. Observe that the dimension of λΦ depends
on the number of constraints on the joint. Therefore, we conclude that we have as many independent
reaction forces as there are constraints.

7.5.2 Non-Holonomic Constraints

A non-holonomic constraint is a differential constraint that cannot be integrated; however in this context,
we define a non-holonomic constraint as a constraint that cannot be put into the form of a holonomic con-
straint (7.71). There are many different kinds of non-holonomic constraints, and we will restrict ourselves
to a certain kind, namely those called unilateral constraints.

The non-holonomic constraint between two bodies Bi and Bj can, by definition, be written as a
function Ψ of time and generalized position vector s ∈ R14, such that we always have

Ψ(t, s) ≥ 0. (7.80)

The condition for a contact can be modeled by (1 + η) time-independent non-holonomic constraints, that
is,

Ψ(s) ≥ 0. (7.81)

“book” — 2005/9/30 — 15:44 — page 202 — #214✐
✐

✐
✐

✐
✐

✐
✐

202 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

This looks very different from the contact conditions we have seen previously, but don’t be concerned; the
connection with our previous derivations will be made clear later on. Taking the time derivative gives us
a kinematic contact constraint,

d

dt
Ψ(s) =

∂Ψ

∂s

ds

dt
(7.82a)

=
∂Ψ

∂s
S

︸ ︷︷ ︸
JΨ

u (7.82b)

= JΨu (7.82c)
≥ 0, (7.82d)

where JΨ ∈ R(1+η)×12 is the Jacobian of the contact constraint. Taking the time derivative one more time
yields an acceleration constraint

d2

dt2
Ψ(s(t)) =

d

dt
(JΨu) (7.83a)

= ˙JΨu + JΨu̇ (7.83b)
≥ 0. (7.83c)

The generalized constraint force exerted by the contact constraint can be written as

F Ψ = J T
ΨλΨ, (7.84)

where λΨ ∈ R1+η is the vector of Lagrange multipliers. Unlike the Lagrange multipliers used for the
joint reaction forces, the Lagrange multipliers for the contacts can only take nonnegative values, that is,

λΨ ≥ 0. (7.85)

As pointed out by Anitscu and Potra [Anitescu et al., 2002], one should be careful about the constraint
d
dtΨ(s) ≥ 0, because if we have

Ψ(s) > 0 (7.86)

indicating a potential future contact, this does not imply that

d

dt
Ψ(s) > 0. (7.87)

Only so-called active contacts, where
Ψ(s) = 0, (7.88)

require this. This boils down to the fact that separated contacts are allowed to move toward each other
until they become touching contacts, and a touching contact can either continue with being a touching
contact, or it can become a separated contact.

“book” — 2005/9/30 — 15:44 — page 203 — #215✐
✐

✐
✐

✐
✐

✐
✐

7.5 PHYSICS-BASED ANIMATION 203

Momentarily reintroducing the subscript for the contact ordering, we can write all the kinematic con-
straints and force contributions as

JΨkuk ≥ 0, where JΨk ∈ R(1+η)×12, (7.89a)

fΨk
= J T

Ψk
λΨk , where λΨk ∈ R1+η. (7.89b)

Concatenating them into matrix equations, we have

J contactu = 0, (7.90a)

f contact = J T
contactλcontact, (7.90b)

where u ∈ Re6n is the generalized velocity vector (Section 7.1), u = [v1,ω1,v2,ω2, · · · ,vn,ωn]T , and
λcontact ∈ RK(1+η) is the concatenated vector of all the Lagrange multipliers.

λcontact =
[
λ1

Ψ1
, . . . ,λ(η+1)

Ψ1
, . . . ,λ1

ΨK
, . . . ,λ(η+1)

ΨK

]T
. (7.91)

The J contact ∈ RK(1+η)×6n is the system Jacobian for all the contacts, and it is given by

J contact =

⎡

⎢⎢⎢⎢⎢⎢⎣

J 1
Ψ1

. J n
Ψ1

...
...

J 1
Ψk

· · · J i
Ψk

· · · J j
Ψk

· · · J n
Ψk

...
...

J 1
ΨK

. J n
ΨK

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.92)

This Jacobian is extremely sparse since the k’th contact only involves two bodies i and j, meaning that
the only nonzero entries in the k’th row of J contact are the columns corresponding to the bodies i and j

[
J i

Ψk
J j

Ψk

]
= JΨk . (7.93)

We will now prove that
C (Nf + Dβ) ≡ J T

contactλcontact. (7.94)

The above equation follows from straightforward computations and permutations of the left-hand side of

C (Nf + Dβ) = CNf + CDβ (7.95a)

=
[
CN CD

]
︸ ︷︷ ︸

π(JT
contact)

[
f
β

]

︸︷︷︸
π(λcontact)

(7.95b)

= π
(
J T

contactλcontact
)
, (7.95c)

“book” — 2005/9/30 — 15:44 — page 204 — #216✐
✐

✐
✐

✐
✐

✐
✐

204 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

where π(·) is a permutation. Now we simply swap rows and columns, such that

λ1
Ψk

= fk, (7.96a)

λ2
Ψk

= β1k , (7.96b)
...

...

λ(η+1)
Ψk

= βηk , (7.96c)

and the relation between the Jacobian, J contact, and the matrices C, N , and D is clear.

7.5.3 A Unified Notation for Unilateral and Bilateral Constraints
Now we’ll show that both bilateral and unilateral constraints are added to the govern system of equations
of motion through the same notion of Jacobian and Lagrange multipliers.

Momentarily reintroducing the subscripting on both the joint and contact ordering, we have K contacts
and L joints, and we can write all their kinematic constraints and force contributions as

JΦlul = 0, where JΦl ∈ Rml×12, (7.97a)

JΨkuk ≥ 0, where JΨk ∈ R(1+η)×12, (7.97b)

fΦl
= J T

Φl
λΦl , where λΦl ∈ Rml , (7.97c)

fΨk
= J T

Ψk
λΨk , where λΨk ∈ R1+η. (7.97d)

Following the same recipe as in Section 7.5.2 for concatenating these into matrix notations, we get

J jointu = 0, where J joint ∈ R(
PL

l ml)×6n, (7.98a)

J contactu ≥ 0, where J contact ∈ RK(1+η)×6n, (7.98b)

f joint = J T
jointλjoint, where λjoint ∈ R

PL
l ml , (7.98c)

f contact = J T
contactλcontact, where λcontact ∈ RK(1+η). (7.98d)

The Jacobian J contact and the Lagrange multiplier vector λcontact was given in (7.92) and (7.91). The
system joint Jacobian J joint and the joint Lagrange multiplier vector λjoint follows the same pattern and is
given as

J joint =

⎡

⎢⎢⎢⎢⎢⎢⎣

J 1
Φ1

. J n
Φ1

...
...

J 1
Φl

· · · J i
Φl

· · · J j
Φl

· · · Jn
Φl

...
...

J 1
ΦL

. J n
ΦL

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.99)

This Jacobian is inherently extremely sparse, since the l’th joint only involves two bodies i and j, meaning
that the only nonzero entries in the l’th row of J joint are the columns corresponding to the bodies i and j

[
J i

Φl
J j

Φl

]
= JΦl , (7.100)

“book” — 2005/9/30 — 15:44 — page 205 — #217✐
✐

✐
✐

✐
✐

✐
✐

7.6 PHYSICS-BASED ANIMATION 205

and
λjoint =

[
λ1

Φ1
, . . . ,λm1

Φ1
, . . . ,λ1

ΦK
, . . . ,λmK

ΦK

]T
. (7.101)

Using the matrix notation to write constraint forces of both bilateral and unilateral constraint, the general-
ized acceleration vector can be written as

u̇ = M−1
(
f contact + f joint + f ext

)
(7.102a)

= M−1
(
J T

contactλcontact + J T
jointλjoint + f ext

)
. (7.102b)

This is a completely general way to add constraints; it will be further explored in the remainder of this
chapter. In the end it will also lead to a general and efficient implementation framework.

7.6 Joint Modeling
In this section we will derive the machinery for modeling joints and later joint limits as well as joint
motors. We will start by introducing a submatrix pattern of the Jacobian matrix. Hereafter, we will
describe joint error, connectivity, and error reduction.

For the l′th joint constraint, we can write the kinematic constraint as

J lul = 0. (7.103)

Since we will focus on joint types, we will omit writing the subscript indicating the joint ordering, that is,
for a given joint type we simply write the kinematic constraint as Ju = 0. There is a remarkable submatrix
pattern of the Jacobians, which we will use extensively, because later on it will make the assembly of the
system matrix easier, that is, A. Writing the generalized velocity vector with its subvectors as

Ju = 0, (7.104a)

[
J i

lin J i
ang J j

lin J j
ang

]
⎡

⎢⎢⎣

vi

ωi

vj

ωj

⎤

⎥⎥⎦ = 0. (7.104b)

Observe that there is a part of the Jacobian matrix that is only multiplied with the linear velocity of body
i, which is denoted J i

lin, a part that is only multiplied by the angular part of body i, J i
ang, and so on. In

fact we can interpret
J i

linvi + J i
angωi, (7.105)

as the velocity of the joint bearings on body i, and

J j
linvj + J j

angωj, (7.106)

as the velocity of the joint bearing on body j. It is now obvious that in order to keep the joint bearings
together, the bearings must move with the same velocity and the sum must therefore be zero. This obser-
vation provides us with a strategy for designing the Jacobians: given the body velocities, set up a matrix
equation, such that the relative velocity in the direction of the joint bearings is always zero.

“book” — 2005/9/30 — 15:44 — page 206 — #218✐
✐

✐
✐

✐
✐

✐
✐

206 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

7.6.1 Joint Error

By now it should be clear that the kinematic constraints are constraints on the velocities, not the positions;
meaning that both numerical errors and errors stemming from internal approximations can sneak into
the computations of the positions as the simulation proceeds. Imagine that some positional error has
occurred, such that there is a positional displacement of the joint bearings and/or a misalignment of the
joint bearings. This error could be reduced by adjusting the velocities of the joint bearings, such that the
error is smaller in the following simulation step. Therefore we augment our kinematic constraints with a
velocity error correction term, b

Ju = b. (7.107)

To illustrate, we will present a simple one-dimensional example: imagine two particles that can move
along a line, where the particles are jointed together, such that their positions are always equal. Their
kinematic constraint will then be

vi − vj = 0. (7.108)

Now imagine that some error is present

rerr = rj − ri, (7.109)

with ∥rerr∥ > 0. To adjust the velocities so that this error is eliminated within some time ∆t, we require
that

vi − vj︸ ︷︷ ︸
Ju

=
rerr

∆t︸︷︷︸
b

, (7.110a)

Ju = b. (7.110b)

If joint or limits is subject to an initial error and incident links are at rest, then error terms will acceler-
ate the links; so not only will the error be corrected, but also bodies will continue to move afterward. This
is obviously an unwanted effect!

The error correction should not add kinetic energy to the system. In fact, the error correction has
the same effect as using Newton’s collision law for solving simultaneous collisions [Baraff, 1989]. An
acceptable and practical workaround is to use an error reduction parameter to control the rate of error
correction, which will be discussed in Section 7.6.3.

7.6.2 Connectivity

We will describe the connectivity and movements of all joints by using anchor points and joint axes. An
anchor point is a point in space, where two points, one from each incident body are always perfectly
aligned. The placement of an anchor point relative to a body, i, is given by a body frame vector, r i

anc. The
position of the anchor point in the world coordinate system (WCS) w.r.t. to body i is given by

r wcs
anc = ri + R(qi)r

i
anc. (7.111)

“book” — 2005/9/30 — 15:44 — page 207 — #219✐
✐

✐
✐

✐
✐

✐
✐

7.6 PHYSICS-BASED ANIMATION 207

A joint axis describes an allowed direction of movement, such as an axis of rotation or a direction of
sliding. The joint axis is given by a 3D unit vector, s wcs

axis . In Section 7.7 we will explain the details in
describing different joint types using the notation of anchor points and joint axes.

This way of describing the connectivity is very similar to the paired joint coordinate frames described
in Featherstone [Featherstone, 1998]. In comparison, anchor points correspond to the placement of the
origin of the joint frames and joint axes correspond to the orientation of the joint frames, such as the z-axis
of the joint coordinate frame. Alternative notations for describing the connectivity of jointed mechanisms
are used in some literature [Featherstone, 1998, Craig, 1986].

7.6.3 Error Reduction Parameter

The kind of approach for simulating joints that we are outlining in this paper belongs to a class of algo-
rithms referred to as Full-Coordinate methods because every body in a jointed mechanism is described by
the full set of rigid body motion coordinates.

An alternative approach is the Reduced Coordinate methods, where a good example is Featherstone’s
algorithm [Featherstone, 1998]. The central idea is that only the relative motion of bodies between joints
needs to be described; only the relative coordinates of the joints are therefore needed.

The main difference between the two approaches is that Reduced Coordinate methods explicitly work
with joint parameters. The position and placement of the links are derived from these joint parameters.
With a Full-Coordinate method, we work explicitly on the links and we need to derive joint parameters if
needed. There are some benefits and disadvantages of these methods, which we will describe shortly.

The Reduced Coordinate methods are often computationally faster, since they have fewer variables
to work on, and since they are often implemented by recursive algorithms like Armstrong and Feather-
stone [Armstrong et al., 1985, Featherstone, 1998]. These recursive algorithms are often limited to tree-
like mechanisms and only with great difficulty can these recursive algorithms be extended to handle closed
loops and contacts.

The Full-Coordinate methods are not limited by any kind of topology, but they are often more com-
putationally demanding, because they must describe all the constraints on each link’s rigid body motion.
Reduced Coordinate methods need only to describe the free movement, which is often of lesser dimension.

Many people prefer the Full-Coordinate methods because they think the notation is easier to read and
work with. Reduced Coordinate methods appear to have long and difficult terms representing coriolis
and centripetal accelerations.

From a computer animation viewpoint, numerical errors in a Full-Coordinate method seem to be much
more noticeable than in a Reduced Coordinate method. This is because errors in the body coordinates will
split joints apart and introduce an effect called drifting because links that supposedly should be jointed
together are drifting apart. Reduced Coordinate methods do not suffer from the drifting problem, since no
matter how big numerical errors one obtains, the simulation will always show bodies connected properly.

In conclusion, with Full-Coordinate methods we can expect drifting problems; there are two ways
these can arise in a working simulator:

• The user interacts with a mechanism and forgets to set the correct position or orientation of all the
links in a mechanism.

“book” — 2005/9/30 — 15:44 — page 208 — #220✐
✐

✐
✐

✐
✐

✐
✐

208 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

• During the simulation, errors can creep in that result in the links drifting away from their joints.

In Section 7.7, we describe the kinematic constraints of different joint types and we will introduce some
error correcting terms. These are all multiplied by a coefficient, kcorr, which denotes a measure of the rate
of error correction. The idea is as follows: for each joint we will have an error reduction parameter, kerp

0 ≤ kerp ≤ 1. (7.112)

Its value is a measure for how much error reduction should occur in the next simulation step. A value of
zero means that there is no error correction at all; a value of one means that the error should be totally
eliminated.

If we let the duration of time in the next simulation step be denoted by a characteristic time-step, ∆t,
then the following constant is a measure of rate of change

kfps =
1

∆t
. (7.113)

The coefficient kcor can now be determined as

kcor = kerpkfps. (7.114)

Setting kerp = 1 is not recommended, since various internal approximations can cause the errors not to be
completely fixed. The Open Dynamics Engine [ODE, 2005] uses the same approach for correcting errors.
They recommend using a value around 0.8.

7.7 Joint Types

In this section we will derive the Jacobians for several different kinds of joint types needed for the kine-
matic constraints explained in the previous sections.

7.7.1 Ball-in-Socket Joint

A ball-in-socket joint allows arbitrary rotation between two bodies as illustrated in Figure 7.10. We already
know that a ball-in-socket joint removes three DOFs, so we conclude that the Jacobian, J ball, for the ball
is a 3 × 12 matrix. From our previous example in Section 7.5.1 it should not come as a surprise that the
submatrix of the Jacobian is given by

J ball =
[
J i

lin,J
j
lin,J

i
ang,J

j
ang

]
, (7.115)

“book” — 2005/9/30 — 15:44 — page 209 — #221✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 209

Figure 7.10: A ball-in-socket joint example.

where

J i
lin =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , (7.116a)

J j
lin =

⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦ , (7.116b)

J i
ang = −

(
R(qi)r

i
anc

)×
, (7.116c)

J j
ang =

(
R(qj)r

j
anc

)×
, (7.116d)

and where J i
lin ∈ R3×3, J i

ang ∈ R3×3, J j
lin ∈ R3×3, J j

ang ∈ R3×3, and the velocity error correcting term,
bball ∈ R3, is given by

bball = kcor
(
rj + R(qj)r

j
anc − ri −R(qi)r

i
anc
)
. (7.117)

7.7.2 Hinge Joint
A hinge joint, also called a revolute joint, only allows relative rotation around a specified joint axis as
illustrated in Figure 7.11. We describe the joint by an anchor point placed on the axis of rotation and a
joint axis, s wcs

axis , given by a unit vector in the world coordinate system. We only have one DOF, meaning
that the hinge joint places five constraints on the relative movement. Hence the Jacobian, J hinge is a 5×12
matrix

J hinge =
[
J i

lin J i
ang J j

lin J j
ang

]
, (7.118)

“book” — 2005/9/30 — 15:44 — page 210 — #222✐
✐

✐
✐

✐
✐

✐
✐

210 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Figure 7.11: A hinge joint example.

where J i
lin ∈ R5×3, J i

ang ∈ R5×3, J j
lin ∈ R5×3, J j

ang ∈ R5×3, and bhinge ∈ R5. A hinge joint has the same
kind of positional constraints as the ball-in-socket joint, so we can immediately borrow the first three rows
of the ball-in-socket Jacobian and the error measure, and we only have to extend the hinge Jacobian with
two more rows, which will constrain the rotational freedom from the ball-in-socket joint to only one axis
of rotation.

The strategy for adding the two rotational constraints is as follows: since we only want to allow
rotations around the joint axis, only the relative angular velocity of the two bodies with respect to the joint
axis is allowed to be nonzero, that is,

saxis · (ωi − ωj) ̸= 0. (7.119)

The relative angular velocity with any other axis orthogonal to saxis must be zero.

In particular, if we let the two vectors t wcs
1 , t wcs

2 ∈ R3 be two orthogonal unit vectors, and require
them to be orthogonal to the joint axis s wcs

axis , then

t wcs
1 · (ωi − ωj) = 0, (7.120a)

t wcs
2 · (ωi − ωj) = 0. (7.120b)

From these two equations we have the two needed kinematic constraints and we can write the hinge

“book” — 2005/9/30 — 15:44 — page 211 — #223✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 211

Jacobian as follows:

J i
lin =

⎡

⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎦
, (7.121a)

J j
lin =

⎡

⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎦
, (7.121b)

J i
ang =

⎡

⎢⎣
−
(
R(qi)ri

anc
)×

(t wcs
1)T

(t wcs
2)T

⎤

⎥⎦ , (7.121c)

J j
ang =

⎡

⎢⎣

(
R(qj)rj

anc
)×

− (t wcs
1)T

− (t wcs
2)T

⎤

⎥⎦ . (7.121d)

For the error-measure term, we already have the first three error measures from the ball-in-socket joint
taking care of positional errors. Two further error measures are needed for rotational misalignment around
any nonjoint axes.

If we store the joint axis with respect to both body frames, s i
axis and s j

axis, then computing the joint
axis directions in the world coordinate system with respect to each of the incident bodies gives

s wcs
i = R(qi)s

i
axis, (7.122a)

s wcs
j = R(qj)s

j
axis. (7.122b)

If s wcs
i = s wcs

j , then there is obviously no error in the relative hinge orientation between the bodies. If
there is an error, then the bodies must be rotated such that s wcs

i and s wcs
j are equal. This can be done as

follows: imagine the angle between the two vectors is θerr, then we can fix the relative error by rotation of
θerr radians around the axis

u = s wcs
i × s wcs

j . (7.123)

Let’s say that we want to correct the error by the angle θcor within the time ∆t, which could be the
size of the time-step in some time-stepping algorithm, then we would need a relative angular velocity of

“book” — 2005/9/30 — 15:44 — page 212 — #224✐
✐

✐
✐

✐
✐

✐
✐

212 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

magnitude

∥ωcor∥ =
θcor

∆t
(7.124a)

=
kerpθerr

∆t
(7.124b)

= kerp
1

∆t
θerr (7.124c)

= kerpkfpsθerr (7.124d)
= kcorθerr. (7.124e)

The direction of this correcting angular velocity is dictated by the u-vector, since

ωcor = ∥ωcor∥
u

∥u∥ (7.125a)

= kcorθerr
u

∥u∥ (7.125b)

= kcorθerr
u

sin θerr
. (7.125c)

In the last step we used that s wcs
i and s wcs

j are unit vectors, such that

∥u∥ =
∥∥s wcs

i × s wcs
j

∥∥ = sin θerr. (7.126)

We expect the error to be small, so it is reasonable to use the small angle approximation, where θerr ≈
sin θerr, i.e.,

ωcor = kcoru. (7.127)

We know that u is orthogonal to s wcs
axis , so we project it onto the vectors t wcs

1 and t wcs
2 , and we end up

with the error measure

bhinge = kcor

⎡

⎢⎣

(
rj + R(qj)r

j
anc − ri −R(qi)ri

anc

)

t wcs
1 · u

t wcs
2 · u

⎤

⎥⎦ . (7.128)

7.7.3 Slider Joint
The slider joint only allows translation in a single direction, as shown in Figure 7.12. Hence there is only
one DOF, so the Jacobian of the slider joint, J slider, must be a 5× 12 matrix

J slider =
[
J i

lin J i
ang J j

lin J j
ang

]
, (7.129)

where J i
lin ∈ R5×3, J i

ang ∈ R5×3, J j
lin ∈ R5×3, and J j

ang ∈ R5×3. We will use the first three rows of the
Jacobian to ensure that the two bodies connected by the slider joint do not rotate relative to each other,
hence we require that they have identical angular velocity.

“book” — 2005/9/30 — 15:44 — page 213 — #225✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 213

Figure 7.12: A slider joint example.

The last two rows of the Jacobian is used to make sure that the bodies only move relatively in the
direction of the joint axis, s wcs

axis . This is done as follows: first we note the following relation between the
bodies’ linear velocities

vj = vi + ωi × c + vslider, (7.130)

where c = rj − ri, and vslider is the joint velocity along the slider axis. Recalling that ω i = ωj , we can
rewrite the velocity relation as follows:

vj = vi + ωi × c + vslider, (7.131a)
−vslider = vi − vj + ωi × c, (7.131b)

−vslider = vi − vj +
ωi + ωj

2
× c. (7.131c)

From the joint axis, s wcs
axis , we can compute two orthogonal vectors t wcs

1 and t wcs
2 . By the workings of

a slider joint we know that we may never have any relative velocities in the directions of the two vectors
t wcs
1 and t wcs

2 . That is,

0 = t wcs
1 · (−vslider) , (7.132a)

0 = t wcs
2 · (−vslider) . (7.132b)

From these two equations we can derive the remaining two rows in the Jacobian slider matrix, and we find

“book” — 2005/9/30 — 15:44 — page 214 — #226✐
✐

✐
✐

✐
✐

✐
✐

214 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

J i
lin =

⎡

⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
(t wcs

1)T

(t wcs
2)T

⎤

⎥⎥⎥⎥⎦
, (7.133a)

J j
lin =

⎡

⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
− (t wcs

1)T

− (t wcs
2)T

⎤

⎥⎥⎥⎥⎦
, (7.133b)

J i
ang =

⎡

⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1
2c× t wcs

1
1
2c× t wcs

2

⎤

⎥⎥⎥⎥⎦
, (7.133c)

J j
ang =

⎡

⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1

1
2c× t wcs

1
1
2c× t wcs

2

⎤

⎥⎥⎥⎥⎦
. (7.133d)

Now we will look at the error term, bslider ∈ R5. The first tree entries are used for rotational misalign-
ment between the two links, such as sliding along a bend axis. The last two are used for fixing parallel
positional displacement of the joint axis.

As for the hinge joint, we derived an angular velocity to correct the misalignment error of θerr radians.
The magnitude of this correcting angular velocity is as before

∥ωcor∥ =
θcor

∆t
(7.134a)

=
kerpθerr

∆t
(7.134b)

= kerp
1

∆t
θerr (7.134c)

= kerpkfpsθerr (7.134d)
= kcorθerr. (7.134e)

As before, the direction of this correcting angular velocity is dictated by an rotation axis given by some
unit u-vector

ωcor = ∥ωcor∥u (7.135a)
= kcorθerru. (7.135b)

“book” — 2005/9/30 — 15:44 — page 215 — #227✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 215

However, unlike previously, the correcting angular velocity will be derived as follows: let the rotational
misalignment be given by the quaternion, qerr, then we have

qerr = [s,v] , (7.136a)

qerr =

[
cos

(
θerr

2

)
, sin

(
θerr

2

)
u

]
. (7.136b)

The error is suspected to be small, so the small angle approximation is reasonable and we find

θerr

2
u ≈ sin

(
θerr

2

)
u = v. (7.137)

Using this in our formula for the correcting angular velocity, we get

ωcor = kcor2v. (7.138)

This will be the first three entries in the bslider-vector.
We can describe the current joint position by an offset vector, r wcs

off , which indicates the initial differ-
ence between the body centers, that is,

r j
off = R(qj)

T (rj − ri) . (7.139)

Observe this offset vector is computed when the joint initially was set up, that is, before simulation, and it
is a constant. The corresponding offset in the world coordinate system is then simply found as

r wcs
off = R(qj)r

j
off. (7.140)

If there is no parallel displacement of the joint axis, then the vector, c − r wcs
off will have no components

orthogonal to the joint axis. From this observation we have the last two entries in the vector bslider,

bslider = kcor

⎡

⎣
2v

t wcs
1 ·

(
c− r wcs

off
)

t wcs
2 ·

(
c− r wcs

off
)

⎤

⎦ . (7.141)

7.7.4 Hinge-2 Joint
The hinge-2 joint is also called a wheel joint because its motion resembles that of a turning front wheel on
a car. Therefore, we will explain the workings of this joint type by the example of a car wheel as shown
in Figure 7.13.

The wheel joint is the same as a series of two hinge joints. Its motion is described by a rotation axis,
s i

axis1 , given by a unit vector in the body frame of body i, and another rotation axis, s j
axis2 , given as a unit

vector in the body frame of body j.
In the following, we will implicitly assume that body i is the car and body j is the wheel. Using this

convention, the axes are referred to as the steering axis or suspension axis and the motor axis.

“book” — 2005/9/30 — 15:44 — page 216 — #228✐
✐

✐
✐

✐
✐

✐
✐

216 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Figure 7.13: A car wheel joint example.

We will also use an anchor point like before, where both axes are going through this anchor point. We
will assume that the axes do not lie along the same line, and that they are always separated by the initial
angle, θ, between them.

From the description, it is clear that the joint has two DOFs, from which we know that the wheel joint
Jacobian must have dimension 4× 12

Jwheel =
[
J i

lin J i
ang J j

lin J j
ang

]
, (7.142)

where J i
lin ∈ R4×3, J i

ang ∈ R4×3, J j
lin ∈ R4×3, and J j

ang ∈ R4×3.
Following the same recipe as previously, we reuse the ball-in-socket joint for the positional constraints

and we are now left only with the fourth row in the Jacobian matrix.
Let’s compute the joint axis in the world coordinate system

s wcs
i = R(qi)s

i
axe, (7.143a)

s wcs
j = R(qj)s

j
axe, (7.143b)

then the constrained rotational DOF is dictated by a rotational axis orthogonal to the two rotation axes,
that is,

u = s wcs
i × s wcs

j . (7.144)

“book” — 2005/9/30 — 15:44 — page 217 — #229✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 217

For the hinge to keep its alignment, we must ensure that there is no relative rotation around this axis

u · ωi − u · ωj = 0. (7.145)

This give us the missing fourth row of the Jacobian matrix

J i
lin =

⎡

⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥⎥⎦ , (7.146a)

J j
lin =

⎡

⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 0

⎤

⎥⎥⎦ , (7.146b)

J i
ang =

[(
R(qi)ri

anc
)×

uT

]
, (7.146c)

J j
ang = −

[(
R(qj)rj

anc
)×

uT

]
. (7.146d)

From the ball-in-socket joint we also have the first three entries of the error term, bwheel ∈ R4. Therefore,
we only need to come up with the fourth entry to reestablish the angle θ between the two joint axes. Let’s
say that the current angle is given by φ, then we need a correcting angular velocity of magnitude

∥ωcor∥ =
θcor

∆t
(7.147a)

=
kerp (θ − φ)

∆t
(7.147b)

= kerp
1

∆t
(θ − φ) (7.147c)

= kerpkfps (θ − φ) (7.147d)
= kcor (θ − φ) . (7.147e)

We can now write the error-term vector as

bwheel = kcor

[
bball

(θ − φ)

]
. (7.148)

Finally, two more tricks are possible: first, one rotates the axes of the ball-in-socket joints, such that the
first constraining axis is along the suspension axis, which allows one to model suspension by modulating
the translational error in the ball-in-socket joint along its first axis. Second, a small angle approximation
for the fourth entry in the error-term vector may be used [ODE, 2005].

“book” — 2005/9/30 — 15:44 — page 218 — #230✐
✐

✐
✐

✐
✐

✐
✐

218 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Figure 7.14: A universal joint example.

7.7.5 Universal Joint

The universal joint is in some sense similar to the wheel joint, and is described similarly by the two joint
axes

s i
axe1

, (7.149a)

s j
axe2

, (7.149b)

and an anchor point, which the two axes run through. The difference from the wheel joint is that it is
further required that axis two makes an angle of π/2 with axis one. An example of a universal joint is
shown in Figure 7.14.

We notice again that we have two DOFs, and the Jacobian matrix of the universal joint, J universal , must
be a 4× 12 matrix

J universal =
[
J i

lin J i
ang J j

lin J j
ang

]
. (7.150)

Since this joint type has derivations almost identical to previous types, we will ease on notation and go
through the steps faster. We start out by reusing the ball-in-socket joint for the positional constraints, and
then we compute the constrained rotation axis

u = s wcs
i × s wcs

j , (7.151)

along which we know there must be no relative angular velocity. We can now write the Jacobian matrix

“book” — 2005/9/30 — 15:44 — page 219 — #231✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 219

for the universal joint as

J i
lin =

⎡

⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥⎥⎦ , (7.152a)

J j
lin =

⎡

⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 0

⎤

⎥⎥⎦ , (7.152b)

J i
ang =

[(
R(qi)ri

anc
)×

uT

]
, (7.152c)

J j
ang = −

[(
R(qj)rj

anc
)×

uT

]
. (7.152d)

We already have the first three entries of the vector, buniversal , and we must find the fourth. We do this by
first looking at the magnitude of the correcting angular velocity

∥ωcor∥ =
θcor

∆t
(7.153a)

=
kerp

(
φ− π

2

)

∆t
(7.153b)

= kcor

(
φ− π

2

)
, (7.153c)

where φ denotes the current angle between the two joint axis. If φ is close to π/2, then

φ− π

2
≈ cos (φ) (7.154a)

= s wcs
i · s wcs

j . (7.154b)

We can now write the error-term vector as

buniversal = kcor

[
bball

−s wcs
i · s wcs

j

]
. (7.155)

7.7.6 Fixed Joint

For fixed joints, we know that it constrains two bodies completely from any relative movement, and it
therefore has zero DOFs, from which we know that the Jacobian matrix, J fixed ∈ R6×12

J universal =
[
J i

lin J i
ang J j

lin J j
ang

]
. (7.156)

“book” — 2005/9/30 — 15:44 — page 220 — #232✐
✐

✐
✐

✐
✐

✐
✐

220 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

The fixed joint is described by an anchor point, and initially we compute an offset vector and store it in
the body frame of body i

r i
off = ri − rj . (7.157)

Observe this offset vector is computed when the joint initially was set up prior to simulation, and it is a
constant. The corresponding offset in the world coordinate system is then found by

r wcs
off = R(qi)r

i
off. (7.158)

Since we have a fixed joint, both incident bodies must be rotating with the same angular velocity and the
linear velocities must obey the relation

vj = vi + ωi × r wcs
off . (7.159)

From all this we can now set up the Jacobian matrix as

J i
lin =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.160a)

J j
lin =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.160b)

J i
ang =

⎡

⎢⎢⎢⎢⎢⎢⎣

−
(
r wcs

off
)×

1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.160c)

J j
ang =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
−1 0 0
0 −1 0
0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.160d)

Similarly, the error term is straightforward, since most of it was presented for the ball-in-socket joint, bball,
from where we get the first three entries, for positional error, and from the slider joint, bslider. We may

“book” — 2005/9/30 — 15:44 — page 221 — #233✐
✐

✐
✐

✐
✐

✐
✐

7.7 PHYSICS-BASED ANIMATION 221

reuse the first three entries to take care of any rotational errors. We can now write the bfixed vector as

bfixed = kcor

[(
ri + R(qi)r i

anc − rj −R(qj)r
j

anc

)

2v

]
, (7.161)

where v comes from the quaternion representing the rotational error

qerr = [s,v] . (7.162)

7.7.7 Contact Point
As we have explained, contact constraints are completely different from joint constraints, but they too, are
described by a Jacobian matrix. As we will show, this Jacobian matrix J contact, can be expressed in the
same submatrix pattern as the joint Jacobians; one can even construct an error correcting term.

From previously, we know that the contact Jacobian has 1 + η constraints, so it is (1 + η)-by-12
dimensional matrix,

J contact =
[
J i

lin J i
ang J j

lin J j
ang

]
. (7.163)

The first row corresponds to the normal force constraints and the remaining η rows correspond to the
tangential friction constraints, that is,

J i
lin =

[
−nt

−DT
k

]
, (7.164a)

J j
lin =

[
nt

DT
k

]
, (7.164b)

J i
ang =

[
− (ri

×n)T

− (ri
×Dk)

T

]
, (7.164c)

J j
ang =

[
(rj

×n)T

(rj
×Dk)

T

]
. (7.164d)

If the penetration constraints are violated, then an error correcting vector, bcontact ∈ R1+η, can be used as

bcontact = kcor

[
dpenetration

0

]
. (7.165)

where dpenetration is the penetration depth. These observations regarding the submatrix patterns of the
Jacobians of both the contact and joint constraints allow us to implement these kind of constraints using
almost the same kind of data structure.

“book” — 2005/9/30 — 15:44 — page 222 — #234✐
✐

✐
✐

✐
✐

✐
✐

222 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

7.8 Joint Limits
It is not always enough just to set up a joint, even though the relative motion is constrained to move only
in a consistent manner w.r.t. the joint, other constraints need our attention. For instance, in the real world
we cannot find a jointed mechanism with a sliding joint that has an infinitely long joint axis. In other
words, we need some way to model the extent of a sliding joint. We will do this modeling by setting up
joint limits. To be specific, we will treat joint limits on a sliding joint and a hinge joint.

The general approach we will take here for introducing joint limits is very similar to the way we use
unilateral constraints for enforcing normal nonpenetration constraints at the contact points. In a sense,
setting joint limits this way is nothing more than a slightly exotic way of computing contact points for
normal force constraints disguised as joint limits.

7.8.1 Slider Joint Limits
Recall that in specifying the slider joint we used an offset vector, which was the initial difference between
the origin of the body frames; that is, at time t = 0, we compute

r j
off = R(qj)

T (rj − ri) . (7.166)

As before, the initial offset w.r.t. the bodies current location in the world coordinate system is computed
as

r wcs
off = R(qj)r

j
off. (7.167)

Now letting c = rj − ri, we can compute the current displacement, rdis, along the joint axis as

rdis = c− r wcs
off . (7.168)

Taking the dot product with the joint axis, s wcs
axe , gives a signed distance measure of the displacement

along the joint axis,
ddis = s wcs

axe · rdis. (7.169)
When the joint limits are imposed on the slider joint, we want to be able to specify a lower-distance limit,
dlo, and an upper-distance limit, dhi. If one of these are violated, for instance,

ddis ≤ dlo, (7.170)

then we will add a new unilateral constraint. This constraint specifies that the relative velocity of the joint
along the joint axis must be such that the displacement does not move beyond the limit. For a slider joint
that means we require

s wcs
axe · (vj − vi) ≥ 0. (7.171)

We immediately see that this is equivalent to a 1× 12 dimensional Jacobian matrix, J lo
slider, where

J i
lin = − (s wcs

axe)T , (7.172a)

J j
lin = (s wcs

axe)T , (7.172b)

J i
ang = 0, (7.172c)

J j
ang = 0. (7.172d)

“book” — 2005/9/30 — 15:44 — page 223 — #235✐
✐

✐
✐

✐
✐

✐
✐

7.8 PHYSICS-BASED ANIMATION 223

However, this would be the wrong Jacobian to use because when we look at the reaction forces from
the joint limit, this Jacobian will not model the torques coming from the limiting force, only the linear
contribution is included.

We will now remodel the Jacobian to include all the force and torque contributions. Let’s say that
the position of the joint limit is given by the vectors: r wcs

limi
and r wcs

limj
. These vectors are specified in the

world coordinate system and are running from the respective body centers to the position of the joint limit.
Now say that some force, F , is acting on body i at the joint limit, then the force is required to be

parallel with the joint axis s wcs
axe . The force contribution to body j is −F according to Newton’s third law

of motion. The limit force also result in a torque on body i

τ limi = r wcs
limi
× F , (7.173)

and a torque on body j,
τ limj = −r wcs

limj
× F . (7.174)

For a slider joint we must also require that these torques do not induce a relative angular velocity of the
two bodies, meaning that angular momentum should remain unchanged. From Euler’s equation, we get

τ limi + τ limj = 0. (7.175)

Recalling that the corresponding reaction force is given by

F lo
slider =

(
J lo

slider
)T
λlo, (7.176)

where λlo is a nonnegative Lagrange multiplier. This suggest that the Jacobian should look like

J i
lin = − (s wcs

axe)T , (7.177a)

J j
lin = (s wcs

axe)T , (7.177b)

J i
ang =

(
r wcs

limi
× s wcs

axe
)T

, (7.177c)

J j
ang = −

(
r wcs

limj
× s wcs

axe

)T
. (7.177d)

However, it is not obvious that J i
angωi + J j

angωj = 0, also to avoid computing the vectors r wcs
limi

and
r wcs

limj
during simulation it would be nice to remove them from the expressions.

Observe that the vector, c = rj − ri, can be written as, c = r wcs
limi

− r wcs
limj

. We will now show that
with the c-vector we can obtain:

r wcs
limi
× F =

1

2
c× F =

1

2

(
r wcs

limi
− r wcs

limj

)
× F , (7.178a)

r wcs
limj
× F = −1

2
c× F = −1

2

(
r wcs

limi
− r wcs

limj

)
× F . (7.178b)

From the second equation we have

r wcs
limj
× F = −1

2
r wcs

limi
× F +

1

2
r wcs

limj
× F , (7.179)

“book” — 2005/9/30 — 15:44 — page 224 — #236✐
✐

✐
✐

✐
✐

✐
✐

224 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

which yields
1

2
r wcs

limj
× F = −1

2
r wcs

limi
× F , (7.180)

and substituting this into the first equation yields

r wcs
limi
× F =

1

2

(
r wcs

limi
− r wcs

limj

)
× F (7.181a)

=
1

2
r wcs

limi
× F − 1

2
r wcs

limj
× F (7.181b)

=
1

2
r wcs

limi
× F −

(
−1

2
r wcs

limi
× F

)
, (7.181c)

r wcs
limi
× F = r wcs

limi
× F . (7.181d)

This proves (7.178a). Repeating the steps but interchanging equations easily derives (7.178b). Observe
also that the sum of the two equations is equal to zero as required by Euler’s equation. We can now rewrite
the angular parts of the Jacobian as

J i
lin = − (s wcs

axe)T , (7.182a)

J j
lin = (s wcs

axe)T , (7.182b)

J i
ang =

1

2
(c× s wcs

axe)T , (7.182c)

J j
ang = −1

2
(c× s wcs

axe)T . (7.182d)

To verify that J i
angωi + J j

angωj = 0, we insert (7.182c) and (7.182d) and find

1

2
(c× s wcs

axe)T ωi −
1

2
(c× s wcs

axe)T ωj = 0, (7.183a)

⇒ 1

2
(c× s wcs

axe)T (ωi − ωj) = 0, (7.183b)

and because we have a slider joint ωi = ωj . In conclusion, we see that with the Jacobian in (7.183), both
the kinematic constraints are satisfied, and the reaction forces are prober.

Putting it all together, we have the complementarity constraint

J lo
slideru ≥ 0, compl. to λlo ≥ 0. (7.184)

An error correcting term, b lo
slider is easily added to the right side of the kinematic constraint as

b lo
slider = kerp

dlo − ddis

∆t
(7.185a)

= kcorderr, (7.185b)

where we have set derr = dlo − ddis.

“book” — 2005/9/30 — 15:44 — page 225 — #237✐
✐

✐
✐

✐
✐

✐
✐

7.8 PHYSICS-BASED ANIMATION 225

In conclusion, we have derived a single linear complementarity constraint for the lower joint limit of
a slider joint. The same approach can be used to derive a single linear complementarity constraint for the
upper limit. It should be apparent that all that is really needed is to negate the Jacobian, that is,

J hi
slider = −J lo

slider, (7.186)

and the error term

b hi
slider = kerp

dhi − ddis

∆t
(7.187a)

= kcorderr. (7.187b)

7.8.2 Hinge Joint Limits
There really is not much difference between setting limits on a slider joint and a hinge joint. The major
difference is that the joint axis now describes a rotation axis, and instead of distances, we use angle
measures.

If we store the initial relative rotation of two bodies in the quaternion, q ini, then we can compute the
current relative rotation of the two bodies as

qrel = q∗j qiq
∗
ini. (7.188)

This quaternion corresponds to a rotation of θ radians around the unit axis, v, that is the angle measured
from i to j around the joint axis,

qrel =

[
cos

(
θ

2

)
, sin

(
θ

2

)
v

]
. (7.189)

Using standard trigonometry and taking care of the double representation of rotations by picking the
smallest angle solution, one can extract the angle from the quaternion of relative rotation. Specifically,
taking the dot product with the vector part of the quaternion, sin θ

2 , is obtained since v ·v = 1, now arctan
can be used to obtain θ

2 .
As we did in the case of the slider joint, we want to impose a low- and high-joint limit, θ lo and θhi. If,

for instance, the lower limit is violated as
θ ≤ θlo, (7.190)

then we will add a new unilateral constraint, which specifies that the relative angular velocity of the joint
around the joint axis must be such that the angle does not move beyond the limit. For a hinge joint this
means that we must require

s wcs
axe · (ωj − ωi) ≥ 0. (7.191)

We immediately see that this is equivalent to a 1× 12 dimensional Jacobian matrix, J lo
hinge, where

J i
lin = 0, (7.192a)

J j
lin = 0, (7.192b)

J i
ang = − (s wcs

axe)T , (7.192c)

J j
ang = (s wcs

axe)T . (7.192d)

“book” — 2005/9/30 — 15:44 — page 226 — #238✐
✐

✐
✐

✐
✐

✐
✐

226 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

The corresponding reaction force from the joint limit is given by

F lo
hinge =

(
J lo

hinge
)T
λlo, (7.193)

where λlo is a nonnegative Lagrange multiplier. We see that we have the complementarity constraint

J lo
hingeu ≥ 0, compl. to λlo ≥ 0. (7.194)

An error correcting term, b lo
hinge, is added to the right side of the kinematic constraint as

b lo
hinge = kerp

θlo − θ
∆t

(7.195a)

= kcorθerr, (7.195b)

where θerr = θlo − θ.
The constraints for the high limit of the hinge joint is obtained by negating the Jacobian

J hi
hinge = −J lo

hinge, (7.196)

and the error term is given by,

b hi
hinge = kerp

θhi − θ
∆t

(7.197a)

= kcorθerr. (7.197b)

7.8.3 Generalization of Joint Limits
In the previous sections we derived constraint equations specific for low- and high-joint limits on slider and
hinge joints. Fortunately, it is possible to extend these ideas to a more general framework. For instance,
the concept of a reach cone, i.e., multiple angular joint limits, is often used in biomechanics to describe
the limited movement of the shoulder or hip joints in the human skeleton [Wilhelms et al., 2001].

In fact, we could formulate the allowable configuration space or the reachable region for a joint, by an
implicit function, C(. . .) ∈ R, of the joint parameters. For the slider and hinge joints, the joint parameters
are the displacement and the angle, which we will specify with the generalized joint parameter vector, q,
as a function of the generalized position vector, s. Furthermore, the implicit function has the following
characteristics,

C(q(s)) < 0 Outside, (7.198a)
C(q(s)) = 0 On boundary, (7.198b)
C(q(s)) > 0 Inside. (7.198c)

We can now reformulate positional constraints as

C(q(s)) ≥ 0. (7.199)

“book” — 2005/9/30 — 15:44 — page 227 — #239✐
✐

✐
✐

✐
✐

✐
✐

7.9 PHYSICS-BASED ANIMATION 227

Differentiation w.r.t. time leads to the kinematic constraint,

d

dt
C(q(s)) =

dC(q(s))

dq

dq

ds︸ ︷︷ ︸
JC

ds

dt︸︷︷︸
u

(7.200a)

= JCu (7.200b)
≥ 0, (7.200c)

which could be augmented with an error reduction term

JCu ≥ bC . (7.201)

The reaction forces are determined by

F C
reaction = J T

CλC , (7.202)

where λC is a vector of nonnegative Lagrange multipliers. Finally, we have the complementarity con-
straints,

JCu− bC ≥ 0, compl. to λC ≥ 0. (7.203)

The constraints in terms of the Jacobian and the error term should be added to the system equations,
whenever a joint limit has been violated or its boundary has been reached. This is completely analogous
to collision detection; enforcing joint limits in this manner is therefore not much different from finding
contacts and computing normal forces.

Observe that in a force-based formulation, the kinematic joint limit constraints should be differentiated
w.r.t. time to get the acceleration constraints needed for augmenting the system equations.

7.9 Joint Motors
With joints and joint limits, we are capable of modeling the range of relative motion between two bodies.
We will now look at one way to control the motion that is taking place.

A joint motor applies torque or force to a joint’s degrees of freedom to induce movement. The joint
motor model uses two parameters for this: a desired speed, vdesired, and the maximum torque or force,
λmax, that can be applied to reach the desired speed.

From past sections we have seen that the error correcting term can be used to adjust velocities. The
same principle can be used to drive a joint toward a desired speed by

Jmotoru ≥ bmotor, (7.204a)

[
J i

lin J i
ang J j

lin J j
ang

]
⎡

⎢⎢⎣

vi

ωi

vj

ωj

⎤

⎥⎥⎦ ≥ bmotor. (7.204b)

“book” — 2005/9/30 — 15:44 — page 228 — #240✐
✐

✐
✐

✐
✐

✐
✐

228 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

For a one DOF joint like a slider and a hinge joint, the motor Jacobian will have dimension 1 × 12, and
the right-hand side will be a scalar. In fact,

bmotor = vdesired. (7.205)

The Jacobian is also easy to derive for these two cases

J slider
motor = [s wcs

axe ,0,−s wcs
axe ,0] , (7.206a)

J hinge
motor = [0,−s wcs

axe ,0, s wcs
axe] . (7.206b)

The motor force is given by the relation

F motor = J T
motorλmotor, (7.207)

where λmotor is a Lagrange multiplier, that can be interpreted as a measure of the magnitude of the joint
force along the degrees of freedom in the joint. By setting upper and lower limits on λmotor, we can model
the aspect of the maximum available force, that is,

−λmax ≤ λmotor ≤ λmax. (7.208)

Finally, we require the force and the desired velocity term to be complementary to each other, that is,

Jmotoru ≥ bmotor, compl. to |λmotor| ≤ λmax. (7.209)

The basic idea behind this is that if the velocity exceeds the desired velocity, then the motor force should
work at its maximum to bring the velocity back to the desired speed.

On the other hand, if the desired speed has been reached, then the motor force can assume any value
between 0 and |λmax| to keep the desired speed.

In conclusion, we have developed linear complementarity constraints with both upper and lower limits
for joint motors. The theory we have outlined can be extended to more complex joint types in a straight-
forward manner, simply by formulating Jacobians for their degree of freedom movement.

Another aspect of joint motors, which comes in handy, is that they can be used to model friction in
joints. This is done by setting the desired velocity to zero and the maximum force to some constant value;
then all joint motion will be slowed down by the frictional motor force.

To drive the joints to a specified position, a positional joint motor would simply be a hybrid of the
joint limit model and the joint motor models we have outlined. The trick lies in setting the lower- and
upper-joint limits equal to the wanted position, and then limiting the motor force as we did in this section.

In contrast to real-life motors and engines, the presented motor controls capture the essential idea
of limited power and the need for controlling the speed. Higher-level controllers could be added to a
simulator (motor programs) for manipulating the joint motors, but this is out of the scope of this book.

“book” — 2005/9/30 — 15:44 — page 229 — #241✐
✐

✐
✐

✐
✐

✐
✐

7.10 PHYSICS-BASED ANIMATION 229

Algorithm fixed-time-step(s t, u t, ∆t)
s ′ = s t + ∆tSu t

λ = LCP (s ′, u t)
u t+∆t = u t + M−1

`
J T λ + ∆tf ext

´

s t+∆t = s t + ∆tSu t+∆t

return s t+∆t

End algorithm

Figure 7.15: Fixed Time-Stepping.

7.10 Time-Stepping Methods
In order to calculate the movement of rigid bodies, the simulation loop needs to advance the simulation
time. This process is called a time-stepping method or time control. Knowing how to compute contact
and constraint forces or impulses at collisions, the time-stepping method sets up a scheme that integrates
the forces in order to obtain the motion of the rigid bodies. In the following, we will discuss mainly fixed
time-stepping methods.

The matrices M , C, N , and D depend on the generalized position vector s, which itself is dependent
on time.

In some simulators the time dependency is ignored and the simulator uses a fixed time-stepping rou-
tine, such as is the case of the Open Dynamics Engine [ODE, 2005]. The general idea is illustrated in Fig-
ure 7.15, and the main advantage is that only a single LCP problem is solved per time-step. Unfortunately,
it also leads to penetrations and drifting problems. In the Open Dynamics Engine several heuristics are
used to overcome these problems: constraint Force Mixing, Error Reduction Parameter, and a specialized
position update. These heuristics will be discussed in this section.

Now we will discuss the detection of contacts. There are several ways to approach this for the pseu-
docode in Figure 7.15. One way is to invoke the collision detection at time t and hope for the best, but
new contacts might develop during the time from t to t + ∆t. The future contacts that are overlooked at
time t could potentially end up as violated contacts at time t + ∆t. That is, deeply penetrating contacts.
This is illustrated in Figure 7.16.

Stewart and Trinkle [Stewart et al., 1996] propose a retroactive detection approach to detecting over-
looked future contacts. First, all contacts are detected at time t, then a fixed time-step is taken, and finally
all contacts at time t + ∆t are detected. If any new and violated contacts are found, then these contacts
are added to the set of contacts found at time t, the simulation is then rewound to time t, and a new fixed
time-step is taken. These steps are repeated until all the necessary contacts have been found. Pseudocode
can be found in Figure 7.17. Although it is obvious that only a finite number of contacts exist, and that the
algorithm sooner or later will have detected all contacts necessary for preventing penetration, it is, how-
ever, not obvious how many iterations the algorithm will take, and it is therefore difficult to say anything
useful about the time-complexity. The retroactive detection of contacts is similar to the contact tracking
algorithm described in Section 14.3.

Detecting a future contact at an early stage can have an undesirable effect, in essence, a contact that
appears at time t + ∆t is resolved at time t. This would make objects appear to have a force field or

“book” — 2005/9/30 — 15:44 — page 230 — #242✐
✐

✐
✐

✐
✐

✐
✐

230 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

g�

time t� time t+dt�

g�

Figure 7.16: 2D illustration of the problem with violated contacts in a fixed time-stepping due to over-
looking potential future contact. Small white circles show valid contacts and black small circles show
violated contacts. Notice that contacts not detected at time t will be detected as violated contacts at time
t + dt.

Algorithm retroactive-1(s t, u t, ∆t)
repeat

Scontacts = collision detection(s t)
s t+∆t = fixed-time-step(s t, u t, ∆t)
S′

contacts = collision detection(s t+∆t)
if violated contacts in S ′

contacts then
for all contacts c ∈ S ′

contacts do
if c violated and c /∈ Scontacts then

add c to Scontacts

next c
else
return s t+∆t

end if
until forever

End algorithm

Figure 7.17: Retroactive Detection of Contacts in a Fixed Time-Stepping Method.

“book” — 2005/9/30 — 15:44 — page 231 — #243✐
✐

✐
✐

✐
✐

✐
✐

7.10 PHYSICS-BASED ANIMATION 231

g� inelastic ball�elastic ball�

Figure 7.18: 2D example showing visual artifacts of resolving future contacts at time t. The elastic ball
never touches the fixed box before it bounces; the inelastic ball is hanging in the air after its impact.

g�

Figure 7.19: System moving along a concave boundary of the admissible region in configuration space.

envelope surrounding them, preventing other objects from actually touching them. Most noticeable, this
could cause an object hanging in the air, as shown in Figure 7.18. If we are simulating fast moving and
bouncing objects, it is unlikely that an observer would notice the visual artifacts, but if the time-step is
big enough, the artifacts illustrated in Figure 7.18 may annoy an observer. To remedy this effect, one
could either lower the time-step size, which causes a performance degradation, or one could remodel the
error terms to take into account that a contact does not exist at time t. This approach was elaborated on in
Section 7.3.

Time-stepping methods may result in penetrations when the system moves along concave boundaries
of the admissible region in configuration space [Anitescu et al., 1997, Stewart, 2000]. Configuration space
is the vector space consisting of the concatenation of the generalized position and velocity vectors. The
admissible region is the subspace of states that make physical sense, like states that do not cause a penetra-
tion. A simple example is illustrated in Figure 7.19. As can be seen in the figure, the dotted line indicates
the normal constraint; therefore the box is allowed to move along this line. Furthermore, since the lower
fixed object is concave at the touching contact point, a penetration will always occur no matter how small
a step the box moves along the dotted line. This indicates that situations will arise where all necessary
contacts have been detected, but still the algorithm will find violated contacts causing an infinite loop
since the if -statement in the pseudocode of Figure 7.17 always will be true. This seems to be an unsolved

“book” — 2005/9/30 — 15:44 — page 232 — #244✐
✐

✐
✐

✐
✐

✐
✐

232 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

g�

Figure 7.20: Different ways to project a violated contact back into a valid contact. The horizontal pro-
jection does not change the potential energy of the box; both the vertical and the inclined projections
increase the potential energy. In the following time-step, the added potential energy is transformed into
kinetic energy, resulting in a more violent collision between the two objects.

problem in the literature.
Stewart and Trinkle [Stewart, 2000] suggest that simple projection can be used to eliminate the prob-

lem of penetrations as a result of moving along concave boundaries in configuration space. They state,
however, that care must be taken to avoid losing energy in the process. In [Baraff, 1995] a displacement is
computed by using a first-order system Af = b, where A only contains normal and bilateral constraints.
In our notation, this corresponds to

A =

[
NT CT M−1CN NT CT M−1JΦ

J T
ΦM−1CN J T

ΦM−1JΦ

]
. (7.210)

The b-vector contains the signed constraint errors. From the solution, f , the derivative, ṡ, can be computed
as described in Section 7.14. Now using ∆s = ṡ, a displacement can be obtained as st+∆t = st+∆t +∆s
(see [Baraff, 1995] for more details).

Solving penetration errors by projection can change the potential energy of the system, thus changing
the total energy in the system. Figure 7.20 illustrates the energy problem with the projection method. In
the figure, three possible projections of the box are shown as dashed boxes. Due to the gravitational field
g, both the vertical and the inclined projections will increase the energy of the system, while only the
horizontal projection will maintain the same energy level. If the geometries are mirrored in the vertical
direction, then the vertical and inclined projections will result in a loss of energy. In other words, projec-
tion must be done in such a way that the potential energy remains unchanged. It is not obvious to us how
a general method of projection can be designed to fulfill this.

Another approach for handling penetration errors is to use constraint stabilization. This can intuitively
be explained as inserting small damped virtual springs between objects at those places where penetration
errors are detected. In Section 7.6 and 7.7, the constraint-based method was extended with error correcting
terms that stabilized the constraints. An error reduction parameter was used to control the amount of error
correction. In case of large errors, or over-eager error reduction, stabilization can cause severe alterations
of the simulated motion because the stabilization is accelerating objects apart in order to fix the error.

“book” — 2005/9/30 — 15:44 — page 233 — #245✐
✐

✐
✐

✐
✐

✐
✐

7.10 PHYSICS-BASED ANIMATION 233

Stabilization�

Collision Artefact�

Resting Box�

Figure 7.21: Example of constraint stabilization on a violated contact of a resting box causing the box to
bounce off the resting surface.

Thus the stabilization adds kinetic energy to the system; in severe cases stabilization can cause a shock-
like effect on constraints with large errors. The artifact of stabilization is illustrated in Figure 7.21. Several
approaches exist for minimizing the problem, but none of them completely removes it. By lowering the
time-step size, the magnitude of constraint errors would also be lowered, thus decreasing the chance of
large constraint errors and degrading performance. Lowering the error reduction parameter minimizes
the chance of stabilization being too eager; the drawback is that error correction will take longer, thus
increasing the chance of an observer noticing deep penetrations of objects. Finally, constraints can be
made softer by using Constraint Force Mixing as described in Section 7.13. This has the same drawbacks
as lowering the error reduction parameter; furthermore, it removes kinetic energy from the system. Thus
if used too aggressively, objects appear lazier than they should.

The matrices M , C, N , and D depend on time; the constraint-based method should rightly be formu-
lated as a nonlinear complementarity problem (NCP). A NCP can be solved iteratively by using a fix-point
algorithm as shown in Figure 7.22.

In [Anitescu et al., 1997] an explicit time-stepping method is used together with retroactive detection
of collisions. We have outlined the general control flow in Figure 7.23. The main idea is to halt the
simulation at the time of an impact and then handle the impact before proceeding with the simulation. In
[Anitescu et al., 1997], two LCP problems are set up and used to solve for postvelocities of the impact.
This is done using Poisson’s hypotheses for handling the compression and decompression phases of an
impact. In [Baraff, 1989], a simpler approach is used based on Newton’s impact law. This leads to nearly
the same kind of LCP problem we have outlined. Later in [Anitescu et al., 2002], an even simpler collision
model is used, which only supports completely inelastic collisions. The methods in [Anitescu et al., 1997,
Baraff, 1989, Anitescu et al., 2002] are termed simultaneous collision methods; we will not treat these
further. Another possibility is to use a so-called sequential collision method, which is treated in more
detail in Section 6.2.4.

“book” — 2005/9/30 — 15:44 — page 234 — #246✐
✐

✐
✐

✐
✐

✐
✐

234 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Algorithm fixpoint(s t, u t, ∆t)
s ′ = s t + ∆tSu t

repeat
λ = LCP (s ′, u t)
u ′ = u t + M−1

`
J T λ + ∆tf ext

´

s ′′ = s ′

s ′ = s t + ∆tSu ′

until |s ′ − s ′′| < ϵfix

s t+∆t = s ′

return s t+∆t

End algorithm

Figure 7.22: Fix-point-Iteration algorithm, Typical values according to [Sauer et al., 1998] are ∆t ≤ 10−3

and ϵfix ≤ 10−4.

Algorithm retroactive-2(s t, u t, ∆t)
s ′ = s t

u ′ = u t

h = ∆t/nsteps

t = 0
while t < ∆t do

s ′′ = s ′ + hSu ′

λ = LCP (s ′′, u ′)
if no collision then

t = t + h
s ′ = s ′′

u ′ = u t + M−1
`
(JT λ + ∆tf ext

´

else
let ttoi be time of impact
apply collision model
...
t = ttoi

end if
end while
s t+∆t = s ′

return s t+∆t

End algorithm

Figure 7.23: Explicit time-stepping with Retroactive Detection of Colliding Contacts.

“book” — 2005/9/30 — 15:44 — page 235 — #247✐
✐

✐
✐

✐
✐

✐
✐

7.10 PHYSICS-BASED ANIMATION 235

dt = T_target - T
do

simulate-forward(dt)
if intersection

rewind-simulation()
dt = dt/2

else if contact
collision-resolving()
T = T + dt
dt = T_target - T

end if
while T<T_target

Figure 7.24: Example of retroactive advancement based on a bisection root search algorithm.

In [Anitescu et al., 2002] the same control flow is used in an implicit-time-stepping method, the major
difference being the way the LCP is formed. We have chosen to omit the implicit version, since it is out
of scope for the kind of applications we have in mind.

7.10.1 Numerical Issues with Retroactive Time Control
Due to numerical truncation and roundoff errors, thresholding is a necessary evil in order to determine the
type of contact between two objects, A and B. Using a threshold value ε, an often-used rule of thumb for
determining the contact state is as follows:

• if A and B are separated by ε, then there is no contact

• if distance between A and B is less than ε, then there is contact

• if penetration between A and B is no more than ε, then there is contact

• if penetration between A and B is more than ε, then A and B are intersecting

Now we’ll review a typical retroactive advancement of the simulation. That is, if time control is handled in
a root searching manner, the general idea is to watch out for penetrations and then backtrack the simulation
to the time of impact when they occur. This is illustrated in Figure 7.24. Of course, more elaborate and
intelligent root search schemes can be used, but the bisection scheme in Figure 7.24 suffices for our
discussion in this section.

Suppose A and B are in resting contact and penetrate each other with a penetration of ε, and imagine
that during the forward simulation a small numerical drift causes A and B to interpenetrate with a depth
greater than ε. As can be seen from the pseudocode, the root searching algorithm will be fooled into
thinking that a collision has occurred, even though no collision has occurred. Consequently, the root
searching algorithm will begin to backtrack in order to search for the time of impact. The result will
be a never-ending search for a nonexistent root. Even if a root is determined within a threshold value,
the subsequent attempt to advance the simulation is doomed to repeat a new root search for the same

“book” — 2005/9/30 — 15:44 — page 236 — #248✐
✐

✐
✐

✐
✐

✐
✐

236 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

nonexistent root. In other words, the simulation will either go into an infinite loop never advancing the
simulation, or alternatively, the system will end up in a faulty state with penetrations greater than ε.

One possible strategy to avoid the above-mentioned problems would be to adapt a more advanced
thresholding method, using one threshold for the root searching algorithm and another threshold value for
determining the type of contact [Baraff, 1995]. However, it is extremely difficult to get such an approach
to work efficiently and robustly in practice. Another way out would be to penalize penetrations by a force-
feedback term. However, what you get is all the troubles of penalty methods, and there is no guarantee
that the error will be within a certain limit, since a penalty force like a spring does not impose a hard
constraint.

If your simulator is already based on a penalty method, you have nothing to worry about; however,
retroactive advancement is a very bad choice for a penalty-based simulator; instead, fixed time-stepping
is often the preferred choice. On the other hand, if your simulator is a constraint-based simulator, it seems
daunting to add penalty forces to it, since it essentially will turn your simulator into a hybrid simulator. Not
only can you get the advantages from both types of simulator, but also you can inherit all the sicknesses.

In our opinion, a far better approach for resolving the problem is to displace objects when their pene-
tration depth is greater than a certain tolerance correction value. For example, set the tolerance correction
to

δ =
3

4
ε, (7.211)

whenever the penetration depth increases beyond δ, objects are displaced to reduce or remove penetrations.
This resolution technique will guarantee that you never will get into problems with your main simulation
loop. However, there are some drawbacks; a displacement could change the potential energy of an object.
If the energy is increased, the subsequent simulation might transform the potential energy into kinetic
energy, causing objects to begin jittering and jumping around. In our opinion, it is more pleasing to look
at a simulation where potential energy vanishes. Our main point is that displacements should occur such
that the potential energy is nonincreasing.

7.10.2 Unavoidable Penetrations
In some cases, penetrations are simply unavoidable due to the discrete time-stepping. This can be hard to
grasp, so we will present a small example, originally presented in [llerhøj, 2004], illustrating how pene-
trations can occur. The example uses the fixed semi-implicit time-stepping method given in Figure 7.15.
In the initial state the rod is moving to the right and the box is fixed as seen in Figure 7.25. The time-
stepping method first tries to guess the next position by doing a fake position update, t ′ = t + ∆t. This
fake position is first used to determine contact points shown as small solid circles, and then the velocities
are updated at the fake position. As shown in the figure, the velocity update predicts a tipping movement
of the rod at the fake position. Now the time-stepping method will use the velocities computed at the fake
position to update the real position. However, the tipping movement will cause an unwanted penetration
of the rod and the box. A rule of thumb is that penetrations can occur in the same order as the order of
the time-stepping method used. To be specific, the fixed semi-implicit time-stepping method introduced
in Section 7.10 is of first order, i.e., O(h), where h denotes the step-size. The errors accumulate linearly
with the number of steps n, such that the error after n steps is proportional to nh. This might appear to
be bad, however from a convergence theory point of view, lowering h will guarantee better accuracy, and

“book” — 2005/9/30 — 15:44 — page 237 — #249✐
✐

✐
✐

✐
✐

✐
✐

7.10 PHYSICS-BASED ANIMATION 237

t = 0�

t' = t + dt�
t' = t + dt�

t = t + dt�

Fake Positio
n Update�

Compute Velocities�

Real P
ositio

n Update�

Figure 7.25: Penetrations can occur with fixed semi-implicit time-stepping.

“book” — 2005/9/30 — 15:44 — page 238 — #250✐
✐

✐
✐

✐
✐

✐
✐

238 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

in the limit h ,→ 0 a perfect solution will be found. In practice this is not feasible, since all limiting cases
cannot be reached on a computer with finite precision arithmetic; even if the limiting cases were possible
it would take far too long to compute. Therefore, a better and practical approach is to pick a step size,
such that the errors never grow large enough for an end-user to notice them.

Another example of unavoidable penetrations is the configuration shown in Figure 7.19. Here the
problem is that we have a linear discretization, but a higher order surface. The numerics cannot see the
higher order and do not care about it.

7.11 A Unified Object-Oriented Constraint Design
From past chapters we learned that four types of constraints can be expressed by using Jacobians. These
are joint constraints, contacts, joint limits, and joint motors. For these types of constraints we derived the
following kinematic constraints

J jointu = bjoint, (7.212a)
J contactu ≥ bcontact, (7.212b)
J limitu ≥ blimit, (7.212c)
Jmotoru ≥ bmotor. (7.212d)

Adding the reaction forces to the equations of motion results in the generalized acceleration vector

u̇ = M−1
(
J T

jointλjoint + J T
contactλcontact + J T

limitλlimit + J T
motorλmotor + f ext

)
, (7.213)

with the following limits on the Lagrange multipliers

−∞ ≤λjoint ≤ ∞, (7.214a)
0 ≤λcontact ≤ ∞, (7.214b)
0 ≤λlimit ≤ ∞, (7.214c)

−λmax ≤λmotor ≤ λmax. (7.214d)

Performing the usual discretization steps and substitutions, we derive the following complementarity for-
mulation

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
A

⎡

⎢⎢⎢⎢⎣

λjoint
λcontact
λlimit
λmotor
λaux

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
λ

+

⎡

⎢⎢⎢⎢⎣

J joint
(
u + ∆tM−1f ext

)
− bjoint

J contact
(
u + ∆tM−1f ext

)
− bcontact

J limit
(
u + ∆tM−1f ext

)
− blimit

Jmotor
(
u + ∆tM−1f ext

)
− bmotor

baux

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

≥ 0, (7.215)

where

A11 =

⎡

⎢⎢⎣

J jointM
−1J T

joint J jointM
−1J T

contact J jointM
−1J T

limit J jointM
−1J T

motor
J contactM

−1J T
joint J contactM

−1J T
contact J contactM

−1J T
limit J contactM

−1J T
motor

J limitM
−1J T

joint J limitM
−1J T

contact J limitM
−1J T

limit J limitM
−1J T

motor
JmotorM

−1J T
joint JmotorM

−1J T
contact JmotorM

−1J T
limit JmotorM

−1J T
motor

⎤

⎥⎥⎦ , (7.216)

“book” — 2005/9/30 — 15:44 — page 239 — #251✐
✐

✐
✐

✐
✐

✐
✐

7.11 PHYSICS-BASED ANIMATION 239

and A12,A22,A21, and baux corresponds to a permutation of the third row and column in (7.60), that is
the auxiliary constraints needed to model the frictional force. This is complementary to

⎡

⎢⎢⎢⎢⎣

−∞
0
0

−λmax
0

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
λlow

≤ λ ≤

⎡

⎢⎢⎢⎢⎣

∞
∞
∞
λmax
∞

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
λhigh

. (7.217)

where complementarity is understood coordinate-wise and is best explained by introducing the vector w

w = Aλ+ b. (7.218)

The i’th coordinate of w is paired with the i’th coordinate of λ. Complementarity means that for all i,
one of the three conditions below holds

λi = λlowi ,wi ≥ 0, (7.219a)
λi = λhighi

,wi ≤ 0, (7.219b)
λlowi < λi < λhighi

,wi = 0. (7.219c)

Figure 7.26 helps illustrate the complementarity conditions in equation (7.219). Notice that as long as λ i

is within its lower and upper bounds, wi is forced to zero. The vector wi is only nonzero at the lower and
upper bounds. Usually, the LCP is formulated with λlow = 0 and λhigh = ∞, in which case the above
definition reduces to the familiar notation

λ ≥ 0 compl. to w ≥ 0. (7.220)

We refer the reader to [Cottle et al., 1992, Murty, 1988] for more details on LCP or Section 19.10.
To ease notation further, we may concatenate all the Jacobians into a single matrix,

J =

⎡

⎢⎢⎣

J joint
J contact
J limit
Jmotor

⎤

⎥⎥⎦ . (7.221)

Similarly we may concatenate all the error correcting terms,

berror =

⎡

⎢⎢⎣

bjoint
bcontact
blimit
bmotor

⎤

⎥⎥⎦ , (7.222)

“book” — 2005/9/30 — 15:44 — page 240 — #252✐
✐

✐
✐

✐
✐

✐
✐

240 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

λ
i

w
i
 > 0

w
i
 < 0

λ
low

i

λ
high

i

Figure 7.26: The complementarity condition on the i’th variable.

and we may thus write
[
JM−1J T A12

A21 A22

]

︸ ︷︷ ︸
A

λ+

[
J
(
u + ∆tM−1f ext

)
− berror

baux

]

︸ ︷︷ ︸
b

≥ 0 (7.223)

complementary to
λlow ≤ λ ≤ λhigh. (7.224)

Having rewritten the complementarity formulation into this form allows us to compute the system matrix
very efficiently. Notice also how easy we can write the generalized acceleration vector with the new
notation,

u̇ = M−1
(
J Tλ+ f ext

)
. (7.225)

When assembling the system matrix, we must first allocate space for all matrices involved, and then set
up the subblock structure for each individual constraint. We evaluate each constraint, i.e., compute joint
axes, joint positions, joint errors, and so on. That is, all information needed in the Jacobian matrix and the
corresponding error term for each constraint, including any auxiliary constraints are evaluated.

Care must be taken in the evaluation since joint limits and motors depend on the joints they are attached
to, and joint motors and limits must therefore not be evaluated before the joints they are attached to.

After having performed the evaluation, we can determine which constraints are currently active and
which are nonactive. The nonactive constraints can simply be dropped from further consideration in the

“book” — 2005/9/30 — 15:44 — page 241 — #253✐
✐

✐
✐

✐
✐

✐
✐

7.12 PHYSICS-BASED ANIMATION 241

current assembly. As an example, the joint limit is nonactive whenever the joint has not reached its outer
limit.

Knowing how many active constraints there are, we can compute the dimensions of the matrices
involved. For each constraint we will query how many rows its Jacobian matrix contains and we will
query how many auxiliary variables there are. Summing these up we are able to determine the total
dimensions of the matrices and vectors needed in the assembly.

During these summations it is also possible to assign indices for the subblocks for each and every
constraint, where its Jacobian matrix, error term, and the auxiliary variable data should be mapped to.
Figure 7.27 shows the pseudocode. Observe that substantial memory savings can be achieved by using a
simple sparse matrix representation of the matrices M−1 and J , as shown in the pseudocode as well. We
can now start filling in data in the matrices M−1 and J , and the vector berror, together with the parts of
the system matrix A and the right-hand side b containing the auxiliary data. Also, external forces, limits,
and the generalized velocity vector are easily dealt with as shown in Figure 7.28. Using these matrices it
is quite easy to compute (7.223) in a straightforward manner. The only real difficulty is that one must be
careful about the sparse representation of the matrices M−1 and J−1.

We have completed what we set out to do in this section. A unified framework for handling both
contact point constraints with friction and joint constraints with both motors and limits have been derived.

The framework allows a modularized and object-oriented design of all the constraints in a simulator.
This object oriented design is outlined in Figure 7.29. In the figure we have omitted details regarding
assembly of the jointed mechanism (linking bodies together with joints, and adding limits and motors).

7.12 Modified Position Update
When the new generalized position vector is computed as

s t+∆t = s t + ∆tSu t+∆t, (7.226)

then we call it a position update. In the position update written above, an infinitesimal orientation update
is used. This is fast to compute, but can occasionally cause inaccuracies for bodies that are rotating at high
speed; especially when joined to other bodies.

For instance, in a car simulation, four wheels might be attached to a chassis with a wheel joint. When
driving the car the wheels may rotate in incorrect directions, as though the joints were somehow becoming
ineffective. The problem is observed when the car is moving fast and turning. The wheels appear to rotate
out of their proper constraints as though the wheel axes have been bent. If the wheels are rotating slowly,
or the turn is made slowly, the problem is less apparent. The problem is that the high rotation speed of the
wheels is causing numerical errors. A finite orientation update can be used to reduce such inaccuracies.
This is more costly to compute, but will be more accurate for high-speed rotations. High-speed rotations
can result in many types of errors in a simulation, and a finite orientation update will only fix one of those
sources of error.

We will now outline a modified position update like the one used in the Open Dynamics Engine
[ODE, 2005]. For each body Bi we want to be able at configuration design time to set a kind of bit flag
indicating if the body should be updated using the infinite or finite update method. In case of the finite

“book” — 2005/9/30 — 15:44 — page 242 — #254✐
✐

✐
✐

✐
✐

✐
✐

242 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Algorithm allocate(...)
C = set of all constraints
njacobian = 0
for each constraint c ∈ C do

c.evaluate()
if not c.active() then
remove c from C

end if
c.setJacobianIndex(njacobian)
njacobian+ = c.getNumberOfJacobianRows()

next c

nauxiliary = 0
for each constaint c ∈ C do

c.setAuxiliaryIndex(njacobian + nauxiliary)
nauxiliary+ = c.getNumberOfAuxiliaryVars()

next c

J = matrix(njacobian, 12)
berror = vector(njacobian)
ntotal = njacobian + nauxiliary

A = matrix(ntotal, ntotal)
b = vector(ntotal)
λ = vector(ntotal)
λlow = vector(ntotal)
λhigh = vector(ntotal)

B = set of all bodies
nbody = B.size()
M inv = matrix(3, 6nbody)
u = vector(6nbody)
f ext = vector(6nbody)

End algorithm

Figure 7.27: Allocate system matrix and setup subblock structure for constraints.

“book” — 2005/9/30 — 15:44 — page 243 — #255✐
✐

✐
✐

✐
✐

✐
✐

7.12 PHYSICS-BASED ANIMATION 243

Algorithm fillIn(...)
C = set of all active constraints
for each constaint c ∈ C do

i = c.getJacobianIndex()
j = i + c.getNumberOfJacobianRows()
J i

lin = J(i..j),(0..2)

J j
lin = J(i..j),(3..5)

J i
ang = J(i..j),(6..8)

J j
ang = J(i..j),(9..11)

c.getLinearJacobian_i(J i
lin)

c.getLinearJacobian_j(Jj
lin)

c.getAngularJacobian_i(J i
ang)

c.getAngularJacobian_j(Jj
ang)

c.getErrorTerm(berror,(i..j))
c.getJacobianLowLimit(λlow,(i..j))
c.getJacobianHighLimit(λhigh,(i..j))

next c
for each constaint c ∈ C do

i = c.getAuxiliaryIndex()
j = i + c.getNumberOfAuxiliaryVars()
Arows = A(i..j),(0..ntotal−1)

Acols = A(0..ntotal−1),(i..j)

c.getAuxiliaryRowsAndColumns(Arows, Acols)
c.getAuxiliaryLowLimit(λlow,(i..j))
c.getAuxiliaryHighLimit(λhigh,(i..j))
c.getAuxiliaryRightHandSide(b(i..j))

next c
B = set of all bodies
for each body b ∈ B do

i = 6 b.getIndex()
j = i + 6
b.getMassInvMatrix(M inv,(i..i+3,0..2))
b.getInertiaInvMatrix(M inv,(i+3..i+5,3..5))
b.getLinearVelocity(u i..i+2)
b.getAngularVelocity(u i+3..i+5)
b.getExternalForce(f ext,(i..i+2))
b.getExternalTorque(fext,(i+3..i+5))
b.getInertiaMatrix(I)
b.getAngularVelocity(ω)
fext,(i+3..i+5)− = ω × Iω

next b
End algorithm

Figure 7.28: Fill-in data in subblock structure for constraints and bodies.

“book” — 2005/9/30 — 15:44 — page 244 — #256✐
✐

✐
✐

✐
✐

✐
✐

244 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Joint�Contact�

Constraint�

index body_i�
index body_,j�

void evaluate()�
bool isActive()�

int getNumberOfJacobianRows()�
void setJacobianIndex(int)�
int getJacobianIndex()�
void getLinearJacobian_i(matrix)�
void getLinearJacobian_j(matrix)�
void getAngularJacobian_i(matrix)�
void getAngularJacobian_j(matrix)�
void getErrorTerm(vector)�

int getNumberOfAuxiliaryVars()�
void setAuxiliaryIndex()�
int getAuxiliaryIndex()�
void getAuxiliaryRowsAndCols(rows,cols)�
void getRightHandSide(vector)�

Slider�Hinge� BallInSocket� Universal�

JointLimits�JointMotor�

Fixed�Wheel�

LinearMotor� AngularMotor� LinearLimit� AngularLimit�

Figure 7.29: The Constraints Design. Observe the unification of contacts and joints.

update we want to compute a rotation, q, corresponding to the radians traveled around the rotation axis in
the time interval ∆t, that is, the rotation angle θ is given by

θ = ∆t ∥ωi∥2 , (7.227)

where the rotation axis is

u =
ωi

∥ωi∥2
. (7.228)

The corresponding quaternion q is then given as

q =

[
cos

(
θ

2

)
,u sin

(
θ

2

)]
. (7.229)

“book” — 2005/9/30 — 15:44 — page 245 — #257✐
✐

✐
✐

✐
✐

✐
✐

7.13 PHYSICS-BASED ANIMATION 245

This can be rewritten as follows:

q =

[
cos

(
θ

2

)
,u sin

(
θ

2

)]
(7.230a)

=

[
cos

(
θ

2

)
,
ωi

∥ωi∥2
sin

(
∆t ∥ωi∥2

2

)]
(7.230b)

=

⎡

⎢⎢⎣cos

(
θ

2

)
,ωi

sin

(
∆t∥ωi∥2

2

)

∥ωi∥2

⎤

⎥⎥⎦ (7.230c)

=

⎡

⎢⎢⎣cos

(
θ

2

)
,
∆t

2
ωi

sin

(
∆t∥ωi∥2

2

)

∆t∥ωi∥2
2

⎤

⎥⎥⎦ (7.230d)

=

[
cos

(
∆t ∥ωi∥2

2

)
,
∆t

2
ωisinc

(
∆t ∥ωi∥2

2

)]
. (7.230e)

Introducing the notation h = ∆t/2, and θ = ∥ωi∥2 h, we end up with

q = [cos (θ) ,ωisinc (θ)h] , (7.231)

where

sinc (x) ≃
{

1− x2

6 if |x| < ε,
sin(x)

x otherwise.
(7.232)

In order to avoid division by zero we have patched the sinc function around zero by using a Taylor expan-
sion for small values ε = 10−4. Furthermore, we want to be able to do both a full finite orientation update
and a partial finite orientation update. We have already taken care of the full finite orientation update, and
for the partial finite orientation update we split the angular velocity vector into a component ωfinite along
a specified finite rotation axis raxis, and a component ωinfinite orthogonal to it, that is,

ωfinite = (raxis · ωi) raxis, (7.233a)
ωinfinite = ωi −ωfinite. (7.233b)

First, a finite update is done with ωfinite followed by an infinite update done with ω infinite

qi = qqi, (7.234a)
qi = qi + ∆tQiωinfinite. (7.234b)

A partial finite orientation update can be useful in a situation like the previously mentioned wheel problem;
we simply set the finite rotation axis equal to the hinge axis. Figure 7.30 shows the pseudocode for the
position update on body Bi.

“book” — 2005/9/30 — 15:44 — page 246 — #258✐
✐

✐
✐

✐
✐

✐
✐

246 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Algorithm position-update (i, ∆t)
ri = ri + ∆tvi

if finite rotation on i then
if finite rotation axis on i then

ωfinite = (raxis · ωi) raxis

ω infinite = ωi − ωfinite

∆t = ∆t/2
θ = (raxis · ωi) ∆t
qs = cos(θ)
qv = (sinc(θ)∆t) ωfinite

else
∆t = ∆t/2
θ = ∥ωi∥

2
∗ ∆t

qs = cos(θ)
qv = (sinc(θ)∆t) ωi

end if
q = [qs, qv]
qi = qqi

if finite rotation axis on i then
qi = qi + ∆tQiωinfinite

end if
else

qi = qi + ∆tQiωi

end if
normalize(qi)

End Algorithm

Figure 7.30: Position update on i’th body.

7.13 Constraint Force Mixing

The constraint equation for a joint has the form

Ju = b, (7.235)

where u is a velocity vector for the bodies involved, J is the Jacobian matrix with one row for every
degree of freedom the joint removes from the system, and b is the error correcting term.

The constraint forces, that is, the reaction forces from the joint bearings are computed by

F = J Tλ, (7.236)

where λ is a vector of Lagrange multipliers and has the same dimension as b. The Open Dynamics Engine
[ODE, 2005] adds a new twist to these equations by reformulating the constraint equation as

Ju = b−Kcmfλ, (7.237)

“book” — 2005/9/30 — 15:44 — page 247 — #259✐
✐

✐
✐

✐
✐

✐
✐

7.14 PHYSICS-BASED ANIMATION 247

Where Kcmf is a square diagonal matrix. The matrix Kcmf mixes the resulting constraint force with the
constraint. A nonzero (positive) value of a diagonal entry of K cmf allows the original constraint equation
to be violated by an amount proportional to K cmf times the restoring force λ. Solving for λ gives

M ü = M
u ∆t+t − u

∆t
= J Tλ, (7.238)

from which we isolate u ∆t+t as

u ∆t+t = u + ∆tM−1J Tλ. (7.239)

Assuming that the constraint equation holds at time t+∆t and substituting the expression for u ∆t+t into
the constraint equation, we get

Ju ∆t+t = b−Kcmfλ, (7.240a)

Ju + ∆tJM−1J Tλ = b−Kcmfλ. (7.240b)

Collecting λ terms on the left side we get
(
JM−1J T +

1

∆t
Kcmf

)
λ =

1

∆t
(b− Ju) , (7.241)

from which it is clear that the K cmf matrix is added to the diagonal of the original system matrix.
According to [ODE, 2005], using only positive values in the diagonal of K cmf has the benefit of

moving the system away from singularities and improves factorization accuracy.
This twist of the constraint equations is known as constraint force mixing, and the diagonal entries of

the matrix Kcmf controls the amount of mixing that is done.

7.14 First-Order World
First-order world simulation is greatly inspired by the way Aristotle saw and described the world at his
time. These misconceptions were later rectified by Newton in his three laws of motion. Regardless, a
first-order world is useful in animation for error correction and precise positioning of objects. Aristotle’s
basic views were:

1. Heavier objects fall faster.

2. To keep an object in motion at constant velocity, a constant force is needed.

The problem with the second statement was in not realizing that in addition to the pulling or pushing
force, there are other forces involved, typically friction and air or water resistance. Fortunately, these
misconceptions are of great practical use in computer animation and also in more serious applications
such as virtual prototyping for example, [Redon et al., 2003].

“book” — 2005/9/30 — 15:44 — page 248 — #260✐
✐

✐
✐

✐
✐

✐
✐

248 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

Figure 7.31: A sequence in a first-order world simulation share two identical objects that are aligned. The
left box is pulled to the right. Observe that both the left and right boxes are equally affected.

Figure 7.32: A sequence in a first-order world simulation where two objects of different mass are aligned.
The left box has less mass than the right box. The left box is pulled to the right. Observe that the heavier
box on the right is less affected than light box on the left in comparison with Figure 7.31.

A first-order world is useful due to its controllability. In Newtonian mechanics, objects keep moving or
sliding after user interaction, making it hard to accurately position objects interactively in a virtual world.
On the other hand, in a first-order world, an object would stop immediately after a user stops pushing it.

Ease of interaction can be obtained by merely translating objects, but such an approach does not take
care of the rotational movement induced by collisions, etc. In a first-order world, misalignments between
objects are handled through simulation.

For instance, if a light misaligned object is pushed against a heavy perfectly aligned object, then the
simulation will automatically align the two objects w.r.t. each other. Furthermore, the light object will
be aligned more than the heavier object. Figures 7.31 and 7.32 show a few frames of a first-order world
simulation where two objects are automatically aligned. As seen in Figure 7.31 and 7.32 a first-order
world simulation is well suited for aligning objects and it respects their mass and inertia. This smooth
alignment is very attractive in many virtual environments; this also makes a first-order world simulation
an ideal tool for correcting simulation errors [Baraff, 1995]. An example of this is shown in Figure 7.33.

In a second-order system we have a state function, s(t), for a rigid body

s(t) =

⎡

⎢⎢⎣

r
q
P
L

⎤

⎥⎥⎦ , and ṡ(t) =

⎡

⎢⎢⎣

v
1
2ωq
F
τ

⎤

⎥⎥⎦ , (7.242)

“book” — 2005/9/30 — 15:44 — page 249 — #261✐
✐

✐
✐

✐
✐

✐
✐

7.14 PHYSICS-BASED ANIMATION 249

Figure 7.33: First-order world simulation used to correct penetration error. Left shows initial state, right
shows the corrected state. Observe that when corrected, the upper box is both translated and rotated.

where

v =
P

m
, and ω = I−1L, (7.243)

or equivalently, we have

s(t) =

⎡

⎢⎢⎣

r
q
v
ω

⎤

⎥⎥⎦ , and ṡ(t) =

⎡

⎢⎢⎣

v
1
2ωq
F
m

I−1 (τ −ω × L)

⎤

⎥⎥⎦ . (7.244)

In a first-order system, the state function for a rigid body simplifies to

s(t) =

[
r
q

]
, and ṡ(t) =

[
F
m

1
2I−1τq

]
. (7.245)

Observe that the difference is that force relates directly to velocity, that is,

F = mv, (7.246)
τ = Iω. (7.247)

This is the first-order world equivalent to the Newton-Euler equations of motion. Thus, in a first-order
world there is velocity but no acceleration, and first-order worlds are therefore very useful for evaluating
system kinematics. In a first-order system, the dynamics equation F = mv dictates that objects have no
intrinsic velocity of their own; equivalently, the velocity at any given instant depends completely on the
forces acting at that instant. This means that velocity-based damping and friction are nonexistent in a first-
order world, and that inertial forces due to velocity are absent. As we will see later, these consequences
greatly simplify the contact modeling compared to a second-order world obeying the Newton-Euler equa-
tions of motion.

“book” — 2005/9/30 — 15:44 — page 250 — #262✐
✐

✐
✐

✐
✐

✐
✐

250 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

7.14.1 Single Point of Contact

Now we’ll study a single point of contact, pk, between two bodies i and j. Let ri and rj be the center of
mass position of the bodies, then the two vectors from the center of mass to the point of contact are found
as

rki = pk − ri, (7.248)
rkj = pk − rj. (7.249)

The change in velocity of the contact point with respect to each body are

∆ui = ∆vi + ∆ωi × rki, (7.250)
∆uj = ∆vj + ∆ωj × rkj . (7.251)

In a first-order world, a change in velocity corresponds to a change in force. For the time being we will
ignore all other forces in the system except for the forces acting at the contact point. This means that the
change in force is simply the force acting at the contact point, and for body j we have

∆vj =
F

mj
, (7.252)

∆ωj = I−1
j (rkj × F) , (7.253)

where F is the force acting on body j. Assuming the law of reaction equals action, we must have that the
force on body i is given by −F , yielding the following equations for body i

∆vi = − F

mi
, (7.254)

∆ωi = −I−1
i (rki × F) . (7.255)

Now let us compute the relative change in contact velocity as

u = (∆uj −∆ui) . (7.256)

Substituting previous results yield

u = ((∆vj + ∆ωj × rkj)− (∆vi + ∆ωi × rki)) , (7.257a)

u =

((
F

mj
+
(
I−1

j (rkj × F)
)
× rkj

)
−
(
− F

mi
+
(
−I−1

i (rki × F)
)
× rki

))
(7.257b)

“book” — 2005/9/30 — 15:44 — page 251 — #263✐
✐

✐
✐

✐
✐

✐
✐

7.14 PHYSICS-BASED ANIMATION 251

Using the cross matrix notation for the cross products we can isolate F as

u =

((
F

mj
+
(
I−1

j

(
rkj

×F
))

rkj
×
)
−
(
− F

mi
+
(
−I−1

i

(
rki

×F
))

rki
×
))

(7.258a)

=

(
1

mj
+

1

mi

)
F −

(
rkj

×I−1
j rkj

×
)

F −
(
rki

×I−1
i rki

×)F (7.258b)

=

(
1

mj
+

1

mi

)
F −

(
rkj

×I−1
j rkj

× + rki
×I−1

i rki
×
)

F (7.258c)

=

((
1

mj
+

1

mi

)
1−

(
rkj

×I−1
j rkj

× + rki
×I−1

i rki
×
))

︸ ︷︷ ︸
K

F (7.258d)

u = KF . (7.258e)

The matrix K is the familiar collision matrix [Mirtich, 1996], and we have derived the same relationship
between force and contact point velocity in a first-order world as we have done earlier for collision im-
pulses and contact point velocities in a second-order world. Measuring the relative contact velocity in the
normal direction only n, yields

un = nT u = nT (KF) , (7.259)

and restricting the contact force F , to be parallel to the normal direction is simply

un =
(
nT Kn

)
f, (7.260)

where f is a scalar denoting the magnitude of the force F , and un is likewise a scalar denoting the
magnitude of relative contact velocity in the normal direction.

7.14.1.1 Penetration Correction

The previously derived relation (7.260) provides a convenient way for projecting penetrating bodies out
of each other. The idea is as follows: set up (7.260), such that you solve for the force F , which will yield
a change in the relative contact velocity u, that will correct the penetration during the next time-step h.

Let the penetration depth be given by the distance d, then the correcting velocity at the contact points
must be

un =
d

h
, (7.261)

and solving for the correcting force yields

f =
d
h

nT Kn
. (7.262)

Now use F = nf in the state function (7.245) to perform a single forward Euler step. This yields a

“book” — 2005/9/30 — 15:44 — page 252 — #264✐
✐

✐
✐

✐
✐

✐
✐

252 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

position update, which will correct the penetration between the two objects, that is,

rt+1
i = rt

i + h
(−F)

mi
, (7.263)

qt+1
i = qt

i + h
1

2

(
I−1

i (rki × (−F))
)
qt
i , (7.264)

rt+1
j = rt

j + h
F

mj
, (7.265)

qt+1
j = qt

j + h
1

2

(
I−1

j (rkj × F)
)

qt
j. (7.266)

In the above we have applied a forward Euler scheme, meaning that we have linearized the sought dis-
placements. The correction is therefore only correct to within first-order, but in practice this is seldom a
problem, since most simulation paradigms try to prevent penetrations, indicating that penetration errors
are likely to be small and only require small corrections.

7.14.1.2 Continuous Motion

The constraint forces needed in a first-order world simulation can also be derived from (7.258e). Taking
external forces into account, say forces F i

ext and F j
ext and torques τ i

ext and τ j
ext working on bodies i and j

respectively, then it is seen by substituting the forces into (7.257a) that (7.258e) changes into the form

u = KF + b, (7.267)

where b is given by,

b =
F j

ext
mj
− F i

ext
mi

+ I−1
j τ j

ext × rkj − I−1
i τ i

ext × rki. (7.268)

Here F denotes the constraint force at the contact point, which must prevent penetration from occurring.
This implies that the relative contact velocity in the normal direction must be nonnegative, since a first-
order world is frictionless. According to the principle of virtual work it makes sense to require that the
constraint force is parallel to the normal direction; also the bodies are allowed to separate, which means
that the constraint force can only be repulsive. To summarize we have

un ≥ 0, and f ≥ 0. (7.269)

Furthermore, un and f must be complementarity, meaning that if un initially is greater than zero, then
there is no need of a constraint force, that is,

un > 0⇒ f = 0. (7.270)

On the other hand, if we have constraint force acting at the contact point, then the normal velocity must
be zero, that is,

f > 0⇒ un = 0. (7.271)

In conclusion, we discover a linear complementarity condition similar to (7.21).

“book” — 2005/9/30 — 15:44 — page 253 — #265✐
✐

✐
✐

✐
✐

✐
✐

7.14 PHYSICS-BASED ANIMATION 253

7.14.2 Multiple Contact Points
In this section we will extend the machinery for a two body problem to handle an n-body system.

Let uk denote the change in relative contact velocity and at the k’th contact, then

uk = ∆ujk −∆uik . (7.272)

As previously, we also have

∆uik = ∆vik + ∆ωik × rkik , (7.273)
∆ujk = ∆vjk + ∆ωjk × rkjk

, (7.274)

however this time we do not have a single contact force contributing to the k’th contact. To get the total
force and torque contributing to the k’th contact we have to sum over all forces and torques. Using the
indexing introduced in Section 7.1 we write

∆vjk =
F jk

ext +
∑

h,jh=jk
F h −

∑
h,ih=ik

F h

mjk

, (7.275)

∆ωjk = I−1
jk

⎛

⎝τ jk
ext +

⎛

⎝
∑

h,jh=jk

rhjh
× F h

⎞

⎠−

⎛

⎝
∑

h,ih=jk

rhih × F h

⎞

⎠

⎞

⎠ , (7.276)

where F h is the contact force at the h’h contact point. If we perform the same substitutions as done in the
case of a single point of contact (7.267), then the contributions from the external forces and torques can
be collected in a single vector bk. The contribution stemming from the contact forces can then be written
as a linear combination,

uk =

(
∑

h

KkhF h

)
+ bk, (7.277)

where

Kkh =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

mjk
+ 1

mik

)
1−

(
rkjk

×I−1
jk

rhjk
× + rkik

×I−1
ik

rhik
×
)

if ih = ik and jh = jk,
(

−1
mik

)
1 +

(
rkik

×I−1
ik

rhih
×
)

if ih = ik and jh ̸= jk,
(

−1
mjk

)
1 +

(
rkjk

×I−1
jk

rhih
×
)

if ih = jk and jh ̸= ik,(
1

mik

)
1−

(
rkik

×I−1
ik

rhjh
×
)

if jh = ik and ih ̸= jk,
(

1
mjk

)
1−

(
rkjk

×I−1
jk

rhjh
×
)

if jh = jk and ih ̸= ik,

0 otherwise.

(7.278)

If we only consider relative contact velocity in the normal direction, and only allow contact forces to be
parallel with the contact normals, then it is easily seen that the equation transforms into

unk = nT
k uk =

(
∑

h

nT
k Kkhnhfh

)

+ bk, (7.279)

“book” — 2005/9/30 — 15:44 — page 254 — #266✐
✐

✐
✐

✐
✐

✐
✐

254 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

where fh denotes the magnitude of the h’th contact force. The equations for all the relative normal contact
velocities can now be written as in a single matrix equation,
⎡

⎢⎣
un0

...
unK−1

⎤

⎥⎦

︸ ︷︷ ︸
a

=

⎡

⎢⎣
nT

0 K00n0 . . . nT
0 K0K−1nK−1

...
...

nT
K−1KK−10n0 . . . nT

K−1KK−1K−1nK−1

⎤

⎥⎦

︸ ︷︷ ︸
A

⎡

⎢⎣
f0
...

fK−1

⎤

⎥⎦

︸ ︷︷ ︸
x

+

⎡

⎢⎣
nT

0 b0
...

nT
K−1bK−1

⎤

⎥⎦

︸ ︷︷ ︸
b

, (7.280)

⇒ a = Af + b. (7.281)

This equation is a similar equation to (7.25), and recalling the definition of the contact Jacobian in Sec-
tion 7.7.7 and the assembly process in Section 7.11, we immediately generalize,

A = J contactM
−1J T

contact, (7.282)

b = J contactM
−1f ext. (7.283)

Note that in a first-order world f ext does not contain inertial forces. An LCP can now be formulated for
the continuous movement of a first-order world as

a ≥ 0,f ≥ 0, and fT a = 0. (7.284)

A penetration correcting force can be computed by redefining the b-vector

b =
1

h

⎡

⎢⎣
−d0

...
−dK−1

⎤

⎥⎦ , (7.285)

and then solving the same LCP as we formulated above. For the case of a single-point contact, we could
solve the linear system. But for multiple contact points, the projection of a penetration of one contact point
might fix the penetration of another, and this induces a complementarity condition where there can be no
correcting force if there is no penetration. On the other hand, if there is a correcting force, the penetration
depth must be zero.

7.15 Previous Work
Impulse-based simulation was introduced by Hahn [Hahn, 1988], where time integrals of contact forces
were used to model the interactions. In recent times, Mirtich [Mirtich, 1996] worked with impulse-based
simulation using a slightly different approach, where contact forces were modeled as collision impulse
trains. Hahn’s and Mirtich’s work represent two different ways of thinking of impulse-based simulation:
as a time integral and as a sum of delta functions approximating the corresponding time integral. Mirtich’s
work led to a new simulation paradigm as discussed in Chapter 6. Hahn’s work could be interpreted as an
early predecessor to the velocity-based formulation.

“book” — 2005/9/30 — 15:44 — page 255 — #267✐
✐

✐
✐

✐
✐

✐
✐

7.15 PHYSICS-BASED ANIMATION 255

Stewart and Trinkle [Stewart et al., 1996, Stewart et al., 2000, Stewart, 2000] made a new impulse-
based method. Their method is now known as Stewart’s method. Like Hahn’s method, Stewart’s method
also computes the time integrals of the contact forces, and it has since inspired many: Anitescu and Potra
[Anitescu et al., 1997] extended the method to guarantee existence of the solution; Sauer and Schömer
[Sauer et al., 1998] extended with a linearized contact condition; Song et al. [Song et al., 2003] used a
semi-implicit time-stepping model for frictional compliant contact; and most recently, an implicit time-
stepping method for stiff multibody dynamics by Anitescu and Potra [Anitescu et al., 2002] and Hart and
Anitescu introduced a constraint stabilization [Hart et al., 2003] method.

Even though Stewart’s method is an impulse-based method, it looks and feels like a typical constraint-
based method, such as the one formulated by Baraff [Baraff, 1994, Baraff, 2001], Trinkle, Pang, Sudarsky,
and Lo [Trinkle et al., 1995], Trinkle, Tzitzoutis, and Pang [Trinkle et al., 2001], and Pfeiffer and Glocker
[Pfeiffer et al., 1996a]. These are termed force-based formulations and Stewart’s is termed an impulse-
based or velocity-based formulation.

Stewart and Trinkle originally used position constraints in their formulation; these position constraints
ensure nonpenetration, but suffer from existence problems unless all contact normals are linearly indepen-
dent.

Anitescu and Potra’s velocity-based formulation always guarantees a solution, but there is one draw-
back: penetrations might occur when the system moves along concave boundaries of the admissible region
in configuration space. Another side effect from the velocity-based formulation is that special attention
must be added to separating contacts moving toward each other. If these are present, they will be treated
as if they were in colliding contact; this could leave objects hanging in the air. Anitescu and Potra pro-
pose a time-stepping algorithm that correctly handles this side effect, but other authors tend to forget the
problem.

Stewart and Trinkle suggest that simple projection can be used to eliminate this problem, but care
must be taken to avoid losing energy in the process. However, they do not mention how one should do the
projection.

Stewart and Trinkle [Stewart et al., 2000] suggest using contact tracking (it could be coined “retroac-
tive detection” as well) to avoid the problem of explicitly determining all potential active contact con-
straints. That is, once a solution is found, the constraints at time t + ∆t are checked. If any one is found
to be violated it is added to the set of active contact constraints and the problem is resolved once more.
This of course, increases the amount of computations; often this is undesirable. For instance, in the Open
Dynamics Engine, a fixed time-stepping advancement is chosen and any errors occurring are reduced by
using penalty forces. The strategy is: don’t try to prevent errors, but fix or reduce them if they occur.
Another issue (which is not obvious, at least to us) is: is it possible to use a retroactive detection of con-
tact constraints when we know there is a problem with concave boundaries of the admissible region of
configuration space?

Sauer and Schömer [Sauer et al., 1998] use a linearized contact condition; they say this is for potential
contact constraints and they require the assumption that during their fixpoint-iteration contact constraints
do not change topologically, i.e., (E,E) ,→ (V,E). It is not obvious to us why this is required.

In the summary section of Stewart and Trinkle’s paper [Stewart et al., 2000], there are some thoughts
on how their method can be extended to handle a nonzero coefficient of restitution. They suggest stopping
at collision times, which in our opinion is not an attractive choice. Actually their thoughts are based on the

“book” — 2005/9/30 — 15:44 — page 256 — #268✐
✐

✐
✐

✐
✐

✐
✐

256 CHAPTER 7. CONSTRAINT-BASED MULTIBODY ANIMATION

work by Anitescu and Potra. In the Open Dynamics Engine a slightly different approach is used similar
to [Baraff, 1989].

“book” — 2005/9/30 — 15:44 — page 257 — #269✐
✐

✐
✐

✐
✐

✐
✐

Part III

The Dynamics of Deformable Objects

257

“book” — 2005/9/30 — 15:44 — page 258 — #270✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 259 — #271✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 259

Deformable objects cover all object types that are not rigid, and thus span a wide range of different
object types with different physical properties, such as jelly, cloth, biological tissue, water, wind, and fire.

Deformable objects are considered more difficult to deal with than rigid body simulation for several
reasons. First, is the complexity of variables needed to describe the motion of a single object exploded
in magnitude compared to a single rigid object. For a rigid object, only the motion and orientation of
its center of mass are needed; for a deformable object every little particle needs to be described. Sec-
ond, since deformable objects could potentially self-intersect, both the geometric problem of detecting
self-intersections and the collision resolving are unpleasant problems to deal with. Third, the physics of
deformable objects is described by a constitutive law describing relationships between physical properties
inside the object, such as stress and strain. Although a constitute law often can be recognized as New-
ton’s second law of motion, a student often needs to learn a multitude of new mathematical notations,
terminology, and physical properties, such as calculus of variation, stress, strain, etc., in order to master
its application to deformable objects.

The dynamics of deformable objects have been well known by physicists for the last 200 years or
so. The mathematical models are well developed and the engineering community has been simulating
computer models of deformable objects almost since the beginning of computers. Compared with this
long history, it is not until recently that physically based animation of deformable objects has been in-
troduced to the computer graphics community by the pioneering work of Terzopoulos et al. in 1987
[Terzopoulos et al., 1987].

Computer animation differs from traditional engineering applications in several aspects. First, the
computational resources are low and the demand for fast performance and high visual details are weighted
much higher than accurate computation. Second, computer animation is more concerned with showing
interesting motion such as object deformation or fracture, than with the end results. Computational grids
in computer animation are extremely coarse compared to the grids used in engineering, and stability and
robustness is strongly favored over accuracy and precision. Consequently, computer animation is often
based on implicit time-stepping methods with large time-steps, rather than explicit methods with small
time-steps as preferred in engineering disciplines. Finally, computer animation is about making tools such
as Maya R⃝ or 3DMax R⃝ for artistic and creative people, which have little respect for the real world. That
is, a material may be given unrealistic properties, which produce an entertaining motion on a computer
screen, but which do not correspond to any existing materials. Furthermore, objects may be forced into
unnatural poses, simply because the poses are funny. The implication is that although physics-based
animation uses physics as its foundation, physics-based animation must be able to cope with unphysical
situations robustly.

In the beginning, people used rather simple constitute models in computer animation. Simple lin-
ear models between stress and strain of isotropic materials were applied. The quest for higher realism
has moved the computer graphics community toward more advanced constitute models, since in anima-
tion large deformations are sought, and materials found in nature exhibit complex nonlinearities under
large deformations. Recently, there has been an increased focus in the computer graphics community
on improved handling of large deformations. The constitutive laws are often solved on mesh grids, but
simulating large deformations can severely damage the integrity of a mesh grid. For instance, mesh ele-
ments can be inverted or entangled. There have been attempts to remodel the underlying physical models
by introducing force-terms that counter these effects, or strategies for dynamically remeshing or simply

“book” — 2005/9/30 — 15:44 — page 260 — #272✐
✐

✐
✐

✐
✐

✐
✐

260 THE DYNAMICS OF DEFORMABLE OBJECTS

Physical Mathematical
Model

Discrete
Model

Discrete
Solution

Discretization SolutionIdealization

SF
WF
VF FEM

FEM
FDM

system

Figure II.1: Analysis process in computational mechanics.

deleting erogenous mesh elements. However, many of these solutions exhibit visual artifacts, such as
mesh elements that pop out during simulation.

Deformable objects in computer animation have found their way to the movie theater: movies such
as Monsters Inc. R⃝ use implicit constraint-based cloth animation [Baraff et al., 1998] with untangling of
mesh elements [Baraff et al., 2003b], Phantom Menace R⃝ uses a guaranteed non self-intersecting time-
stepping method for cloth animation [Bridson et al., 2002], and The Rise of the Machines R⃝ used a fold
preserving and increasing method [Bridson et al., 2003]. In computer games methods based on over-
relaxation have become widely popular [Jakobsen, 2001].

The scope on the theory of deformable objects in this book is to establish the basic foundation. Our
main intention is to focus on describing the constitutive models and their implementation. We refrain from
the problems of mesh inversion and entangling and refer the interested reader to [Irving et al., 2004] and
[Baraff et al., 2003b].

The field of mechanics can be divided into four different subparts: theoretical, applied, computa-
tional, and experimental. In theoretical mechanics, the fundamental laws and principles of mechanics
are studied. In applied mechanics, the theory is applied to science and engineering applications by con-
structing mathematical models of physical phenomenon. In computational mechanics, actual problems
are solved by combining the mathematical models with numerical methods, leading to an implementation
on a computer that is then simulated. In experimental mechanics, observations of the physical laws, the
mathematical models, and the numerical simulations are compared. In computer animation, the field of
computational mechanics is used together with a plethora of simplifying assumptions that lead to faster
simulations.

The field of computational mechanics is highly interdisciplinary. It uses applied mathematics and nu-
merical analysis, computer science, and theoretical and applied mechanics to arrive at a discrete model
that can be solved on a computer. The analysis process that leads to a discrete model is illustrated in Fig-
ure II.1. Going from a physical system to a mathematical model is a process known as idealization. This
stems from the fact that the real world is seldom ideal, especially when trying to express a phenomenon
as a mathematical equation. The problem is expressed in an ideal situation that allows it to be formulated
mathematically. Discretization is the process of reducing the continuum of the mathematical model to a
finite algebraic system. In Figure II.1 three subpaths are shown at the discretization: Strong form (SF),

“book” — 2005/9/30 — 15:44 — page 261 — #273✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 261

Galerkin
Least Squares

Subdomain

VF

Weighted ResidualFDM

FEMWFSF

Raleigh-Ritz

Figure II.2: Discretization of strong form, variational form, and weak form.

Weak form (WF), and Variational form (VF). Strong form is a system of ordinary or partial differential
equations in space and/or time together with a set of boundary conditions. It is called strong because the
system is satisfied at each point of the problem domain. Weak form is a weighted integral equation that
relaxes the strong form in a domain-averaging sense. Variational form is a functional whose stationary
conditions generate the weak and the strong forms. Variational calculus is used to pass from one form to
another: strong to weak form, or the other way around, variational to weak form, or variational to strong
form. Going from variational to strong form is essentially what is taught in variational calculus, whereas
the inverse problem of going from strong to variational form is not always possible. However, sometimes
it can be done, as will be shown for a simple example below.

Problems stated in strong form are a well-established part of calculus and mathematical physics. As
an example, Newton’s second law F = ma is a strong form equation. The reason that the variational and
weak forms are used instead of the strong form is the following: a variational form functionally expresses
all properties of a model: field equations, natural boundary conditions, and conservation laws. The func-
tionals are scalars and therefore invariant to coordinate transformations, so variational form transforms
between different coordinate systems. Both variational form and weak form are used in discrete meth-
ods of approximation on computers. Variational form and weak form characterize quantities like mass,
momentum, and energy. Variational form and weak form lead naturally to conservation laws. Varia-
tional form and weak form systematize the treatment of boundary and interface conditions with discrete
schemes.

The continuum mathematical models in strong form, variational form, or weak form initially have an
infinite degree of freedom. The discretization process reduces this to a finite set of algebraic equations
that can be solved in reasonable time. The discretization process for the different forms leads to different
approximation methods as characterized in Figure II.2. The strong form is usually discretized using the
Finite Difference Method (FDM) where the derivatives are replaced with differences. This is an easy
process for regular domains and boundary conditions, but becomes complicated for arbitrary geometry of
boundary conditions. The weak form is discretized using the Weighted Residual Method. This consists
of a lot of subclasses with names like Galerkin, Petrov-Galerkin, Subdomain, Finite Volume Method, and
Method of Least Squares. All these subclasses are called trial function methods. The weighted residual

“book” — 2005/9/30 — 15:44 — page 262 — #274✐
✐

✐
✐

✐
✐

✐
✐

262 THE DYNAMICS OF DEFORMABLE OBJECTS

method gives approximate solutions everywhere in the domain. In earlier times, the weighted residual
method was solved by hand but the invention of the Finite Element Method (FEM) made a computer
implementation possible. The variational form is discretized using the Raleigh-Ritz method, which is a
special subclass of the Galerkin weighted residual method. Originally, the finite element method was
developed in this way.

To illustrate the different terminology introduced above, consider the following simple example. Let
y = y(x) be a function satisfying the following ordinary differential equation

y′′ = y + 2, 0 ≤ x ≤ 2. (II.1)

This is a strong form since the ordinary differential equation (ODE) is to be satisfied at each point in the
problem domain x ∈ [0, 2]. Equation (II.1) alone is not sufficient to specify a solution. It needs to be
paired with a set of boundary conditions. Two examples are

y(0) = 1, y(2) = 4, (II.2a)
y(0) = 1, y′(0) = 0. (II.2b)

Equation (II.1) together with the boundary conditions specified in (II.2a) defines a boundary value problem
(BVP), which typically models problems in space. Equation (II.1) together with the boundary conditions
specified in (II.2b) defines an initial value problem (IVP), which typically models problems in time.

Consider the boundary value problem consisting of (II.1)) and (II.2a). This is the top box in Figure II.3.
The residual is defined as r(x) = y ′′−y−2. The strong form in (II.1) is equivalent to r(x) = 0,∀x ∈ [0, 2].
The residuals for the boundary conditions can be written as r0 = y(0)− 1 and r2 = y(2)− 4.

Now, multiply the residual r(x) by a weighting function w(x) and integrate over the domain [0, 2],
multiply r0, r2 by weights w0, w2, and add them to get

∫ 2

0
r(x)w(x)dx + r0w0 + r2w2 = 0. (II.3)

The problem is now on weighted integral form, which is a weak form. The reason for calling it weak is
that functions other than (II.1) with boundary conditions (II.2a) may satisfy the weak form in (II.3). This
is shown in the top part of the middle box of Figure II.3.

If the weight functions w,w0, w2 are written as variations of functions v, v0, v2, the weak form in
(II.3) is converted to the variational statement

∫ 2

0
r(x)δv(x)dx + r0δv0 + r2δv2 = 0, (II.4)

where δ is the variation symbol. The functions v are called test functions. This is shown in the bottom
part of the middle box in Figure II.3.

For this example, the inverse problem of variational calculus has a solution. The functional

J [y] =

∫ 2

0

[
1

2

(
y′′
)2 − 1

2
y2 + 2y

]
dx, (II.5)

restricted to y’s that satisfies the boundary value problem is stationary in a variational calculus sense.
Equation (II.1) is called the Euler-Lagrange equation of the functional in (II.5). This is shown in the
bottom box of Figure II.3, which is now completely described.

“book” — 2005/9/30 — 15:44 — page 263 — #275✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 263

Weak Form (WF)

y(0) = 1, y(2) = 4

∫ 2
0 r(x)w(x)dx + r0w0 + r2w2 = 0

∫ 2
0 r(x)δv(x)dx + r0δv0 + r2δv2 = 0

Boundary Value Problem (BVP)

y′′ = y + 2, y = y(x), x ∈ [0, 2]

J [y] =
∫ 2
0

[
1
2 (y′′)2 − 1

2y2 + 2y
]
dx

y(0) = 1, y(2) = 4

Strong Form (SF)

Variational Form (VF)

Functional

Variational Statement

Weighted Residual Form

Figure II.3: All the forms used in the simple example.

“book” — 2005/9/30 — 15:44 — page 264 — #276✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 265 — #277✐
✐

✐
✐

✐
✐

✐
✐

8

Particle Systems

Particles are the easiest objects to animate. They are objects that have position, velocity, and mass, but
no spatial extend, i.e., neither moment of inertia nor torque. Particles have been used to animate a large
variety of behaviors, such as gases, water (see Chapter 11), fire, rubber, clothes, flocking, rigid bodies,
etc. Several sections in this chapter are given in the spirit of [Baraff et al., 2003a, Baraff et al., 1998].

8.1 Newtonian Particle Systems

Newtonian particles are the most common and are governed by Newton’s second law

f = mr̈ ⇔ r̈ = f/m, (8.1)

where r(t) = [x1, x2, x3]T is the position of the particle at time t, and r̈ = [ẍ1, ẍ2, ẍ3]T = d2r(t)
dt2 is the

instantaneous acceleration of the particle. The equation, r̈ = f/m, contains a second-order derivative,
hence it is a second-order differential equation. First-order equations are the simplest to solve, and any
linear higher-order differential equations can be converted to a system of coupled first-order differential
equations.

Newton’s second law (8.1) is converted into two coupled first-order differential equations by projecting
the particles into phase space where a point in phase space is denoted by its position and velocity:

p =

[
r
v

]
=

[
r
ṙ

]
. (8.2)

The velocity is naturally found as the instantaneous change of position, ṙ = v = dr(t)
dt , and when r ∈ R3

as typical in 3D computer graphics, then v ∈ R3, and hence p ∈ R6.
The second-order differential equation is changed into two first-order differential equations, one for r

and one for v, which are coupled through ṙ = v. The instantaneous change is thus

ṗ =

[
v
a

]
=

[
ṙ
v̇

]
=

[
ṙ
r̈

]
. (8.3)

In a simple explicit solution of this system of first-order differential equations, the velocity at time t is
used to update the particle position for time t + h, while the acceleration at time t is used to update the
particle velocity for time t + h. Hence, the effect of setting forces at time t will first have an influence on
the particle’s position at time t + 2h. This will be discussed in detail in the following sections.

265

“book” — 2005/9/30 — 15:44 — page 266 — #278✐
✐

✐
✐

✐
✐

✐
✐

266 CHAPTER 8. PARTICLE SYSTEMS

8.2 Solving Ordinary Differential Equations
For a system of particles, we assume that the forces are given for all relevant interactions and positions,
therefore we know the accelerations acting on any particle at any time. We will also assume that the initial
positions and velocities for all particles are known. The problem is now an initial value problem on the
form ṗ(t) = F(p(t)) under the condition p(t0) = p0 = [r0, ṙ0]T , where we wish to solve for some
t > 0. Most initial value problems in particle animation do not have a closed form solution; instead they
must be solved by discrete approximations, such as Euler’s explicit or implicit scheme. These techniques
are discussed in detail in Chapter 23. The simplest method for solving first-order differential equations is
by explicit Euler integration; this is the only method that we will discuss here.

Assume that time is discretized as follows:

ti+1 = h + ti. (8.4)

A second-order accurate approximation of the position at time ti+1 is given by the first-order Taylor Series

p(ti+1) = p(ti) + hṗ(ti) + O(h2). (8.5)

Since we know the initial value of p(t0) and since we know F(p(t)) = [ẋ,f(t)/m]T , then we may
approximate p(t1) as

p(t1) ≃ p(t0) + hF(p(t0)), (8.6)

which is equivalent to [
r1

ṙ1

]
≃
[
r0

ṙ0

]
+ h

[
ṙ0

f(t0)/m

]
. (8.7)

The following steps are thus calculated as
[
ri+1

ṙi+1

]
≃
[
ri

ṙi

]
+ h

[
ṙi

f(ti)/m

]
. (8.8)

It should be noted that there is a time difference between the solutions of the position and velocity differ-
ential equation, since the velocity calculated at time ti is used to update the position of the particle at time
ti+1. This is the price paid for solving higher-order differential equations as a system of coupled first-order
differential equations, and for animation purposes it is usually not a problem. Explicit Euler solutions to
ordinary differential equations are very simple to implement, and it is very fast to compute each iteration.
However, they are neither stable with respect to large steps, h, nor very accurate, which is demonstrated
in Figure 8.1. Figure 8.1(a) shows the iso-energy values of a rotational symmetric system. Assuming that
the speed is initially zero, then the correct solution would be the particular circle that the particle was
positioned on initially. However, the second-order Taylor approximation extrapolates the solution with a
finite step size, which implies that the particle will leave whichever circle it is currently on. Instability
is demonstrated in Figure 8.1(b). Again, assuming that the initial speed is zero, then the correct solution
is the iso-energy lines shown in the figure and the correct solution is the convergence of the particle on
the center horizontal line. However, if the step size is set too high, then the particle will diverge in this
particular example, since the Taylor approximation will extrapolate to positions with increasing forces.

“book” — 2005/9/30 — 15:44 — page 267 — #279✐
✐

✐
✐

✐
✐

✐
✐

8.2 PHYSICS-BASED ANIMATION 267

(a) (b)

Figure 8.1: Euler’s method is neither accurate (a) nor stable (b).

The phase-space solution to the second-order differential equation simultaneously solves for position
and velocity. Using first-order Euler integration,

[
r(t + h)
v(t + h)

]
=

[
r(t)
v(t)

]
+ h

[
v(t)
a(t)

]
+ O(h2),

Verlet [Verlet, 1967] suggested simplifying using the approximation,

r(t− h) = r(t)− hv(t) +
1

2
h2a(t) + O(h3) (8.9a)

⇒ v(t) =
r(t)− r(t− h)

h
+

1

2
ha(t) + O(h2), (8.9b)

which may be inserted into a second-order integration

r(t + h) = r(t) + hv(t) +
1

2
h2a(t) + O(h3) (8.10a)

= −r(t− h) + 2r(t) + h2a(t) + O(h3). (8.10b)

This is called Verlet integration. A consequence of the scheme is that velocity is represented implicitly by
the previous and current positions.

An important part in physics-based animation is collision detection and response. A particularly
simple solution exists for Verlet integration, since Verlet integration does not store velocities. Hence, when
a particle is found to penetrate an obstacle, then a simple collision response projects out of the obstacle
along the shortest path. The cancellation of the velocity normal to the obstacle surface is thus automatic

“book” — 2005/9/30 — 15:44 — page 268 — #280✐
✐

✐
✐

✐
✐

✐
✐

268 CHAPTER 8. PARTICLE SYSTEMS

Figure 8.2: A particle trajectory colliding with a wall. When a particle moves into a wall, it is projected
the shortest distance out again.

in Verlet integration as illustrated in Figure 8.2! The idea was introduced to the graphics community
by [Provot, 1995] and discussed in [Baraff et al., 1998]. Later [Wagenaar, 2001] extended the method,
which was put to use in [Jakobsen, 2001]. In the graphics community, the idea was extended into the
impulse-based domain of cloth simulation by [Bridson et al., 2002]. With some freedom of interpretation
you could even claim that the shock propagation from [Guendelman et al., 2003] is related to this way of
thinking about constraints.

8.3 Hooke’s Spring Law

The motion of two particles connected with a spring is governed by Hooke’s Spring Law (Robert Hooke,
1635–1703), and it is given as

miẍi = ks (xj − xi) and mjẍj = −ks (xj − xi) . (8.11)

where ks is the spring coefficient, and where we have aligned the x-axis of the coordinate system along
the spring. This may be reformulated as

ẍ = −k

(
1

mj
+

1

mi

)
x ⇒ µẍ = −ksx, (8.12)

“book” — 2005/9/30 — 15:44 — page 269 — #281✐
✐

✐
✐

✐
✐

✐
✐

8.3 PHYSICS-BASED ANIMATION 269

using x = xj − xi and µ = mimj

mi+mj
and is called the reduced mass. Hence, Hooke’s undamped spring law

is essentially a one-object harmonic oscillator harmonic oscillator as discussed in Section 22.4. A one-
object harmonic oscillator, such as a single particle connected to a wall with a spring may be described as

fspring = −ksx. (8.13)
Newton’s second law of motion of a particle with mass m is then

mẍ = −ksx ⇒ mẍ + ksx = 0, (8.14)

and the analytical solution may be found to be

x = B sin (ω0t) + C cos (ω0t) (8.15a)
= A cos (ω0t + φ) . (8.15b)

The natural frequency is given as, ω0 =
√

ks
m , B and C are constants determined by initial conditions,

and φ is the corresponding phase.
The harmonic oscillator will continue its movement indefinitely unless it is interfered with by other

objects. This is unrealistic, since in the real world, springs lose energy due to the production of heat
through the movement itself and air friction. This dissipation of energy is often modeled using a damping
viscosity force

Fdamping = −kdẋ, (8.16)
which implies that

mẍ = −ksx− kdẋ (8.17a)
⇒ mẍ + kdẋ + ksx = 0 (8.17b)

⇒ ẍ +
kd

m
ẋ +

ks

m
x = 0, (8.17c)

for which the analytical solution is

x = A exp
(
−γ

2
t
)

cos (ω1t + φ) , (8.18)

using

ω2
0 =

k

m
, γ =

b

m
, ω1 =

√
ω2

0 −
γ2

4
, (8.19)

and A and φ are constants determined from initial conditions. Solutions are only real valued when ω 2
0 −

γ2

4 ≥ 0. Writing the damped harmonic oscillator as

x = A (t) cos (ω1t + φ) = A exp
(
−γ

2
t
)

cos (ω1t + φ) (8.20)

and comparing to the undamped harmonic oscillator (8.15b), we see that

• the amplitude of the damped oscillator is exponential decaying.

• the frequency ω1 of the damped oscillator is less than the frequency, ω0, of the undamped oscillator.

“book” — 2005/9/30 — 15:44 — page 270 — #282✐
✐

✐
✐

✐
✐

✐
✐

270 CHAPTER 8. PARTICLE SYSTEMS

−1
−0.5

0
0.5

1

−1

0

1

−1

−0.5

0

0.5

1

x−axisx−axis

f(x
,y

)

x−axis

x−
ax

is

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8.3: An energy function and the corresponding potential field. The positive slope acts as an attractor
and the negative slope is a repellent.

8.4 Particle Forces
The behavior of particles is controlled through the forces f . Typical forces are potential forces, which
are gradients of energy functions. An example of an energy function and its potential field is shown in
Figure 8.4. If no other forces are acting on the particle, then it will follow curves, where the potential field
on every point on the curve is tangent to the curve.

Particle systems are conceptually simple; there are many systems, that with clever applications, make
use of only a few types of force fields. These are usually grouped into the following categories: unary
forces, which act independently on each particle, for example,

Gravity

f =

⎡

⎣
0
−g
0

⎤

⎦ , (8.21)

Viscous Drag
f = −kdṙ, (8.22)

Air Drag
f = −kd ∥r∥2 ṙ, (8.23)

where the second coordinate is assumed to be the vertical direction, g is the gravitational strength, and kd

is either the viscosity or air friction coefficients; N-ary forces which are the interaction between groups of
particles, for example,

“book” — 2005/9/30 — 15:44 — page 271 — #283✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 271

a

c d

bfc

fb fa
fd

g g

Figure 8.4: An example of a system of particles, where two particles, a and b, are connected to each other
and immobile points of a wall at c and d. All forces are spring or gravity forces.

Hooke’s Law for Damped Spring

fa = −f b = −
[

ks(|l| −R) + kd
l̇ · l
|l|

]
l

|l| , (8.24)

where a and b are two particles connected with a spring, ks is the spring constant, l = ra−rb is the vector
connecting the two particles, l̇ = va − vb is the vector of instantaneous change, and R is the length of
the spring at rest. The final category is spatial interactions, which are interactions on single or groups of
particles that depend on their spatial position. Some of these forces are illustrated in Figure 8.4

8.4.1 Deformable Surfaces

Classically, cloth was modeled by using mass-spring systems [Provot, 1995]. These are essentially particle
systems with a set of predefined springs between pairs of particles. The cloth is modeled as a regular 2D
grid where the grid nodes correspond to particles. The cloth can be animated by moving the particles,
which will deform the regular grid.

Springs are not created at random between the cloth particles, but a certain structure is used to mimic
cloth properties. Three types of springs are used: structural springs, shearing springs, and bending springs.
These spring types are illustrated in Figure 8.5.

Structural springs are created between each pair of horizontal and vertical particle neighbors in the
regular 2D springs. The purpose of structural springs is to resist stretching and compression of the cloth.
This kind of spring is usually initialized with very high spring coefficients and with a rest length equal to
the interparticle distance.

“book” — 2005/9/30 — 15:44 — page 272 — #284✐
✐

✐
✐

✐
✐

✐
✐

272 CHAPTER 8. PARTICLE SYSTEMS

Structural�
Springs�

Shearing�
Springs�

Bending�
Springs�

Cloth Mass�
Spring System�

+� =�+�

Figure 8.5: Structural, shearing, and bending springs in a cloth mesh.

Shearing springs are used to make sure that the cloth does not shear, i.e., a square piece of cloth
should stay squared and not turn into an oblong diamond shape. The spring coefficient of these springs is
usually set less than the structural springs. Shearing springs are created between diagonal direction in the
regular grid. Thus a particle at grid location (i, j) will have shearing springs to particles at grid locations:
(i + 1, j + 1), (i + 1, j − 1), (i− 1, j + 1), and (i− 1, j − 1).

Bending springs are inserted to make sure the cloth will not have sharp ridges when folded. These
springs are usually not very strong, since natural cloth does not strongly resist bending. The springs
are created along the horizontal and vertical grid lines, but only between every second particle. That is,
particles at grid location i, j are connected with bending springs to particles at grid locations: (i + 2, j),
(i− 2, j), (i, j + 2), and (i, j − 2).

It is straightforward to create these springs for a rectilinear grid of particles and it offers an easy way
to model a rectangular piece of cloth. Spring coefficients can be tuned to model different kinds of cloth
types: cotton, polyester, etc., as discussed in [House et al., 2000].

One deficiency with modeling cloth this way is that it is limited to rectangular pieces of cloth. This is
very limiting when, for instance, modeling animation cloth on an animated person. Nevertheless, we will
focus on a generalization made in [OpenTissue, 2005], which can be applied to unstructured meshes such
as arbitrary triangle meshes.

The generalization is based on the observation that structural springs correspond to a 1-neighborhood
stencil in the rectilinear grid; shearing and bending springs correspond to a 2-neighborhood stencil. Simi-
lar neighborhoods can be defined in an unstructured mesh. We let the vertices of the mesh correspond to
particles, the cost of every edge in the mesh is set to 1, and for each particle the shortest paths to all other
particles is computed. If we want to create 1-neighborhood-type springs, then springs are created to all
particles having a cost less than or equal to 1. If we also want to add 2-neighborhood-type springs, then
springs are created to all particles with a cost less than or equal to 2. 3-neighborhood springs and so on
are created in a similar fashion. Figure 8.6 illustrate the springs created for a single chosen vertex.

Generally speaking, the larger the neighborhood size used, the more rigid the resulting object appears
to be. In fact, if the neighborhood size is large enough, springs will be created between every pair of
particles in the mesh, and if the spring constants also are large, then the object will appear completely
rigid. Thus we refer to the neighborhood size as the rigidity factor. The spring creation method was
named surface springs in [OpenTissue, 2005].

“book” — 2005/9/30 — 15:44 — page 273 — #285✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 273

(a) 0 neighborhood (b) 1 neighborhood (c) 2 neighborhood

Figure 8.6: Surface springs (thick lines) created for a chosen mesh vertex.

The path cost computation can be implemented elegantly by performing a breadth-first traversal on
each particle in the mesh. Once the traversal reaches particles lying further away than the rigidity factor,
the traversal is stopped. Figure 8.7 illustrates a pseudocode implementation of the breadth-first traversal
algorithm for creating surface springs. Observe that creating a rectangular mesh and applying the surface
spring creation method with a rigidity factor of two, will yield the traditional cloth mesh. In Figure 8.8 are
examples of a cow with rigidity factors 1–3, and in Figures 8.9–8.11 is the animation when the cow falls
under gravity.

8.4.2 Deformable Solids

The spring modeling ideas introduced in the previous section can be extended from surfaces to solids. For
instance, given a 3D rectilinear grid, structural, shearing, and bending springs can be extended straightfor-
wardly to the 3D case. However, one needs to consider spatial diagonals as well as shearing diagonals.
Shearing diagonals will prevent area loss; spatial diagonals will counteract volume loss. The general-
ization to unstructured solid meshes is also easily performed with the so-called volume mesh, such as a
tetrahedral mesh. The algorithm shown in Figure 8.7 can be applied unchanged to this type of mesh. In
Figure 8.12 is the cow simulation for an unstructured mesh.

Unfortunately, in practice a rectilinear grid or a volume mesh of the solid is not always available, but
instead a 2D surface mesh of the object is given. To make a solid mesh, a voxelization of the interior of the
surface could be performed and the resulting voxels could be used as a basis for creating a rectilinear grid
structure resembling the solid object. To keep particle and spring numbers as low as possible, a coarse
voxelization is often applied. The surface mesh can then be coupled to the grid-structure by initially
mapping each vertex into the grid-cube containing it. During animation, the vertex position can be updated
when the rectilinear grid deforms by using trilinear interpolation of the deformed positions of the grid
nodes of the containing grid cube. The mesh coupling idea is a well-known technique for deformable
objects [M.M̃üller, 2004b, M.M̃üller, 2004a].

“book” — 2005/9/30 — 15:44 — page 274 — #286✐
✐

✐
✐

✐
✐

✐
✐

274 CHAPTER 8. PARTICLE SYSTEMS

algorithm create-surface-springs(rigidity, mesh)
for each vertex V of mesh

S = empty set of vertices
traverse(V, V, 0, S)
for vertices in S unmark them

next V
end algorithm

algorithm traverse(V,A,distance,S)
if distance >= rigidity then

return
S = S union A
mark A
for each edge E of A do

let B be other vertex of E
if B not marked then
if not exist spring (A,B) then

create spring(A,B)
end if
traverse(V,B,distance+1,S)

end if
next E

end algorithm

Figure 8.7: Pseudocode for breadth-first traversal creation of springs in a mesh.

In [Jansson et al., 2002b, Jansson et al., 2002a] it is shown how spring models can be modeled based
on rectilinear grids. Furthermore, a mesh-coupling technique is adapted, although in their approach only
structural springs are initially created. During animation it is tested whether particles come too close,
i.e., whether the interdistance between particles drops below a user-specified threshold. In that case, a
spring is created dynamically on the fly and kept active until the interparticle distance is increased beyond
a spring-breaking threshold distance specified by the end user.

A solid model can be created from the surface mesh by clever insertion of springs. This approach has
been explored in [Mosegaard, 2003], where a cone-based spring creation method was presented. The idea
herein is readily generalized to create volume preserving springs for surface meshes. Such a generalized
approach will be presented in the following.

Given an unstructured surface mesh, we let the vertices denote particles. Initially angle-weighted
vertex normals [Aanæs et al., 2003] are computed. These normals are favored, since they are independent
of the tessellation of the mesh. For each vertex a cone is created, the cone will have apex at the vertex
position, and the angle-weighted vertex normal will denote the cone axis. Next, all other vertices are tested
for inclusion inside the vertex cone. For each vertex found inside the cone, a spring is created between the
apex vertex and the contained vertex. The idea is illustrated in 2D in Figure 8.13.

The cone angle works as a rigidity factor in very much the same way as the neighborhood size used
previously. The larger the angle, the more springs will be created, and the surface mesh will have more
resistance toward collapsing. The creation method is independent of the specific tessellation. Even meshes

“book” — 2005/9/30 — 15:44 — page 275 — #287✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 275

Figure 8.8: A cow setup with rigidity factor equal to 1–3 from top to bottom. Simulations are shown in
Figures 8.9–8.11 respectively.

with faulty topology can be handled, since only vertex positions are used.
One drawback with this spring creation method is that if the cone angle is too small, it may occur that

no vertices are found to lie inside the cone angles, and an insufficient number of springs will be created.
One possible remedy of this problem is to make the cone angle adaptive; for instance, dependent on the
local surface curvature, i.e., the angle is inverse reciprocal to the largest principal curvature or the like.

A computational cheap alternative to the spring cone creation method is to use an inward mesh extru-
sion instead. Here an inward mesh extrusion is performed, for instance, by shrinking the original mesh
by moving vertices inward along vertex normal directions. It is advantageous to use a vertex normal
definition that determines normals independently of mesh tessellation [Aanæs et al., 2003]; the extrusion
lengths can be computed to ensure non-self-intersections as done in [Erleben et al., 2004].

Having obtained the extruded mesh surface, it is now a simple matter to create springs based on mesh
connectivity

and pairing extruded vertices with their originals. This is illustrated in Figure 8.14, where it can be
seen how to create structural and shearing springs.

“book” — 2005/9/30 — 15:44 — page 276 — #288✐
✐

✐
✐

✐
✐

✐
✐

276 CHAPTER 8. PARTICLE SYSTEMS

Figure 8.9: A cow being deformed under gravity with rigidity factor equal to 1. Compare with Figures 8.10
and 8.11

.

Compared with the other methods for solids, this method has the advantage of being simple to im-
plement and very fast. Furthermore, since only a minimum of internal particles are created (vertices of
extruded surface), the method has a performance advantage compared to the voxelization approach de-
scribed previously.

It should be noted that a voxelization approach often requires a watertight surface mesh; otherwise the
voxelization may be error prone. Methods do exist [Nooruddin et al., 2003] using layered depth images
(LDI) for creating binary images that can be used for repairing a polygonal mesh or moving least squares
approaches [Shen et al., 2004], which creates implicit surface models.

It may be more attractive to be able to work directly on a degenerate mesh, i.e., one with topological
errors, such as edges having more than two incident neighboring faces. Especially, graphics artists or
content creators are famous for producing meshes, which are a very poor starting point for creating a
model for a physical simulation. Thus, to circumvent these problems, one approach is to accept life as it
is, and simply use methods that are robust and stable toward artistic errors in visual content. The cone-

“book” — 2005/9/30 — 15:44 — page 277 — #289✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 277

Figure 8.10: A cow being deformed under gravity with rigidity factor equal to 2. Compare with Figures 8.9
and 8.11

.

“book” — 2005/9/30 — 15:44 — page 278 — #290✐
✐

✐
✐

✐
✐

✐
✐

278 CHAPTER 8. PARTICLE SYSTEMS

Figure 8.11: A cow being deformed under gravity with rigidity factor equal to 3. Compare with Figures 8.9
and 8.10

.

“book” — 2005/9/30 — 15:44 — page 279 — #291✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 279

Figure 8.12: Simulation using springs created from cubes in a voxelization of a cow mesh.

based spring creation method and the breadth-first traversal spring creation methods can both be used on
such faulty meshes. Whereas the other spring creation methods often rely on a perfect error-free mesh,
sometimes even a watertight mesh.

8.4.3 Deformable Plants

More organic-like shapes such as plants and trees are also easily modeled by particle systems with clever
spring creations.

A simple straw of grass may be modeled as a string of particles like pearls on a string. Structural
springs and bending springs are inserted to provide the string with stiffness as shown in Figure 8.15.
The same principle can be applied to model ropes, grass, and hair. If more stiffness is wanted, more
springs can be created in a similar fashion to using 3- and 4-neighborhoods etc. Another possibility is to
introduce angular springs. Here a rest angle, θrest, is assigned between the two lines running through three

“book” — 2005/9/30 — 15:44 — page 280 — #292✐
✐

✐
✐

✐
✐

✐
✐

280 CHAPTER 8. PARTICLE SYSTEMS

normal�

cone-springs�

Figure 8.13: Angle-weighted cones used for creating springs, which add internal structure to a surface
mesh.

consecutive neighboring particles. During simulation, the current angle, θ, is computed and an energy
function can be designed as E = − 1

2k(θ − θrest)2, where k is a kind of spring coefficient. The negative
gradient of the energy function yields a restoring penalty torque that can be applied to the particles. In
Section 8.5, we will show how energy functions can be designed in a general way and used to add forces
to the particles.

If more complex structures are needed, branches can be added to the model to give a treelike effect.
However, extra springs must be inserted between the branches and the tree trunk. This schematic is shown
in Figure 8.16. In order to appear realistic in a real application, the above particle models must be rendered
properly. For the treelike model, a mesh coupling similar to traditional skin-deformation can by used to
model the geometry of the trunk and branches. Leaves and finer structures are more easily handled by

(a) Original Surface
Mesh

(b) Inward Extrusion (c) Structural Springs (d) Structural and
Shearing Springs

Figure 8.14: Spring creation based on inward mesh extrusion. Springs are shown as thickened lines.

“book” — 2005/9/30 — 15:44 — page 281 — #293✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 281

Structural�
Springs�

Bending�
Springs�

Grass�
Straw�

+� =�

Figure 8.15: A simple grass straw mass-spring model.

Figure 8.16: A simple tree mass-spring model. Notice springs between branches and trunk.

adding small texture maps (also known as billboards) attached to particles.

8.4.4 Pressure Forces

Pressure forces are based on traditional thermodynamics, and they can by used to model balloonlike ob-
jects, which are often called pressure soft bodies [Matyka et al., 2003]. Such objects allow for interesting
effects such as inflation, or creating fluffy looking deformable objects, as shown in Figure 8.18.

Initially, a particle system based on a watertight two-manifold is set up; for instance, by creating
surface springs using the method for unstructured meshes outlined in Section 8.4.1.

From physics, it is given that the norm of a pressure force F acting on a surface is given as the
pressure, P , divided by the area, A, of the surface, that is,

∥F ∥
2

=
P

A
. (8.25)

“book” — 2005/9/30 — 15:44 — page 282 — #294✐
✐

✐
✐

✐
✐

✐
✐

282 CHAPTER 8. PARTICLE SYSTEMS

The direction is given by the normal, n, of the surface, that is, F = (P/A)n.
We will assume that the pressure inside the object is evenly distributed, which is a good assumption

for systems in equilibrium. The assumption implies that each face on the surface of the unstructured mesh
is subject to the same pressure. Thus, if the area of the i’th face is Ai, then the magnitude of the force
acting on that face is given by P/Ai. However, our particles correspond to the vertices of the mesh, so
in order to distribute the force acting on the face to the vertices, we assume that the face force is evenly
distributed to each vertex of the face. Thus, for Ci vertices on the face, for the j’th vertex of the face the
force f j is added

f j = nj
P

AiCi
, (8.26)

where nj is the normal of the vertex. Of course, this is not entirely physically accurate, but for fine
tessellated objects with good aspect ratio, i.e., no slivers or obscured triangles, this is a fairly good ap-
proximation. In practice the error does not affect the aesthetics of the motion, and a plausible balloonlike
effect is easily achieved.

The only problem with the approach so far is that the value of P is unknown. Letting P be user
specified allows the user to control the pressure forces by altering the value of P directly. But such an
approach cannot model the effect of an increasing internal pressure as an object gets squeezed, nor can it
model the falling internal pressure of an extended object. This implies that we need to consider the change
in volume of the object. Fortunately, the Ideal Gas Law

PV = nRT, (8.27)

may be used for just that. The constant R is known as the gas constant, n is the number of molar of gas
proportional to the number of molecules of gas, T is the temperature, and V is the volume of the gas. The
ideal gas law can be used to compute the internal pressure inside the object: first, the current volume of
the object is computed and then the pressure is found as

P =
nRT

V
. (8.28)

For animation purposes it is impractical to specify n and R; instead it is easier to specify an initial internal
pressure Pinitial , and then compute

cnRT = PinitialVinitial, (8.29)

where Vinitial is the initial volume. Having computed the constant cnRT, the pressure can now be computed
as

P =
cnRT

V
. (8.30)

This approach also allows an easy way to interact with the pressure forces. Letting the user change P initial
over the course of animation, and then recomputing the constant cnRT yields an easy and intuitive way of
controlling inflation and deflation of the object.

Figure 8.17 illustrates the pressure force computations in pseudocode.

“book” — 2005/9/30 — 15:44 — page 283 — #295✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 283

algorithm apply-pressure-force(mesh)
V = volume(mesh)
P = nRT / V
update(normals(mesh))
for each face F in mesh do

C = count(vertices(F))
A = area(F)
f = P/ A C
for each vertex v in F do
let n be normal of v
force(v) = force(v) + f*n

next v
next F

end algorithm

Figure 8.17: Pressure force computations.

Figure 8.18: Cow falling under gravity while being inflated.

“book” — 2005/9/30 — 15:44 — page 284 — #296✐
✐

✐
✐

✐
✐

✐
✐

284 CHAPTER 8. PARTICLE SYSTEMS

8.4.5 Force Fields

The last type of force example we will present is based on interpolation. A flow field of either forces
or velocities can be computed offline, and sampled on some grid structure or other spatial arrangement.
Particles are then let loose, and during simulation their spatial positions are used to look up their position
in a grid arrangement. Hereafter, the flow-field values are interpolated and applied to the particle. This
was used in [Rasmussen et al., 2003] to create large scale effects, such as nuclear explosions in a movie
production.

8.4.6 Spline-Trajectory Controlled Particle System

In some cases, one wants to plan how force fields lie in space to give an overall control of the particle
trajectories. Imagine some kind of animation effect of smoke or fire traveling though a building; that is,
going through one door, turning around a corner, moving along the ceiling, and out through another door.
We have a general idea of the average particle trajectory, which is a completely planned motion. The fine
details and perhaps turbulent behavior of the particulates should be dynamically simulated as the particles
move along the trajectory. This is feasible because if the trajectory goes through some obstacle, such as a
chair or table, then we want particles to interact in a physically plausible way with the obstacles but still
keep on track.

One possible solution is to use a huge force field sampled on a regular grid, wherein the entire con-
figuration, i.e., the whole building, is contained. However, this is not a good choice: first, it is infeasible,
since it will require a huge amount of memory to store the samples. Second, it would be computation-
ally disadvantageous to initialize the force field with values, such that particles would follow a predefined
trajectory. Finally, if an animator wants to change the trajectory to fine tune the effect, it would require
recomputation of the entire force field. In conclusion, the force field solution is slow and cumbersome to
work with in this case.

Another solution is to insert attraction and repulsive force field on some algebraic form to control the
particle trajectory. However, in practice it requires a lot of tuning to receive the wanted effect, there is no
explicit control, and the particles may completely escape.

The technique we will present next provides a tool for controlling the trajectory of a particle system
in the way we just described. The method is inspired by the work in [Rasmussen et al., 2003].

Let the trajectory be defined by a B-spline as described in Chapter 24 (other spline types could be used,
but we favor B-splines). Then the animator can easily control and change the trajectory by manipulating
the control points of the spline.

Given a spline parameter u, one can compute the corresponding world point p(u) by

p(u) =
n∑

i=0

Ni,K(u)P i (8.31)

where Ni,K is the i’th basis function of K’th order and P i is the i’th control point. There is a total of
n + 1 control points. The evaluation of the spline point shown here is not very efficient but it is sufficient
to give intuition behind the described method. Efficient spline implementation is outlined in Chapter 24.

“book” — 2005/9/30 — 15:44 — page 285 — #297✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 285

For simplicity, we will assume that the spline is a sufficient regular spline. That is, we assume that it
has no cusps and that the first- and second-order derivatives, the tangent and normal vectors, are always
nonzero. It is thus possible to assign an intrinsic coordinate frame to each point, u, along the spline in a
unique and well-defined way. First, we compute the tangent vector, t(u), by straightforward differentiation
of (8.31), thus

t(u) =
n∑

i=0

dNi,K(u)

du
P i (8.32)

The normal vector n(u) is then given by

n(u) =
n∑

i=0

d2Ni,K(u)

du2
P i (8.33)

The cross product yields the binormal vector b(u). The vectors t(u), n(u), and b(u), are generally not unit
vectors unless the spline-parameter u is identical to the arc length. Therefore, we perform a normalization
of the three vectors. We now have three linear-independent vectors, all orthogonal to each other; thus
normalization yields an orthonormal basis,

F (u) =
[

t(u)
∥t(u)∥

2

n(u)
∥n(u)∥

2

b(u)
∥b(u)∥

2

]
(8.34)

=
[
x(u) y(u) z(u)

]
(8.35)

where we have introduced the shorthand notation x(u), y(u), and z(u) for the unit axis coordinate vectors.
The coordinate frame F is also known as the Frenet frame. The spline can thus be seen as a rotational
warp of the initial Frenet frame F (0). At time point u, along the spline the frame will have orientation
F (u) and origin will have been translated to p(u). The particles will live in this strange coordinate system
whenever the forces applied to the particles need to be evaluated.

Say a particle is located at some world coordinate position rwcs(t), where t denotes the current time.
The closest point on the spline is found, p(u), and the world coordinate position is transformed into the
warped spline coordinate frame by the coordinate transform

rspline(t) = F (u)T (rwcs(t)− p(u).) (8.36)

Notice that if p(u) is truly the closest point on the spline, then r spline(t) should have a component along
the t-axis of F (u).

We place 2D grids at each distinct knot-value of the spline. This is equivalent to placing the 2D grid
at the data points of the spline. This is illustrated in 2D in Figure 8.19. The grids are placed such that the
spline goes through the center of the grid. The x-axis and y-axis of the grid are aligned with the n-axis
and b-axis of the Frenet frame at the spline point where the grid is located. The general idea is to find
the two 2D grids, where the particle lies in between, as shown in Figure 8.20. It is a rather trivial task to
find these grids, once the closest point on the spline has been determined. If the closest point corresponds
to spline-parameter value u, then the grid lying before is located at the largest knot-value u−, such that
u− < u. Similarly, the grid lying after the particle is located at the smallest knot-value u+, where u+ > u.

“book” — 2005/9/30 — 15:44 — page 286 — #298✐
✐

✐
✐

✐
✐

✐
✐

286 CHAPTER 8. PARTICLE SYSTEMS

Figure 8.19: 2D grids places at distinct knot values.

u�-� u�+�

u�

Figure 8.20: A particle with closest point on spline at u is located between two grids at position u− and
u+.

“book” — 2005/9/30 — 15:44 — page 287 — #299✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 287

n-axis�

t-axis�

origo�

r� of
fs

et
�

particle�
r�spline�

r�grid�

Figure 8.21: Illustration showing how particle positions are mapped onto a 2D grid, using the Frenet frame.
Observe that the spline goes through the center of the grid. Grid node with indices (0,0) is therefore offset
by roffset.

Next, we map the particle position onto the two grids using the Frenet frame axes. Figure 8.21 illus-
trates the coordinate mapping process.

First, we must account for the spline going through the midpoint of the 2D grid, a priori this offset,
roffset is known, therefore we get the particle position with respect to the smallest grid node by

rgrid = rspline − roffset (8.37)

Hereafter, we project rgrid onto the normal and binormal axis. If the grid resolution along the axes is given
by ∆y and ∆z, then the particle is located in the grid cell given by indices

y =

⌊
y · rgrid

∆y

⌋
(8.38)

z =
⌊z · rgrid

∆z

⌋
(8.39)

Knowing the cell indices, it is trivial to perform a bilinear interpolation of the values stored in the four
corner nodes of the cell, which the particle is mapped into. Thus, we now have two grid-interpolated
values f(u−) and f(u+), the value at the particle position can now be found by a linear interpolation of
the found grid values, that is,

f(u) =
u+ − u

u+ − u−
f(u−) +

u− u−
u+ − u−

f(u+). (8.40)

“book” — 2005/9/30 — 15:44 — page 288 — #300✐
✐

✐
✐

✐
✐

✐
✐

288 CHAPTER 8. PARTICLE SYSTEMS

The technique can be used to define any kind of field values. In the example we used to derive our
equations, we simply assumed that a scalar field was stored in the 2D grids placed along the spline.
However, the formulas are identical if we were to store a vector field, such as the force field. The 2D grids
could be placed at other positions than those identified by distinct knot values of the spline.

8.4.7 Free-Form Deformation Particle System

Sometimes increased performance can be obtained by decoupling the geometry used for visualization from
the dynamics model used for simulation. The concept is often called mesh coupling [Müller et al., 2004a]
or a cartoon mesh [Hauser et al., 2003].

Most of the modeling techniques described in previous sections were based on creating springs di-
rectly from a given surface mesh. It is well known that meshes used for visualization have a large number
of triangular faces—millions of faces are not unheard of. Creating springs for a particle system resem-
bling such a large mesh will yield a dynamic model that is computationally intractable for real time and
even interactive usage. Fortunately, it is possible to render such large meshes very efficiently using graph-
ics hardware. Therefore, it is a viable approach to create a low-resolution dynamics/physical model for
computing deformations in a physical plausible way, and then apply the computed deformation to the
high-resolution mesh, which should be used for visualization. Another benefit from mesh coupling is that
the problem of error-prone meshes mentioned earlier can be circumvented rather elegantly, as we will
illustrate in the following.

We will demonstrate a method based on free-form deformations (FFD). Free-form deformation is one
of the early techniques in computer graphics [Sederberg et al., 1986] for animating deformations. Here
we will briefly present the general idea.

Initially we will set up a B-spline tensor, i.e., a 3D array of control points, where P i,j,k denotes the
(i, j, k)’th element of the array, and the B-spline basis functions Ni,K(s), Nj,K(t), and Nk,K(u), where
K is the order of the spline, and the indices i, j, and k indicate the beginning of the knot-interval where
the spline is evaluated (is dependent on). See Appendix 24 for an introduction to B-splines.

Then the point, p, corresponding to the spline parameters s, t, and u in the spline tensor is computed
as

p(s, t, u) =
nk∑

k=0

nj∑

j=0

ni∑

i=0

Ni,K(s)Nj,K(t)Nk,K(u)P i,j,k, (8.41)

where ni + 1, nj + 1, and nk + 1 is the number of control points along the i-, j-, and k-axes. Exploiting
the fact that the basis function is only evaluated on a finite support of the knot vector leads to efficient
implementations (see [Hoschek et al., 1993, Piegl et al., 1995] for details). In the case of B-splines, the
basis functions are polynomials of order K, (8.41) and are simply a weighted sum of vectors, where the
weights are given by polynomials.

The control point array is set up so that all control points lie in a 3D rectangular grid, axes aligned
with the world coordinate frame. It is trivial to see that in case of B-splines, keeping two parameters fixed
while varying the last yields straight orthogonal lines aligned with the world coordinate system.

Picking a uniform knot vector in this initial position, the world coordinate system and the spline
parameter space are in perfect alignment, except for a shifting, given by the value of the control point

“book” — 2005/9/30 — 15:44 — page 289 — #301✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 289

Algorithm init(Mesh mesh)
P = new vector3[n_i+1][n_j+1][n_k+1]
p_ min = vector3(-infty,-infty,-infty)
p_max = - p_min
for each vertex v in mesh

p_min = min(p_min, v.position)
p_max = max(p_max, v.position)

next v
p_min = p_min - vector3(border,border,border)
di = (p_max_i - p_min_i) / n_i
dj = (p_max_j - p_min_j) / n_j
dk = (p_max_k - p_min_k) / n_k
P[0][0][0] = p_min
for(int k=0;k<=n_k;++k)

for(int j=0;j<=n_j;++j)
for(int i=0;i<=n_i;++i)

P[i][j][k] = P[0][0][0] + vector3(i*di,j*dj,k*dk);
for each vertex v in mesh

v.parameter = v.position - P[0][0][0]
next v

End algorithm

Figure 8.22: Initialization of control point grid and mapping of mesh vertices into spline parameter space.

with lowest coordinates. This means that mesh vertices are easily mapped into the spline parameter space
by storing the original value of the vertex positions minus the minimum coordinate control point. During
simulation the control point positions are altered, whereby the spline parameter space is warped. The
coupled mesh can be reevaluated by using the original vertex position as spline parameters in (8.41). The
computed position is then used when rendering the mesh.

Figures 8.22 and 8.23 illustrate the initialization process and rendering process of FFD mesh coupling.
The figures are oversimplified to show the main concepts clearly. In practice, any kind of splines and knot

vector could be used; it will only complicate the initial mapping of mesh vertices into the spline parameter
space. Also the reevaluation of mesh vertex positions could be implemented far more efficiently than the
brute-force evaluation we have outlined here.

We will now explain how to create a dynamic model for simulation using the FFD grid. A particle is
created at each control point in the array. The array partitions a region of space into cubes, such that the
cube labeled by (i, j, k) consists of particles: (i, j, k), (i+1, j, k), (i, j+1, k), (i+1, j+1, k), (i, j, k+1),
(i+1, j, k +1), (i, j +1, k +1), and (i+1, j +1, k +1). When assigning mass value to particle (i, j, k),
look up the number of vertices from the mesh mapped into the eight neighboring cubes given by the labels
(i− 1, j − 1, k), (i− 1, j, k), (i, j − 1, k), (i, j, k), (i− 1, j − 1, k + 1), (i− 1, j, k + 1), (i, j − 1, k + 1),
and (i, j, k + 1). The mass of the particle is found by the total number of mesh vertices in the neighboring
cubes divided by eight and multiplied by some user-specified density value. Pseudocode for calculating the
particle masses is given in Figure 8.24. Next, structural, shearing, and bending springs are created between
the control point particles. The details of such a spring creation method were explained in Section 8.4.2.

“book” — 2005/9/30 — 15:44 — page 290 — #302✐
✐

✐
✐

✐
✐

✐
✐

290 CHAPTER 8. PARTICLE SYSTEMS

Algorithm show-mesh(Mesh mesh)
for each vertex v in mesh

s = v.parameter.s
t = v.parameter.t
u = v.parameter.u
v.position = sum_k sum_j sum_i N_iK(s) N_jK(t) N_kK(u) P[i,j,k]

next v
draw mesh

end algorithm

Figure 8.23: Evaluation of vertex positions before drawing coupled mesh.

algorithm mass-assignment(density)
for each particle p in system

i,j,k = index of p
C1 = cube[i-1,j-1,k]
C2 = cube[i-1,j,k]
C3 = cube[i,j-1,k]
C4 = cube[i,j,k]
C5 = cube[i-1,j-1,k+1]
C6 = cube[i-1,j,k+1]
C7 = cube[i,j-1,k+1]
C8 = cube[i,j,k+1]
mass(p) = density* (vertices(C1)+...+vertex(C8))/8

next p
end algorithm

Figure 8.24: Mass computation of particles

We now essentially have a physical model, consisting of the control point particles interconnected with
springs. We can subject the particles to any external forces, whereby the control point particles will move
and deform the spline parameter space. After the simulation, the coupled mesh vertices are reevaluated
using the deformed control points, and the coupled mesh is redrawn.

Essentially we can choose two ways in which the FFD particle system can interact with the surround-
ings: either the collision detection or response is applied directly to the control point particles.

This is a simple and straightforward solution. It lends itself to a simple particle system implementation
since there is only a one-way communication with the coupled mesh, i.e., there is no feedback from the
coupled mesh to the FFD particle system. The coupled mesh is completely dependent on the FFD particles.
This solution also poses a performance advantage since the count of control point particles is expected to
be extremely low compared with the number of vertices in the coupled mesh.

On the downside, the interactions can appear quite unrealistic, since the grid of FFD particles has
nothing in common with the deforming geometry of the coupled mesh, except that we know the convex
hull of the control points encloses the underlying geometry.

To create a more plausible interaction with the surroundings, we need two-way communications be-

“book” — 2005/9/30 — 15:44 — page 291 — #303✐
✐

✐
✐

✐
✐

✐
✐

8.4 PHYSICS-BASED ANIMATION 291

tween the coupled mesh and the FFD particles. This can be accomplished by performing collision detec-
tion between the deforming coupled mesh and the environment. This will generate a set of contact points
(see Chapter 14 for details on contact determination) between the coupled mesh and some other obstacles
in the configuration.

Here we will assume that an arbitrary simulation method is used to compute collision impulses or
contact forces that should be applied at the contact point in order to prevent penetration, and thereby cause
a deformation.

To keep things simple at this point, we will simply perform penetration tests between the coupled
mesh vertices and other obstacles. This means that a generated contact point will have the same position
in world space as a deformed mesh vertex.

We can thus remap the contact point into the spline parameter space by looking up the spline param-
eters of the deformed vertex. The spline parameters will indicate the cube in the FFD grid which the
deformed mesh vertex was originally mapped into. Thus, we have the idea of performing a reverse inter-
polation for finding equivalent contact forces/impulses to apply at the corner control point particles of that
cube.

From Newton’s second law we know forces obey the superposition principle, which means that given
the contact force, F applied at the deformed vertex position r, then

F = f1 + · · · + f8 (8.42)

where f i is the force applied to the i’th particle. In addition, it seems reasonable to require some balance
of torque, thus

r × F = r1 × f1 + · · · + r8 × f8 (8.43)

where ri is the current position of the i’th control point particle. These two equations thus define two
requirements for an inverse interpolation. We need to determine the particle forces.

Using the skew-symmetric cross product matrix defined in Proposition 18.4, this yields a system of
equations

[
I I I I I I I I

r1
× r2

× r3
× r4

× r5
× r6

× r7
× r8

×

]

︸ ︷︷ ︸
A

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6
f7
f8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f

=

[
F

r × F

]

︸ ︷︷ ︸
b

(8.44)

Af = b (8.45)

Notice that A ∈ R6×24, f ∈ R24×1, and b ∈ R6×1, thus we have more unknowns than equations, and
the system is underdetermined In general, this means that we have more than one solution to our problem
and as a practical consequence A cannot be inverted. To circumvent these difficulties, we can simply

“book” — 2005/9/30 — 15:44 — page 292 — #304✐
✐

✐
✐

✐
✐

✐
✐

292 CHAPTER 8. PARTICLE SYSTEMS

algorithm reverse-interpolation(di,dj,dk)
clear forces
for each contact point cp

v = corresponding vertex of cp
s,t,u = v.parameters
i,j,k = s/di, t/dj u/dk

p1 = particle[i,j,k]
p2 = particle[i+1,j,k]
...
p8 = particle[i+1,j+1,k+1]

solve for f1,..., f8

add f1 to p1
...
add f8 to p8

next cp
end algorithm

Figure 8.25: Applying contact forces from coupled mesh to FFD particles.

use a singular value decomposition (SVD) solution or pseudoinverse of A to obtain the minimum norm
solution.

An SVD decomposition of A yields A = UDV T , where D is a diagonal square matrix with sin-
gular values in the diagonal. The matrices U and V are orthogonal in the sense that their columns are
orthonormal. A minimum norm solution to the problem is then given by

f = V D−1
(
UT b

)
(8.46)

The solution minimizes the norm of the residual r = Af − b (see [Press et al., 1999b] for more details
on SVD. Figure 8.25 illustrates the force computation).

Control-point particle collision impulses j1, . . . j8 can be computed in a similar fashion given some
simulation methods, which can compute the impulse J to apply at the contact points. The main difference
from the contact force computation is that impulses instantaneously change the velocities at the parti-
cles they are applied at, whereas contact forces are accumulated into a force vector, which is used in a
numerical integration scheme.

8.5 Energy Systems
Forces are the handles for controlling the behavior of a particle system. Many forces are easily adapted
from physics to a specific animation system, such as gravity, viscosity, and spring forces. Nevertheless,
animation systems often have other forces that are not based on reality, but are added for convenience. As
an example, if a particle is not allowed to penetrate an object, then a force field is often applied around the

“book” — 2005/9/30 — 15:44 — page 293 — #305✐
✐

✐
✐

✐
✐

✐
✐

8.5 PHYSICS-BASED ANIMATION 293

object. For example, a force field around a sphere could be produced by an energy or potential function,
such as

E(r) = ∥r − r0∥2 −R (8.47a)

=
√

(r − r0) · (r − r0)−R, (8.47b)

where r0 is the center of the sphere, and R is its radius. The implicit function E is positive outside and
negative inside the sphere. The gradient of E may be used to define the direction of the repulsive force,

∂E(r)

∂r
=

2(r − r0)

2
√

(r − r0) · (r − r0)
(8.48a)

=
r − r0√

(r − r0) · (r − r0)
(8.48b)

since it always points away from the center of the sphere and has length 1,

∥∥∥∥
∂E(r)

∂r

∥∥∥∥
2

2

=

∥∥∥∥∥
r − r0√

(r − r0) · (r − r0)

∥∥∥∥∥

2

2

(8.49a)

=
r − r0√

(r − r0) · (r − r0)
· r − r0√

(r − r0) · (r − r0)
(8.49b)

= 1. (8.49c)

Having a repulsive force in all of space is typically not useful and the repulsive force is therefore often
made strong only near the object. This may be done as

f sphere,r0
(r) = ce−max(0,E(r)/σ) ∂E(r)

∂r
, (8.50)

where c and σ are constants to control the strength and the width of the repulsive field. In this example, we
have used a clamped exponential force, such that the force field diminishes quickly away from the surface,
and such that the maximum force is limited to avoid stiff ordinary differential equations. An example is
shown in Figure 8.26.

As illustrated in the above example, forces may be designed as gradients of energy, potential, or
penalty functions. Such vector fields are also known as potential fields. The potential function for Hooke’s
undamped spring law for two particles at position a and b, is given by

Eab =
1

2
ks(|l|−R)2, (8.51)

“book” — 2005/9/30 — 15:44 — page 294 — #306✐
✐

✐
✐

✐
✐

✐
✐

294 CHAPTER 8. PARTICLE SYSTEMS

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Clamped Expential Function

x

ex
p(

−m
ax

(x
,0

))

Figure 8.26: An often-used strength for a repulsive force is the clamped exponential function.

Distance preservation Eab = 1
2ks

(
∥rb − ra∥2 −R

)2

Area preservation Eabc = 1
2ka

(
∥(rb − ra)× (rc − ra)∥2 −A

)2

Volume preservation Eabcd = 1
2ka (det([rb − ra|rc − ra|rd − ra])− V)2

Table 8.1: Distance-, area-, and volume-preserving energy systems.

where, l = rb − ra. This is easily verified by calculating the gradients of Eab with respect to ra:

fa = −∂Eab

∂ra
(8.52a)

= −ks(|l|−R)
∂(|l|−R)

∂ra
(8.52b)

= −ks(|l|−R)
−2rb + 2ra

2|l| (8.52c)

= ks(|l|−R)
l

|l| , (8.52d)

and with a similar calculation for rb. Hooke’s Law may be viewed as a distance-preserving energy func-
tion. Area and volume-preserving energy functions may be defined in a similar way [Teschner et al., 2004],
as summarized in Table 8.1. In the table reference, lengths, areas, and volumes are given as R, A, and V ,
for the corresponding parallelograms. In case the reference areas and volumes are given as triangular area
and tetrahedral volume, then the norms should be divided by the factors 1

2 and 1
6 respectively.

“book” — 2005/9/30 — 15:44 — page 295 — #307✐
✐

✐
✐

✐
✐

✐
✐

8.6 PHYSICS-BASED ANIMATION 295

8.6 Constraint Dynamics

Stiffness constraints are difficult to integrate in Euler methods with springs, since these lead to stiff ordi-
nary differential equations. However, there is a special case when ks →∞, which may be solved directly.
Use

l(t) = rb(t)− ra(t) (8.53a)
∆l(t) = |l(t)|− r. (8.53b)

Since the ∆l is antisymmetric in ra and rb, solving for ∆l(t + h) = 0 implies that

ra(t + h) =
∆l

2

l

|l| (8.54a)

rb(t + h) = −∆l

2

l

|l| . (8.54b)

Iterating over all the stiff springs and applying (8.54) until only minor changes are performed is termed
relaxation. Using Verlet integration together with relaxation and projection for nonpenetration is beneficial
because velocities are represented implicitly in the Verlet integration method. The implication is that
when positions are altered by relaxation or projection, then velocities are implicitly modified to match the
enforced constraints [Jakobsen, 2001].

In general, hard constraints can be enforced by adding constraint forces. In the following, we will
discuss a general energy function, which is given as an implicit function E(r), for which the constraints
are fulfilled for all positions r′ where E(r′) = 0. Points on a unit sphere centered at the origin, E(r) =
1
2(r · r − 1) is an example. For points on the surface r ′, we have E(r′) = 0, and the velocities ensuring
that E = 0 are found by requiring,

∂

∂t
E = r · dr

dt
= 0. (8.55)

Likewise, accelerations fulfilling the constraint must satisfy

∂2

∂t2
E =

dr

dt
· dr

dt
+ r · d2r

dt2
= 0. (8.56)

An arbitrary force f will most likely not fulfill the above constraint, and we therefore seek a constraint
force φ. We can add to f such that the constraint is fulfilled, that is,

d2r

dt2
=

f + φ

m
(8.57a)

⇒dr

dt
· dr

dt
+ r · f + φ

m
= 0 (8.57b)

⇒r · φ = −m
dr

dt
· dr

dt
− r · f . (8.57c)

“book” — 2005/9/30 — 15:44 — page 296 — #308✐
✐

✐
✐

✐
✐

✐
✐

296 CHAPTER 8. PARTICLE SYSTEMS

The dimensionality of φ is typically three, hence the above equation determines one out of three un-
knowns. To determine the remaining unknowns we require that the force neither add nor subtracts energy
to the system. This is the Principle of Virtual Work. Given the kinetic energy as

T =
1

2
m

dr

dt
· dr

dt
, (8.58)

the principle of virtual work requires that

∂T

∂t
= m

dr

dt
· d2r

dt2
(8.59a)

=
dr

dt
· (f + φ) (8.59b)

=
dr

dt
· f . (8.59c)

Hence,
dr

dt
· φ = 0. (8.60)

We now have two out of three unknowns for φ. The final equation is obtained by requiring that (8.60)
must be satisfied for every dr

dt fulfilling (8.55), which leads us to conclude that φ must be proportional to
r, that is,

φ = λr, (8.61)

The Lagrange multiplier λ is found by inserting (8.61) into (8.57b), i.e.,

∂2

∂t2
E =

dr

dt
· dr

dt
+ r · d2r

dt2
(8.62a)

=
dr

dt
· dr

dt
+ r · f + φ

m
(8.62b)

=
dr

dt
· dr

dt
+ r · f + λr

m
(8.62c)

= 0, (8.62d)

and λ is found to be,

λ =
−mdr

dt · dr
dt − r · f

r · r
. (8.63)

For a system of particles, these equations generalize as follows: we generate a state vector as the
concatenation of particle positions

q =

⎡

⎢⎢⎢⎣

r1

r2
...

rn

⎤

⎥⎥⎥⎦ . (8.64)

“book” — 2005/9/30 — 15:44 — page 297 — #309✐
✐

✐
✐

✐
✐

✐
✐

8.6 PHYSICS-BASED ANIMATION 297

Newton’s second law for the complete system can then be written as

F = Mq̈, (8.65)

where F is the concatenation of force according to (8.65) and the mass matrix M is diagonal on the form
of M = diag(m1,m1,m1,m2,m2,m2,m3, . . . ,mn). Similarly to the single particle system, we form a
global constraint vector function C(q), such that the constraints are fulfilled, when

C(q) = Ċ(q) = 0. (8.66)

By differentiation, we find that this is equivalent to

Ċ(q) =
∂C(q)

∂q
q̇ (8.67a)

= Jq̇. (8.67b)

The matrix J is called the Jacobian of C. Differentiation once more gives us

C̈(q) = J̇ q̇ + Jq̈ (8.68a)

=
∂Ċ(q)

∂q
q̇ +

∂C(q)

∂q
q̈. (8.68b)

Note that the calculation of J̇ involves 3× 3 dimensional matrix,

J̇ =
∂J

∂q
q̇ (8.69)

but the evaluation of ∂J
∂q can be avoided by using an explicit representation for Ċ as shown in (8.68b).

Now we will find a global constraint force Φ, which causes no work. Newton’s second equation then
becomes

q̈ = M−1(F + Φ), (8.70)
and as for (8.57b) we write

C̈(q) = J̇ q̇ + JM−1(F + Φ) = 0 (8.71)
Using the principle of virtual work, we find the solution to the vector Φ by requiring that it must not
contribute work. Writing the kinetic energy as

T =
1

2
q̇T Mq̇, (8.72)

we find the work as the time derivative of the energy,

Ṫ = q̈T Mq̇, (8.73a)

=
(
M−1(F + Φ)

)T
Mq̇, (8.73b)

= (F T + ΦT)M−1T
Mq̇, (8.73c)

= (F T + ΦT)M−1Mq̇, (8.73d)

= F T q̇ + ΦT q̇. (8.73e)

“book” — 2005/9/30 — 15:44 — page 298 — #310✐
✐

✐
✐

✐
✐

✐
✐

298 CHAPTER 8. PARTICLE SYSTEMS

Algorithm ParticleSystemStep(m,p,v,N,delta)
// Calculate new forces
for i = 0 to N

f(i) = calculateForces(p,v,N)
end
// Calculate constraint forces
for i = 0 to N

c(i) = calculateConstraints(m,p,v,N)
end
// Calculate the velocity in phase-space
for i = 0 to N

dp = [v,(f+c)/m]
end
// Update the position in phase-space
p = p+delta*dp

end algorithm

Figure 8.27: Explicit fixed time-stepping of a simple general-purpose particle system.

For Φ not to contribute work, we thus require that

ΦT q̇ = 0. (8.74)

For this to hold for any q, and using (8.66) and (8.67b) we conclude that

Φ = JTλ, (8.75)

where λ is a vector of Langrangians. Inserting (8.75) into (8.71) we find

0 = J̇ q̇ + JM−1(F + Φ) (8.76a)

= J̇ q̇ + JM−1(F + JTλ) (8.76b)

and with a simple rewrite we conclude that

JM−1JTλ = −J̇ q̇ − JM−1F . (8.77)

Unfortunately, numerical implementations of (8.77) introduce drifts. It is therefore useful to add a damped
spring force to the system

JM−1JTλ = −J̇ q̇ − JM−1F − ksC − kdĊ, (8.78)

for some suitable spring and damping constants ks and kd.
In [Baraff et al., 2003a] Witkin presents a simple algorithm simulating particle systems with con-

straints, which is sketched in Figure 8.27. The mass is given in m, the point phase space is p, the number
of particles is N, and the magnitude of a single step in the ordinary integration is given by delta. The
function calculateForces(p,N) calculates the forces for the specific system. For example, for
a piece of cloth it could be the sum of spring forces for the nearest particles on the grid of the cloth,
and calculateConstraints(m,p,N) calculates the relevant constraint forces, such as collision
response with a sphere.

“book” — 2005/9/30 — 15:44 — page 299 — #311✐
✐

✐
✐

✐
✐

✐
✐

8.7 PHYSICS-BASED ANIMATION 299

(1,0)

(0,0) (0,1) (0,2)

(1,2)(1,1)

(2,2)(2,1)(2,0)

Figure 8.28: A piece of cloth is modeled as a grid of particles connected in triangular mesh. The coordinate
pair denotes the particle index.

8.7 Large Steps in Cloth Simulation
In [Baraff et al., 1998] the authors present an implicit method for simulating cloth with a particle system.
The basic setup is shown in Figure 8.28, where the particles are defined on a grid and connected in a
triangular mesh. Defining the general position for the total system r as

r =

⎡

⎢⎢⎢⎣

r1

r2
...

rn

⎤

⎥⎥⎥⎦
, (8.79)

we write Newton’s second law of motion as

Mr̈ = f(r, ṙ) (8.80)

where f is the corresponding general force vector, and M is a diagonal matrix with [m1,m2, . . . ,mn]
along the diagonal. For cloth, typical internal forces considered are bending, stretching, and shearing,
while external forces are typically gravity and collision constraints.

8.7.1 Implicit Integration for Cloth Animation
Cloth strongly opposes stretching, while it easily allows bending, and this implies that the system becomes
stiff. Some advocate explicit methods due to the importance of high-frequency response for realistic-
looking images [Kačić-Alesić et al., 2003]. However, explicit integration of the forces requires an enor-
mous number of small steps in order to avoid instabilities. An implicit integration scheme is defined as

[
r(t + h)
ṙ(t + h)

]
=

[
r(t)
ṙ(t)

]
+ h

[
ṙ(t + h)
r̈(t + h)

]
(8.81a)

=

[
r(t)
ṙ(t)

]
+ h

[
ṙ(t + h)

M−1f (r(t + h), ṙ(t + h))

]
. (8.81b)

“book” — 2005/9/30 — 15:44 — page 300 — #312✐
✐

✐
✐

✐
✐

✐
✐

300 CHAPTER 8. PARTICLE SYSTEMS

To solve the system we assume that f is linear, that is, f may be written on the form

f (r(t + h), ṙ(t + h)) = f (r(t), ṙ(t)) + h∇f

[
ṙ(t)
r̈(t)

]
, (8.82)

where ∇f is the Jacobian matrix taken at t. We can now write (8.81b) as

[
r(t + h)
ṙ(t + h)

]
=

[
r(t)
ṙ(t)

]
+ h

⎡

⎣
ṙ(t + h)

M−1

(
f(t) + h∇f

[
ṙ(t)
r̈(t)

])
⎤

⎦ , (8.83)

where we have used f(t) = f (r(t), ṙ(t)) for shorthand. Rewriting this equation in terms of the sought
updates, [

∆r(t)
∆ṙ(t)

]
=

[
r(t + h)− r(t)
ṙ(t + h)− ṙ(t)

]
(8.84)

and expanding the Jacobian, we find

[
∆r(t)
∆ṙ(t)

]
= h

[
ṙ(t) + ∆ṙ(t)

M−1
(
f(t) + h∂f(t)

∂r ṙ(t) + h∂f(t)
∂ṙ r̈(t)

)
]

. (8.85)

Then we replace ṙ(t) r̈(t) with their forward difference approximations,

ṙ(t) ≃ r(t + h)− r(t)

h
=

∆r(t)

h
(8.86a)

r̈(t) ≃ ṙ(t + h)− ṙ(t)

h
=

∆ṙ(t)

h
(8.86b)

to give [
∆r(t)
∆ṙ(t)

]
= h

[
ṙ(t) + ∆ṙ(t)

M−1
(
f(t) + h∂f(t)

∂r
∆r(t)

h + h∂f(t)
∂ṙ

∆ṙ(t)
h

)
.

]
(8.87)

Finally, we insert the top row in the bottom,

∆ṙ(t) = hM−1

(
f(t) +

∂f(t)

∂r
h (ṙ(t) + ∆ṙ(t)) +

∂f(t)

∂ṙ
∆ṙ(t)

)
. (8.88)

We now have an equation only depending on M , ṙ(t), the first-order structure of f (r(t), ṙ(t)), and
∆ṙ(t), and for which the latter may be isolated as

(
1− h2M−1 ∂f(t)

∂r
− hM−1∂f(t)

∂ṙ

)
∆ṙ(t) = hM−1

(
f(t) + h

∂f (t)

∂r
ṙ(t)

)
, (8.89)

where 1 is the identity matrix. This equation may be solved for ∆ṙ(t), and ∆r(t) may be then be
calculated using the top row of (8.87).

“book” — 2005/9/30 — 15:44 — page 301 — #313✐
✐

✐
✐

✐
✐

✐
✐

8.7 PHYSICS-BASED ANIMATION 301

(u(i,j),v(i,j))�

w(u,v)�

(x(u,v),y(u,v),z(u,v))�

Figure 8.29: Mapping between indices, intrinsic, and world coordinates.

8.7.2 Cloth Forces, Damping, and Constraints
In [Baraff et al., 1998] the constraints are formulated as positive vector functions C, that must be mini-
mized. Energy is calculated as squares of constraint functions, E = k

2CT C, and the forces are found as
derivatives of the energy functions, f = ∂E

∂ri
= −k ∂C

∂ri
C.

To define the stretching, bending, and shearing forces, let’s consider a piece of cloth that has topology
as a plane, implying that the cloth can be spread out in a single layer on a plane without holes. Consider
a coordinate system intrinsic to the cloth, (u(i, j), v(i, j)), where (i, j) are the indices of a particle. This
coordinate system is unaffected by stretching, bending, or shearing, and is used to denote the relative
positions of the particles with respect to each other, when the cloth is most at rest. We can then calculate
the mapping between the intrinsic and the world coordinates

x(i, j) =

⎡

⎣
x(i, j)
y(i, j)
z(i, j)

⎤

⎦ = w(u(i, j), v(i, j)). (8.90)

This is depicted in Figure 8.29.
Cloth strongly resists stretching, and we may define the amount of stretching by the functions ∂w

∂u

and ∂w
∂v for the stretch in the u and v directions on the cloth respectively. We will assume that

∥∥∂w
∂u

∥∥
2

=∥∥∂w
∂v

∥∥
2

= 1 when the cloth is at rest. Assuming for a moment that the indices (i, j) are continuous
variables, we write the change in world coordinate x(i, j) as a function of index i and j respectively,

∂x

∂i
=
∂w

∂u

∂u

∂i
+
∂w

∂v

∂v

∂i
, (8.91a)

∂x

∂j
=
∂w

∂u

∂u

∂j
+
∂w

∂v

∂v

∂j
. (8.91b)

“book” — 2005/9/30 — 15:44 — page 302 — #314✐
✐

✐
✐

✐
✐

✐
✐

302 CHAPTER 8. PARTICLE SYSTEMS

(i+1,j)

(i,j) (i,j+1)

Figure 8.30: Three neighboring particles in the cloth mesh

On matrix form this gives ⎡

⎢⎢⎣

∂x

∂i
∂x

∂j

⎤

⎥⎥⎦ =

⎡

⎢⎣

∂u

∂i

∂v

∂i
∂u

∂j

∂v

∂j

⎤

⎥⎦

⎡

⎢⎣

∂w

∂u
∂w

∂v

⎤

⎥⎦ . (8.92)

Thus, given three neighboring particles as shown in Figure 8.30, we may estimate ∂w
∂u and ∂w

∂v by finite
differences and matrix inversion as

⎡

⎢⎣

∂w

∂u
∂w

∂v

⎤

⎥⎦ =

[
u(i + 1, j) − u(i, j) v(i + 1, j) − v(i, j)
u(i, j + 1)− u(i, j) v(i, j + 1)− v(i, j)

]−1 [
x(i + 1, j) − x(i, j)
x(i, j + 1)− x(i, j)

]
. (8.93)

The matrix in u and v is constant, hence ∂w
∂u and ∂w

∂v are a function of x, and the constraint function is
therefore defined to be

Cstretch(x) = α

[∥∥∂w
∂u

∥∥
2
− 1

∥∥∂w
∂v

∥∥
2
− 1

]

, (8.94)

where α is a user-specified constant controlling the relative strength of the stretch constraint. Likewise,
we define shearing energy by measuring the angular change performed by the mapping,

Cshear = β
∂w

∂u
· ∂w

∂v
, (8.95)

where β is a user constant controlling the relative strength of the shear constraint. This is an approximation
to cos θ, with θ being the angle between the vectors, and the approximation depends on β, since this
controls the relative enforcement of C shear.

For the bending constraint, we define it to be proportional with the curvature of the cloth, which in
turn is proportional with the angle between two neighboring triangle normals, that is,

Cbend = γ cos−1 (n1 · n2) , (8.96)

where n1 are the normals n2, and γ is a user constant controlling the relative strength of the stretch
constraint.

“book” — 2005/9/30 — 15:44 — page 303 — #315✐
✐

✐
✐

✐
✐

✐
✐

8.7 PHYSICS-BASED ANIMATION 303

Strong forces require strong damping forces to stabilize the numerical integration. It has been sug-
gested to use the constraint function to define damping forces [Baraff et al., 1998] as follows:

di = −kd
∂C

∂ri
Ċ. (8.97)

Inserting this into (8.89) we need to calculate the derivatives

∂di

∂rj
= −kd

(
∂C

∂ri

∂Ċ

∂rj
+

∂2C

∂ri∂rj
Ċ

)
(8.98a)

∂di

∂ṙj
= −kd

(
∂C

∂ri

∂C

∂rj

T)
. (8.98b)

At points of contact between the cloth and other impenetrable objects, or as specified by the user,
constraint forces must be applied. Instead of introducing springs with high spring constants, the mass may
be set to infinity. At first glance this seems awkward, however, since (8.89) uses the inverse mass, setting
a mass to infinity is equivalent to setting its inverse mass to zero. To complicate matters further, a particle
in contact with a planar surface will only be constrained in the direction normal to the surface, and we
need only set the inverse mass to zero in the normal direction. As an example, consider a single particle,
ri: Newton’s second law may be written on matrix form as

r̈i =
1

mi
f i =

⎡

⎣
1

mi
0 0

0 1
mi

0

0 0 1
mi

⎤

⎦f i, (8.99)

in which case we may impose a constraint along one of the coordinate axes by setting the corresponding
element in the diagonal to zero. The extension of the inverse mass to a matrix was done by multiplication
with the identity matrix, 1

mi
1, and constraining along an axis could be considered as the operation 1

mi
(1−

Ξ), where Ξ is a zero matrix except at the relevant diagonal element to be constrained, which is one. In
general we have

(1− ξξT)ξ = 0, (8.100)

when ξ = [ξ1, ξ2, ξ3]T is a unit vector. To verify, we simply expand the products in three dimensions,

(1− ξξT)ξ = ξ −

⎡

⎣
ξ21 ξ1ξ2 ξ1ξ3
ξ1ξ2 ξ22 ξ2ξ3
ξ1ξ3 ξ2ξ3 ξ23

⎤

⎦ ξ (8.101a)

= ξ −

⎡

⎣
ξ31 + ξ1ξ22 + ξ1ξ23
ξ21ξ2 + ξ32 + ξ2ξ23
ξ21ξ3 + ξ22ξ3 + ξ33

⎤

⎦ (8.101b)

= ξ −

⎡

⎣
ξ1(ξ21 + ξ22 + ξ23)
ξ2(ξ21 + ξ22 + ξ23)
ξ3(ξ21 + ξ22 + ξ23)

⎤

⎦ (8.101c)

= 0. (8.101d)

“book” — 2005/9/30 — 15:44 — page 304 — #316✐
✐

✐
✐

✐
✐

✐
✐

304 CHAPTER 8. PARTICLE SYSTEMS

Thus we may specify the constraints in 0–3 directions by letting the inverse mass matrix be

M−1
i

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
mi

for 0 constraints,
1

mi

(
1− ξξT

)
for 1 constraint,

1
mi

(
1− ξξT − ηηT

)
for 2 constraints,

0 for 3 constraints,

x (8.102)

where ξ and η are mutually orthogonal vectors.
Finally, [Baraff et al., 1998] has had success with solving the above system with the conjugate gradient

method.

“book” — 2005/9/30 — 15:44 — page 305 — #317✐
✐

✐
✐

✐
✐

✐
✐

9

Continuum Models with Finite Differences

In this chapter we will discuss continuum models with finite differences for the simulation of deformable
objects. This was first presented for the animation community in [Terzopoulos et al., 1987] and later
widely discussed [Kelager et al., 2005]. The model typically leads to rubbery objects, as illustrated in
Figure 9.1.

The original method was designed using finite differencing, but many have later turned finite elements
as the computational model. The finite element method will be discussed in Chapter 10.

9.1 A Model for Deformable Objects
A deformable object can be identified as a point cloud. The positions of these points describe the geometry
of the object. Any point of a deformable object can at any time be identified by a set of unique parameter
values. We call these parameter values the material coordinates and denote them with the symbol a. For
a solid, a = [a1, a2, a3]

T , for a surface, a = [a1, a2]
T , and for a curve, a = [a1].

As the object deforms, points belonging to the object move. The position of an object point is a time-
varying vector depending on the material coordinates. A point belonging to an object in Euclidean space
is denoted r and is given by

r(a, t) = [r1(a, t), r2(a, t), r3(a, t)] . (9.1)

In Figure 9.2, we show the relationship between a surface described by material coordinates and the
points in Euclidean space.

The deformation of an object is modeled using elastic forces. When an object is in its rest shape,
meaning that it is undeformed, there is no elastic energy stored in the object, but when the object is

Figure 9.1: Examples of models using the continuum formulation, kindly provided by Micky Kelager
and Anders Fleron, at the time of writing students at the Department of Computer Science, University of
Copenhagen.

305

“book” — 2005/9/30 — 15:44 — page 306 — #318✐
✐

✐
✐

✐
✐

✐
✐

306 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Figure 9.2: Parameterization of a deformable object.

deformed, an elastic energy is built up in the object. The deformed object wants to return to its rest shape,
which is equivalent to minimizing the elastic energy stored in the object. Thus, simulating deformable
objects is all about energy minimization.

The deformation of an object in a given point is denoted with a potential elastic energy function
E = E (r(a, t)). This energy should be independent of rigid-body movement.

We work in a continuum model, which means that we consider the object as a whole, and not just a
representation of the object, for instance, its center of mass. This means that a differential volume of the
object is assigned a density of mass, a density of energy, a density of damping, and so on. Thus, in the
limiting case, we have a mass density function, an energy density function, etc., describing the distribution
of densities at any point in the object.

The Lagrangian density, see Section 22.5, is an energy density function, and it can be written as

L = 1
2µ(a)

(
dr(a, t)

dt

)2

− E(r(a, t)). (9.2)

Here µ(a) is the mass density in a given point, and the derivative of r with respect to time, describes the
velocity of motion. The object deforms due to some applied external forces, f (a), and the deformation is
damped by a damping force, f (d), given by

f (a) = f(r(a, t), t), (9.3a)

f (d) = −γ(a)
dr(a, t)

dt
, (9.3b)

where γ(a) is the damping density. The damping force resists deformation, while the applied external

“book” — 2005/9/30 — 15:44 — page 307 — #319✐
✐

✐
✐

✐
✐

✐
✐

9.1 PHYSICS-BASED ANIMATION 307

force can be a sum of several different kinds of forces. Examples of these external forces are given later
in Section 9.4.

9.1.1 The Lagrangian Formulation
The equations of motion for a continuous object can be described by the Lagrangian formulation. The
theory and derivations can be found in Section 22.5. The specific equation we use for our model, Equa-
tion (22.186), is repeated here:

d

dt

(
∂L
∂ ∂r
∂t

)
− δL
δr

= Q. (9.4)

Now let us try to substitute the expression for the Lagrangian density of our deformable model, (9.2),
into the above Lagrangian formulation:

d

dt

⎛

⎜⎜⎝

∂

(
1
2µ(a)

(
dr(a,t)

dt

)2
− E(r(a, t))

)

∂ ∂r(a,t)
∂t

⎞

⎟⎟⎠−
δ

(
1
2µ(a)

(
dr(a,t)

dt

)2
− E(r(a, t))

)

δr(a, t)
= Q. (9.5)

If we carry out the partial derivatives on the left side of the equation, we obtain

d

dt

(
µ(a)

(
dr(a, t)

dt

))
+
δE(r(a, t))

δr(a, t)
= Q. (9.6)

The quantity Q is the total sum of applied forces. In our model, these are the external forces, f (a), and
the damping force, f (d). Substituting the expressions from (9.3) for these forces yields

d

dt

(
µ(a)

(
dr(a, t)

dt

))
+
δE(r(a, t))

δr(a, t)
= f(r, t(a, t))− γ(a)

dr(a, t)

dt
. (9.7)

If we move the damping force to the left side, and exchange absolute derivatives with partial derivatives
wherever possible, we get our Lagrangian model for a deformable object under motion:

∂

∂t

(
µ(a)

(
∂r(a, t)

∂t

))
+ γ(a)

∂r(a, t)

∂t
+
δE(r(a, t))

δr(a, t)
= f(r(a, t), t), (9.8)

where r(a, t) is the position of material point a at time t, µ(a) is the mass density, γ(a) is the damping
density, f (r(a, t), t) is the applied external forces, and E (r(a, t)) is potential energy due to the elastic
deformation of the body. The derived equation is an exact match of the deformable model introduced in
[Terzopoulos et al., 1987].

To ease notation, we omit the explicit dependencies on position a, and time t. The equation of motion
is then reduced to

µ
∂2r

∂t2
+ γ

∂r

∂t
+
δE (r)

δr
= f (r, t) . (9.9)

“book” — 2005/9/30 — 15:44 — page 308 — #320✐
✐

✐
✐

✐
✐

✐
✐

308 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

We find a connection with classical mechanics when we assign labels to the different parts of the equation.
For example, µ has dimension of mass, and ∂2r

∂t2 is acceleration; thus µ ∂2r
∂t2 is mass times acceleration,

which we denote with m · a. Similarly, we find that γ has dimension of viscosity, ∂r
∂t has dimension of

velocity, and combined they have dimension of force, e.g., γ ∂r
∂t = Fviscous. Continuing this, we can put a

label on each of the terms in the equation of motion, which yields:

µ
∂2r

∂t2︸ ︷︷ ︸
m·a

+ γ
∂r

∂t︸︷︷︸
Fviscous

+
δE (r)

δr︸ ︷︷ ︸
Felastic

= f (r, t)︸ ︷︷ ︸
Fexternal

. (9.10)

Doing so, we can gather the viscous, elastic, and external force, as Ftotal = Fexternal − (Fviscous + Felastic).
With this notation, we find that our equation of motion is equivalent to Newton’s second law:

m · a = Ftotal. (9.11)

Normally, we think of Newton’s second law used directly on one body. In the Lagrangian formulation,
the body is parameterized. It is therefore a continuous description.

9.1.2 Designing the Energy Functional
The E(r(a, t)) functional describes the potential elastic energy of our deformable object. This functional
is only dependent on the form of the object. We do not want our object to change form, depending on its
position in the world, so we need a description of form that is invariant to rigid body motion.

Differential geometry is well suited to describe the local shape of any kind of object. Therefore, we
can use this description to set up an energy functional, which penalizes a deforming shape with respect to
its natural or initial shape. When the simulation is run a force will be applied, pulling the body toward its
natural shape, until equilibrium is reached. Thus, penalizing is equivalent to energy minimization and the
equilibrium shape is equal to energy minimum.

The first fundamental form or the metric tensor is a measuring tool for points in an object. It describes
how to measure distances between points in the object, independent of the world coordinate frame. For a
point r in our parameterized object, the metric tensor

G =

[
G11 G12

G21 G22

]
, (9.12)

is a symmetric matrix with elements defined by

Gij (r(a)) =
∂r

∂ai
· ∂r

∂aj
. (9.13)

The differential distance between two nearby points with material coordinates a and a+ da is then found
by

dl =
∑

i,j

Gij (r(a)) daidaj. (9.14)

“book” — 2005/9/30 — 15:44 — page 309 — #321✐
✐

✐
✐

✐
✐

✐
✐

9.1 PHYSICS-BASED ANIMATION 309

Figure 9.3: Distance between points on surface is independent of the mean curvature.

For 3D solid objects, the metric tensor is a 3×3 matrix. If two solids have the same shape, their metric
tensors are identical functions of a. However, for 2D surfaces, this description is no longer sufficient. The
distance between points on a surface is independent of the mean curvature of the surfaces as seen in
Figure 9.3, so we need to look at the second fundamental form or the curvature tensor. For a point in our
parameterized surface, the elements of the curvature tensor, B, are defined as

Bij (r(a)) = n · ∂2r

∂ai · ∂aj
, (9.15)

where n = [n1, n2, n3]
T is the unit surface normal. If two surfaces have the same shape, their 2×2 metric

tensors, G, as well as their 2× 2 curvature tensors, B, are identical functions of a.
Finally, if we restrict our deformable objects to 1D curves, we need yet another measurement to

account for twisting, in order to decide if two curves have the same shape, as illustrated in Figure 9.4. The
metric and curvature tensors are now reduced to scalars, called arc length s and curvature κ. Since the
curve can twist, we need to compare their torsion τ , which is defined as

τ = n · (t× n)′ , (9.16)

where t is the tangent, (t×n) is the binormal, and (t× n)′ is differentiation of the binormal with respect
to the arc length parameterization. In the following, we will restrict the description to 2D surfaces. It is
easy to incorporate the torsion for curves, or remove the curvature for solids.

In the model for a deformable object, (9.8), the external forces working on the object are countered by
internal forces. The internal elastic force

Felastic =
δE (r)

δr
, (9.17)

deals with the elastic energy that is produced when the deformable object has a shape that is different from
its rest shape. We want to model the energy in a way that resembles real-life elastic objects. For example,
when compressing a rubber ball, it returns to its natural ball shape when the pressure is released. We can

“book” — 2005/9/30 — 15:44 — page 310 — #322✐
✐

✐
✐

✐
✐

✐
✐

310 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Figure 9.4: The shapes of two curves depend on torsion. Image shows two curves, with same arch length
and curvature metrics, but with different torsion.

model this behavior for our deformable object, by requiring that the material points at the deformation
should have an increased elastic energy. This ensures that the elastic force makes the material points
want to seek their natural rest shape, e.g., the undeformed object. We further want the model to have
a low elastic energy when deformation is small, and a high elastic energy when deformation is large. A
simple, but reasonable, model of the elastic energy E(r(a, t)) in an object being deformed is the difference
between the fundamental forms of the object in its deformed state and in its rest shape. We denote the
fundamental forms of the object in its natural rest shape with a superscript 0; that is, G0 is the metric
tensor, and B0 is the curvature tensor for the object in its natural rest shape. This elastic energy can be
written as

E (r) =

∫

Ω

∥∥G−G0
∥∥2

η
+
∥∥B −B0

∥∥2

ξ
da1da2, (9.18)

where Ω is the domain of the deformable object and ∥·∥η and ∥·∥ξ are weighted matrix norms. This
model for the elastic energy has the nice properties that it is zero for rigid body motion and that it includes
the fewest partial derivatives necessary to restore a deformable object to its natural shape.

9.2 Model Relaxation
In the previous sections we derived a mathematical model for a deformable object. The mathematical
model is now converted to a discrete model with nice numerical properties and efficiently solvable on
a computer. The numerical property we aim for is that small errors, due to imprecision and round-off,
are not amplified, but rather dissipated. Choosing this strategy has some tradeoffs. The motion is often
damped by the dissipation. The more dissipation, the more damped the motion appears to be. In contrast,

“book” — 2005/9/30 — 15:44 — page 311 — #323✐
✐

✐
✐

✐
✐

✐
✐

9.2 PHYSICS-BASED ANIMATION 311

the more damping, the more abrupt, violent, and destructive change can be applied to the deformable
object, without the animation blowing up. From a computer graphics viewpoint, efficiency often implies
taking very large, fixed time-steps, with comparatively low time-complexity.

We start by simplifying the expression for the elastic energy. Thereafter, we work through the mathe-
matics of calculating the variational derivatives of the elastic force, which leads us to another simplifica-
tion. When this is done, we show how to discretize the simplified equation of motion in space. Finally,
the resulting system, which has been converted from a partial differential equation to a system of coupled
ordinary differential equations, is discretized through time and ready to be implemented.

9.2.1 Simplification of the Elastic Force

In the previous section, we derived an expression for the elastic energy, when the object was deformed
away from its natural shape. Using the weighted Frobenius norm, also called the Hilbert-Schmidt norm
[Weisstein, 2004], which is defined as

∥A∥w =

√∑

i,j

wij|Aij |2, (9.19)

we can rewrite (9.18) as follows:

E (r) =

∫

Ω

∥∥G−G0
∥∥2

η
+
∥∥B −B0

∥∥2

ξ
da1da2, (9.20a)

=

∫

Ω

2∑

i,j=1

(
ηij
(
Gij −G0

ij

)2
+ ξij

(
Bij −B0

ij

)2)
da1da2. (9.20b)

The weighting matrices, η and ξ will control the strength of restoration of the first and second fundamental
form, respectively.

9.2.2 The Variational Derivative

With the above simplification of the elastic energy functional, we are now ready to find an expression for
the elastic force, Felastic = δE(r)

δr . The variational derivative
of a potential energy functional can be interpreted as a force as explained in Section 22.3. Calcu-

lating the variational derivative also corresponds to finding the function that minimizes the functional as
described in Chapter 21. That means that by calculating the variational derivative, we find an expression
of the elastic force that seeks to minimize the elastic energy.

To better follow the derivations, we split (9.20b) into two parts. The first, S, dealing with the first

“book” — 2005/9/30 — 15:44 — page 312 — #324✐
✐

✐
✐

✐
✐

✐
✐

312 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

fundamental form, and the other, T , dealing with the second fundamental form:

S =
2∑

i,j=1

ηij
(
Gij −G0

ij

)2
, (9.21a)

T =
2∑

i,j=1

ξij
(
Bij −B0

ij

)2
. (9.21b)

These terms will be developed individually, using the calculus of Variation (see Chapter 21).

9.2.2.1 Variational Derivative of S

We will now derive the variational derivative of S. The function S on expanded form is

S = η11
(
G11 −G0

11

)2
+ η12

(
G12 −G0

12

)2
+ η21

(
G21 −G0

21

)2
+ η22

(
G22 −G0

22

)2
. (9.22)

Since G is symmetric, we choose η12 = η21. Using the fact that Gij = ∂r
∂ai

· ∂r
∂aj

, the expression becomes

S = η11

(
∂r

∂a1
· ∂r

∂a1
−G0

11

)2

+ 2η12

(
∂r

∂a1
· ∂r

∂a2
−G0

12

)2

+ η22

(
∂r

∂a2
· ∂r

∂a2
−G0

22

)2

. (9.23)

Introducing the shorthand rai = ∂r(a)
∂ai

, the equation becomes

S = η11
(
ra1 · ra1 −G0

11

)2
+ 2η12

(
ra1 · ra2 −G0

12

)2
+ η22

(
ra2 · ra2 −G0

22

)2
, (9.24)

which may also be written as

S (r) =

∫

Ω
S (a1, a2, r, ra1 , ra2) da1da2. (9.25)

The first variational derivative of S is defined by

δS
δr

= Sr − ∂a1Sra1
− ∂a2Sra2

. (9.26)

Observe that nowhere does S depend explicitly on r, so Sr = 0. That means we end up with

δS
δr

=− ∂a1

⎡

⎢⎣4η11
(
ra1 · ra1 −G0

11

)
︸ ︷︷ ︸

α11

ra1 + 4η12
(
ra1 · ra2 −G0

12

)
︸ ︷︷ ︸

α12

ra2

⎤

⎥⎦

− ∂a2

⎡

⎢⎣4η12
(
ra1 · ra2 −G0

12

)
︸ ︷︷ ︸

α12

ra1 + 4η22
(
ra2 · ra2 −G0

22

)
︸ ︷︷ ︸

α22

ra2

⎤

⎥⎦ .

(9.27)

“book” — 2005/9/30 — 15:44 — page 313 — #325✐
✐

✐
✐

✐
✐

✐
✐

9.2 PHYSICS-BASED ANIMATION 313

Cleaning up we have

δS
δr

= −∂a1 [α11ra1 + α12ra2]− ∂a2 [α12ra1 + α22ra2] . (9.28)

Using the product rule we can now write

δS
δr

=− (∂a1α11) ra1 − α11ra1a1 − (∂a1α12) ra2 − α12ra1a2

− (∂a2α12) ra1 − α12ra2a1 − (∂a2α22) ra2 − α22ra2a2 ,
(9.29)

which can be reduced to

δS
δr

= −
2∑

i,j=1

∂aiαijraj , (9.30a)

αij = η̃ij
(
Gij −G0

ij

)
, (9.30b)

η̃ij = 4ηij . (9.30c)

This is the expression of the variation of the first fundamental form. The constant ηij is user specified,
hence we might as well consider η̃ij as the user-specified parameter. This will be our practice in the
remainder of this chapter.

9.2.2.2 Variational Derivative of T

Following the same procedure for T , using the fact that Bij = n · rajai , and choosing ξ12 = ξ21, yields

T = ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2
. (9.31)

We can then write the T -part of the energy functional as

T (r) =

∫

Ω
T (a1, a2, r, ra1 , ra2 , ra1a1 , ra1a2 , ra2a2) da1da2. (9.32)

The first variational derivative of T is defined by

δT
δr

= Tr − ∂a1Tra1
− ∂a2Tra2

+ ∂a1a1Tra1a1
+ 2∂a1a2Tra1a2

+ ∂a2a2Tra2a2
. (9.33)

“book” — 2005/9/30 — 15:44 — page 314 — #326✐
✐

✐
✐

✐
✐

✐
✐

314 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Again, we see that Tr = 0, so

δT
δr

= − ∂a1∂ra1

[
ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2]

−∂a2∂ra2

[
ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2]

+∂a1a1∂ra1a1

[
ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2]

+2∂a1a2∂ra1a2

[
ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2]

+∂a2a2∂ra2a2

[
ξ11
(
n · ra1a1 −B0

11

)2
+ 2ξ12

(
n · ra1a2 −B0

12

)2
+ ξ22

(
n · ra2a2 −B0

22

)2]
.

(9.34)

Taking care of the first partial differentiation using the differentiation rule in (18.173), gives

δT
δr

= − ∂a1

[
2ξ11

(
n · ra1a1 −B0

11

)
nT

ra1
ra1a1 + 4ξ12

(
n · ra1a2 −B0

12

)
nT

ra1
ra1a2

+2ξ22
(
n · ra2a2 −B0

22

)
nT

ra1
ra2a2

]

−∂a2

[
2ξ11

(
n · ra1a1 −B0

11

)
nT

ra2
ra1a1 + 4ξ12

(
n · ra1a2 −B0

12

)
nT

ra2
ra1a2

+2ξ22
(
n · ra2a2 −B0

22

)
nT

ra2
ra2a2

]

+∂a1a1

[
2ξ11

(
n · ra1a1 −B0

11

)
n
]

+2∂a1a2

[
4ξ12

(
n · ra1a2 −B0

12

)
n
]

+∂a2a2

[
2ξ22

(
n · ra2a2 −B0

22

)
n
]
. (9.35)

As for the S-case, we introduce a symbol representing the part of the equation that concerns the funda-
mental form. Specifically, we set

β11 =2ξ11
(
n · ra1a1 −B0

11

)
= ξ̃11

(
n · ra1a1 −B0

11

)
, (9.36a)

β12 =4ξ12
(
n · ra1a2 −B0

12

)
= ξ̃12

(
n · ra1a2 −B0

12

)
, (9.36b)

β22 =2ξ22
(
n · ra2a2 −B0

22

)
= ξ̃22

(
n · ra2a2 −B0

22

)
. (9.36c)

The parameters ξij are user specified. For ηij , for convenience we introduce ξ̃ij as the new user-specified
parameters, and finally we may write the variational derivative of T as

δT
δr

=− ∂a1

[
β11n

T
ra1

ra1a1 + β12n
T
ra1

ra1a2 + β22n
T
ra1

ra2a2

]

− ∂a2

[
β11n

T
ra2

ra1a1 + β12n
T
ra2

ra1a2 + β22n
T
ra2

ra2a2

]

+ ∂a1a1β11n + 2∂a1a2β12n + ∂a2a2β22n. (9.37)

“book” — 2005/9/30 — 15:44 — page 315 — #327✐
✐

✐
✐

✐
✐

✐
✐

9.2 PHYSICS-BASED ANIMATION 315

This equation is the variational derivative of the part of the energy-functional that concerns the second
fundamental form. As can be seen, it is rather complex, so we would like to approximate it with something
simpler, which can be done in many ways.

In [Terzopoulos et al., 1987], an approximation of the T -part is chosen by an analogy to the S-part
without any theoretical justification. Our derivation shows how this approximation can be justified. First
we ignore all first-order terms, which seems reasonable since curvature describes a second-order property.
Then we replace the normal n with raiaj , which can be justified as follows: the first derivative of a point
on a curve is the tangent, the second derivative corresponds to a normal. We then arrive at the following
approximation:

δT
δr
≈ ∂a1a1β11ra1a1 + 2∂a1a2β12ra1a2 + ∂a2a2β11ra2a2 . (9.38)

As can be seen, the above approximation is very similar to (9.30). The only difference is the different
multiplicative constant hidden in the β12 term. Rescaling this term can be done without changing the
fundamental properties of this term. To see this, we can study the analogy with gradient descent. Here,
the negative gradient always points in the minimum direction. Thus, the direction remains the same,
regardless of any chosen multiplicative constant. This implies that during minimization, we always walk
in the direction of the minimum. The multiplicative term only determines how long the steps are. With
this justification, we arrive at the final approximation for the T -term:

δT
δr
≈

2∑

i,j=1

∂aiaj

(
βijraiaj

)
, (9.39a)

βij =ξ̃ij
(
n · raiaj −B0

ij

)
. (9.39b)

9.2.2.3 The Complete Variational Derivative

This concludes the derivation of the approximating vector expression for the variational derivative of the
energy potential, yielding the following relation:

e =
δE
δr
≈ e (r) =

2∑

i,j=1

−∂ai

(
αijraj

)
+ ∂aiaj

(
βijraiaj

)
, (9.40a)

αij =η̃ij
(
Gij −G0

ij

)
, (9.40b)

βij =ξ̃ij
(
Bij −B0

ij

)
. (9.40c)

The size of the elastic force vector, e, describes the elasticity inherent at a point in a deformable object.
This is an internal property of the object, and it increases as the object deforms at the intrinsic position.
So, the elasticity, e, is the elastic force that should work on a point to minimize the deformation.

9.2.3 Understanding the Model
The two constitutive equations (9.40b) and (9.40c) model the governing behavior of the elastic motion.
Comparing them with Hooke’s Spring Law, described in Section 22.4, which states that

F = −kx, (9.41)

“book” — 2005/9/30 — 15:44 — page 316 — #328✐
✐

✐
✐

✐
✐

✐
✐

316 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

where x is a displacement vector, and k is the spring constant, we can see a resemblance. The η̃ and ξ̃
tensors both work as spring constants, albeit without the − sign, and the difference of the fundamental
form of the deformed object, from the fundamental form of the undeformed object, can be seen as dis-
placement. This means, that the behavior of the elasticity is actually a spring model, with the fundamental
forms as the units of measurements.

The first part of (9.40a), can be seen as the tension constraint on the elasticity. Inspecting the metric
tensor,

G =

[
G11 G12

G21 G22

]
(9.42a)

=

[
∂r
∂a1

· ∂r
∂a1

∂r
∂a1

· ∂r
∂a2

∂r
∂a2

· ∂r
∂a1

∂r
∂a2

· ∂r
∂a2

]

, (9.42b)

we can see the significance of the different entries. The two elements, G11 and G22, are the squared
vector norm of the derivative in each of the coordinate directions. These entries measure the length in
each direction, and compared with the rest state, G0, determine stretching or compression of the material.
The entries G12 = G21 measure the angle between the two coordinate directions, since the dot product is
defined as

x · y =
cos θ

|x||y| . (9.43)

Together with G0, they represent an angle constraint.
The constants η̃ij contains the weights of the metric tensor, and can be written as

η̃ =

[
η̃11 η̃12

η̃21 η̃22

]
, (9.44)

with η̃ij ≥ 0. The η̃11 and η̃22 terms describe the resistance to length deformations in the two directions,
while η̃12 = η̃21 describe resistance to shearing. To simulate a material that behaves like soft rubber,
one can use a small η̃, while a larger η̃ will model a less stretchable material, such as paper. In prac-
tice, it is seen that, if some η̃ij > 1 and for large time steps, then the system tends to become unstable
[Kelager et al., 2005].

The second part of (9.40a), can be seen as the curvature constraint on the elasticity. Inspecting the
curvature tensor,

B =

[
B11 B12

B21 B22

]
(9.45a)

=

[
n · ∂2r

∂a2
1

n · ∂2r
∂a1·∂a2

n · ∂2r
∂a2·∂a1

n · ∂2r
∂a2

2

]
, (9.45b)

we find that B11 and B22 measure bending in each of the two coordinate directions, with B12 = B21

measures twisting of the coordinate frame projected onto the normal. Comparing the values with the rest
state, B0, we have a measure of how the surface deforms with regard to bending and rotation.

“book” — 2005/9/30 — 15:44 — page 317 — #329✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 317

The constants ξ̃ij contains the weights of the curvature tensor. These can be collected in a rigidity
tensor

ξ̃ =

[
ξ̃11 ξ̃12
ξ̃21 ξ̃22,

]
(9.46)

where ξ̃11 and ξ̃22 describe the resistance to bending, and ξ̃12 = ξ̃21 describes resistance to twisting. To
model surfaces with flexible bending properties, like cloth, ξ̃ should be close to zero. A thin metal plate,
which has a high resistance to bending, should have a larger ξ̃. In practice, it is often seen that the system
stays stable, by keeping the values ξ̃ij < 1 [Christensen et al., 2004].

9.3 Discretizing the Model Relaxation

In the previous section, we derived a simplified approximation of the original partial equation given in
(9.18). This approximation resulted in a vector expression, repeated here for convenience:

e =
2∑

i,j=1

−∂ai

(
αijraj

)
+ ∂aiaj

(
βijraiaj

)
, (9.47a)

αij =η̃ij
(
Gij −G0

ij

)
, (9.47b)

βij =ξ̃ij
(
Bij −B0

ij

)
. (9.47c)

This expression for the elastic force is continuous in the material coordinates a of the deformable object.
To be able to implement this, we need to discretize it, thereby transforming the original partial differential
equation (9.8) into a system of ordinary differential equations. This system can then be converted to a
matrix-vector form, which is easily implemented and solved on a computer. In this section, we will use
the standard technique of finite difference approximations as described in Section 20.2, to calculate the
different derivatives involved in the expressions. The deformable surface is described by a continuous
mapping from material coordinates a = [a1, a2]

T to world coordinates r (a) = [rx, ry, rz]
T . The domain

of the material coordinates is a unit square, 0 ≤ a1, a2 ≤ 1. We discretize the material domain into a
regular M ×N -sized grid of nodes, with an internode spacing of h1 and h2, given by

h1 =
1

M − 1
, (9.48a)

h2 =
1

N − 1
. (9.48b)

This is illustrated in Figure 9.5. We will use square brackets to indicate that we approximate a continuous
function r(a1, a2), on the discrete grid, where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. For example,
r [m,n] = r (mh1, nh2).

By analogy to particle systems presented in Chapter 8, a grid node can be thought of as a particle.
The metric tensor G can then be thought of as structural springs, and the curvature tensor B as bending
springs.

“book” — 2005/9/30 — 15:44 — page 318 — #330✐
✐

✐
✐

✐
✐

✐
✐

318 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Material Coordinates� World Coordinates�

Figure 9.5: Discretization of the material coordinate domain.

9.3.1 Finite Difference Operators
To ease notation in the following, we will introduce symbolic names for the finite difference operators
needed. The symbol D indicates a finite difference operator. The subscripts denote the material coordinate
axis along which the difference is performed. The superscript + indicates a forward difference, while a −
indicate a backward difference.

The forward first difference operators are defined by:

D+
1 (u) [m,n] = (u [m + 1, n]− u [m,n]) /h1, (9.49a)

D+
2 (u) [m,n] = (u [m,n + 1]− u [m,n]) /h2. (9.49b)

Similarly, the backward first difference operators are defined by

D−
1 (u) [m,n] = (u [m,n]− u [m− 1, n]) /h1, (9.50a)

D−
2 (u) [m,n] = (u [m,n]− u [m,n− 1]) /h2. (9.50b)

The forward and backward cross difference operators, can then be defined as

D+
12(u) [m,n] = D+

21(u) [m,n] = D+
1

(
D+

2 (u)
)
[m,n] , (9.51a)

D−
12(u) [m,n] = D−

21(u) [m,n] = D−
1

(
D−

2 (u)
)
[m,n] . (9.51b)

The central second difference operators can then be defined as

D11(u) [m,n] = D−
1

(
D+

1 (u)
)
[m,n] , (9.52a)

D22(u) [m,n] = D−
2

(
D+

2 (u)
)
[m,n] . (9.52b)

Finally, we define combined second difference operators, D(+)
ij and D(−)

ij , that means: use the forward
or backward cross differential operator, when i ̸= j, and the second central difference operator Dii,
otherwise.

“book” — 2005/9/30 — 15:44 — page 319 — #331✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 319

9.3.2 Discretizing the Elastic Force
With the above operators, it is very easy to write up the discrete versions of the elastic force Felastic . First,
the two continuous versions of the constitutive functions, α and β, given by

αij(a, r) = η̃ij(a)
(
Gij −G0

ij

)
= η̃ij(a)

(
∂r

∂ai
· ∂r

∂aj
−G0

ij

)
, (9.53a)

βij(a, r) = ξ̃ij(a)
(
Bij −B0

ij

)
= ξ̃ij(a)

(
n · ∂2r

∂ai · ∂aj
−B0

ij

)
, (9.53b)

are discretized to yield

αij [m,n] = η̃ij [m,n]
(
D+

i (r) [m,n] · D+
i (r) [m,n]−G0

ij [m,n]
)
, (9.54a)

βij [m,n] = ξ̃ij [m,n]
(
n [m,n] · D(+)

ij (r) [m,n]−B0
ij [m,n]

)
, (9.54b)

where the initial tensors, G0 and B0, can be calculated analytically, or by using the same finite difference
operators on a discretization of the rest shape. The finite difference operators appears to give higher
stability. Hence, the continuous elastic force, given by

e(r) =
2∑

i,j=1

− ∂

∂ai

(
αij

∂r

∂aj

)
+

∂2

∂ai∂aj

(
βij

∂2r

∂ai∂aj

)
, (9.55)

can be discretized to yield

e [m,n] =
2∑

i,j=1

−D−
i (p) [m,n] + D(−)

ij (q) [m,n] , (9.56a)

p = αij [m,n]D+
j (r) [m,n] , (9.56b)

q = βij [m,n]D(+)
ij (r) [m,n] . (9.56c)

Notice that the final discretization uses a combination of forward and backward difference operators. This
combination results in a central difference approximation for r.

The elastic force has been separated in two parts, p [m,n] and q [m,n], to emphasize the fact that
they are fields of the same size as the discretized surface r [m,n]. It therefore makes sense to apply the
finite difference operators on these fields as well. That means, to calculate the elastic force e for a given
material point r [m,n], we only need to look in the neighborhood of the material point. This is the key in
understanding how to perform the actual implementation, which is described next.

9.3.3 The Stiffness Matrix
With the discretization in place, we now want to derive a matrix-vector equation for the elastic force. In
the following description, we look at a deformable surface consisting of M × N material points. Let

“book” — 2005/9/30 — 15:44 — page 320 — #332✐
✐

✐
✐

✐
✐

✐
✐

320 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

us collect all the particle positions, r [m,n], in one large MN dimensional vector, r. We then want to
reformulate the discretization, in such a way, that we can calculate the elastic force of all the particles
simultaneously, by the expression

e = K(r)r, (9.57)
where e is an MN dimensional vector containing the elastic force for all material points. The matrix
K(r), with dimensions MN ×MN , is called the stiffness matrix.

To assemble the stiffness matrix, we need to have a closer look at the discretizations of the elastic force.
We will evaluate the finite differences to see which material point positions are involved in calculating the
elastic force for a single material point. We will discover that the material points involved all lie in a close
neighborhood, which gives an analogy to discrete filtering kernels, also called stencils.

9.3.3.1 The α Stencil

Expanding the first part of (9.56a), we get
2∑

i,j=1

−D−
i (p) [m,n] =−D−

1

(
α11 [m,n]D+

1 (r) [m,n]
)

(9.58)

−D−
1

(
α12 [m,n]D+

2 (r) [m,n]
)

−D−
2

(
α21 [m,n]D+

1 (r) [m,n]
)

−D−
2

(
α22 [m,n]D+

2 (r) [m,n]
)
.

Taking only the first part of this, and evaluating, first the backward difference operator, then the forward
difference operator, we find

−D−
1

(
α11 [m,n]D+

1 (r) [m,n]
)

=
−α11 [m,n]D+

1 (r) [m,n] + α11 [m− 1, n] D+
1 (r) [m− 1, n]

h1
(9.59a)

=
−α11 [m,n] (r [m + 1, n]− r [m,n]) + α11 [m− 1, n] (r [m,n]− r [m− 1, n])

h2
1

(9.59b)

=− α11 [m,n]

h2
1

r [m + 1, n] +
α11 [m,n] + α11 [m− 1, n]

h2
1

r [m,n]− α11 [m− 1, n]

h2
1

r [m− 1, n] .

(9.59c)

Doing the same for the other parts of the summation, and gathering terms, we can write the results as a
3× 3 stencil,

Sα[m,n] :

0 −α21[m,n−1]
h1h2

− α22[m,n−1]
h2
2

α21[m,n−1]
h1h2

−α11[m−1,n]
h2
1

− α12[m−1,n]
h1h2

α11[m,n]+α11[m−1,n]
h2
1

+α12[m,n]+α21[m,n]
h1h2

+α22[m,n]+α22[m,n−1]
h2
2

−α11[m,n]
h2
1
− α21[m,n]

h1h2

α12[m−1,n]
h1h2

−α12[m,n]
h1h2

− α22[m,n]
h2
2

0

(9.60)

“book” — 2005/9/30 — 15:44 — page 321 — #333✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 321

Algorithm compute-alpha()
for m=0 to M-1
for n=0 to N-1

alpha_11[m][n] = alpha_12[m][n] = alpha_22[m][n] = 0
vector3 D11_r = (r_cur[m+1][n] - r_cur[m-1][n])/ 2 h_1
vector3 D22_r = (r_cur[m][n+1] - r_cur[m][n-1])/ 2 h_2
alpha_11[m][n] = eta_11[m][n]*(D1_r * D1_r - G0_11[m][n])
alpha_12[m][n] = eta_12[m][n]*(D1_r * D2_r - G0_12[m][n])
alpha_22[m][n] = eta_22[m][n]*(D2_r * D2_r - G0_22[m][n])

next m
next n

End algorithm

Figure 9.6: Pseudocode showing how to compute the alpha grid. Von Neumann boundary conditions as
described in Section 9.3.7 should be applied to the grid of current particle positions.

corresponding to the grid positions,

[m− 1, n− 1] [m,n − 1] [m + 1, n− 1]
[m− 1, n] [m,n] [m + 1, n]

[m− 1, n + 1] [m,n + 1] [m + 1, n + 1]
(9.61)

Now the α-stencil, Sα, can be seen as a filter that can be applied on the positional grid, r. When applying
this filter at position r [m,n], we effectively calculate (9.58).

Figure 9.6 illustrates in pseudocode how to compute α.

9.3.3.2 The β Stencil

Expanding the second part of (9.56a), we get

2∑

i,j=1

D(−)
ij (q) [m,n] =D11β11 [m,n]D11(r) [m,n] (9.62)

+ D−
12β12 [m,n]D+

12(r) [m,n]

+ D−
21β21 [m,n]D+

21(r) [m,n]

+ D22β22 [m,n]D22(r) [m,n] .

As for the α-stencil, we can expand this expression fully by substituting the expressions for the finite
difference operators, and collect terms. This time, due to the use of the central and cross difference

“book” — 2005/9/30 — 15:44 — page 322 — #334✐
✐

✐
✐

✐
✐

✐
✐

322 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

operators, the result is a 5× 5 stencil,

Sβ :

0 0 Sβ [m,n− 2] 0 0
0 Sβ [m− 1, n− 1] Sβ [m,n− 1] Sβ [m + 1, n− 1] 0

Sβ [m− 2, n] Sβ [m− 1, n] Sβ [m,n] Sβ [m + 1, n] Sβ [m + 2, n]
0 Sβ [m− 1, n + 1] Sβ [m,n + 1] Sβ [m + 1, n + 1] 0
0 0 Sβ [m,n + 2] 0 0

, (9.63)

where the nonzero entries in each row are given by:

Sβ[m,n− 2] = (β22 [m,n− 1]) /h4
2, (9.64a)

Sβ[m− 1, n− 1] = (β12 [m− 1, n − 1] + β21 [m− 1, n− 1]) /(h2
1h

2
2), (9.64b)

Sβ[m,n− 1] = (−β12 [m,n− 1]− β12 [m− 1, n − 1]− β21 [m,n− 1]− β21 [m− 1, n − 1]) /(h2
1h

2
2)

+ (−2β22 [m,n]− 2β22 [m,n− 1]) /h4
2, (9.64c)

Sβ[m + 1, n− 1] = (β12 [m,n− 1] + β21 [m,n− 1]) /(h2
1h

2
2), (9.64d)

Sβ[m− 2, n] = (β11 [m− 1, n]) /h4
1, (9.64e)

Sβ[m− 1, n] = (−2β11 [m,n]− 2β11 [m− 1, n]) /h4
1

+ (−β12 [m− 1, n]− β12 [m− 1, n − 1]− β21 [m− 1, n]− β21 [m− 1, n − 1]) /(h2
1h

2
2),

(9.64f)

Sβ[m,n] = (β11 [m + 1, n] + 4β11 [m,n] + β11 [m− 1, n]) /h4
1

+ (β12 [m,n] + β12 [m,n− 1] + β21 [m− 1, n] + β21 [m− 1, n − 1]) /(h2
1h

2
2)

+ (β21 [m,n] + β12 [m,n− 1] + β21 [m− 1, n] + β21 [m− 1, n − 1]) /(h2
1h

2
2)

+ (β22 [m,n + 1] + 4β22 [m,n] + β22 [m,n− 1]) /h4
2, (9.64g)

Sβ[m + 1, n] = (−2β11 [m + 1, n]− 2β11 [m,n]) /h4
1

+ (−β12 [m,n]− β12 [m,n− 1]− β21 [m,n]− β21 [m,n− 1]) /(h2
1h

2
2), (9.64h)

Sβ[m + 2, n] = (β11 [m + 1, n]) /h4
1, (9.64i)

Sβ[m− 1, n + 1] = (β12 [m− 1, n] + β21 [m− 1, n]) /(h2
1h

2
2), (9.64j)

Sβ[m,n + 1] = (−β12 [m,n]− β12 [m− 1, n]− β21 [m,n]− β21 [m− 1, n]) /(h2
1h

2
2)

+ (−2β22 [m,n + 1]− 2β22 [m,n]) /h4
2, (9.64k)

Sβ[m + 1, n + 1] = (β12 [m,n] + β21 [m,n]) /(h2
1h

2
2), (9.64l)

Sβ[m,n + 2] = (β22 [m,n + 1]) /h4
2. (9.64m)

Again, when applying the Sβ stencil to a node, given by r [m,n] in the positional grid, the result is an
evaluation of (9.62).

Figure 9.7 illustrates how to compute β in pseudocode.

“book” — 2005/9/30 — 15:44 — page 323 — #335✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 323

Algorithm compute-beta()
for m=0 to M
for n=0 to N

beta_11[m][n] = beta_12[m][n] = beta_22[m][n] = 0
vector3 D11_r = (r_cur[m+1][n] - r_cur[m-1][n])/2*h_1
vector3 D22_r = (r_cur[m][n+1] - r_cur[m][n-1])/2*h_1
vector3 D12_r = (r_cur[m+1][n+1] - r_cur[m+1][n]

- r_cur[m][n+1] + r_cur[m][n])/h_1*h_2
beta_11[m][n] = xhi_11[m][n]*(n[m][n]*D11_r - B0_11[m][n])
beta_12[m][n] = xhi_12[m][n]*(n[m][n]*D12_r - B0_12[m][n])
beta_22[m][n] = xhi_22[m][n]*(n[m][n]*D22_r - B0_22[m][n])

next m
next n

End algorithm

Figure 9.7: Pseudocode showing how to compute the beta grid. Before invocation the normals for each
grid node must have been computed. Von Neumann boundary conditions as described in Section 9.3.7
should be applied to the grid of current particle positions.

9.3.3.3 The Combined Stencil

To evaluate the complete (9.56a), we combine the Sα and Sβ stencils, arriving at:

Sc =

0 0 Sβ [m,n− 2] 0 0

0
Sα [m− 1, n − 1]

+Sβ [m− 1, n − 1]
Sα [m,n− 1]

+Sβ [m,n− 1]
Sα [m + 1, n− 1]

+Sβ [m + 1, n− 1]
0

Sβ [m− 2, n]
Sα [m− 1, n]

+Sβ [m− 1, n]
Sα [m,n]

+Sβ [m,n]
Sα [m + 1, n]

+Sβ [m + 1, n]
Sβ [m + 2, n]

0
Sα [m− 1, n + 1]

+Sβ [m− 1, n + 1]
Sα [m,n + 1]

+Sβ [m,n + 1]
Sα [m + 1, n + 1]

+Sβ [m + 1, n + 1]
0

0 0 Sβ [m,n + 2] 0 0

.

(9.65)

This stencil includes all of (9.56a) and contains all the information needed to understand how to assemble
the stiffness matrix K.

9.3.3.4 Assembling the Stiffness Matrix

The analogy to filter operations in the above derivations of the stencils can now help us to understand how
to construct the stiffness matrix K. The result of the matrix-vector multiplication, e = K(r)r, is that e
contains the elastic force for all the material points described by r. Unfolding the positional grid to the
vector r can be done as shown by the pseudocode shown in Figure 9.8. A single row in K should mask
out the needed material points in r, and apply the combined stencil Sc on these particles. For the sake

“book” — 2005/9/30 — 15:44 — page 324 — #336✐
✐

✐
✐

✐
✐

✐
✐

324 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

for i = 0 to MN-1 do
m = div(i,M)
n = mod(i,N)
r(i) = r[m,n]

next i

Figure 9.8: Pseudocode for unfolding positional grid.

k� mn�

s� c�

Figure 9.9: Row ki of the stiffness matrix K comes from unfolding the combined stencil Sc.

of clarity, let us look at how to calculate the elastic force ei for the particle ri, where position i in the
MN -vectors corresponds to index [m,n] in the grid. Unfolding the elasticity grid and the positional grid,
the matrix-vector equation (9.57), will look like this:

⎡

⎢⎢⎢⎢⎢⎣

e0
...

ei
...

eMN−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

kT
0
...

kT
i
...

kT
MN−1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

r0
...
ri
...

rMN−1

⎤

⎥⎥⎥⎥⎥⎦
, (9.66)

where kT
ij is the rows of the stiffness matrix K. The row, kT

i , corresponding to the elastic force calculation
for particle ri, looks like Figure 9.9.

That is, the combined 5× 5 stencil, Sc, has been unwrapped and the individual rows has been placed
in the proper positions in the corresponding row of the stiffness matrix. Note that all the other entries are
zero, which, in effect, ensures that only the needed particles are used in the calculation.

The other rows of K are just shifted version of row ki. This results in a stiffness matrix with a very
nice structure, as seen in Figure 9.10. It only contains five subbands, each with five bands, with all the
other entries being zero. So it is a square, banded, sparse matrix. This again means that we can use all
sorts of nice matrix vector solvers to quickly calculate the elastic force of all the particles.

In Figure 9.11 the assembly of the stiffness matrix is outlined in pseudocode.

“book” — 2005/9/30 — 15:44 — page 325 — #337✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 325

Figure 9.10: Structure of the stiffness matrix K.

Algorithm assembly-K()
K = 0
for i = 0 to MN-1

m = mod(i,M)
n = div(i,N)
for s = m-2 to m+2

for t = n-2 to n+2
K(i, sM+t) = Sc(s,t)

next t
next s

next i
End algorithm

Figure 9.11: Pseudocode for assembly of the stiffness matrix K.

“book” — 2005/9/30 — 15:44 — page 326 — #338✐
✐

✐
✐

✐
✐

✐
✐

326 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

9.3.4 A System of Ordinary Differential Equations
Having dealt with the elastic force, we are ready to look at the rest of the equation of motion (9.8), that is,

∂

∂t

(
µ(a)

(
∂r(a, t)

∂t

))
+ γ(a)

∂r(a, t)

∂t
+
δE(r(a, t))

δr(a, t)
= f(r(a, t), t). (9.67)

In the general case, the density distribution function could be dependent on time, both directly, and in-
directly, through the material coordinates, as in µ(a(t), t). However, for our specific purpose, we will
consider the density distribution function to be directly dependent upon the material coordinates only.
This is justified by creating a fixed rectangular grid embedded in the object, where nodes correspond to a
fixed material coordinate point. This simplifies the equation of motion to

µ(a)
∂2r(a, t)

∂t2
+ γ(a)

∂r(a, t)

∂t
+
δE(r(a, t))

δr(a, t)
= f(r(a, t), t). (9.68)

For the elastic force, we have chosen to approximate with K(r)r, where r is the MN element-sized
concatenated vector of particle positions. To be able to use r everywhere in (9.68), we need to represent
the discrete versions of the mass densities, µ [m,n], and the damping densities, γ [m,n], as well as the
external forces, in a proper form.

For the discrete mass densities, µ [m,n], we construct a diagonal MN × MN -dimensional mass
matrix M with the µ [m,n] values in the diagonal. Similarly, we construct a damping matrix C with the
discrete damping values γ [m,n], in the diagonal. Finally, we create a MN -sized vector f, that gathers all
the discrete external forces.

With these constructs, we are able to construct the fully spatial discretization of (9.68) as:

M
∂2r
∂t2

+ C
∂r
∂t

+ K(r)r = f. (9.69)

The original formulation, which is a system of nonlinear partial differential equations, has now been
converted to a system of nonlinear ordinary differential equations.

9.3.5 Temporal Discretization
To simulate the deformation, the system of ordinary differential equations, (9.69), needs to be integrated
through time. In order to favor stability and robustness over accuracy, an implicit integration scheme
can be applied. For ease and speed, we also want the system to be linear, which is not the case for the
system in (9.69). However, linearizing the system through a series of numerical steps will result in the
semi-implicit method known as the Terzopoulos method [Terzopoulos et al., 1987].

The time-dependent factors in (9.69) can be approximated by the discrete first- and second-order
accurate central differences given by

∂r
∂t

=
rt+∆t − rt−∆t

2∆t
, (9.70a)

∂2r
∂t2

=
rt+∆t − 2rt + rt−∆t

∆t2
, (9.70b)

“book” — 2005/9/30 — 15:44 — page 327 — #339✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 327

where the subscripts on r means evaluate r at the time indicated by the subscript. This results in a linear
approximation to the nonlinear system. Now, we evaluate f at time t, and e at time t + ∆t. That is:

et+∆t = K(rt)rt+∆t. (9.71)

These evaluations, together with the discrete time approximations from (9.70a) and (9.70b), are plugged
into (9.69) to yield:

M
rt+∆t − 2rt + rt−∆t

∆t2
+ C

rt+∆t − rt−∆t

2∆t
+ K(rt)rt+∆t = ft, (9.72)

which can be expanded to:
1

∆t2
Mrt+∆t −

2

∆t2
Mrt +

1

∆t2
Mrt−∆t +

1

2∆t
Crt+∆t −

1

2∆t
Crt−∆t + K(rt)rt+∆t = ft. (9.73)

We then collect rt+∆t terms on the left-hand side, and get:
[
K(rt) +

(
1

∆t2
M +

1

2∆t
C

)]
rt+∆t = ft +

2

∆t2
Mrt −

(
1

∆t2
M− 1

2∆t
C

)
rt−∆t. (9.74)

The left-hand side can be written as

Atrt+∆t with At = K(rt) +

(
1

∆t2
M +

1

2∆t
C

)
. (9.75)

To arrive at an implicit scheme, we want the right-hand side to have a
(

1
∆t2 M + 1

2∆tC
)

rt-term. We
expand and rearrange, and get:

Atrt+∆t =ft +
2

∆t2
Mrt −

(
1

∆t2
M− 1

2∆t
C

)
rt−∆t (9.76a)

=ft +
1

∆t2
Mrt +

1

∆t2
Mrt −

1

∆t2
Mrt−∆t +

1

2∆t
Crt−∆t. (9.76b)

By adding and subtracting the term 1
2∆tCrt, we contribute nothing to the equation. Doing this and rear-

ranging again, we get

Atrt+∆t =ft +
1

∆t2
Mrt +

1

∆t2
Mrt −

1

∆t2
Mrt−∆t +

1

2∆t
Crt−∆t +

1

2∆t
Crt −

1

2∆t
Crt (9.77a)

=ft +
1

∆t2
Mrt +

1

2∆t
Crt +

1

∆t2
Mrt −

1

2∆t
Crt −

1

∆t2
Mrt−∆t +

1

2∆t
Crt−∆t (9.77b)

=ft +

(
1

∆t2
M +

1

2∆t
C

)
rt +

(
1

∆t2
M− 1

2∆t
C

)
rt −

(
1

∆t2
M +

1

2∆t
C

)
rt−∆t (9.77c)

=ft +

(
1

∆t2
M +

1

2∆t
C

)
rt +

(
1

∆t2
M− 1

2∆t
C

)(
rt − rt−∆t

)
(9.77d)

=ft +

(
1

∆t2
M +

1

2∆t
C

)
rt +

(
1

∆t
M− 1

2
C

)
1

∆t

(
rt − rt−∆t

)
(9.77e)

=ft +

(
1

∆t2
M +

1

2∆t
C

)
rt +

(
1

∆t
M− 1

2
C

)
vt. (9.77f)

“book” — 2005/9/30 — 15:44 — page 328 — #340✐
✐

✐
✐

✐
✐

✐
✐

328 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Algorithm time-step(dt)
M = mass matrix...
C = damping matrix...
r_cur = current position...
r_old = old positions...
f = external_forces...
assemble_stiffness_matrix(K)
MpC = (M/(dt*dt) + C/(2*dt))
A = K + MpC
MmC = (M /dt - C/2)
v = (r_cur - r_old)/dt
g = f + MpC*r_cur + MmC*v
solve(A,r_new,g)
r_old = r_cur
r_cur = r_new

End algorithm

Figure 9.12: Complete pseudocode for a single time-step.

In the last line, we recognized and substituted the implicit given velocity at time t, vt = 1
∆t

(
rt − rt−∆t

)
.

Looking at the SI-units of the right-hand side, we find that all terms have dimension of force. Therefore,
we can call the right-hand side for the effective force vector, gt.

To summarize, we have derived a semi-implicit integration scheme described by the sparse, banded,
linear system

Atrt+∆t = gt, (9.78)

with the system matrix

At = K(rt) +

(
1

∆t2
M +

1

2∆t
C

)
, (9.79)

and the effective force vector

gt = ft +

(
1

∆t2
M +

1

2∆t
C

)
rt +

(
1

∆t
M +

1

2
C

)
vt, (9.80)

with
vt =

1

∆t

(
rt − rt−∆t

)
. (9.81)

Figure 9.12 shows a pseudocode version of the complete algorithm, using the pseudocode from Fig-
ure 9.11.

9.3.6 Numerical Issues
Given initial conditions, r0 and v0, the above sparse linear system can be solved by inverting the system
matrix

rt+∆t = A−1
t gt, (9.82)

“book” — 2005/9/30 — 15:44 — page 329 — #341✐
✐

✐
✐

✐
✐

✐
✐

9.3 PHYSICS-BASED ANIMATION 329

using an appropriate numerical solver, for example Choleski decomposition or LU factorization. However,
the real win comes from exploiting the properties of the system matrix A from (9.79). This consists of the
stiffness matrix plus a positive diagonal matrix, so all the properties of the stiffness matrix still hold. This
means that we can use an iterative solver, like the conjugate gradient method as described in Section 18.2,
to solve the system matrix. This allow us to simulate deformations, represented by a large amount of
material coordinates, and still be able to visualize the results in real time.

If the entries in the stiffness matrix are very small, these values will become very large, when inverted.
This is a problem for any method of solving the system of equations, but a simple and effective solution
is to clamp all contributions to the stiffness matrix that are below a certain threshold, to zero.

Another issue concerns the boundaries of the discretized grid. Some sort of boundary conditions need
to be implemented, to ensure that the finite difference operators do not break down. The easiest way to
implement a boundary condition is to extend the grid with a border all around it. This border can then
be initialized with whatever value is proper for a specific boundary condition. The filter operations are
then defined on all values of the original grid. This is similar to the way filtering is implemented in, for
example, Matlab R⃝. For example, a natural boundary condition, also known as a von Neumann condition,
requires the gradient to be constant across the boundary. This can be simulated by ensuring that the
forward and cross difference operators in (9.56b) and (9.56c) return zero. To implement this, the border
values need to be set to the same values that are right inside the boundary.

9.3.7 Von Neumann Boundary Conditions
We will now show how to implement simple von Neumann boundary conditions on a rectangular grid.

Let r[i][j] denote the grid node at position (i, j). Let the M×N computational grid be represented on
a grid of dimension (M + 2) × (N + 2). The computational grid, that is, where we solve the Dynamics,
is given by the ranges i ∈ 1..M and j ∈ 1..N . Indices outside these ranges are used to set up boundary
conditions.

The central difference of r at grid locations (1, ·) in horizontal direction is given by the formula:

D11(r[i][j]) =
r[i + 1][j] − r[i− 1][j]

2h1
. (9.83)

Obviously, when i = 1, r[i − 1][j] lies outside the computational grid. To handle this boundary case,
imagine that the surface is smooth and continuous and that the surface has infinite extension. It is then fair
to assume that we can estimate the direction of r[i− 1][j] by the tangent of the surface at r[i][j], as shown
in Figure 9.13. That is

r[0][j] = r[1][j] − (r[2][j] − r[1][j]) (9.84)
= 2r[1][j] − r[2][j]. (9.85)

Inserting this into the central difference scheme yields

D11(r[1][j]) =
r[2][j] − (2r[1][j] − r[2][j])

2h1
(9.86)

=
r[2][j] − r[1][j]

h1
. (9.87)

“book” — 2005/9/30 — 15:44 — page 330 — #342✐
✐

✐
✐

✐
✐

✐
✐

330 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

r[1][j] r[2][j]
r[0][j]

Figure 9.13: An imaginary point to the left of the left boundary.

This is recognized as a forward difference. Hereby we have shown that it makes sense to use Equa-
tion 9.84.

A similar case exists when i = M . This time r[i+1][j] is undefined, and applying the same machinery
suggests that

r[M + 1][j] = r[M][j] − (r[M − 1][j] − r[M][j]) (9.88)
= 2r[M][j] − r[M − 1][j]. (9.89)

In order to verify that the value is meaningful, (9.88) is inserted into the central difference formula

D11(r[M][j]) =
(2r[M][j] − r[M − 1][j]) − r[M − 1][j]

2h1
(9.90)

=
r[M][j] − r[M − 1][j]

h1
. (9.91)

It is seen that this is in fact a backward difference.
The same approach applied to the horizontal direction yields the boundary values

r[i][0] = 2r[i][1] − r[i][2], (9.92)
r[i][N + 1] = 2r[i][N]− r[i][N − 1]. (9.93)

Notice that the four corner values are unused, that is, r[0][0], r[0][N+1], r[M+1][0], and r[M+1][N+1].
Also, no left and right values are set for the top and bottom row. Similar, no top and bottom values are set
for the left and right borders.

A central finite difference scheme for mixed partials can lead to trouble at the corner points because
the values r[0][0], r[0][N+1], r[M+1][0], and r[M+1][N+1] are undefined. Using the same assumption
about a continuous smooth surface yields the computational low-cost estimations of the corner values

r[0][0] = 2r[1][1] − r[2][2], (9.94)
r[0][N + 1] = 2r[1][N] − r[2][N − 1], (9.95)
r[M + 1][0] = 2r[M][1] − r[M − 1][2], (9.96)

r[M + 1][N + 1] = 2r[M][N]− r[M − 1][N − 1]. (9.97)

“book” — 2005/9/30 — 15:44 — page 331 — #343✐
✐

✐
✐

✐
✐

✐
✐

9.4 PHYSICS-BASED ANIMATION 331

Algorithm apply-neumann(r,M,N)
for i=0, j=1 to N

r[i-1][j] = 2*r[i][j] - r[i+1][j]
for i=M, j=1 to N

r[i+1][j] = 2*r[i][j] - r[i-1][j]
for j=0, i=1 to M

r[i][j-1] = 2*r[i][j] - r[i][j+1]
for j=N, i=1 to M

r[i][j+1] = 2*r[i][j] - r[i][j-1]
r[0][0] = 2 r[1][1] - r[2][2]
r[0][N+1] = 2 r[1][N] - r[2][N-1]
r[M+1][0] = 2 r[M][1] - r[M-1][2]
r[M+1][N+1] = 2 r[M][N] - r[M-1][N-1]

End algorithm

Figure 9.14: Pseudocode showing how to apply von Neumann boundary conditions to a computational
grid r, where a central difference scheme is applied.

A more elaborate scheme can of course be used, but we favor the above due to its simplicity and the fact
that corner points are based on known values and not other boundary values, set along the horizontal and
vertical lines outside the computational grid. In Figure 9.14 the pseudocode for applying von Neumann
boundary conditions is given.

The boundary conditions we have applied are accurate enough to first order. Thus, if large discretiza-
tions are used (large h0 and h1), then boundary values will have large errors. Furthermore, if higher-order
difference schemes are applied, that is, O(np) with p > 1, then the scheme is more accurate than the
boundary values. In the latter case one might want to devise a higher-order method for determining the
off-surface points. This is, however, not needed for the Terzopoulos method, and we leave this as an
exercise for the reader.

9.3.8 Dirichlet Boundary Conditions

Although not used in the Terzopoulos method, we will outline a simple implementation for Dirichlet
boundary conditions. For this, a scalar computational grid s is used, with the same dimension as in
Section 9.3.7. A Dirichlet boundary condition can now be set as s[i][j] = 0, or any other constant value.

These kind of boundary conditions are easily applied simply by setting values in the computational
grid, before using it to perform any computations.

9.4 The External Forces

The external force, f(r, t), in our model is the sum of several different kinds of forces. These external
forces can be used to add realistic behavior to the model. A list of some examples of such external forces
are

“book” — 2005/9/30 — 15:44 — page 332 — #344✐
✐

✐
✐

✐
✐

✐
✐

332 CHAPTER 9. CONTINUUM MODELS WITH FINITE DIFFERENCES

Gravity
Gravity force is acting on everything that has a mass. It is given by

f gravity = µ(a)g, (9.98)

where g is the gravitational field. This is usually defined as a constant downward pointing value,
g =

[
0,−9.82m/s2, 0

]T , but could be set to any other constant value.

Spring Forces
Spring forces are produced form springs between fixed material points, a0, and fixed points in the
world, r0,

f spring(t) = k (r0 − r(a0, t)) . (9.99)

Viscous Forces
Viscous forces measure the resistance to motion in a fluid-like substance. For example, a viscous
force is given as

f viscous(a, t) = c (n(a, t) · vr(a, t)) n(a, t) ∀a ∈ Γ, (9.100)

where c is the viscosity coefficient, the strength of the viscous force, n, is the unit surface normal,
and vr(a, t) is the relative surface velocity to the constant stream velocity u. That is,

vr(a, t) = u− ∂r(a, t)

∂t
. (9.101)

As an example of a viscous force, consider a ball rolling toward a puddle of water. When the ball
rolls through the water, it will slow down, due to the viscosity of the water.

9.4.1 Contact Forces
Contact forces are the key to interacting with the deformable model. Consider an impenetrable rigid
object, for example, a stick, being pressed against the deformable object. Wherever the rigid object comes
in contact with the deformable object, the material points of the deformable object need to be forced
away, such that no penetrations occur. We will describe two methods to implement contact forces. One
is by using penalty forces, as in [Terzopoulos et al., 1987]. The other is a projection method, as used in
[Jakobsen, 2001], which utilizes the implicitly given velocity.

Contact forces can be modeled by penalty forces, as follows. We define a potential energy function,
V (r):

V (r) = c exp

(
−φ(r)

ϵ

)
. (9.102)

Here, c and ϵ are user-defined constants, used to fine-tune the shape of the potential. The function φ(r)
is the inside/outside function of the object. It provides a measure of the penetration depth at those places
where an object is in contact with something else. In Figure 9.15, the potential energy function is plotted.

“book” — 2005/9/30 — 15:44 — page 333 — #345✐
✐

✐
✐

✐
✐

✐
✐

9.4 PHYSICS-BASED ANIMATION 333

Figure 9.15: Potential energy function for c = 1 and different values of ϵ.

Conservative forces can be written as the negative gradient of a scalar field. Following this idea, we
compute the negative gradient of the potential energy function:

−∇V (r) = c
∇φ(r)

ϵ
exp

(
−φ(r)

ϵ

)
. (9.103)

Finally, the contact force is determined as the projection of the negative gradient of the potential energy
function onto the surface normal.

f contact = − (∇V · n)n. (9.104)

By substitution, we derive the final formula for the penalty force

f contact(r) = c

(
∇φ(r)

ϵ
exp

(
−φ(r)

ϵ

)
· n(r)

)
n(r). (9.105)

9.4.1.1 Collision Response

The projection method is a relatively simple method for collision response: it projects material points that
have penetrated an impenetrable object, back to the surface of the object. Since the numerical scheme
described in Section 9.3.5 calculates the velocities of the material points implicitly, the position update
does not result in the position and velocities becoming out of sync. If another numerical scheme is used,
where the velocities are explicitly calculated, the synchronization of positions and velocities would be
harder to ensure. The projection method corresponds to iterative over-relaxation. In the limiting case, it
can be seen as infinitely stiff springs that immediately return material points to the wanted position.

The projection method can be implemented as an extra step that is performed after all material posi-
tions have been updated. Simply run through all material points and project the penetrating points back to
the surface in the normal direction. A multiplicative constant, c > 0, can be used to control the strength
of the projection. In this way, c can be thought of as a restitution coefficient.

“book” — 2005/9/30 — 15:44 — page 334 — #346✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 335 — #347✐
✐

✐
✐

✐
✐

✐
✐

10

The Finite Element Method

In physics-based animation the Finite Element Method (FEM) is becoming the dominant method for an-
imating deformable objects. The theory from mechanics is well established, but can be rather daunting.
However, when applying a set of simplifying assumptions, the mathematics involved becomes much sim-
pler. The following will concentrate on the special case of simulating deformable objects constructed from
materials that are isotropic and further assume that the deformations involved are small.

Continuum mechanics deal with the prediction and calculation of the effect of applying an external
load to some object with physical properties. The theory of elasticity is the part of continuum mechanics
that deals with elastic materials, materials that return to their initial configurations, when the external load
is removed.

When studying the relationship between forces and deformation, some of the concepts needed are
stress, strain, equilibrium, and displacement. Stress is the strength of the force from interactions such as
stretching, squeezing, or twisting, and stress is often characterized as force per unit area. Strain is the
resulting deformation. The stress-strain relationship defines how a deformable object deforms under a
given force. When forces are applied to the object, it deforms to a configuration of points, in which the
energy of the object is in equilibrium. The information needed for animation is the displacement of the
vertices of the underlying mesh in equilibrium.

This chapter is devoted to the basics of FEM in computer animation, and we will give the theoretical
background for the static, isotropic stress/strain, finite element method, and we will show how FEM is used
in animation. We will not treat fracturing [O’Brien et al., 1999, O’Brien et al., 2002a, Müller et al., 2004a],
cutting [Molino et al., 2004], nor diagonalization [Irving et al., 2004] the recent finite volume method
[Teran et al., 2003]. We also only consider tetrahedral elements, unlike, for instance, cubical elements
as in [Müller et al., 2004b].

10.1 Tetrahedral Geometry

An often-used tessellation for surfaces is a triangular mesh. The corresponding tessellation for volumes
is a tetrahedral mesh. These are the building blocks of the finite element method, and therefore in the
following we will shortly review tetrahedral geometry.

A tetrahedron is defined by four nodes locally labeled 0, 1, 2, and 3, and we will use the convention
that the labels are assigned such that the coordinates of nodes, x0, x1, x2, and x3 span a positive volume,

335

“book” — 2005/9/30 — 15:44 — page 336 — #348✐
✐

✐
✐

✐
✐

✐
✐

336 CHAPTER 10. THE FINITE ELEMENT METHOD

2

1

0

3

Figure 10.1: Geometry of a tetrahedron.

that is

V =
1

6
det
([

x1 − x0 | x2 − x0 | x3 − x0
])

(10.1a)

=
1

6

∣∣∣∣∣∣

x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣
(10.1b)

≥ 0, (10.1c)

with | · | as the determinant operator. This is the case, when x0, x1, and x2 form a positive cycle as seen
from x3. An example is shown in Figure 10.1. Such a tetrahedron is the element we use in the finite
element method for 3D problems.

To every tetrahedron we attribute a unique, global index with values e, f, · · · ∈ {0, 1, 2, . . . ,K}. Like-
wise, all nodes of a tetrahedra mesh have a unique global index with values i, j, · · · ∈ {0, 1, 2, . . . ,N},
where N ≤ 4K. For each tetrahedron e, the nodes also have a local index with values m,n, . . . ∈
{0, 1, 2, 3}. The implication is that while the global index i is unique for a given node, then for each node
indexed by i there will be a number of local indices m,n, . . ., corresponding to each tetrahedron e that
share the i’th node To make matters worse, we will often need to switch between the global and local
indices for a given node. Ironically, the finite element method appears to be complex, but the core is just
work and force balance, however the indexing is often the greatest challenge.

All nodes have a coordinate vector, and the coordinate vector of the n th node is xn = [xn, yn, zn]T .
These indices are illustrated in Figure 10.2.

The finite element method considers not only the nodes of the tetrahedra, but the full continuum of
positions inside each tetrahedron. A point inside a tetrahedron is parametrized by a set of local coordinates,

w0, w1, w2, w3, (10.2)

“book” — 2005/9/30 — 15:44 — page 337 — #349✐
✐

✐
✐

✐
✐

✐
✐

10.1 PHYSICS-BASED ANIMATION 337

0
2

1 2

1
0

2

1

g

f e
m

i

j

n
l

k

3
3

0

3

Figure 10.2: Tetrahedra mesh notation convention. Three tetrahedral elements are shown, with global
indices e, f , and g. The nodes of element e have global indices i, j, k, l.

where the value of wn is 1 at node n, zero at the remaining nodes, and a linear function in between.
Furthermore,

w0 + w1 + w2 + w3 = 1, (10.3)

and these coordinates are often called natural coordinates or Barycentric coordinates. An illustration of
the tetrahedra natural coordinates is shown in Figure 10.3, where Figure 10.3(a) shows the point inside
the tetrahedron, and Figure 10.3(b) shows planes of equal values of w0. Any function f linear in x, y, and
z that takes the values fn at the nodes may be interpolated in terms of the natural coordinates using,

f(w0, w1, w2, w3) = f0w0 + f1w1 + f2w2 + f3w3 =
3∑

n=0

fnwn. (10.4)

With this linear relationship on the four nodes of the tetrahedron, we can, for example, compute the
coordinate of any point inside the tetrahedron in terms of the natural coordinates as,

x(w0, w1, w2, w3) = x0w0 + x1w1 + x2w2 + x3w3. (10.5)

Linear polynomial for interpolating a scalar field f(x, y, z) at a given position p = [1, x, y, z]T inside
the tetrahedron is given as,

f(x, y, z) = a0 + a1x + a2y + a3z = pT a, (10.6)

where the a’s are the polynomial coefficients (to be determined) and a = [a0, a1, a2, a3]T . Given
the values of f0 = f(x0, y0, z0), . . . , f3 = f(x3, y2, z3), at the four tetrahedron corner points, x0 =

“book” — 2005/9/30 — 15:44 — page 338 — #350✐
✐

✐
✐

✐
✐

✐
✐

338 CHAPTER 10. THE FINITE ELEMENT METHOD

3

0

1

2

x(w0, w1, w2, w3)

(a)

3

0

1

2

w0 =
3

4

w0 = 1

w0 =
1

2

w0 =
1

4

w0 = 0

(b)

Figure 10.3: Tetrahedra natural coordinates. In (a) is shown a general point inside a tetrahedron, and in
(b) are shown planes of equal values of w0.

[x0, y0, z0]T , . . . ,x3 = [x3, y3, z3]T , we can set up the linear system
⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a0

a1

a2

a3

⎤

⎥⎥⎦ = Pa. (10.7)

The matrix P is invertible as long as the four points are in general position, meaning that no point can be
written as a linear combination of any of the three other points. This is the case whenever a tetrahedron is
not collapsed into a triangle, line, or point. For four points in general position we can solve the polynomial
coefficients as,

a = P−1

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ . (10.8)

For any point p = [1, x, y, z]T we thus have,

f(x, y, z) = pT P−1

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ . (10.9)

“book” — 2005/9/30 — 15:44 — page 339 — #351✐
✐

✐
✐

✐
✐

✐
✐

10.1 PHYSICS-BASED ANIMATION 339

Denoting the n’th column of pT P−1 by Nn we have

f(x, y, z) =
[
N0 N1 N2 N3

]

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ =
3∑

n=0

Nnfn, (10.10)

In case f is a vector field, then each coordinate can be interpolated independently.

f(x, y, z) =
[
N 0 N 1 N 2 N3

]

⎡

⎢⎢⎣

f0
f1
f2
f3

⎤

⎥⎥⎦ =
3∑

n=0

Nnfn, (10.11)

where

Nn =

⎡

⎣
Nn 0 0
0 Nn 0
0 0 Nn

⎤

⎦ (10.12)

Let us now try to look at the barycentric coordinates, w0, . . . , w1 of the point [x, y, z]T . These can
also be used for interpolation

f(x, y, z) = w0f0 + w1f1 + w2f2 + w3f3 = wT

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ (10.13)

From the coordinates of the four points and the condition 1 = w0 +w1 +w2 +w3 we can set up the linear
system

⎡

⎢⎢⎣

1
x
y
z

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ , (10.14a)

⇕
p = Qw. (10.14b)

Since the four points are in general position Q is invertible, and we can solve for w as,

w = Q−1p. (10.15)

“book” — 2005/9/30 — 15:44 — page 340 — #352✐
✐

✐
✐

✐
✐

✐
✐

340 CHAPTER 10. THE FINITE ELEMENT METHOD

Insertion into the barycentric interpolation formula yields

f(x, y, z) =
(
Q−1p

)T

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ (10.16a)

= pT Q−T

⎡

⎢⎢⎣

f0

f1

f2

f3

⎤

⎥⎥⎦ . (10.16b)

Comparison with the polynomial interpolation derivation we see that P = QT , furthermore we notice
that wn = Nn in the case f is a scalar, and Nn = diag(wn, wn, wn), when f is a 3D vector. Hence, not
surprisingly, it is seen that barycentric interpolation is just linear polynomial interpolation.

10.2 Elastic Solids with Finite Element Models

The finite element method is a procedure for obtaining numerical approximations to the solution of bound-
ary value problems. The general idea is to formulate a deformation of a solid as the matrix equation,

Ku = f , (10.17)

where K is a symmetric, positive definite, stiffness matrix, u is a vector of nodal displacements, and f
is a vector of external node forces. The goal is to solve for the value of u. To simplify the problem,
the entire computational domain is replaced by the union of disjoint subdomains called finite elements.
These subdomains are tetrahedra in a volume mesh. Other volume types may be used, but the tetrahedral
geometry is often the computationally most feasible for computer animation.

In computer animations, the Three-Dimensional Linear Elastostatics Model is typically used and will
be described in the rest of this chapter. It uses the following assumptions:

1. The deformations involved are small, in which case the relationship between stress and strain are
well approximated by a linear model.

2. Only elastic materials are considered, thereby ignoring the viscous stress.

3. Only isotropic materials are considered, which implies that elasticity matrix can be described by
two parameters only.

4. The object is in static equilibrium, which allows us to ignore inertia forces.

In the following, we will derive the three-dimensional linear elastostatics model for computer animation.

“book” — 2005/9/30 — 15:44 — page 341 — #353✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 341

3

0

1

2

u1

u2

u3

u0

0

3

2

1

Undeformed
Tetrahedron

Deformed
Tetrahedron

Figure 10.4: Deformation of a tetrahedron is given as a set of displacement vectors.

10.2.1 Displacement and Shape Functions

The displacement function at a given point x = [x, y, z]T in the object, is given as

u =

⎡

⎣
ux

uy

uz

⎤

⎦ = x− xu, (10.18)

where ux is the displacement along the x-axis, uy is the displacement along the y-axis, and uz is the
displacement along the z-axis. Thus, every point xu in the undeformed object corresponds to point x =
xu + u in the deformed object. This is illustrated in Figure 10.4. Here the traditional finite element
literature adds a further level of complexity by considering material properties, which both x and xu

depend on. However, we will not need these for the deformations we will discuss in this chapter.
The deformable object is discretized into tetrahedral elements, where each node has a deformation

un = xn − xun. A linear approximation to the displacement function inside an element e from its nodal
values is given as,

u(w0, w1, w2, w3) =
[
u0 | u1 | u2 | u3

]

⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ (10.19a)

=

⎡

⎣
ux

0 ux
1 ux

2 ux
3

uy
0 uy

1 uy
2 uy

3
uz

0 uz
1 uz

2 uz
3

⎤

⎦

⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ , (10.19b)

Thus, the natural coordinates wn form a finite dimensional basis for the space spanned by the tetrahedron.

“book” — 2005/9/30 — 15:44 — page 342 — #354✐
✐

✐
✐

✐
✐

✐
✐

342 CHAPTER 10. THE FINITE ELEMENT METHOD

It is often convenient in an implementation to have the nodal displacements arranged node-wise as a
single vector. For the element e, the node displacement vector ue is given as:

ue =

⎡

⎢⎢⎣

u0

u1

u2

u3

⎤

⎥⎥⎦ (10.20a)

=
[
ux

0 uy
0 uz

0 ux
1 uy

1 uz
1 · · · uz

3

]T
. (10.20b)

Hence, using

Nn =

⎡

⎣
wn 0 0
0 wn 0
0 0 wn

⎤

⎦ , (10.21)

we may now rewrite the linear interpolation in (10.19a) as,

u =
[
N 0 N 1 N2 N 3

]

⎡

⎢⎢⎣

u0

u1

u2

u3

⎤

⎥⎥⎦ (10.22a)

=
3∑

n=0

Nnun (10.22b)

= Nue, (10.22c)

where N =
[
N0 N 1 N 2 N 3

]
, and where the submatrices Nn are called the shape functions.

10.2.2 Strain

To describe the deformation of an object, a measurement is needed. We use the linear Cauchy strain
matrix, defined in Section 22.7, which relates the displacement u to the strain, ε. In 3D the strain matrix
is given as

ε =

⎡

⎣
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤

⎦ , (10.23)

where

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (10.24)

“book” — 2005/9/30 — 15:44 — page 343 — #355✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 343

and where x1 = x, x2 = y, and x3 = z has been introduced for notational convenience. The matrix ε is
symmetric, and its six independent components may conveniently be rewritten on vector form as,

ε =
[
ε11 ε22 ε33 γ12 γ13 γ23

]T (10.25a)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂u1
∂x1
∂u2
∂x2
∂u3
∂x3

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x3

+ ∂u3
∂x2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(10.25b)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
u1

u2

u3

⎤

⎦ (10.25c)

= Su. (10.25d)

where γij = 2εij . The matrix S is an operator similar to the gradient. The first three components of the
strain measures stretching in the coordinate directions, while the last three components measure shearing.

A linear interpolation of the relation between strains and nodal displacements inside a finite element
may be obtained by combining (10.25) with the linear approximation from (10.22):

ε = SNue = Bue, (10.26)

where the matrix B = SN . Naturally B has a block structure similar to N , i.e.,

B = S
[
N0 N 1 N 2 N 3

]
=
[
B0 B1 B2 B3

]
, (10.27)

“book” — 2005/9/30 — 15:44 — page 344 — #356✐
✐

✐
✐

✐
✐

✐
✐

344 CHAPTER 10. THE FINITE ELEMENT METHOD

where Bn = SNn for n = 0, 1, 2, 3. Straightforward evaluation gives,

Bn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
wn 0 0
0 wn 0
0 0 wn

⎤

⎦ (10.28a)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

bn 0 0
0 cn 0
0 0 dn

cn bn 0
dn 0 bn

0 dn cn

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10.28b)

where bn = ∂wn
∂x1

, cn = ∂wn
∂x2

, and dn = ∂wn
∂x3

.
When computing the stiffness matrix we are interested in derivatives of the Nn’s with respect to the

x-, y-, and z- coordinates. From (10.9) we see

dNn

dx
= P−1

1,n, (10.29a)

dNn

dy
= P−1

2,n, (10.29b)

dNn

dz
= P−1

3,n, (10.29c)

where we have used zero-indexing. Instead of actually computing the inverse of the 4 × 4 P matrix, a
computationally more efficient solution exists, which only requires us to solve for a 3× 3 system. This is
achieved using the following theorem,

Theorem 10.1
Let xn = [xn, yn, zn]T for n = 0, 1, 2, 3, and define

e10 = x1 − x0, (10.30a)
e20 = x2 − x0, (10.30b)
e30 = x3 − x0. (10.30c)

Furthermore, define the matrix P as, ⎡

⎢⎢⎣

1 xT
0

1 xT
1

1 xT
2

1 xT
3

⎤

⎥⎥⎦ (10.31)

“book” — 2005/9/30 — 15:44 — page 345 — #357✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 345

and the matrix E as,

E =

⎡

⎣
e10

e20

e30

⎤

⎦ =

⎡

⎣
(x1 − x0) (y1 − y0) (z1 − z0)
(x2 − x0) (y2 − y0) (z2 − z0)
(x3 − x0) (y3 − y0) (z3 − z0)

⎤

⎦ . (10.32)

Then the matrices P and E are related according to,

det P = detE, (10.33a)

P−1
n+1,m+1 = E−1

n,m. (10.33b)

Proof of Theorem 10.1:
It is simple to show that detP = detE, and this is left as an exercise for the reader. To prove (10.33b)
we use Cramer’s rule,

P−1
n,m =

(−1)n+m detP mn

detP
, (10.34)

where detP mn is the determinant of P with the m’th row and n’th column removed. By straightforward
computation we verify that

−1(n+1)+(m+1) = −1n+m, (10.35)

and what remains to be proven is that

detP n+1,m+1 = det Enm, (10.36)

A total of 9 cases exist for this, but here we will only show a single case and leave the remaining cases for
the reader. Setting n = 1 and m = 0 implies that

detP 12 = det E01. (10.37)

or equivalently that

det

⎡

⎣
1 x0 z0

1 x2 z2

1 x3 z3

⎤

⎦ = det

[
x2 − x0 z2 − z0

x3 − x0 z3 − z0

]
, (10.38)

which is trivially true. !

Thus we have

P−1 =

[
· · · ·
... E−1

]
. (10.39)

As can be seen from (10.29), for n > 0 we have,

dNn

dx
= E−1

0,n−1, (10.40a)

dNn

dy
= E−1

1,n−1, (10.40b)

dNn

dz
= E−1

2,n−1. (10.40c)

“book” — 2005/9/30 — 15:44 — page 346 — #358✐
✐

✐
✐

✐
✐

✐
✐

346 CHAPTER 10. THE FINITE ELEMENT METHOD

x

dS

dSy

z

y

Figure 10.5: The projection of surface element dS onto the x− z plane.

For n = 0 we cannot use the above equations, since the first column of P −1 is missing. Instead we use
the normalization of barycentric coordinates,

w0 = 1− w1 − w2 − w3. (10.41)

Taking the derivate of wn w.r.t. x, y, and z yields

dN0

dx
= 1−E−1

00 −E−1
01 −E−1

02 , (10.42a)

dN0

dy
= 1−E−1

10 −E−1
11 −E−1

12 , (10.42b)

dN0

dz
= 1−E−1

20 −E−1
21 −E−1

22 . (10.42c)

The notation bn = dNn
dx , cn = dNn

dy , and dn = dNn
dz is used. Furthermore all the derivatives are returned as

four B-vectors, where
Bn ∼

[
bn cn dn

]T
. (10.43)

10.2.3 Stress
Stress is defined as force per unit area, the standard unit for stress is the same as the unit for pressure, that
is pascal (Pa). Start by considering a surface element dS, which may be represented in terms of the unit
surface elements as [dSx, dSy, dSz]T , where dSy is the area projection onto the x− z plane as illustrated
in Figure 10.5. If the force dfx is applied along the x-axis of the material surface dSy orthogonal to the x
and z axes, then the shear stress, σxy, is

σxy =
dfx

dSy
. (10.44)

“book” — 2005/9/30 — 15:44 — page 347 — #359✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 347

Similar the normal stress, σyy, is

σyy =
dfy

dSy
. (10.45)

Consider all forces along all coordinate axes dfx, dfy, and dfz applied to all surface directions dSx, dSy,
and dSz . These forces yield what is known as Cauchy’s stress hypothesis [Lautrup, 2005]:

⎡

⎣
dfx

dfy

dfz

⎤

⎦ =

⎡

⎣
σxxdSx + σxydSy + σxzdSz

σyxdSx + σyydSy + σyzdSz

σzxdSx + σzydSy + σzzdSz

⎤

⎦ , (10.46)

where each coefficient σij depends on position and time. We can collect the coefficients into a stress
matrix σ:

σ =

⎡

⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤

⎦ . (10.47)

A very general condition that is imposed on the stress matrix is symmetry, which means

σij = σji. (10.48)

This reduces the stress matrix from 9 components to only 6. We thus write it in vector form as

σ =
[
σxx σyy σzz σxy σzx σzy

]T
. (10.49)

The proofs of Cauchy’s stress hypothesis and symmetry of the stress matrix can be found in [Lautrup, 2005,
Chapter 9]. The six independent stress components may then be related to the six corresponding strains ε
by the linear matrix equation

σ = Dε. (10.50)

This equation is Hooke’s Spring Law generalized to elastic solids, which can help in the interpretation.
Think of stress as a sort of spring force, and strain as a sort of spring elongation.

The isotropic elasticity matrix D, described in Section 22.7, is defined as

D =
Y

(1 + ν)(1− 2ν)

⎡

⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10.51)

where Y is Young’s modulus. Young’s modulus is a measure of instretchability, such that a large Young’s
modulus implies that the material is hard to stretch. Some typical values are 200GPa for steel, 0.05GPa for
rubber, and 0.032GPa for cork. The coefficient −1 < ν ≤ 1/2 is the Poisson’s ratio, and it is only in rare
instances negative. The Poisson’s ratio describes how much a material contracts in the direction transverse
to stretching. Negative values imply that the material gets thicker when stretched. Typical values are 1/2
for incompressible materials such as rubber, 0.33 for steel, and almost 0 for cork.

“book” — 2005/9/30 — 15:44 — page 348 — #360✐
✐

✐
✐

✐
✐

✐
✐

348 CHAPTER 10. THE FINITE ELEMENT METHOD

10.2.4 Balancing Work
In the following will we derive the stiffness matrix equation for a single tetrahedron.

Stress, discussed in Section 10.2.3, is the governing force internally in a solid material. External forces
are applied either to the nodes or to the tetrahedral surfaces. The forces acting at the nodes of the e’th
tetrahedral element is written as

qe =

⎡

⎢⎢⎣

q0
q1
q2
q3

⎤

⎥⎥⎦ , (10.52)

and nodal forces come from the neighboring tetrahedra inside a mesh. External distributed load on the
boundary of the tetrahedra, such as an instrument pressing against an organ, is called traction, t, and has
unit force per area. In short, the following forces are present for the isolated system consisting of a single
tetrahedron:

• Stress forces are internal forces

• Nodal forces are external forces

• Load forces are external forces

Assume that we are given a virtual displacement of the nodes of tetrahedron e termed δue, such that
every node is moved to a new displacement, (ue)′ = ue + δue. During the virtual displacement work is
performed in the system. The corresponding displacement for every point inside the tetrahedron may be
obtained using our interpolation equation, and the result may be used to calculate the strain and stress for
every point inside the tetrahedron, using (10.22) and (10.53b). Hence, we find,

δu = Nδue, (10.53a)
δε = Bδue, (10.53b)

However, our goal is the opposite: given a set of forces, what is the resulting displacement. Our strategy
will be to use the work balance equation, since the amount of work performed by the surface of a tetrahe-
dron must equal the accumulation of work done by its interior. This is also known as static equilibrium,
and for our system of nodal, surface, and volume forces it is given as,

∫

Ωe
Wσ dV = Wq +

∫

δΩe
Wt dA, (10.54)

where Ωe and δΩe are points inside and on the surface of the tetrahedron respectively. This equation is
known as the Work Balance Equation. The internal work per unit volume performed by the stress forces
is given as,

Wσ = (δε)Tσ, (10.55)

the external work performed by the nodal forces, qe is given as,

Wq = (δue)T qe, (10.56)

“book” — 2005/9/30 — 15:44 — page 349 — #361✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 349

and the external work per unit area performed by the external distributed load is given as,

Wt = (δu)T t. (10.57)

Substituting (10.55), (10.56), and (10.57) into the work balance equation (10.54), we find
∫

Ωe
(δε)Tσ dV = (δue)T qe +

∫

δΩe
(δu)T t dA. (10.58)

Substituting by (10.53a) and (10.53b) gives
∫

Ωe
(Bδue)Tσ dV = (δue)T qe +

∫

δΩe
(Nδue)T t dA. (10.59)

Expanding the transpose operator, and moving the constant virtual displacement outside the integrals
gives,

(δue)T
∫

Ωe
BTσ dV = (δue)T

(
qe +

∫

δΩe
NT t dA

)
. (10.60)

Since this equation must hold for any virtual displacement δue, we conclude that the multipliers must be
equal, i.e., ∫

Ωe
BTσ dV = qe +

∫

δΩe
NT t dA. (10.61)

Although appearing complex, the terms under the integral are simple to evaluate. To achieve this, we first
substitute (10.50) followed by (10.26) to get,

∫

Ωe
BT Dε dV = qe +

∫

δΩe
NT t dA (10.62a)

⇓
∫

Ωe
BT DBue dV = qe +

∫

δΩe
NT t dA. (10.62b)

The matrices B and D are constant w.r.t. the integration as are the nodal displacements ue, hence we find
that

BT DBue
∫

Ωe
dV = qe +

∫

δΩe
NT t dA (10.63a)

⇓

BT DBueV e = qe +

∫

δΩe
NT t dA, (10.63b)

where V e is the volume of the tetrahedron respectively. Introducing the element stiffness matrix

Ke = BT DBV e, (10.64)

“book” — 2005/9/30 — 15:44 — page 350 — #362✐
✐

✐
✐

✐
✐

✐
✐

350 CHAPTER 10. THE FINITE ELEMENT METHOD

and the element surface force,

f e =

∫

δΩe
N tt dA, (10.65)

we finally have the matrix equation,
Keue = qe + f e, (10.66)

where Ke ∈ R12×12 is the element stiffness matrix, ue ∈ R12 is the nodal displacements, qe ∈ R12 is the
nodal forces, and f e ∈ R12 is the element force.

10.2.5 Assembling the Work Balance Equation for all Tetrahedra
In the previous section we saw that the work balance for a single tetrahedron resulted in a simple matrix
equation in terms of the nodal forces and displacements. We have such an equation for each tetrahedron
in a mesh, and these equations will be tied together in this section.

Newton’s third law dictates that in static equilibrium all forces at a point must sum to zero. Thus, for
a given node i, all the nodal forces coming from neighboring tetrahedra must sum to zero. Assume that
n,m, . . . are the local indices in elements e, f, . . . that correspond to the global index i, then the force
balance equation may be written as,

qe
n + qf

m + · · · = 0. (10.67)

To obtain a computationally more efficient form, we first investigate the structure of K e. It is defined as
Ke = BT DBV e, and since

B =
[
B0 B1 B2 B3,

]
(10.68)

we can decompose Ke into submatrices

Ke =

⎡

⎢⎢⎣

BT
0

BT
1

BT
2

BT
3

⎤

⎥⎥⎦D
[
B0 B1 B2 B3

]
V e (10.69a)

=

⎡

⎢⎢⎣

BT
0 DB0V e BT

0 DB1V e BT
0 DB2V e BT

0 DB3V e

BT
1 DB0V e BT

1 DB1V e BT
1 DB2V e BT

1 DB3V e

BT
2 DB0V e BT

2 DB1V e BT
2 DB2V e BT

2 DB3V e

BT
3 DB0V e BT

3 DB1V e BT
3 DB2V e BT

3 DB3V e

⎤

⎥⎥⎦ . (10.69b)

Using the notation Ke
nm = BT

nDBmV e we simplify the above to

Ke =

⎡

⎢⎢⎣

Ke
00 Ke

01 Ke
02 Ke

03
Ke

10 Ke
11 Ke

12 Ke
13

Ke
20 Ke

21 Ke
22 Ke

23
Ke

30 Ke
31 Ke

32 Ke
33

⎤

⎥⎥⎦ . (10.70)

The matrix Ke has a special symmetry for isotropic materials:
(
BT

nDBmV e
)T

= BT
mDBnV e (10.71)

“book” — 2005/9/30 — 15:44 — page 351 — #363✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 351

since D is symmetric for isotropic materials. Hence the submatrices are related as,
(
Ke

ij

)T
= Ke

ji, (10.72)

which is conveniently used in calculating K e. Furthermore, writing the elasticity matrix D as,

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

D0 D1 D1 0 0 0
D1 D0 D1 0 0 0
D1 D1 D0 0 0 0
0 0 0 D2 0 0
0 0 0 0 D2 0
0 0 0 0 0 D2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10.73)

where D0 = Y (1−ν)
(1+ν)(1−2ν) , D1 = Y ν

(1+ν)(1−2ν) , and D2 = Y (1−2ν)
2(1+ν)(1−2ν) , and we evaluate Ke

nm to be,

Ke
nm =

⎡

⎢⎢⎢⎢⎢⎢⎣

bn 0 0
0 cn 0
0 0 dn

cn bn 0
dn 0 bn

0 dn cn

⎤

⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎣

D0 D1 D1 0 0 0
D1 D0 D1 0 0 0
D1 D1 D0 0 0 0
0 0 0 D2 0 0
0 0 0 0 D2 0
0 0 0 0 0 D2

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

bm 0 0
0 cm 0
0 0 dm

cm bm 0
dm 0 bm

0 dm cm

⎤

⎥⎥⎥⎥⎥⎥⎦
V e (10.74a)

=

[
D0bnbm + D2(cncm + dndm) D1bncm + D2cnbm D1bndm + D2dnbm

D1cnbm + D2bncm D0cncm + D2(bnbm + dndm) D1cndm + D2dncm

D1dnbm + D2bndm D1dncm + D2cndm D0dndm + D2(bnbm + cncm)

]
V e,

(10.74b)

The nodal force coming from the e’th element onto the i’th node in global index and n’th node in local
e index, we have that

qe
n = Ke

n0u
e
0 + Ke

n1u
e
1 + Ke

n2u
e
2 + Ke

n3u
e
3 − f e

n, (10.75)

where ue
n is the displacement of the n’th node in element e. The force balance on the i’th node in global

indices corresponding to n, . . . in local e, . . . element indices. Thus,

0 =
∑

Ti

Ke
n0u

e
0 + Ke

n1u
e
1 + Ke

n2u
e
2 + Ke

n3u
e
3 − f e

n (10.76)

where Ti is the set of tetrahedra including node with global index i and corresponding local index n.
We will now show how to assemble all the force equations into a single and easily invertible system

of equations. The assembly is best explained through examples. Consider the 2-tetrahedra mesh shown in
Figure 10.6. The two tetrahedra e and f share a node, l, and therefore only have one coupling. The node
l has local index 3 and 0 in tetrahedra e and f respectively. Hence we have one force balance equation,
which sums over e and f ,

0 = Ke
30u

e
0 + Ke

31u
e
1 + Ke

32u
e
2 + Ke

33u
e
3 − f e

3

+ Kf
00u

f
0 + Kf

01u
f
1 + Kf

02u
f
2 + Kf

03u
f
3 − ff

0 .
(10.77)

“book” — 2005/9/30 — 15:44 — page 352 — #364✐
✐

✐
✐

✐
✐

✐
✐

352 CHAPTER 10. THE FINITE ELEMENT METHOD

ef

0, i

1, j

2, k

1, m

2, n

3, o 3, l
0, l

Figure 10.6: A mesh consisting of two tetrahedra coupled at node l.

To simplify the above equation we wish to write it on the form,

Ku = f , (10.78)

where K is the assembly of all the tetrahedral stiffness matrices, u is a vector of all the concatenated
displacements, and f is likewise an assembly of external forces. The first step to achieve this is to identify
the local nodal indices with their global counterparts as ui = ue

0, uj = ue
1, . . ., and thus we write,

0 = Ke
30ui + Ke

31uj + Ke
32uk + Ke

33ul − f e
3

+ Kf
00ul + Kf

01um + Kf
02un + Kf

03uo − f f
0 .

(10.79)

Then we collect terms in front of the nodal displacements to get,

[
Ke

30 Ke
31 Ke

32 (Ke
33 + Kf

00) Kf
01 Kf

02 Kf
03

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui

uj

uk

ul

um

un

uo

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

− (f e
3 + f f

0) = 0 (10.80)

This has the form of (10.78) with

K =
[
Ke

30 Ke
31 Ke

32 (Ke
33 + Kf

00) Kf
01 Kf

02 Kf
03

]
, (10.81a)

u =
[
ui uj uk ul um un uo

]T
, (10.81b)

f = fe
3 + f f

0 . (10.81c)

“book” — 2005/9/30 — 15:44 — page 353 — #365✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 353

2, k
e

f

1, m

3, l

2, j 1, j

0, i

Figure 10.7: A mesh consisting of two tetrahedra coupled at nodes l.

A more complicated configuration is shown in Figure 10.7, where a mesh is shown consisting of two
tetrahedra sharing a face, which is therefore coupled at the nodes i, j, and l, which have local coordinates
0, 1, 3 and 0, 2, 3 in elements e and f respectively. Hence we have three force balance equations, which
sums over e and f ,

0 = Ke
00u

e
0 + Ke

01u
e
1 + Ke

02u
e
2 + Ke

03u
e
3 − fe

0 + Kf
00u

f
0 + Kf

01u
f
1 + Kf

02u
f
2 + Kf

03u
f
3 − ff

0 ,
(10.82a)

0 = Ke
10u

e
0 + Ke

11u
e
1 + Ke

12u
e
2 + Ke

13u
e
3 − fe

1 + Kf
20u

f
0 + Kf

21u
f
1 + Kf

22u
f
2 + Kf

23u
f
3 − ff

2 ,
(10.82b)

0 = Ke
30u

e
0 + Ke

31u
e
1 + Ke

32u
e
2 + Ke

33u
e
3 − fe

3 + Kf
30u

f
0 + Kf

31u
f
1 + Kf

32u
f
2 + Kf

33u
f
3 − ff

3 ,
(10.82c)

Again we identify the global displacement with the local and write,

0 = Ke
00ui + Ke

01uj + Ke
02uk + Ke

03ul − f e
0 + Kf

00ui + Kf
01um + Kf

02uj + Kf
03ul − f f

0 ,
(10.83a)

0 = Ke
10ui + Ke

11uj + Ke
12uk + Ke

13ul − f e
1 + Kf

20ui + Kf
21um + Kf

22uj + Kf
23ul − f f

2 ,
(10.83b)

0 = Ke
30ui + Ke

31uj + Ke
32uk + Ke

33ul − f e
3 + Kf

30ui + Kf
31um + Kf

32uj + Kf
33ul − f f

3 ,
(10.83c)

“book” — 2005/9/30 — 15:44 — page 354 — #366✐
✐

✐
✐

✐
✐

✐
✐

354 CHAPTER 10. THE FINITE ELEMENT METHOD

K = 0
f = 0
for all tetrahedra e do

for each node m of e do
find global index i of m
for each node n of e do
find global index j of n
Kj,i+ = Ke

n,m

next n
fi+ = fe

m

next m
next e

Figure 10.8: Pseudocode for the assembly of the global stiffness matrix K and the global force vector f .

Finally we gather the equations on the form of (10.78) and find,

0 =

⎡

⎢⎣
Ke

00 + Kf
00 Ke

01 + Kf
02 Ke

02 Ke
03 + Kf

03 Kf
01

Ke
10 + Kf

20 Ke
11 + Kf

22 Ke
12 Ke

13 + Kf
23 Kf

21

Ke
30 + Kf

30 Ke
31 + Kf

32 Ke
32 Ke

33 + Kf
33 Kf

31

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎣

ui

uj

uk

ul

um

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎣
fe

0 + ff
0

fe
1 + ff

2

fe
3 + ff

3

⎤

⎥⎦ (10.84)

Thus we identify,

K =

⎡

⎢⎣
Ke

00 + Kf
00 Ke

01 + Kf
02 Ke

02 Ke
03 + Kf

03 Kf
01

Ke
10 + Kf

20 Ke
11 + Kf

22 Ke
12 Ke

13 + Kf
23 Kf

21

Ke
30 + Kf

30 Ke
31 + Kf

32 Ke
32 Ke

33 + Kf
33 Kf

31

⎤

⎥⎦ (10.85a)

u =

⎡

⎢⎢⎢⎢⎣

ui

uj

uk

ul

um

⎤

⎥⎥⎥⎥⎦
(10.85b)

f =

⎡

⎢⎣
f e

0 + f f
0

f e
1 + f f

2

f e
3 + f f

3

⎤

⎥⎦ (10.85c)

The general assembly is shown as pseudocode in Figure 10.8. The assembly will assemble all the
local stiffness matrices into one global stiffness matrix, such that

Ku = f (10.86)

where
u = [u0,u1,u2, . . .]

T (10.87)

“book” — 2005/9/30 — 15:44 — page 355 — #367✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 355

and
f = [f0,f1,f2, . . .]

T . (10.88)

In computer animation forces are often set directly on nodes through the global f -vector instead of indi-
rectly through local surface traction, t, in which case the computation of f e

m is omitted in the pseudocode.
Deformation of tetrahedral meshes can now be calculated by applying the external forces, calculating

the global stiffness matrix, and solving the linear system,

u = K−1f . (10.89)

This system may be solved efficiently, for example, using the conjugate gradient method, but the result is
only static deformations. In the following we will extend the method to dynamic animation.

Using a global stiffness matrix is not the most efficient approach, and a computationally more efficient
approach will be shown later.

10.2.6 Inertia and Damping Forces
In this section we will show how to extend the equations of motion to include inertia and damping forces.
This is done straightforwardly by adding the corresponding work-energy terms to the derivation in Sec-
tion 10.2.4.

Inertia forces originate from the movement of inertia, i.e., inertia forces are mass times acceleration.
For a virtual displacement, δu, the work performed by the inertia force per unit volume is,

Winertia = δuTρü, (10.90)

where ρ is the mass density and ü is the double time derivative of u. Likewise, for a linear damping force
per unit volume, the work performed is

Wdamping = δuT cu̇ (10.91)

where c is the damping coefficient and u̇ is the time derivative of u. To include inertia and damping forces
we extend the work balance equation (10.54) as,

∫

Ωe
Winertia dV +

∫

Ωe
Wdamping dV +

∫

Ωe
Wσ dV = Wq +

∫

δΩe
Wt dA, (10.92)

The values of δu may be interpolated from the nodal values, δu = Nδue, and assuming that we also
have access to time derivatives at the nodal values, we may equally have u̇ = Nu̇e and ü = Nüe. Thus,
as we expand the two new terms in (10.92) we find that

∫

Ωe
δuTρü dV +

∫

Ωe
δuT cu̇ dV +

∫

Ωe
Wσ dV = Wq +

∫

δΩe
Wt dA, (10.93a)

⇓
∫

Ωe
(Nδue)TρNüe dV +

∫

Ωe
(Nδue)T cNu̇e dV +

∫

Ωe
Wσ dV = Wq +

∫

δΩe
Wt dA. (10.93b)

“book” — 2005/9/30 — 15:44 — page 356 — #368✐
✐

✐
✐

✐
✐

✐
✐

356 CHAPTER 10. THE FINITE ELEMENT METHOD

The displacements δue and ue are constant w.r.t. the integration, and they may be moved outside the
integration. Further introducing the element mass matrix,

M e =

∫

Ωe
NT Nρ dV, (10.94)

and the element damping matrix,

Ce =

∫

Ωe
NT Nc dV, (10.95)

and expanding the remaining terms as described in Section 10.2.4, we find

(δue)T M eüe + (δue)T Ceu̇e + (δue)T Keue = (δue)T qe + (δue)T f e, (10.96a)
⇓

(δue)T (M eüe + Ceu̇e + Keue) = (δue)T (qe + f e) . (10.96b)

Again, since this is valid for any virtual displacement δue, we conclude that

M eüe + Ceu̇e + Keue = qe + fe, (10.97)

Since ue = xe − xe
u, then u̇e = ẋe and üe = ẍe. Thus,

M eẍe + Ceẋe + Ke(xe − xe
u) = fe

ext (10.98)

where we have used the shorthand, f e
ext = qe + f e. Assembling the total system into a single matrix

equation we have,
Mẍ + Cẋ + K(x− xu) = f ext (10.99)

10.2.7 Computing the Mass Matrix
A mass matrix is a discrete representation of a continuous mass distribution. The element mass matrix is
defined as

M e =

∫

Ωe
NT Nρ dV, (10.100)

and is called consistent. Considering the scalar case where Nn ∈ R, and assuming that ρ is constant over
each tetrahedral element and using the linear shape functions, the above definition (10.100) results in

M e = ρ

∫

Ωe

⎡

⎢⎢⎣

(N0N0) (N0N1) (N0N2) (N0N3)
(N1N0) (N1N1) (N1N2) (N1N3)
(N2N0) (N2N1) (N2N2) (N2N3)
(N3N0) (N3N1) (N3N2) (N3N3)

⎤

⎥⎥⎦ dV. (10.101)

Using [Cook et al., 2002, pp. 266],
∫

Ωe
Na

0N
b
1N

c
2N

d
3 dV =

6V ea!b!c!d!

(3 + a + b + c + d)!
, (10.102)

“book” — 2005/9/30 — 15:44 — page 357 — #369✐
✐

✐
✐

✐
✐

✐
✐

10.2 PHYSICS-BASED ANIMATION 357

we find that

M e = ρ
V e

20

⎡

⎢⎢⎣

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤

⎥⎥⎦ , (10.103)

or equivalently

Me
ij = ρ

V e

20
(1 + δij), (10.104)

where δij is the Kronecker delta. In the vector case where N n ∈ R3×3, this means that for the tetrahedral
element

M e = ρ
V e

20

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1

1 1 1 2 2 2 1 1 1 1 1 1
1 1 1 2 2 2 1 1 1 1 1 1
1 1 1 2 2 2 1 1 1 1 1 1

1 1 1 1 1 1 2 2 2 1 1 1
1 1 1 1 1 1 2 2 2 1 1 1
1 1 1 1 1 1 2 2 2 1 1 1

1 1 1 1 1 1 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1 2 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.105)

Notice that in order to obtain the global/system mass matrix an assembly similar to the stiffness matrix
assembly must be carried out. Further, the global M matrix will have the same subblock pattern as the
global K matrix.

A consistent mass matrix is often not used in computer graphics. Instead an ad hoc matrix called the
lumped mass matrix is used, which is obtained by placing particle masses at the nodes. This corresponds
to shifting all the masses in the rows of (10.103) onto the diagonal. In 3D this yields the element mass

“book” — 2005/9/30 — 15:44 — page 358 — #370✐
✐

✐
✐

✐
✐

✐
✐

358 CHAPTER 10. THE FINITE ELEMENT METHOD

for each node n
mass(n) = 0

next n
for each tetrahedron e

for each node n of e
mass(n) += ρ V e

4
next n

next e

Figure 10.9: Pseudocode for calculating the lumped mass matrix.

matrix

M e = ρ
V e

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.106)

Thus, a lumped mass matrix is diagonal whereas a consistent mass matrix is not. Observe that the con-
sequence is that the global mass matrix also becomes diagonal, and thus the assembly simply becomes
an iteration over all tetrahedra, while incrementing the nodal mass by one fourth of the tetrahedral mass.
This is demonstrated in Figure 10.9. Since V and ρ are positive for all elements, both the element mass
matrices and the global mass matrices are symmetric positive definite matrices.

The advantage of lumping is less storage and higher performance. The disadvantage is that discon-
tinuity is introduced in the displacement field. [O’Brien et al., 2002b] state that the errors in lumping is
negligible for small-size, course meshes such as those used in computer graphics. There does exist alter-
native approaches for computing mass matrices; we refer the interested reader to [Cook et al., 2002] for
more details.

10.3 Stiffness Warping
The linear elastic method introduced in the previous sections is only valid for small deformations. This is
due to the fact that the linear Cauchy strain tensor ε used in the calculation of the stiffness matrix K is

“book” — 2005/9/30 — 15:44 — page 359 — #371✐
✐

✐
✐

✐
✐

✐
✐

10.3 PHYSICS-BASED ANIMATION 359

Stretched�

Rotated�

Stre
tce

d an
d R

otat
ed

�

Figure 10.10: Illustration of the stiffness warping concept

a first-order approximation to the nonlinear Green-Lagrange strain tensor, as explained in Section 22.7.
When the deformable object is subject to large rotational deformations, then the result is an unrealistic
growth in volume. However, it is not a viable solution to use a higher-order approximation to the strain
tensor for animation purposes, since this leads to systems of nonlinear equations, which are hard to solve.

In [Müller et al., 2004a], a method was shown that removes the artifacts that linear elastic forces in-
troduces, while keeping the governing equations linear. Consider the elastic force acting on a single
tetrahedral element e, as described in (10.89) and repeated here for convenience

f e = Ke (xe − xe
u) = Kexe + fe

u, (10.107)

where ue = xe − xe
u, and where xe and xe

u are the positions of the four vertices of a tetrahedron at its
deformed and undeformed state, Ke is the element stiffness matrix, and f e

u = Kexe
u is the force offsets.

Assume that the rotational part of the deformation Re for the tetrahedron e is known. The stiffness
warping concept consists of rotating the deformed positions back into the undeformed frame, calculating
the elastic force in this frame, and rotating the result back to the deformed frame. This is illustrated in
Figure 10.10, and can be written as

f e = ReKe
(
Re−1xe − xe

u

)
(10.108a)

= ReKeRe−1xe −ReKexe
u (10.108b)

= Ke′xe + f e
u
′, (10.108c)

where Re is a 12 × 12 matrix that contains the 3× 3 rotation matrix along its diagonal. By doing so, the
elastic forces are the same as if the regular linear forces were calculated in a rotated coordinate frame.

Stiffness warping is not without peril, since it does suffer from element inversion, when a model is
compressed violently. Recently a diagonalization method has been introduced to deal with the inversion
problem [Irving et al., 2004], but this method is outside the scope of this book.

“book” — 2005/9/30 — 15:44 — page 360 — #372✐
✐

✐
✐

✐
✐

✐
✐

360 CHAPTER 10. THE FINITE ELEMENT METHOD

10.3.1 Stiffness Warping Assembly
For an assembled system, the linear elastostatic model is,

Ku = K(x− xu) = f , (10.109)

where u = x− xu is the nodal displacement, x is the current position and xu is the original position, f
is the nodal forces, and K is the stiffness matrix. Using f u = −Kxu as the force offset vectors, we have

f = Kx + fu. (10.110)

Let R denote the current orientation, then R−1 rotates back to the original frame, which means we have,

f = RK(R−1x− xu), (10.111a)

f = RKR−1x−RKxu. (10.111b)

So with stiffness warping we have to compute

K ′ = RKR−1, (10.112a)
f ′

u = −RKxu. (10.112b)

For N nodes the system stiffness matrix K ′ is a 3N × 3N symmetric and sparse matrix. It would be
insane to actually allocate such a matrix; instead the matrix is stored inside the nodes of the volume mesh.

Each node stores a row of K ′ and the corresponding entries of the f ′
u vector. That is, the i’th node

stores all nonzero 3 × 3 subblocks of the i’th row of the stiffness matrix, and it also stores the i’th 3D
subvector of fu. Let Ti denote the set of all tetrahedral elements sharing global node i, then the assembly
of the warped stiffness matrix can be written as,

K ′
ij =

∑

i∼n and j∼m

ReKe
nmReT . (10.113)

Furthermore, the assembly of the force offset vector

f ′
ui =

∑

i∼n

−ReKe
nmxum. (10.114)

Notice that this can be optimized: letting the indices i, j, k, and m denote global indices of e such that the
global index i corresponds to local index n. Then the contribution from element e can be written as,

−ReKe
nnxun −ReKe

nmxum −ReKe
noxuo −ReKe

npxup

= −Re(Ke
nnxun + Ke

nmxum + Ke
noxuo + Ke

npxup),
(10.115)

which saves us a few matrix multiplications, and we then finally have

f ′
ui =

∑

n∼i

−Re(Ke
nnxun + Ke

nmxum + Ke
noxuo + Ke

npxup). (10.116)

“book” — 2005/9/30 — 15:44 — page 361 — #373✐
✐

✐
✐

✐
✐

✐
✐

10.3 PHYSICS-BASED ANIMATION 361

for each element e do
for each node i of e do

tmp = 0
for each node j of e do
tmp += Ke_ij * xo_j

next j
f0’_i -= Re*tmp

next i
next e

Figure 10.11: Pseudocode for calculating fu.

for each element e do
for each node i of e do

for each node j of e do
if i >= j then

tmp = Re Ke_ij Re^{T}
K’_ij += tmp
if j > i then

K’_ji += trans(tmp)
end if

end if
next j

next i
next e

Figure 10.12: Pseudocode for assembly process for the warped stiffness matrix.

Assuming that f ′
un is initially cleared to zero for all n. This results in the implementation strategy shown

in Figure 10.11. Also the stiffness matrix can be optimized slightly by exploiting the symmetry property.
The symmetry indicates that it is sufficient to only compute the upper triangular and diagonal parts. The
lower triangular parts can be found simply be taking the transpose of the upper triangular parts. Thus, the
e’th tetrahedral element contributes with

K ′
ij+= ReKe

nmReT , (10.117a)

K ′
ji+= ReKe

mnReT = (ReKe
mnReT)T , (10.117b)

where i ∼ n and j ∼ m, and since Ke
mn = (Ke

nm)T . Assuming that all K ′
ij is initially cleared to zero

this results in the implementation strategy shown in Figure 10.12.
Note that if Re is initially set to the identity matrix, then the stiffness warping reduces to the tradi-

tional assembly of stiffness matrix (as it is used in linear elastostatics). Also notice that whenever Re

changes, then the stiffness matrix assembly must be recalculated. This is done after each position update.
Furthermore, if the i’th node is set to be fixed, this corresponds to letting K ′

ii = 1, and K ′
ij and K ′

ji
be zero for all j not equal to i. This is known as a Dirichlet boundary condition. However, we do not

“book” — 2005/9/30 — 15:44 — page 362 — #374✐
✐

✐
✐

✐
✐

✐
✐

362 CHAPTER 10. THE FINITE ELEMENT METHOD

use this during the assembly. Instead we assemble the K ′ matrix as though there were no fixed nodes.
Later, when we use the K ′ matrix in computations such as K ′x, we simply test whether xj is fixed. If
this is the case, then it is multiplied by the j’th column of K ′, i.e., K ′

∗j . If so, we simply do nothing!
This is computationally more tractable, and it also allow us to more easily turn nodes fixed and unfixed
dynamically during animation.

10.3.2 Orientation Computation

In order to perform the stiffness warping assembly described in the previous section, we need to be able
to estimate the rotational warp of each individual tetrahedron. The most elegant method is to find the
transform using barycentric coordinates [Müller et al., 2004a], and this method will be described below.

Let the deformed corners be x0, x1, x2, and x3 and the undeformed corners xu0, xu1, xu2, and xu3.
Examining point xu = [x, y, z, 1]T inside the undeformed tetrahedron is written as,

xu =

[
xu0 xu1 xu2 xu3

1 1 1 1

]
⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ = Pw. (10.118)

The corresponding point in the deformed tetrahedron has the same barycentric coordinates, which mean,

x =

[
x0 x1 x2 x3

1 1 1 1

]
⎡

⎢⎢⎣

w0

w1

w2

w3

⎤

⎥⎥⎦ = Xw. (10.119)

We can now use (10.118) to solve for w and insert the solution into (10.119) to get,

x = XP−1xu. (10.120)

The matrix XP −1 transforms xu into x. Since both P and X have their fourth rows equal to 1, it can be
shown that their product has the block structure

XP−1 =

[
G a
0T 1

]
, (10.121)

and this is recognized as a transformation matrix of homogeneous coordinates. The a vector gives the
translation, the G matrix includes, scaling, shearing, and rotation.

We thus need to extract the rotational matrix R from G. In [Müller et al., 2004a] the authors suggest
using Polar Decompositions [Shoemake et al., 1992, Etzmuss et al., 2003]. However, a simpler although
more imprecise approach would simply be to apply a Gram-Schmidt orthonormalization to transform
G into an orthonormal matrix. This seems to work quite well in practice. We have not observed any
noteworthy visual difference in using polar decomposition or orthonormalization.

“book” — 2005/9/30 — 15:44 — page 363 — #375✐
✐

✐
✐

✐
✐

✐
✐

10.3 PHYSICS-BASED ANIMATION 363

Since we are only interested in the G part of (10.121), we can compute this more efficiently exploiting
the fact that barycentric coordinates sum up to one. If we substitute w0 = 1− w1 − w2 − w3 in (10.118)
and (10.119), then we can ignore the fourth rows, since they simply state 1 = 1, i.e.,

xu =
[
xu0 xu1 xu2 xu3

]

⎡

⎢⎢⎣

1− w1 − w2 − w3

w1

w2

w3

⎤

⎥⎥⎦ , (10.122)

which is

xu =
[
xu0 (xu1 − xu0) (xu2 − xu0) (xu3 − xu0)

]

⎡

⎢⎢⎣

1
w1

w2

w3

⎤

⎥⎥⎦ . (10.123)

Moving the first column to the left-hand side we get,

xu − xu0 =
[
(xu1 − xu0) (xu2 − xu0) (xu3 − xu0)

]
⎡

⎣
w1

w2

w3

⎤

⎦ . (10.124)

Introducing e10 = xu1 − xu0, e20 = xu2 − xu0, e30 = xu3 − xu0, and E = [e10,e20,e30], we have,

xu − xu0 = E

⎡

⎣
w1

w2

w3

⎤

⎦ , (10.125)

and similar for (10.119) we have,

x− x0 = E′

⎡

⎣
w1

w2

w3

⎤

⎦ , (10.126)

where E′ = [e′
10e

′
20e

′
30] and e′

10 = x1 − x0, e′
20 = x2 − x0, e′

30 = x3 − x0. Now inverting (10.125)
and inserting the result into (10.126) yields,

x− x0 = E′E−1(xu − xu0). (10.127)

By comparison with (10.121) we see that

G = E′E−1. (10.128)

Using Cramer’s rule the inverse of E can be written as

E−1 =
1

6V

⎡

⎣
(e20 × e30)

T

(e30 × e10)
T

(e10 × e20)
T

⎤

⎦ . (10.129)

“book” — 2005/9/30 — 15:44 — page 364 — #376✐
✐

✐
✐

✐
✐

✐
✐

364 CHAPTER 10. THE FINITE ELEMENT METHOD

This can easily be confirmed by straightforward computation

E−1E = 1. (10.130a)

Using the notation

n1 =
1

6V
e20 × e30, (10.131a)

n2 =
1

6V
e30 × e10, (10.131b)

n3 =
1

6V
e10 × e20, (10.131c)

we write,

E−1 =

⎡

⎣
nT

1
nT

2
nT

3

⎤

⎦ , (10.132)

and we finally have,

G =
[
e′

10 e′
20 e′

30

]
⎡

⎣
nT

1
nT

2
nT

3

⎤

⎦ . (10.133)

Observe that E ′ is very inexpensive to compute and all nonprimed quantities {n1,n2,n3} can be pre-
computed and stored on a per tetrahedron basis given sufficiently available memory. Even in case where
memory is not available n1, n2, and n3 are quite cheap to compute.

10.3.3 Plasticity
The total strain of the e’th element is given by

etotal = Bue (10.134)

Where ue is the nodal displacement, i.e., ue = x− xu. Applying the idea of stiffness warping we have

etotal = B((Re)−1x− xu) (10.135)

where Re is the rotational deformation of the e’th tetrahedral element.
The elastic strain is given as the total strain minus the plastic strain

e = etotal − eplastic (10.136)

eplastic is initial initialized to zero. During simulation the plastic strain is constantly updates as follows. If
elastic strain exceeds cyield, then it is added to plastic strain by ccreep

if ||\vec e||_2 > c_yield then
e_plastic += dt*std::min(T->m_creep,(1.0/dt)) e

“book” — 2005/9/30 — 15:44 — page 365 — #377✐
✐

✐
✐

✐
✐

✐
✐

10.3 PHYSICS-BASED ANIMATION 365

If plastic strain exceeds cmax, then it is clamped to maximum magnitude

if ||e_plastic|| > c_max then
e_plastic = (e_plastic/|e_plastic|) c_max

The plastic strain causes plastic forces in the material

fplastic = ReKeue
plastic. (10.137)

Using eplastic = Bue
plastic we find,

f plastic = ReKeB−1eplastic (10.138a)

f plastic = Re(V eBT DB)B−1eplastic (10.138b)

f plastic = Re(V eBT D)eplastic (10.138c)

Introducing the plasticity matrix P e = (V eBT E) we have,

fplastic = ReP eeplastic. (10.139)

The plastic forces can be computed efficiently by exploiting the structure of the Bn and D matrices as,

Bn =

⎡

⎢⎢⎢⎢⎢⎢⎣

bn 0 0
0 cn 0
0 0 dn

cn bn 0
dn 0 bn

0 dn cn,

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10.140a)

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

D0 D1 D1 0 0 0
D1 D0 D0 0 0 0
D1 D1 D0 0 0 0
0 0 0 D2 0 0 0
0 0 0 0 D2 0
0 0 0 0 0 D2

⎤

⎥⎥⎥⎥⎥⎥⎦
. (10.140b)

This implies that the product BT
nD is

BT
nD =

⎡

⎣
bnD0 bnD1 bnD1 cnD2 dnD2 0
cnD1 cnD0 cnD1 bnD2 0 dnD2

dnD1 dnD1 dnD0 0 bnD2 cnD2

⎤

⎦ . (10.141)

Notice that even though this is a 3× 6 matrix with 18− 3 = 15 nonzero elements it actually only contains
9 different values. In fact, these values could be precomputed and stored in each tetrahedron. Furthermore
they could be premultiplied by the volume of the tetrahedron to yield the matrix,

P e
n = V eBT

nD. (10.142)

“book” — 2005/9/30 — 15:44 — page 366 — #378✐
✐

✐
✐

✐
✐

✐
✐

366 CHAPTER 10. THE FINITE ELEMENT METHOD

The plastic force that should be subtracted from node n is then computed in each iteration as

fn = ReP e
neplastic. (10.143)

Instead of allocating another set of temporary variables to hold the plastic forces, it is much easier to
simply add the plastic forces to the external force vector. Thus saving memory.

10.4 Time Integration
The equation of motion has the following form (where u = x− xu, and ẋ is derivative w.r.t. time)

Mẍ + Cẋ + K(x− xu) = f ext. (10.144)

Implicit discretization, means we evaluated x and v = ẋ at time i + 1. Furthermore, using ẍ = vi+1−vi

∆t
and ẋ = vi+1, we have

M
vi+1 − vi

∆t
+ Cvi+1 + K(xi+1 − xu) = f ext, (10.145)

and since xi+1 = xi + vi+1∆t,

M
vi+1 − vi

∆t
+ Cvi+1 + K((xi + vi+1∆t)− xu) = f ext, (10.146a)

⇓

M
vi+1 − vi

∆t
+ Cvi+1 + Kxi + ∆tKvi+1 −Kxu = f ext, (10.146b)

⇓
Mvi+1 −Mvi + ∆tCvi+1 + ∆t2Kvi+1 = ∆t(f ext −Kxi + Kxu), (10.146c)

⇓
(M + ∆tC + ∆t2K)vi+1 = Mvi + ∆t(f ext −Kxi + Kxu). (10.146d)

Let fu = −Kxu, then

(M + ∆tC + ∆t2K)vi+1 = Mvi −∆t(Kxi + fu − f ext), (10.147)

so we need to solve Avi+1 = b for vi+1, where

A = (M + ∆tC + ∆t2K), (10.148a)

b = Mvi −∆t(Kxi + fu − f ext). (10.148b)

This is termed a velocity update. The matrix A and the vector b are most efficiently assembled in a manner
similar to the stiffness matrix assembly discussed in Section 10.2.5. That means that each node stores the
corresponding row and right-hand side of Av = b.

“book” — 2005/9/30 — 15:44 — page 367 — #379✐
✐

✐
✐

✐
✐

✐
✐

10.5 PHYSICS-BASED ANIMATION 367

Algorithm time-step
if(stiffness_warp)

update-orientation
else

reset-orientation
stiffness-assembly
add-plasticity-force
dynamics assembly (A,b)
conjugate_gradient(A,v,b);
position_update

End algorithm

Figure 10.13: A time-stepping algorithm for the finite element method.

The matrix A is a symmetric matrix, which implies that we can solve Av i+1 = b efficiently by using
a conjugate gradient solver. In [Müller et al., 2004a] 20 iterations were used.

After the velocity update we perform a position update

xi+1 = xi + vi+1∆t. (10.149)

Notice that a fully implicit scheme requires K i+1, however for linear elastic materials K is constant. The
time-stepping algorithm is summarized in Figure 10.13. In practice a time-step the order of ∆t = 0.01
seconds can be used without any problems.

The damping matrix C can be computed in various ways. Often a linear combination of the mass and
stiffness matrix, known as Rayleigh damping, is used

C = αM + βK (10.150)

where α and β is known as the mass damping and stiffness damping coefficients respectively. In practice
we often only apply mass damping with α = 0.2 and no stiffness damping β = 0. This has the compu-
tational benefit that if M is a lumped mass matrix, then C becomes a diagonal matrix. Furthermore one
does not even need storage for C, since it is given implicitly by M .

10.5 Mesh Coupling
Due to the complexity of the dynamics of finite element methods, it is often convenient to separate the
visual geometry from the geometry used to compute the dynamics. This makes it possible to use highly
detailed visual representation of objects, while using a computationally low-cost coarse volume mesh for
computing the dynamics.

A technique for doing this is called mesh coupling or cartoon meshing. Below we describe how it is
used together with tetrahedral meshes. It is, however, a general approach and can be used with other types
of geometries. Free-form deformation lattices as discussed in Section 8.4.7 are another very common
example of mesh coupling.

“book” — 2005/9/30 — 15:44 — page 368 — #380✐
✐

✐
✐

✐
✐

✐
✐

368 CHAPTER 10. THE FINITE ELEMENT METHOD

The first step in mesh coupling is to bind the vertices of the surface mesh to the tetrahedral elements
of the volume mesh. A spatial hashing algorithm is easily used to find vertex-tetrahedron pairs, where
the vertex is embedded inside the tetrahedron. The actual test is done by first computing the barycentric
coordinates of the vertex with respect to a tetrahedron in question. The vertex is embedded in the tetra-
hedron, when 0 ≤ wi ≤ 1. In practice, we need to apply threshold testing to counter numerical precision
problems, and as a consequence it may happen that vertices lying close to a face of a tetrahedron gets
reported twice: once for the tetrahedron embedding it and once for the neighboring tetrahedron. There-
fore, a quick rejection test can be performed: if the vertex is already embedded in a tetrahedron, then it is
simply ignored.

Before rendering each frame, we must update the vertex positions to reflect the underlying deformation
of the tetrahedral mesh. This is done using the barycentric coordinates, such that the new vertex position
is given by,

c = w0x0 + w1x1 + w2x2 + w3x3, (10.151)

where x0, x1, x2, and x3 are the nodal coordinates of the tetrahedron, which the vertex was bounded to.
If stiffness warping is used, the element rotation, Re, can be used to update the undeformed vertex

normal, n0, into the deformed vertex normal, n, by,

n = Ren0 (10.152)

Often a tetrahedra mesh is used with a conservative coverage of the surface mesh. That means that one
is guaranteed that all vertices of the surface mesh are embedded inside one unique tetrahedron. However,
mesh coupling can be used in cases where only one have partial coverage. The solution is to bind a
vertex to the closest tetrahedron. Even though the vertex lies outside the tetrahedral mesh, the barycentric
coordinates extend the deformation of the tetrahedra mesh beyond its surface.

10.6 Finite Element Method in the Literature

Finite element method has been used to model hand grasping a ball [Gourret et al., 1989] and muscle
simulation [Chen et al., 1992]. An implicit finite element method was used in [Hirota et al., 2001] to
simulate elastic solids in contact. They used their method for simulating the muscles in a bending knee. In
[O’Brien et al., 1999] the authors used static isotropic elastic finite element method with additive plasticity
to simulate crack initiation and propagation in three dimensional volumes, i.e., brittle fracture. Later
in [O’Brien et al., 2002a] both brittle and ductile fracture were simulated. [O’Brien et al., 2002b] used
dynamic isotropic elastic finite element method to extract modal vibration modes of rigid bodies. The
vibration modes where then used to synthesizing sound in rigid body simulations.

In [Teran et al., 2003] the finite volume method was introduced to the graphics community, and it
was shown to be identical to the classical FEM when using linear basis functions and constant strain
tetrahedra. The finite volume method has the great advantage that it easily supports different constitutive
models. Furthermore, it does not require the assembly process to compute elastic and damping forces.

In [Irving et al., 2004] they extended the finite volume method with a diagonalization method capable
of handling inverted tetrahedral elements. They also introduced multiplicative plastic flow and a method

“book” — 2005/9/30 — 15:44 — page 369 — #381✐
✐

✐
✐

✐
✐

✐
✐

10.6 PHYSICS-BASED ANIMATION 369

for plastic control to achieve prescribed deformations to aid animation control by animators. A rigid-body
collision law and improved Newmark time-stepping method were also described.

In [Irving et al., 2005] the finite volume method was generalized for other types of elements than
tetrahedra, but it was indicated that tetrahedra were the most cost-efficient element for computer animation
purposes. In [Teran et al., 2005] a framework is presented for simulating skeletal muscles with the finite
volume method using a transversely isotropic, quasi-incompressible constitutive model that incorporated
muscle fiber fields. Inverted elements were handled using diagonalization.

To overcome the computational disadvantage of linear, isotropic, elastic finite element method, many
have applied modal analysis, see [Pentland et al., 1989]. Later [James et al., 2002] moved the ideas onto
GPUs by a method called Dynamic Response Textures. [Hauser et al., 2003] introduced the idea of using
model modes from dynamic linear elastic finite element model to achieve interactive deformations. Later
[Choi et al., 2005] extended the ideas to include rotational warps in order to overcome the volume growth
in large deformations.

[Müller et al., 2004b] used the finite element method based on cubical elements of uniform size to
simulate objects represented by surface meshes. They used a mesh coupling idea and added a fracture
technique. [Müller et al., 2004a] improved on the original ideas in [Müller et al., 2002], where a rotational
warp was applied to the elastic forces in the stiffness matrix assembly. In the later work they included
mesh-coupling, plasticity, and fracturing. Furthermore, they rectified the problem of ghost-forces by
computing the rotational warp on elements instead of on a per node basis.

“book” — 2005/9/30 — 15:44 — page 370 — #382✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 371 — #383✐
✐

✐
✐

✐
✐

✐
✐

11

Computational Fluid Dynamics

The animation of fluid phenomena is widely used in the film industry and of growing importance in the
gaming industry. The physics of fluid dynamics has been successfully described by the Navier-Stokes
equation since about 1821, although later investigation into turbulent phenomena has added considerable
knowledge about the behavior of fluids at high velocities, etc. The Navier-Stokes model is usually used to
predict the motion of fluid particles or volumes inside a fluid, but the model is also a good description of the
behavior of gaseous phenomena such as smoke at speeds less than the speed of sound. For animation, the
interface between water and air is equally important, since water waves visually dominate water scenes.
For animating water waves, there are two competing models, one developed by Gerstner in 1809 and an
adaptation of Navier-Stokes to shallow water situations. A detailed review of the origins of water wave
theory is given in [Craik, 2004]. This chapter starts by describing the model of water waves leading to
Gerstner’s model, followed by a description of the Navier-Stokes equations and their applications and
implementations.

11.1 Waves
The most prominent visual feature of water is its surface. In the following, we will discuss equations for
waves with emphasis on Gerstner’s theory.

11.1.1 Cosine Waves
The simplest model of water waves is sinusoidal, meaning that the profile of a wave at a fixed time is
well described by a sum of sine and cosine functions. Therefore, waves are typically described by the
parameters amplitude and frequency using a sum of cosine basic functions,

fA,L(x) = A(x) cos

(
2π(x + φ(x))

L

)
, (11.1)

where x is the spatial coordinate, A is the amplitude of the wave, φ is its phase, and L is its wavelength.
An example of a circular wave is shown in Figure 11.1. Furthermore, simple waves interact by addition.
Waves propagate through space

fA,L,C(x, t) = A(x, t) cos

(
2π(x + φ(x)− Ct)

L

)
, (11.2)

where t is the time parameter and C is the wave propagation speed.
From an artistic point of view, the pure sinusoidal wave functions in (11.2) tend to be too smooth at the

top; it has been suggested by [Finch et al., 2004] simply to raise the cosine to some sufficiently pleasing

371

“book” — 2005/9/30 — 15:44 — page 372 — #384✐
✐

✐
✐

✐
✐

✐
✐

372 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

-100

-50

0

50

100-100

-50

0

50

100

-2
-1

0

1

2

-100

-50

0

50

100

Figure 11.1: The snapshot of a circular water wave modeled as a radially symmetric cosine function.

power as follows:

f(x, t) = A(x, t)

⎛

⎜⎝2

⎛

⎝
cos
(

2π(x−Ct)
L

)
+ 1

2

⎞

⎠
k

− 1

⎞

⎟⎠ , (11.3)

and normalize the cosine function to span the range from -1 to 1. An example of the result for k = 2.5 is
shown in Figure 11.2, and as shown, a consequence of the power function is that the waves also become
flatter at the bottom.

11.1.2 Gravity Waves
Gravity waves are the most dominating waves in typical ocean scenes. They arise from the differential
effect across the water-air interface. A simple model that may be used for small amplitude waves is
Airy’s Model [Airy, 1845] (George Biddell Airy 1801–1892), where the velocity of the wave propagation
is proportional to the water height as

C(x) =

√
gL

2π
tanh

(
2πh(x)

L

)
, (11.4)

with h being water height and g = 9.82 m
sec2 being the gravitational acceleration. As illustrated in Fig-

ure 11.3, tanh(x)→ 1 for x→∞ and tanh(x)→ x as x→ 0. This implies that

C(x) =

{√
gL
2π h→∞,

√
gh(x) h→ 0,

(11.5)

“book” — 2005/9/30 — 15:44 — page 373 — #385✐
✐

✐
✐

✐
✐

✐
✐

11.1 PHYSICS-BASED ANIMATION 373

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure 11.2: Cosine waves may be made sharper at their peak by raising the cosine function to some
power k, here k = 2.5.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 11.3: The function tanh is asymptotically 1 at infinity and linear at 0.

and as a consequence, waves will tend to move perpendicular to shorelines as illustrated in Figure 11.4.
This is because for a single wave front the parts of the front that are close to the beach will move slower
than parts of the back, which are further away.

As a wave moves forward, the water particles for an ideal wave typically move in circular paths
as illustrated in Figure 11.5. An accurate model for a particle in a single wave is the Gerstner Model
[Gerstner, 1802] (Franz Joseph von Gerstner 1756–1832). Since individual waves move locally in a par-
ticular direction, we may accurately describe the motion of a single water molecule as

[
x(t)
z(t)

]
=

⎡

⎣x0 −A exp
(

2πz0
L

)
sin
(

2π(x0−Ct)
L

)

z0 + A exp
(

2πz0
L

)
cos
(

2π(x0−Ct)
L

)

⎤

⎦ , (11.6)

where [x0, z0]T is the position of the particle relative to the surface at some initial reference time, A is
the radius of the circular path, L is the wavelength, and C is the particle’s speed. At the surface, z0 = 0,
hence

[
x(t)
z(t)

]
=

⎡

⎣x0 −A sin
(

2π(x0−Ct)
L

)

A cos
(

2π(x0−Ct)
L

)

⎤

⎦ , (11.7)

“book” — 2005/9/30 — 15:44 — page 374 — #386✐
✐

✐
✐

✐
✐

✐
✐

374 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Figure 11.4: Waves approaching a shore will tend to become parallel with the shoreline

Particle
Motion

Wave Motion

Figure 11.5: For ideal waves, the water particles move in circles, when a wave propagates forward.

and the particle velocity is in a global coordinate system
[
vx(t)
vz(t)

]
=

⎡

⎣
2πCA

L cos
(

2π(x0−Ct)
L

)

2πCA
L sin

(
2π(x0−Cit)

L

)

⎤

⎦ = v0

⎡

⎣cos
(

2π(x0−Ct)
L

)

sin
(

2π(x0−Cit)
L

)

⎤

⎦ . (11.8)

Moving to a local coordinate system

α =
2π(x0 − Ct)

L
, (11.9)

implies that
[
x(α)
z(α)

]
=

⎡

⎣x0 −A sin
(

2π(x0−Ct)
L

)

A cos
(

2π(x0−Ct)
L

)

⎤

⎦ (11.10a)

=

[
αL
2π + Ct−A sinα

A cosα

]
. (11.10b)

Investigating a snapshot by setting t = 0, and analyzing the profile for varying α, which is proportional to
x0 gives [

x(α)
z(α)

]
=

[
αL
2π −A sinα

A cosα

]
. (11.11)

“book” — 2005/9/30 — 15:44 — page 375 — #387✐
✐

✐
✐

✐
✐

✐
✐

11.1 PHYSICS-BASED ANIMATION 375

x

x

x

z

z

z

Figure 11.6: A trochoid curve is generated by rolling a circle along a line and noting the points swept by
a line along the radius. If the line is not longer than the radius of the circle, then the curve is a function.

This is a trochoid with A as the radius of a rolling circle, and L
2π is the distance from center to a fixpoint

being traced on the rolling circle. Examples of trochoids are shown in Figure 11.6, where the top has
L
2π < A, middle has L

2π = A, and the bottom has L
2π > A, which is no longer a model for water waves.

To generate a wave profile, several water particles are tracked simultaneously, and the profile is generated
by joining neighboring particles with a line. A procedure for generating Gerstner waves in one dimension
is given in Figure 11.7. In Figure 11.8 is the output of this algorithm. The figure shows the wave profile
at a fixed time, together with the trace of a water particle. As can be seen, the water particle is moving
in an elliptical fashion. The ellipse is a consequence of the nonunit aspect ratio of the graph, since the
movement is truly circular according to (11.11). Further on a horizontal line in the figure we see the
project of the x-coordinate. As we can see, the density along the x-axis is highest at the wave top, which
is convenient, since this is where the curvature of the wave is highest and where there is therefore a need
for finer sampling in order to preserve the wave profile.

The 1D Gerstner wave is extended to two dimensions in two steps: first, by extending (11.7) with the
y-coordinate, and then rotating the result around [x0, y0]T ,

⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ =

⎡

⎣
x0

y0

0

⎤

⎦+ Rz

⎡

⎢⎢⎣

−A sin
(

2π(x0−Ct)
L

)

0

A cos
(

2π(x0−Ct)
L

)

⎤

⎥⎥⎦ , (11.12)

where Rz is the specialized rotation matrix,

Rz =

⎡

⎣
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦ , (11.13)

“book” — 2005/9/30 — 15:44 — page 376 — #388✐
✐

✐
✐

✐
✐

✐
✐

376 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

algorithm gerstner()
N = 10
x0 = 1:N
x = zeros(1,N) z = zeros(1,N)
A = 0.5
C = 1
L = 10

for t = 1 to N step 0.1
for i = 1 to N
x(i) = x0(i) -A*sin(2*pi*(x0(i)-C*t)/L)
z(i) = A*cos(2*pi*(x0(i)-C*t)/L)

end
plot(x,z)

end

Figure 11.7: Pseudocode for generating propagating Gerstner waves in 1D.

0 5 10 15
−2

−1

0

1

x

z

Gerstner Wave

Figure 11.8: The Gerstner wave and a circulating particle.

which rotates a three dimensional point θ degrees around the z-axis.
Finally, it may be desired to limit the spatial extend of the wave along the y-axis by multiplying with

a window,
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ =

⎡

⎣
x0

y0

0

⎤

⎦+ Rz

⎡

⎢⎢⎣

−w(y(t),σ)A sin
(

2π(x0−Ct)
L

)

0

w(y(t),σ)A cos
(

2π(x0−Ct)
L

)

⎤

⎥⎥⎦ , (11.14)

where σ specifies the width of the window. An example of a window function is the unnormalized Gaus-
sian function

G(x,σ) = exp

(
− x2

2σ2

)
, (11.15)

which contains 76% of its mass in the interval [−σ,σ].

“book” — 2005/9/30 — 15:44 — page 377 — #389✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 377

A consequence of the circular paths of the particles in an ideal wave (11.11) is that there is no net
transport of water except near the shoreline. In deep water, the particle speed is found as the length of the
particle velocity (11.8),

Q =

∥∥∥∥

[
vx(t)
vz(t)

]∥∥∥∥
2

= v0 =
2πCA

L
(11.16)

Hence, if the particle speed exceeds the wave propagation speed, then the particles escape the wave and
the waves break, which typically results in white foam on the top of the waves. That is, wave breaking
occurs when

Q > C, (11.17)

which implies that

2πCA

L
> C, (11.18a)

⇓

2π >
L

A
. (11.18b)

Hence, the breaking of a wave is independent of the wave speed, but only depends on the ration of the
wavelength L and the wave’s amplitude A. Wave breaking is typically visualized by emitting white
particles from the top of the wave or by using texture maps to visualize foam [Jensen, 2001].

Waves interact by addition. Consider the example of a particle originally at [x0, y0, 0] being moved
according to a number of unclamped Gerstner waves. Adding the waves gives

⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ =

⎡

⎣
x0

y0

0

⎤

⎦+ Rz

⎡

⎢⎢⎣

−A sin
(

2π(x0−Ct)
L

)

0

A cos
(

2π(x0−Ct)
L

)

⎤

⎥⎥⎦+ R′
z

⎡

⎢⎢⎣

−A′ sin
(

2π(x0−C′t)
L′

)

0

A′ cos
(

2π(x0−C′t)
L′

)

⎤

⎥⎥⎦+ . . . (11.19)

=

⎡

⎣
x0

y0

0

⎤

⎦+

⎡

⎢⎢⎢⎣

− cos(θ)A sin
(

2π(x0−Ct)
L

)
− cos(θ′)A′ sin

(
2π(x0−C′t)

L′

)
− . . .

sin(θ)A sin
(

2π(x0−Ct)
L

)
+ sin(θ′)A′ sin

(
2π(x0−C′t)

L′

)
+ . . .

A cos
(

2π(x0−Ct)
L

)
+ A′ cos

(
2π(x0−C′t)

L′

)
+ . . .

⎤

⎥⎥⎥⎦ (11.20)

=

⎡

⎣
x0

y0

0

⎤

⎦+

⎡

⎢⎢⎢⎣

−
∑

i cos(θi)Ai sin
(

2π(x0−Cit)
Li

)

∑
i sin(θi)Ai sin

(
2π(x0−Cit)

Li

)

∑
i Ai cos

(
2π(x0−Cit)

Li

)

⎤

⎥⎥⎥⎦ . (11.21)

However, it is not simple to determine the breaking point of the resulting waves, since it requires that the
resulting velocities of the wave and the particle are calculated. Wave breaking is therefore often left for
an animating artist.

In the literature on partial differential equations, Burger’s equation is often introduced for its simple
but nonlinear characteristics [Collatz, 1986, Morton et al., 1994]. Burger’s equation models the breaking
of waves, but it has not yet found practical value in computer animation.

“book” — 2005/9/30 — 15:44 — page 378 — #390✐
✐

✐
✐

✐
✐

✐
✐

378 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

u

t = 0 t = 1
V

Figure 11.9: The substantive or total derivative estimate the time derivative as a volume is moved in a
velocity field.

11.2 Fluid Motion

In this section we will introduce the general subject of fluid mechanics [Tritton, 1988]. A recent survey
on the origins of fluid mechanics is given in [Craik, 2004].

The most important physical properties of fluids are velocity u, density ρ, pressure p, temperature T ,
and shear viscosity η and the kinematic viscosity µ, which are macroscopic averages. It is often useful to
check physical equations according to their units, and the International System (SI)standard units for the
above properties are [u] = m s−1, [ρ] = kg m−3, [p] = N m−2, [T] = K, [η] = Pa s, and [µ] = N s

m2 . For
our purpose, they only make sense within some interval of scale much larger than mean free path of the
molecule and much smaller than the scale of the total system. The selected scale will be considered the
unit scale in the rest of this chapter.

A major problem in fluid dynamics is deciding between a coordinate system fixed in space or on the
particle, also known as the Eulerian and Lagrangian coordinate systems respectively. Although appar-
ently trivial, some of the properties of a fluid such as velocity and acceleration are best described in the
Lagrangian system, while density, pressure, and temperature are better described in the Eulerian system.
In this chapter, we will first discuss the Navier-Stokes equations in the Eulerian coordinate systems along
the lines of [Tritton, 1988], followed by a discussion of smooth particle hydrodynamics, which is a particle
approach using the Lagrangian coordinate system.

11.2.1 Derivative Operators for Vector Fields

Fluid mechanics heavily relies on the differential notation derived in Chapter 18.3 and summarized in
Table 26.2. Furthermore, our choice of the Eulerian coordinate system makes the identification of a single
particle impossible, and applying Newton’s second law on a fixed position would not be correct, since
different particles occupy a fixed volume at different times. However, the fluid flow gives an indication
of the average motion of particles per unit volume. As an example, consider the temperature change by
time as a volume is tracked in a velocity field, where the general situation is depicted in Figure 11.9.
Assume that we are tracking a particle with coordinates [x(t), y(t), z(t)] in three dimensions, that the time
varying temperature field is given as T : R4 → R, and that the temperature of the particle is determined

“book” — 2005/9/30 — 15:44 — page 379 — #391✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 379

as T (x(t), y(t), z(t), t). Then the total derivative with respect to t is found to be

dT

dt
=
∂T

∂t
+
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt
(11.22a)

=
∂T

∂t
+
∂T

∂x
u +

∂T

∂y
v +

∂T

∂z
w, (11.22b)

using u = [u, v,w]T as the velocity vector of the particle. This is the change of temperature in the fluid,
following the fluid, also called the substantial derivative. The substantial operator for a flow u and in a
dimensionless formulation is given as

d

dt
=

∂

∂t
+ u ·∇, (11.23)

where ∇ = ∇[x,y,t]T is the spatial gradient operator, which will be assumed in the rest of this chapter.
Newton’s second law of motion in terms of the substantial derivative per unit volume is found to be

ρ
d

dt
u = F (11.24a)

⇓

ρ

(
∂

∂t
+ u ·∇

)
u = F , (11.24b)

where F is the sum forces acting on the volume.

11.2.2 Euler’s Equations

Euler (Leonhard Euler 1707–1783) was the first to formulate an equation of the motion of fluids using
Newton’s second equation, and the pressure gradient as an internal force [Euler, 1755], augmented with
an equation for mass conservation under the assumption of incompressible fluids

ρ

(
∂

∂t
+ u ·∇

)
u = −∇P, (11.25a)

∇ · u = 0 (11.25b)

and these equations are commonly known as Euler’s equations.
The mass conservation equation (11.25b) is a consequence of Gauss’ divergence theorem (18.142):

consider a closed region of a fluid V as shown in Figure 11.10. The total mass in this volume is given as

mass of V =

∫

V
ρ dV, (11.26)

where dV is a unit volume element also known as a three form. The scalar ρ is the fluid density, calculated
as the average molecular mass per unit of volume. As the fluid flows, mass will enter and exit this region

“book” — 2005/9/30 — 15:44 — page 380 — #392✐
✐

✐
✐

✐
✐

✐
✐

380 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

n

u

S

V

dS

Figure 11.10: A volume V completely inside the fluid.

across its surface S. Use dS to denote an area element of the border also known as a two-form, and use n
as the outward normal to the border. The amount of mass loss may now be calculated as,

Loss of mass from V =

∫

S
ρu · n dS. (11.27)

Setting the time derivative of (11.26) equal to minus (11.27) we get

d

dt

∫

V
ρ dV =

∫

V

∂

∂t
ρ dV = −

∫

S
ρu · n dS. (11.28)

Letting V shrink until the change in density is constant inside V , the integration in the middle equation is
redundant,

lim
V →0

∫

V

∂

∂t
ρ dV = − ∂

∂t
ρV (11.29)

implying that the same limit for the r.h.s. of (11.28) is given as

∂

∂t
ρ = − lim

V →0

1

V

∫

S
ρu · n dS = −divρu = −∇ · (ρu), (11.30)

by the definition of the divergence operator, div, and where ∇ = ∇[x,y,z]T is the spatial gradient operator.
This is the conservation of mass equation also known as the continuity equation. Often the terms are
rearranged as

∂

∂t
ρ+∇ · (ρu) = 0. (11.31)

When the density is constant, this implies that

ρ∇ · u = 0, (11.32a)
⇓

∇ · u = 0. (11.32b)

and the fluid is called an incompressible fluid.

“book” — 2005/9/30 — 15:44 — page 381 — #393✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 381

11.2.3 The Naiver-Stokes Equations

Euler’s equation ignores the friction between water molecules, and Navier (Claude Louis Marie Henri
Navier 1785–1836) was the first to derive the equations including friction from a pure theoretical consid-
eration [Navier, 1822],

ρ

(
∂

∂t
+ u ·∇

)
u = −∇p + µ∇2u + F external, (11.33a)

∇ · u = 0 (11.33b)

where F external are the external forces such as gravity and the motion of solid objects in the fluid. Navier
determined the kinematic viscosity, µ, as a function of molecular spacing, but did not attach any phys-
ical significance to it. Stokes (George Gabriel Stokes 1819–1903) later derived the same equations
[Stokes, 1845], where he made the physical meaning of µ clear as the magnitude of the fluid’s viscos-
ity. The kinematic viscosity is related to the shear viscosity as µ = η

ρ . These equations are therefore now
known as Navier-Stokes equations. If ∥∇p∥

2
≫
∥∥µ∇2u

∥∥
2
, then the fluid is called a viscous fluid, and in

the opposite case, where ∥∇p∥
2
≪
∥∥µ∇2u

∥∥
2
, then the fluid is an inviscid fluid.

A finite difference solution to the Navier-Stokes equations are found using the Helmholtz-Hodge de-
composition [Harris, 2004].

Theorem 11.1 (Helmholtz-Hodge decomposition)
Given a Domain D, its border δD, normals to the border n, and a scalar field p, then a vector field w can
be decomposed into

w = u +∇p, (11.34)

where∇ · u = 0, and u · n = 0

The proof is rather complicated, and is therefore omitted in this text; instead, see [Denaro, 2003]. The
implications of Helmholtz-Hodge decomposition are that

1. Given a general vector field w, we may then find a scalar field p by taking the divergence on both
sides of (11.34),

∇ · w = ∇ · (u +∇p) (11.35a)

= ∇ · u +∇2p (11.35b)

= ∇2p. (11.35c)

The equation ∇ · w = ∇2p is a Poisson equation, and is solved straight forwardly with a central
finite difference approximation.

2. Given the vector field w and the corresponding scalar field p, we may now calculate a divergence-
free vector field as

u = w −∇p. (11.36)

“book” — 2005/9/30 — 15:44 — page 382 — #394✐
✐

✐
✐

✐
✐

✐
✐

382 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Object Type u1 u2 T Description
Concrete 0 0 T0 Small amount of turbulence
Rough Wall −u0 0 T0 Much turbulence
Smooth Plastic u0 0 T0 Laminar flow
Radiator 0 0 Tk Heat convection
Open Window 0 v0 Tk Heat is blowing into scene

Table 11.1: Some useful border conditions [Foster et al., 1997].

Hence, given a solution to the Navier-Stokes equations at time t for u, p, and F external a numerical solution
for t + ∆t is obtained by first performing an explicit finite differencing step of (11.33a) to produce a
divergence-full vector field w, then (11.33b) is solved in two steps: first by solving the Poisson equation
(11.35c) for p, and then by calculating the divergence-free field u using (11.36). Examples of such
implementations are given in [Foster et al., 1997, Harris, 2004].

Boundary conditions are typically handled in a pragmatic manner as follows: a fluid cannot pass
through a impermeable rigid body, and the relative velocity of the fluid at that point must be zero, or

u · n = U · n, (11.37)

where n is the normal of the boundary and U is its velocity vector. Furthermore, there should be no slip
between the wall and fluid right next to it, amounting to no relative tangential velocity

u× n = U × n. (11.38)

Combining (11.37) and (11.38) we must have

u = U . (11.39)

In [Foster et al., 1997], the border conditions in Table 11.1 have been found to be useful.
A two-dimensional example of pseudocode implementing incompressible, viscous Navier-Stokes equa-

tions is given in Figure 11.11. The gradient of the pressure term in the first Navier-Stokes step may actually
be ignored, since it is effectively added by the solution to the Poisson equations. This is the so-called pro-
jection method [Harris, 2004]. Nevertheless, we have chosen to keep it in the above code for pedagogical
reasons. On a personal note, we find it appealing, that although the equations appear difficult, the actual
implementation is rather short.

11.2.4 Navier-Stokes for Dry Air

For a gas, Boyle and Charles noted that the three thermodynamic variables pressure, p, molar volume, α,
and temperature T depends on each other. The molar volume is related to the density, ρ, the number of
molecules, n, and the volume, V , as α = 1

ρ = V
n . For an ideal gas, the dependency is simply called the

Ideal Gas Law,
pV = nRT, (11.40)

“book” — 2005/9/30 — 15:44 — page 383 — #395✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 383

algorithm navierStokes()
dt = 1/15
nu = 10
h = 0.1

while(i < T)
// Perform a step in the Navier-Stokes direction
du = -u*dx(u) - v*dy(u) + nu*(dxx(u) + dyy(u))
dv = -u*dx(v) - v*dy(v) + nu*(dxx(u) + dyy(u))
u = u + dt*du
v = v + dt*dv
[u,v,p] = setBoundaries(u,v,p)

// Solve Poisson Equations
gradDotU = (dx(u)+dy(v))/dTau
while(max(abs(p-pOld)) > 10^(-3)
pOld = p
p = p + h*(dxx(p) + dyy(p) - gradDotU)

end

// Adjust velocity field to become divergence free
u = u - dx(p)
v = v - dy(p)

// Set boundary conditions appropriately
[u,v,p] = setBoundaries(u,v,p)

plotVectorField(u,v,p)
i = i+di

end while
end algorithm

Figure 11.11: Pseudocode for implementing incompressible viscous Navier-Stokes equations. The un-
specified functions dx, dy, dxx, and dyy perform central finite differencing of first and second order,
setBoundaries clamps values according to chosen boundary conditions, and plotVectorField
presents the resulting vector field in some suitable graphical manner.

“book” — 2005/9/30 — 15:44 — page 384 — #396✐
✐

✐
✐

✐
✐

✐
✐

384 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

where R = 8.314 N
m2 mol K is the ideal gas constant. Ideal gases do not exist, but are nevertheless a

good approximation of gas behavior under normal conditions, which is attractive in computer graphics
that usually are concerned with animating everyday phenomena. Disregarding chemical, magnetic, and
electrical effects, the first law of thermodynamics states that the rate of heat addition, dq

dt , is

dq

dt
=

dEint

dt
+

dW

dt
, (11.41)

where Eint is the internal energy and W is the work done by the gas on its surroundings due to expansion.
For an ideal, inviscid gas,

dEint

dt
= cv

dT

dt
, (11.42)

dW

dt
= p

dα

dt
, (11.43)

where cv is the specific heat coefficient for constant volume. There is also a specific heat coefficient for
constant pressure, cp, and these are related for a mono-atomic ideal gas as

cp − cv = R, (11.44)

implying that [Haltiner et al., 1980],

dq

dt
= α

dp

dt
+

(
1 +

R

cv

)
p
dα

dt
= α

dp

dt
+

cp

cv
p
dα

dt
(11.45)

The equations (11.30), (11.33a), (11.40), and (11.43) constitute a complete system of equations describing
the motion of dry air.

11.2.5 Navier-Stokes with Heat Convection
For a incompressible, viscous fluid, the Boussinesq approximation is often used [Tritton, 1988]. In the
Boussinesq approximation, the only fluid property considered is the density, and it is only considered
when the density variation gives rise to a gravitational force. Assuming that the density varies slightly
from some reference density ρ0, for example, in a neighboring point, then the density in a particular point
as

ρ = ρ0 + ∆ρ (11.46)

Since we are ignoring nongravity effects, the continuity equation (11.30) is simply ∇ · u = 0, and we
calculate the change in moment as ρ0

d
dtu. However, gravity effects causes the third term in (11.33a) to

become,
F = ρg = ρ0g + ∆ρg (11.47)

The gravitational acceleration can be rewritten as the gradient of a scalar field, g = −∇G, using G = gz
with z being the direction up. Newton’s second law for fluids (11.33a) is then written as

ρ0
d

dt
u = −∇(p + ρ0G) + µ∇2u + ∆ρg = −∇P + µ∇2u + ∆ρg. (11.48)

“book” — 2005/9/30 — 15:44 — page 385 — #397✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 385

with P = p + ρ0G. Hence, if the density is constant, then (11.48) simplifies to (11.33a) except for
the correction of the pressure term for the height. If the pressure does not appear directly in the boundary
conditions, this correction of the hydrostatic pressure has no physical significance. When there is a density
variation, then the last term will cause an effect when d

dtu≪ g, and in this case, we may use a linearizing
of the density variation

∆ρ = −γρ0∆T (11.49)

with γ as the coefficient of expansion of the fluid. Inserting (11.49) into (11.48) gives

ρ0
d

dt
u = −∇P + µ∇2u− γρ0∆Tg. (11.50)

The term γρ0∆Tg is known as the buoyancy force. An additional equation for the temperature is needed,
and in the Boussinesq approximation it is assumed that

dq

dt
= ρcp

d

dt
T − kT∇2T, (11.51)

where kT is the thermal conductivity coefficient. See [Tritton, 1988] for arguments for using cp instead of
cv. In a fixed coordinate system, the temperature field is thus governed by

∂T

∂t
=

kT

ρcv
∇2T −∇ · (Tu) +

1

ρcv

dq

dt
. (11.52)

Equations (11.30), (11.50), and (11.51) are the basic computational fluid dynamical equations with con-
vection.

11.2.6 Navier-Stokes with Concentration Variations

Analogous to (11.49), the Boussinesq approximation may be used to model concentration variations as

∆ρ = −γρ0∆c (11.53)

where c is the concentration. Newton’s second law then becomes

ρ0
d

dt
u = −∇P + µ∇2u− γρ0∆cg. (11.54)

Again, analogous to heat convection, the concentration is governed by diffusion,

ρcp
d

dt
c = kc∇2c, (11.55)

where kc is the thermal conductivity coefficient.

“book” — 2005/9/30 — 15:44 — page 386 — #398✐
✐

✐
✐

✐
✐

✐
✐

386 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Figure 11.12: Snapshots from a shallow-water animation.

11.2.7 Shallow Water
So far, the discussion on Navier-Stokes equation have been for fluids fully enclosed in some solid volume.
In contrast, the Gerstner equation discussed in Section 11.1.2 is mainly concentrating on the water sur-
face. A connection is given through the shallow water equation [Saint-Venant, 1871, Haltiner et al., 1980,
Layton et al., 2002], and an example of a shallow-water computation is shown in Figure 11.12. The shal-
low water equation is much more powerful than the Gerstner equation, since it is dynamic and allows for
easy interaction between the fluid and boundaries. The shallow-water equation assumes an incompressible
and inviscid fluid, and they will be derived in the following.

Assume a column of fluid of height, h, and base area B. Then the total mass of fluid at the base over
the area B is

m = hBρ, (11.56)

which corresponds to a force on the base and in the direction of gravity as

f = mg. (11.57)

The pressure at the base is therefore

p =
f

B
= hgρ. (11.58)

Hence, the pressure term in (11.33a) simplifies as

∇p = gρ∇h. (11.59)

“book” — 2005/9/30 — 15:44 — page 387 — #399✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 387

For large-scale motions of the fluid, the vertical acceleration may be ignored, and the fluid is said to be in
hydrostatic equilibrium. This implies that Newton’s second law of motion simplifies to

ρ

(
∂

∂t
+ u ·∇

)
u = −gρ∇h + µ∇2u + F external, (11.60)

where only changes in the horizontal plane are nonzero, that is, the above equation reduces to the two,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −gρ

∂h

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F external

1 , (11.61a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −gρ

∂h

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ F external

2 , (11.61b)

for u = [u, v,w]T . The mass preservation in terms of the height is found by first integrating (11.30) by z,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (11.62a)

⇓
∫ h

0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
dz =

(
∂u

∂x
+
∂v

∂y

)
h + wh − w0 = 0. (11.62b)

Since w0 is the vertical speed at the bottom, this term must vanish. On the other hand, wh is the rate of
rise at the fluid surface, hence

w0 = 0, (11.63a)

wh =
dh

dt
. (11.63b)

Inserting into (11.62b) it is found that
(
∂u

∂x
+
∂v

∂y

)
h = −dh

dt
= −∂h

∂t
− u

∂h

∂x
− v

∂h

∂y
(11.64a)

⇓
(
∂u

∂x
+
∂v

∂y

)
h +

∂h

∂t
+ u

∂h

∂x
− v

∂h

∂y
= 0. (11.64b)

The shallow water equations are now obtained by using F external = [0, 0, g]T and assuming inviscid fluid,
that is, that

∥∥µ∇2u
∥∥

2
≪ ∥∇p∥

2
, hence

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂h

∂x,
(11.65a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂h

∂y
, (11.65b)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= −

(
∂u

∂x
+
∂v

∂y

)
h. (11.65c)

“book” — 2005/9/30 — 15:44 — page 388 — #400✐
✐

✐
✐

✐
✐

✐
✐

388 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

A simple finite difference using central approximations and zero flow at the borders may be used, how-
ever the implicit semi-Lagrangian time integration scheme as implemented in [Layton et al., 2002] is
superior in performance and stability and has been used to produce the animation shown in snapshots in
Figure 11.12.

The implicit semi-Lagrangian time implementation of the shallow water equations is based on the
Eulerian formulation given above, where the physical parameters are computed on the grid. However, the
velocity field is approximated, as if it had been calculated by following individual particles, which yields
a semi-Lagrangian formulation. That is, the substantial derivatives in (11.65) are replaced with ordinary
derivatives

du

dt
= −g

∂h

∂x
, (11.66a)

dv

dt
= −g

∂h

∂y
, (11.66b)

dh

dt
= −

(
∂u

∂x
+
∂v

∂y

)
h, (11.66c)

and the ordinary derivatives are estimated by tracking a hypothetical particle located at grid point (i, j)
using forward differences,

du

dt
=

u(t + ∆t)− ũ(t)

∆t
+ O(∆t), (11.67a)

dv

dt
=

v(t + ∆t)− ṽ(t)

∆t
+ O(∆t), (11.67b)

dh

dt
=

h(t + ∆t)− h̃(t)

∆t
+ O(∆t). (11.67c)

The functions ũ, ṽ, and h̃ are only given implicitly in the Eulerian formalism and have to be estimated.
Using the current values of u, v, and h at grid point (i, j), we assume that these are a good approximation
of their values in the previous step, and the departure point of the hypothetical particle at (i, j) is thus
assumed to be [

x̃(t−∆t)
ỹ(t−∆t)

]
=

[
x(t)
y(t)

]
−∆t

[
u(t)
v(t)

]
+ O(∆t). (11.68)

We may thus estimate the values of ũ, ṽ, and h̃ by bilinear interpolation, that is,

ũ = (1− a)(1 − b) u(⌊x̃⌋, ⌊ỹ⌋) + (1− a)b u(⌊x̃⌋, ⌈ỹ⌉)
+ ab u(⌈x̃⌉, ⌈ỹ⌉) + a(1− b) u(⌈x̃⌉, ⌊ỹ⌋), (11.69a)

ṽ = (1− a)(1 − b) v(⌊x̃⌋, ⌊ỹ⌋) + (1− a)b v(⌊x̃⌋, ⌈ỹ⌉)
+ ab v(⌈x̃⌉, ⌈ỹ⌉) + a(1− b) v(⌈x̃⌉, ⌊ỹ⌋), (11.69b)

h̃ = (1− a)(1 − b) h(⌊x̃⌋, ⌊ỹ⌋) + (1− a)b h(⌊x̃⌋, ⌈ỹ⌉)
+ ab h(⌈x̃⌉, ⌈ỹ⌉) + a(1 − b) h(⌈x̃⌉, ⌊ỹ⌋). (11.69c)

“book” — 2005/9/30 — 15:44 — page 389 — #401✐
✐

✐
✐

✐
✐

✐
✐

11.2 PHYSICS-BASED ANIMATION 389

where a = x̃ − ⌊x̃⌋ and b = ỹ − ⌊ỹ⌋, and ⌊·⌋ and ⌈·⌉ are the floor and ceiling operators respectively.
Discretizing (11.66) in time implicitly and using (11.67) gives,

u(t + ∆t)− ũ(t)

∆t
= −g

∂h(t + ∆t)

∂x
, (11.70a)

v(t + ∆t)− ṽ(t)

∆t
= −g

∂h(t + ∆t)

∂y
, (11.70b)

h(t + ∆t)− h̃(t)

∆t
= −

(
∂u(t + ∆t)

∂x
+
∂v(t + ∆t)

∂y

)
h(t). (11.70c)

To produce a single equation, we first calculate the derivative (11.70a) with respect to x,

∂

∂x

u(t + ∆t)− ũ(t)

∆t
= − ∂

∂x
g
∂h(t + ∆t)

∂x
, (11.71a)

⇓
∂u(t+∆t)

∂x − ∂ũ(t)
∂x

∆t
= −g

∂2h(t + ∆t)

∂x2
, (11.71b)

assuming that g is independent on x. This implies that

∂u(t + ∆t)

∂x
=
∂ũ(t)

∂x
−∆tg

∂2h(t + ∆t)

∂x2
. (11.72)

Likewise, we calculate the derivative of (11.70b) with respect to y to give,

∂

∂y

v(t + ∆t)− ṽ(t)

∆t
= − ∂

∂y
g
∂h(t + ∆t)

∂y
, (11.73a)

⇓
∂v(t+∆t)

∂y − ∂ṽ(t)
∂y

∆t
= −g

∂2h(t + ∆t)

∂y2
, (11.73b)

which implies that
∂v(t + ∆t)

∂y
=
∂ṽ(t)

∂y
−∆tg

∂2h(t + ∆t)

∂y2
. (11.74)

We can now eliminate u(t + ∆t) and v(t + ∆t) in (11.70c) using (11.72) and (11.74) as,

h(t + ∆t)− h̃(t)

∆t
= −

(
∂ũ(t)

∂x
−∆tg

∂2h(t + ∆t)

∂x2
+
∂ṽ(t)

∂y
−∆tg

∂2h(t + ∆t)

∂y2

)
h(t), (11.75)

and when we rearrange the terms we find,

h(t + ∆t) = h̃(t)−∆th(t)

(
∂ũ(t)

∂x
−∆tg

∂2h(t + ∆t)

∂x2
+
∂ṽ(t)

∂y
−∆tg

∂2h(t + ∆t)

∂y2

)
. (11.76)

“book” — 2005/9/30 — 15:44 — page 390 — #402✐
✐

✐
✐

✐
✐

✐
✐

390 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Finally, a numerical scheme is obtained by using first- and second-order central differences for the spatial
derivatives to give

h(x, y, t + ∆t) = h̃(x, y, t)

−∆th(x, y, t)
∂ũ(x, y, t)

∂x
+ (∆t)2h(x, y, t)g

∂2h(x, y, t + ∆t)

∂x2

−∆th(x, y, t)
∂ṽ(x, y, t)

∂y
+ (∆t)2h(x, y, t)g

∂2h(x, y, t + ∆t)

∂y2
, (11.77)

= h̃(x, y, t)

−∆th(x, y, t)
ũ(x + 1, y, t) − ũ(x + 1, y, t)

2∆x

+ (∆t)2h(x, y, t)g
h(x + 1, y, t + ∆t)− 2h(x, y, t + ∆t) + h(x− 1, y, t + ∆t)

∆x2

−∆th(x, y, t)
ṽ(x, y + 1, t)− ṽ(x, y − 1, t)

2∆y

+ (∆t)2h(x, y, t)g
h(x, y + 1, t + ∆t)− 2h(x, y, t + ∆t) + h(x, y − 1, t + ∆t)

∆y2
.

(11.78)

This equation is nonlinear since it contains products of h’s. Nevertheless, terms involving h(t + ∆t) may
be isolated,

h(x, y, t + ∆t)− (∆t)2h(x, y, t)g
h(x + 1, y, t + ∆t)− 2h(x, y, t + ∆t) + h(x− 1, y, t + ∆t)

∆x2

+ (∆t)2h(x, y, t)g
h(x, y + 1, t + ∆t)− 2h(x, y, t + ∆t) + h(x, y − 1, t + ∆t)

∆y2

= h̃(x, y, t) −∆th(x, y, t)
ũ(x + 1, y, t) − ũ(x + 1, y, t)

2∆x

−∆th(x, y, t)
ṽ(x, y + 1, t)− ṽ(x, y − 1, t)

2∆y
, (11.79)

and when assuming that h(x, y, t) is constant on the left-hand side the system may be solved as a linear
tridiagonal system for h(t + ∆t) based on h(t). The entire algorithm is shown in Figure 11.13. Although
the shallow water equations do not contain any diffusion terms, the waves will slowly diminish, since the
velocities are smoothed implicitly by the bilinear interpolation and the time integration performed in the
numerical scheme.

The boundary conditions are important for this method. It is our experience that setting the derivative
of h across the boundary to be zero, and setting u and v to be zero at the boundary, gives useful results.
This implies that the height-field is relatively unaffected by the boundary, while the velocity outside the
fluid is zero. More technically, the boundary condition on h is of the type von Neumann described in
Section 9.3.7, while the boundary condition on u and v is of the type Dirichlet described in Section 9.3.8.

“book” — 2005/9/30 — 15:44 — page 391 — #403✐
✐

✐
✐

✐
✐

✐
✐

11.3 PHYSICS-BASED ANIMATION 391

algorithm shallowWater(float h[][], int N, float T)
u = zeros(N,N)
v = zeros(N,N)
dt = 0.1
g=9.82
t=0

while(t < T)
t=t+dt // Perform a step in the Shallow-Water equation

// Estimate departure points using (11.68)
[xfrom,yfrom] = computeDeparturePoint(x,y)

// Estimate values of u,v,h at departure points using (11.69)
[hTilde, uTilde, vTilde] = EstimateDepartureState(h,u,v,xfrom,yfrom)

// Solve for h(t+dt) using (11.79)
h = ShallowWaterStep(h,u,v,g,hTilde,uTilde,vTilde)

// Update u(t+dt) and v(t+dt) using (11.67)
[u,v] = UpdateVelocities(h,u,v,g,uTilde,vTilde)

end
end algorithm

Figure 11.13: Pseudocode for the shallow water equation.

11.3 Smoothed Particle Hydrodynamics

In the Eulerian view of fluid dynamics, the fluid is considered a density and it is therefore complicated to
attribute notions of velocity and acceleration to it. In contrast, in the Lagrangian view, the fluid is consid-
ered a collection of particles, for which velocity and acceleration are natural descriptors, but in contrast,
parameters such as density, pressure, and temperature are more difficult to define. In the following, we will
describe smoothed particle hydrodynamics, which is a Lagrangian implementation of the Navier-Stokes
equations, where kernels are the central issues for estimating the parameters of density, pressure, and
temperature. This text is based on [Shao et al., 2003, Müller et al., 2003, Roy, 1995, Monaghan, 1992,
Monaghan, 1988].

Consider a fluid represented as a collection of particles. Each particle represents a certain volume V i,
and carries position, mass, and velocity. We will attribute each particle with other quantities such as fluid
density ρi = mi/Vi, pressure pi, and temperature Ti, however it does not make sense to talk of the density
of a particle, since this is a macroscopic quantity. These macroscopic quantities should therefore only be
obtained as weighted averages of the neighboring particles. Assuming the general case, we are given a
scalar quantity Aj for each particle j. Then in any position r we may interpolate this scalar quantity using

“book” — 2005/9/30 — 15:44 — page 392 — #404✐
✐

✐
✐

✐
✐

✐
✐

392 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Gaussian K(r) = 1
k exp

(
−

∥r∥2
2

2

)
.

B-Spline K(r) = 1
k

⎧
⎪⎨

⎪⎩

2
3 − ∥r∥

2
2
+ 1.5 ∥r∥5

2
, 0 ≤ ∥r∥

2
1,

(2−∥r∥
2
)3

6 , 1 ≤ ∥r∥
2

< 2

0, otherwise.

Q-spline K(r) = 1
k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(3− ∥r∥
2
)5 − 6(2− ∥r∥

2
)5 + 15(1 − ∥r∥

2
)5, 0 ≤ ∥r∥

2
< 1,

(3− ∥r∥
2
)5 − 6(2− ∥r∥

2
)5, 1 ≤ ∥r∥

2
< 2,

(3− ∥r∥
2
)5, 2 ≤ ∥r∥

2
< 3,

0 otherwise.

Table 11.2: Some smoothing kernels often used in smoothed particle hydrodynamics. For simplicity, we
have used W (r,σ) = K(r/σ), and k is the normalization constant enforcing (11.81c).

a spatial averaging function W as follows:

A(r) =
N∑

j=1

Aj
mj

ρj
W (r − rj,σ). (11.80)

The particular choice of mj

ρj
will be discussed below. Let us for the moment concentrate on the function

W . This function is known as an averaging function or smoothing kernel, and σ is some parameter relating
to its width. For the interpolation to be useful, we will have to require a number of constraints on W :

W (r,σ) ≥ 0, (11.81a)
W (r,σ) = W (−r,σ), (11.81b)

∫
W (r) dr = 1, (11.81c)

which in words are positivity, rotational symmetry, and unit integral. Positivity is necessary in order to
ensure that it is an averaging function. Rotational symmetry is often useful to ensure invariance w.r.t.
rotations of the coordinate system, and unit integral ensures that maxima and minima are not enhanced.

Many kernels have been proposed in the literature, some of the more popular are shown in Table 11.2.
In [Hongbin et al., 2005] these have been compared for stable fields. A stable field is a flow field that
does not vary with space and the comparison has been performed w.r.t. the kernel’s estimation error of
the function and first-order derivatives. It is concluded that the Gaussian and the Q-spline are the best
kernels, and since the Gaussian is the kernel introducing the least structure [Weickert et al., 1997], in the
remainder of this chapter, we will only consider the Gaussian kernel. The isotropic Gaussian kernel in n
dimensions is given by

G(r,σ) =
1

(2πσ2)
3
2

exp

(
−rT r

2σ2

)
, (11.82)

“book” — 2005/9/30 — 15:44 — page 393 — #405✐
✐

✐
✐

✐
✐

✐
✐

11.3 PHYSICS-BASED ANIMATION 393

-3 -2 -1 1 2 3

-0.2
-0.1

0.1
0.2
0.3
0.4

Figure 11.14: The Gaussian weighting function and its derivative.

using σ > 0. It may be verified, that the Gaussian fulfills the constraints in (11.81). The Gaussian kernel is
infinitely differentiable, and since it is the only term in (11.80) that depends directly on space, we conclude
that (11.80) is also infinitely differentiable. That is, the partial derivative of A w.r.t. space is given as

∂n

∂xα∂yβ∂zγ
A(r) =

N∑

j=1

ρj
mj

ρj

∂n

∂xα∂yβ∂zγ
G(r − rj ,σ) (11.83)

where n = α + β + γ. In Figure 11.14 is a graph of a one-dimensional Gaussian together with its first-
order derivative. The Gaussian is special in many respects: the Gaussian maximizes uncertainty when only
mean value and standard deviation are known [Shannon et al., 1949], and it is the kernel that introduces
the least structure when varying its scale, σ, [Weickert et al., 1997]. Since σ may be seen as proportional
to downsampling of the domain with a factor σ, we will refer to σ as the scale of the kernel and hence of
(11.80).

It should be noted that the Gaussian only fulfills (11.81c) on a continuous, infinite domain such as R3

or a 3D torus. However, approximations may be used for discrete, finite size domains by sampling the
Gaussian and renormalizing the Gaussian to enforce (11.81c). This will be assumed in the following.

Now let’s return to the factor mj

ρj
appearing in (11.80). By using ρj = mj

Vj
, where Vj is the volume

implicitly attributed to the particle j, we find that mj

ρj
= Vj . Furthermore, consider the interpolated density

function. Using (11.80) with ρ instead of A we find

ρ(r) =
N∑

j=1

ρj
mj

ρj
W (r − rj ,σ) (11.84a)

=
N∑

j=1

mjW (r − rj,σ). (11.84b)

For a finite domain of volume V and properly renormalized Gaussian, then W → 1
V as σ → ∞, hence

ρ = 1
V

∑N
j=1 mj , which is the correct density at infinite scale. This is certainly the correct density, when

“book” — 2005/9/30 — 15:44 — page 394 — #406✐
✐

✐
✐

✐
✐

✐
✐

394 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

viewing the system from infinitely afar. Likewise, when σ → 0 then G → δ(∥r − rj∥), where δ is the
Dirac delta function and defined as

δ(x) =

{
∞, if x = 0,
0, otherwise,

(11.85a)

∫
δ(x) = 1 (11.85b)

This implies that that the density is infinite at each particle, which although physically unrealistic, cor-
responds to assigning the mathematical mass mj to an infinitely small volume of space, which naturally
would result in infinite density. We thus conclude that for the density function, the coefficients mj

ρj
are

correct.
Now consider the more complicated example of an incompressible, homogeneous Navier-Stokes equa-

tion for an ideal gas and including a temperature gradient. In the Eulerian view, these equations are as
follows:

∂u

∂t
= −(u ·∇)u− 1

ρ
∇p + ν∇2u + F , (11.86a)

∇ · u = 0, (11.86b)
∂T

∂t
= λ∇2T −∇ · (Tu) (11.86c)

pV = nRT (11.86d)

However, smoothed particle hydrodynamics is based on the Lagrangian view, where particles are treated
rather than densities. Therefore, we should not use the normal derivative instead of the substantiate deriva-
tive, which simplifies (11.86a) to

aj = −1

ρ
∇p + ν∇2u + F , (11.87)

Further, and in contrast to (11.86b), conservation of mass is simply obtained by neither removing nor
introducing particles.

According to (11.80) and (11.83) the gradient of pressure is calculated as,

−∇p(r) = −
N∑

j=1

pj
mj

ρj
∇W (r − rj ,σ). (11.88)

First, note that due to (11.81b) W is an even function, which implies that the derivatives along each
axis is an even function, hence antisymmetric, and ∇W (0,σ) = 0. Nevertheless, (11.88) is not without
problems. Consider a two particle system distance dr = r1 − r2 apart with identical densities and mass,
ρ = ρ1 = ρ2 and m = m1 = m2. Using (11.88) we find the force from the pressure gradient at each

“book” — 2005/9/30 — 15:44 — page 395 — #407✐
✐

✐
✐

✐
✐

✐
✐

11.3 PHYSICS-BASED ANIMATION 395

particle to be

−∇p(r1) = −p2
m

ρ
∇W (dr,σ), (11.89a)

−∇p(r2) = −p1
m

ρ
∇W (−dr,σ) (11.89b)

= p1
m

ρ
∇W (dr,σ), (11.89c)

where we have used the antisymmetry of the gradient of W in (11.89c). Thus, when p1 ̸= p2, the
magnitude of the forces differ on each particle, and the system therefore does not fulfill Newton’s first
law.

To enforce Newton’s first law for the pressure gradient, a simple symmetrization has been suggested
[Müller et al., 2003], where the smoothed pressure gradient is calculated as

−∇p(ri) = −
N∑

j=1

pi + pj

2

mj

ρj
∇W (ri − rj,σ). (11.90)

For the two-particle system above, this results in a symmetric force on each particle

−∇p(r1) = −p1 + p2

2

m

ρ
∇W (dr,σ) (11.91a)

= ∇p(r2). (11.91b)

Similarly, the smoothed viscosity is also antisymmetric for two-particle systems

ν∇2v(r) = ν
N∑

j=1

vj
mj

ρj
∇2W (r − rj,σ). (11.92)

In this case, it has suggested to symmetrize by considering velocity differences [Müller et al., 2003]

ν∇2v(ri) = ν
N∑

j=1

(vj − vi)
mj

ρj
∇2W (r − rj,σ). (11.93)

Finally, the surface of a smoothed particle hydrodynamical system may be expressed as the surface
where the density (11.84) is given as some user-specified constant c as

S = {r | ρ(r) = c}, (11.94)

and the surface may be tessellated, for example, using marching cubes [Lorensen et al., 1987] or splatting
[Rusinkiewicz et al., 2000]. The gradient of the surface is useful for visualization, and it may be found as
the gradient of the density take where ρ = c, that is,

n = {∇ρ | ρ(r) = c}. (11.95)

“book” — 2005/9/30 — 15:44 — page 396 — #408✐
✐

✐
✐

✐
✐

✐
✐

396 CHAPTER 11. COMPUTATIONAL FLUID DYNAMICS

Finally, the smoothed particle hydrodynamics may be augmented with a surface tension term

F surface = τhn, (11.96)

where τ is the surface tension coefficient, and h is the mean curvature, which is readily obtained as
[Florack, 1997, p. 167],

h =
1

2

(ρ2
y + ρ2

z)ρxx + (ρ2
x + ρ2

z)ρyy + (ρ2
x + ρ2

y)ρzz − 2ρxρyρxy − 2ρxρzρxz − 2ρyρzρyz

(ρ2
x + ρ2

y + ρ2
z)

3/2
, (11.97)

taken at ρ = c.

“book” — 2005/9/30 — 15:44 — page 397 — #409✐
✐

✐
✐

✐
✐

✐
✐

Part IV

Collision Detection

397

“book” — 2005/9/30 — 15:44 — page 398 — #410✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 399 — #411✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 399

Find new�
 positions� Detect Collisions� Respond to�

Collisions�

C�B�A�

Figure III.1: The simulation loop.

During the course of physics-based animation, objects come in contact with each other. The contact
region must be resolved so that objects bounce or slide off each other or come to rest upon each other.
In order to simulate these effects it is necessary to infer details about the shape of the contact regions.
This is the aim of collision detection in physics-based animation. Collision detection is therefore a purely
geometrical problem.

The simulation loop is the simplest way of describing the interaction between a simulation method and
the collision detection. The simulation loop [Mirtich et al., 1995] illustrates the basic interaction between
collision detection and the simulation method as shown in Figure III.1.

First, the simulation method updates the position of the objects and/or their shape, then the collision
detection finds the regions of contact or penetration between the objects, and finally the regions of contact
are reacted to in a proper physical manner by the simulator.

In physics-based animation, collision detection often becomes the bottleneck, since a collision query
needs to be performed in every simulation step in order to determine contacting and colliding objects.
Animations can have many objects, all of which may have a complex geometry, such as polygonal soups of
several thousands facets, and it is therefore a computationally heavy burden to perform collision detection,
and it can be difficult to obtain real-time interaction.

Hubbard [Hubbard, 1993] was among the first to address these specific kinds of problems encountered
in physics-based animation. Initially, collision detection appears to be an O(n2) algorithm, since any two
triangles may be intersecting. Instead of running an expensive pairwise collision test between every pair
of objects, Hubbard introduced the concepts of broad-phase and narrow-phase collision detection still
widely in use today. The main idea is to reduce the computational load by performing a coarse test in
order to prune an unnecessary pair test. This is broad-phase collision detection.

The actual reduced pairwise testing is the narrow-phase collision detection. After the narrow-phase
collision detection, a postprocessing phase, called contact determination [Bouma et al., 1993], is usually
carried out. Its purpose is to take the output from the narrow-phase collision detection and turn it into
meaningful data for the simulation method. It is possible to further extend the collision detection with
a fourth phase, termed the spatial-temporal coherence phase. The spatial-temporal coherence phase is
essentially responsible for exploiting cached information and breaking down the computation in smaller
independent pieces [Erleben, 2005].

“book” — 2005/9/30 — 15:44 — page 400 — #412✐
✐

✐
✐

✐
✐

✐
✐

400 COLLISION DETECTION

Broad Phase�

Contact�
Determination�

Narrow Phase�

Figure III.2: The three phases of collision detection.

Part IV is dedicated to the three phases: broad-phase collision detection, narrow-phase collision de-
tection, and contact determination. These are depicted in Figure III.2. Due to space considerations we
will limit ourselves to treat only polygonal objects. Part IV is organized as follows: in Chapter 12 we will
introduce the reader to basic principles, and treat broad-phase collision detection in detail. In Chapter 13
we will introduce the reader to narrow-phase collision detection algorithms, and in Chapter 14 we discuss
contact determination. The remaining chapters, Chapter 15, Chapter 16, and Chapter 17 are dedicated to
specific treatment of various narrow-phase collision detection algorithms.

“book” — 2005/9/30 — 15:44 — page 401 — #413✐
✐

✐
✐

✐
✐

✐
✐

12

Broad-Phase Collision Detection

It is computationally very expensive to test two arbitrary objects for collision and to determine their contact
regions. As a simple example, imagine a scene consisting of two complex tentacle objects, like the ones
shown in Figure 12.1(a). In this case, each object has roughly 10,000 faces. A naïve approach would
be to clip every face from an object against the faces of the other object. Such an algorithm would, in
the worst-case, have a quadratic running time, O(m2), where m is number of faces; this brute approach
is therefore seldom used in practice. A better approach is to store an object in a spatial data structure
as described in Chapter 15, which often brings the worst-case time complexity down to that of doing a
complete traversal of a treelike structure, O(m log m). Even better would be to use a signed distance map
approach as described in Section 17.1, which would consist of looking up every vertex of one object in a
distance field of the other object. This requires O(m), assuming there is an upper bound on the number
of vertices in a single face, as often is the case for triangular meshes. In special cases for rigid and convex
objects an expected O(1) time complexity can be achieved. To summarize, for two arbitrary deforming
and moving tentacle objects with a total of m faces, the worst-case time complexity ranges from O(m) to
O(m2). Since m can become quite large, it is easily seen that in the general case, the pairwise testing will
be computationally intensive. Doing physics-based animation with only two objects is often not enough,
and even simple scenes often have a handful of objects, as shown in Figure 12.1(b). This is called the
n-body problem, n being the number of objects.

We can deal with the n-body problem by considering every possible pairwise test of the n objects in
the scene. In the worst-case this would require

n (n− 1)

2
≈ O(n2) (12.1)

pairwise tests. However, in practice it is rare that all objects are momentarily in contact with each other.
For instance, a single sphere would expect, on average, to be in contact with at most six other spheres in a
box full of rigid spheres, and in such a case we would expect only O(6n) pairwise test to result in actual
contact being detected.

Since objects in physics-based animation is prohibited from deeply interpenetrating each other, we
can, on average, expect to do better than O(n2) pairwise testing, and one of the goals of broad-phase
collision detection is to quickly prune expensive and unnecessary pairwise tests. It is important to observe
that broad-phase collision detection does not change the worst-case time complexity; nevertheless it does
ease the workload.

Figure 12.2 shows how a broad-phase collision detection algorithm can be used in a simple colli-
sion detection engine. In order for a broad-phase collision detection algorithm to be efficient, we stride
toward an algorithm capable of pruning an unnecessary pair test in constant time and with a very low
time constant. From computational geometry [Berg et al., 1997, O’Rourke, 1998], we know traditional
algorithms, such as: point location and range searching, as illustrated in Figure 12.3. These algorithms
efficiently solve problems, such as

401

“book” — 2005/9/30 — 15:44 — page 402 — #414✐
✐

✐
✐

✐
✐

✐
✐

402 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

(a) 2 objects, 11066 faces each (b) 20 objects = 190 pairs

Figure 12.1: Illustration showing why collision detection is computationally heavy.

algorithm collision detection(C:Contacts)
pairs = broad-phase()
clear C for each pair p in pairs do

proximity = narrow-phase(p)
contact = contact-determination(proximity)
add contact to C

next p
end algorithm

Figure 12.2: A simple collision detection engine.

• Which box contains a given point?

• Which boxes overlap a given box?

This seems to be useful for broad-phase collision detection algorithm. Therefore, an initial idea would be
to approximate each object by a box, and then apply the traditional computational geometry algorithm.
Unfortunately, such an approach is doomed to be inefficient in the context of physics-based animation,
since two important things have escaped our attention: we need to consider all possible pairs of overlap,
and these need to be considered as time progresses forward in a simulation. In conclusion, in broad-phase
collision detection we want to solve problems, such as

• Which boxes overlap each other?

• Which boxes overlap in the next iteration?

These are also known as multiple queries and all-pair problems.

“book” — 2005/9/30 — 15:44 — page 403 — #415✐
✐

✐
✐

✐
✐

✐
✐

12.1 PHYSICS-BASED ANIMATION 403

Trapezoid Decomposition�

(a) Point Location Data Structure: line end-points are
used to create horizontal lines, creating an

arrangement of trapezoids.

k-D Tree�

(b) Range Searching: a recursive subdivision of
space is done by splitting space into two halves at

every point.

Figure 12.3: Traditional algorithms from computational geometry.

In physics-based animation, objects move and deform over time, e.g., in Figure 12.4 frames from
a simple rigid body simulation are shown, and the broad-phase collision detection algorithm should be
run at each of these frames. To perform fast simulation, we need an algorithm with low complexity
and low constants, such as dynamic algorithms, which we’ll discuss later. In the following, we will
introduce the four principles used for constructing a dynamic algorithm, followed by an outline of three
popular algorithms for doing broad-phase collision detection: Exhaustive Search, also known as the All-
Pair Test, Coordinate Sorting, also known as Sweep and Prune, and Hierarchical Hash tables, also known
as Multilevel Grids.

12.1 The Four Principles for Dynamic Algorithms

To obtain fast broad-phase collision detection algorithms the following four principles are helpful:

• The Approximation Principle

• The Locality Principle

“book” — 2005/9/30 — 15:44 — page 404 — #416✐
✐

✐
✐

✐
✐

✐
✐

404 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

(a) 1.83 sec (b) 2.13 sec

(c) 2.43 sec (d) 2.71 sec

Figure 12.4: Frames of a rigid body simulation.

“book” — 2005/9/30 — 15:44 — page 405 — #417✐
✐

✐
✐

✐
✐

✐
✐

12.1 PHYSICS-BASED ANIMATION 405

Figure 12.5: The Approximation Principle. A complex tentacle geometry is approximated by an AABB,
a sphere, an OBB, and a cylinder.

• The Coherence Principle

• The Kinematic Principle

The Approximation Principle Complex geometry of an object can be approximated with a simpler
geometry, which is known as the Approximation Principle principle!approximation. Some frequently
used approximation geometries are:

• Spheres

• Axes Aligned Bounding Boxes (AABB)

• Oriented Bounding Boxes (OBB)

• Cylinders

These are illustrated in Figure 12.5. The choice of approximation geometry has an impact on the time
constants of a broad-phase algorithm, and the general rule of thumb is that more complex geometry means
higher time constants.

Here, complexity is used vaguely; the number of parameters needed to describe the size and location
of a volume is one definition: a sphere needs four parameters, an AABB needs six parameters, a cylin-
der needs eight parameters, and an OBB needs nine parameters. However, there are other definitions,
for example, describing the shape by the order of curved surfaces or the number of faces. The theory
of shape complexity is huge, and the interested reader may wish to investigate Stochastic Complexity
[Rissanen, 1989] and Fractal Dimensions [Mandelbrot, 2004, Halsey et al., 1986]

Typically, a scene consists of many objects in the order of 100–1000 and for a dynamic, real-time
animation, we will have to approximate many objects frequently. This indicates that it should be easy
and fast to find the approximating geometry. In contrast, more complex geometry means better pruning
of unnecessary pair tests. The choice of tradeoff is thus similar to the choice of volume type in bounding
volume hierarchies, as discussed in Chapter 15. However, we know of no work examining this trade-off
for broad-phase collision detection. We believe that simpler geometries will be preferable, since a more
complex test is done later by the narrow-phase collision detection. In the broad-phase collision detection
algorithms we have chosen to present in this book, we have decided to use AABBs because:

“book” — 2005/9/30 — 15:44 — page 406 — #418✐
✐

✐
✐

✐
✐

✐
✐

406 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

Figure 12.6: Sides of AABB are orthogonal to the coordinate frame, whose axes are shown with arrows.

• They are easy and fast to compute given a maximum distance from the center of mass of a body to
any point on the body surface

• They are fast to do an overlap test with

• They generalize to any dimension

This is also true for spheres. However, later we will present two algorithms: sweep and prune and hierar-
chical hash tables, that only work with AABBs. The exhaustive search algorithm, which we will present
can use any kind of volume. In practice, as a rule of thumb, one should choose the simplest volume that
can be used with the chosen algorithm and which best describes the shape of the objects. As an example,
if one chooses the exhaustive search algorithm and has sphere-like objects, then a sphere volume is going
to be the best choice. We will now go into the details of an AABB.

An AABB is a box whose sides are orthogonal to the world coordinate system (WCS) axes as illustrated
in Figure 12.6. Sometimes other coordinate frames are chosen, e.g., the model frame in which the object
was modeled, however, for the purpose of broad-phase collision detection, we will only consider the WCS.

We can represent an AABB by two points: the minimum point rmin and the maximum point rmax.
These are defined as the corners of the AABB with minimum and maximum coordinates, as illustrated in

“book” — 2005/9/30 — 15:44 — page 407 — #419✐
✐

✐
✐

✐
✐

✐
✐

12.1 PHYSICS-BASED ANIMATION 407

Figure 12.7: Minimum and maximum points of an AABB.

Figure 12.7.
A brute-force approach for computing the minimum and maximum point is to iterate over every face

vertex and determine the minimum and maximum coordinates as illustrated in Figure 12.8. This will result
in the tightest-fitting AABB with the best pruning capabilities. Unfortunately, this approach is infeasible
for objects with many vertices as the ones shown in Figure 12.1(a). The brute method is sometimes
the only alternative; for instance, if an object is deforming and there is no way to predict the bounds of
deformation. However, sometimes, faster algorithms that compute a looser fitting AABB can be used, e.g.,
if the objects are rigid bodies, then a looser fitting AABB method can be constructed by first determining
an enclosing sphere, and then finding the AABB enclosing the sphere.

In order to find an enclosing sphere, we will introduce a preprocessing step where we determine the
maximum distance, dmax, from the center of mass to the surface of an object, A

dmax = max
(
∥p∥

2
, p ∈ A

)
. (12.2)

This is illustrated in Figure 12.9. For a polyhedron object, dmax can be computed by iterating over all
the vertices of the object. For each vertex, the difference between its position and the center of mass is
computed, and then it is tested if the length of the difference vector exceeds the previously known distance
to the surface. The observant reader might object that this iteration is more expensive than the iteration
used to compute a tight AABB, but recall that the computation is done only once as a preprocessing step,
whereas the tight AABB computation is performed in each and every query. The pseudocode for this algo-
rithm is shown in Figure 12.10. For an object represented by splines or NURBS, a similar strategy could
be used, by exploiting the convex hull property of their control points. Implicit surface representations are
more difficult, but their surface could be sampled [Witkin et al., 1994].

“book” — 2005/9/30 — 15:44 — page 408 — #420✐
✐

✐
✐

✐
✐

✐
✐

408 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

algorithm bruteAABB(M: Mesh)
min = (infty, infty, infty)
max = min
for each vertex v in M do

if v.x < min.x then
min.x = v.x

end if
...
if v.x > max.x then
max.x = v.x

end if
...

next v
return min and max

end algorithm

Figure 12.8: Brute-force computation of an AABB.

Figure 12.9: Maximum radius to surface of an object.

“book” — 2005/9/30 — 15:44 — page 409 — #421✐
✐

✐
✐

✐
✐

✐
✐

12.1 PHYSICS-BASED ANIMATION 409

algorithm compute-dmax(O : Object)
V = vertices(O)
dmax = 0
for each v ∈ V do

if dmax < ∥v − rcm∥
2
then

dmax = ∥v − rcm∥
2

next v
end algorithm

Figure 12.10: Maximum radius computation for a rigid polyhedron object.

Knowing dmax, the minimum point is computed as

rmin = rcm −

⎡

⎣
dmax

dmax

dmax

⎤

⎦ , (12.3)

and the maximum point is given as

rmax = rcm +

⎡

⎣
dmax

dmax

dmax

⎤

⎦ . (12.4)

Observe that since dmax is precomputed once, finding the AABB is a constant time operation with ex-
tremely low constants, since it only requires a total of six simple floating-point operations. An example
AABB is shown in Figure 12.11; notice that although the AABB is not the best fit, it is very fast to
compute.

If we look at two boxes i and j along a coordinate axis of the WCS, then we can describe the boxes
on the axis by two intervals

[bi . . . ei] and [bj . . . ej], (12.5)

where
bi < ei and bj < ej. (12.6)

These AABB intervals are illustrated in Figure 12.12. Observe that the intervals can be found by projecting
the minimum point and the maximum point, i.e., the b and e-values onto the axis in question. The bs and
es are also sometimes called the endpoints. Clearly if box i and box j overlap along a given axis, then we
must have

bj < bi ≤ ej or bi ≤ bj < ei. (12.7)

If they are separated, then we must have

ei < bj or ej < bi. (12.8)

Exactly one of these four conditions is always true, and the other three are always false, as shown in
Figure 12.13. Furthermore, if, and only if, their intervals along all coordinates axes overlap, only then

“book” — 2005/9/30 — 15:44 — page 410 — #422✐
✐

✐
✐

✐
✐

✐
✐

410 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

Figure 12.11: An example of an AABB computed by the fast computation method.

will the two AABBs overlap. As a consequence, in 3 dimensions the problem has been reduced to three
one-dimensional problems: we simply count the number of overlaps along each of the WCS axes. If the
number of overlapping axes is equal to three, then we conclude that the two AABBs overlap. Figure 12.14
shows the pseudocode for this overlap test. In contrast, for objects approximated with spheres, a distance
computation in 3D space would be needed. Thus, in the case of spheres, one cannot exploit the property
of dimension reduction of the AABBs. Comparing the actual costs of sphere testing and AABB testing,
using squared distances spheres required 4 multiplications, 6 additions, and 1 comparison, where AABBs
are handled with only 12 comparisons and 3 logical tests. Thus, spheres are marginally more expensive
when considering just a single pairwise test.

The Locality Principle Another key observation for broad-phase collision detection algorithms is that
only close neighbors need to be considered when determining overlaps between the approximating geome-
tries. This is termed the Locality Principle. This principle essentially states that objects lying sufficiently
far away from each other do not need to be considered as overlapping and can easily be ignored.

The idea is perhaps best illustrated by the example as shown in Figure 12.15. Here 28 objects are
placed in a world, posing (28 · 27)/2 = 378 possible pair test. Many of these are trivially superfluous, for
instance, the leftmost object is so far away from the rightmost object that it would be unnecessary to do
a pairwise test between the two objects. If we draw arrows between the center of masses of the objects,
which are close neighbors, then the potential set of pairwise tests drop to only 42 in the present case,

“book” — 2005/9/30 — 15:44 — page 411 — #423✐
✐

✐
✐

✐
✐

✐
✐

12.1 PHYSICS-BASED ANIMATION 411

Figure 12.12: AABB intervals along a coordinate axis.

axe�

i�

b�i� e�i�

j�

b�j� e�j�

axe�

i�

b�i� e�i�

j�

b�j� e�j�
axe�

i�

b�i� e�i�

j�

b�j� e�j�

axe�

i�

b�i� e�i�

j�

b�j� e�j�

Figure 12.13: Possible conditions for detecting interval overlap of two AABBs.

“book” — 2005/9/30 — 15:44 — page 412 — #424✐
✐

✐
✐

✐
✐

✐
✐

412 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

algorithm AABB-overlap(i, j : AABB)
if (bjx < bix ≤ ejx or bix ≤ bjx < eix) and

(bjy < biy ≤ ejy or biy ≤ bjy < eiy) and
(bjz < biz ≤ ejz or biz ≤ bjz < eiz) then

return true
return false

end algorithm

Figure 12.14: Pseudocode for overlap test between two AABBs.

28 objects = 378 pairs ~ 42 by locality�

Figure 12.15: The Locality Principle. Total number of object pairs is far greater than the number of edges
between nearby objects. These indicate possible object pairs where it make sense to test for collision.

yielding a speedup factor of 378/42 = 9.
In order to exploit the locality principle to its fullest, one needs to come up with a way to deter-

mine when things are sufficiently far away. Computing a generalized Voronoi diagram [O’Rourke, 1998,
Berg et al., 1997] from scratch in order to determine the close neighbors would be much too expensive;
therefore, other methods are needed. In Section 12.3 and Section 12.4 we will show two examples where
coordinate sorting and gridding is used to exploit the locality principle.

The Coherence Principle The third principle is the Coherence Principle, and by coherence we mean a
measure of how much things change. Low coherence would indicate a configuration, where objects are
nearly teleporting around in the world, and high coherence would be the exact opposite, where objects
move smoothly around.

The rigid bodies in a rigid body simulator have high coherence, if the time-step is not too big. In
Figure 12.16, an example is shown where a number of rigid bodies is falling under gravity with a time-

“book” — 2005/9/30 — 15:44 — page 413 — #425✐
✐

✐
✐

✐
✐

✐
✐

12.2 PHYSICS-BASED ANIMATION 413

step of 0.3 seconds. Observe how object positions and orientations only change a little bit from frame to
frame. This is an example of coherence.

Coherence comes in many flavors, four different kinds of coherence are usually considered in the
context of physics-based animation. They are:

• Spatial Coherence

• Geometric Coherence

• Frame Coherence

• Temporal Coherence

The first two address the shape and position of objects in the world, where high coherence would indicate
that objects are placed nicely. In the following, we will think of this as a measure of how nicely objects are
aligned, and how much overlap they pose. The last two kinds of coherence are indications of how objects
evolve, that is, how they move and deform as the simulation proceeds.

High coherence indicates that we would have to compute almost the exact same result in the next
iteration of our simulation method, which suggests that we can reuse previously computed results from
the last iteration to obtain the correct results for the current iteration. This is what we mean by the phrase
dynamic algorithm, not to be confused with dynamic programming.

The Kinematics Principle When we can benefit from knowing something about the objects trajectory
in the near future, we say that we exploit the Kinematics Principle, which is the fourth principle. This
comes in handy when proximity information about near future colliding objects is needed. Figure 12.17
shows an example of where knowledge of the trajectory could be used to predict a collision between the
red sphere and the green box and between the red and blue spheres. The knowledge could be used to
minimize the number of times we actually have to stop the simulation and do collision detection. In the
case of the example, collision detection only needs to be performed twice: once at each time of impact.
This is, for instance, useful in order to obtain accurate information for computing Time of Impact (TOI)
estimates. Another example of usage is when four-dimensional collision detection is used, such as space-
time bounds (S-bounds).

12.2 Exhaustive Search
An exhaustive search is the brute-force approach for doing broad-phase collision detection. Brute-force is
testing the AABBs of every possible object pair against each other. For this reason, it is also commonly
called the all-pair test. The time complexity is therefore

(
n
2

)
=

n(n− 1)

2
≈ O(n2). (12.9)

A pseudocode version of the algorithm is presented in Figure 12.18 and as can be seen from the pseu-
docode, exhaustive search only exploits the principle of approximation. At first this algorithm might seem
to be a poor choice due to its quadratic running time. However, it does pose some nice features:

“book” — 2005/9/30 — 15:44 — page 414 — #426✐
✐

✐
✐

✐
✐

✐
✐

414 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

(a) (b)

(c) (d)

Figure 12.16: High coherence in a rigid body simulation. Even though objects have moved a lot as seen
globally, they are more or less still placed similarly as seen relative with respect to each other.

“book” — 2005/9/30 — 15:44 — page 415 — #427✐
✐

✐
✐

✐
✐

✐
✐

12.3 PHYSICS-BASED ANIMATION 415

Figure 12.17: The Kinematics Principle. Considering future trajectories of the spheres, it is possible to
predict possible future collisions.

algorithm exhaustive-search(B : bodies)
for each b ∈ B do

compute AABB of b
next b

for each (b, b′)b̸=b′ ∈ B do
if AABB(b) overlap AABB(b′) then
report overlap of (b, b′)

next (b, b′)
end algorithm

Figure 12.18: Pseudocode for the exhaustive search algorithm.

• It is simple and fast to implement

• It has extremely low time constants (when using AABBs)

• It is applicable to any kind of bounding volume geometry

This means that it is practical for small-sized configurations and its simplicity further ensures that it is
unlikely to be the point of failure. Other more advanced algorithms require a bit of hard work to implement
and debug. For configurations up to sizes of order 10 − 100 objects it is our experience that Exhaustive
Search outperforms both Sweep and Prune and Hierarchical Hash tables, as discussed in the following.

“book” — 2005/9/30 — 15:44 — page 416 — #428✐
✐

✐
✐

✐
✐

✐
✐

416 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

1�
3�

2�

5�

6�

4�

7�

axe�b�1� b�2� e�1�b�3�e�2� b�4�e�3� e�4� b�6� b�5�e�6� e�5�b�7� e�7�

Figure 12.19: AABBs on a single coordinate axis.

12.3 Sweep and Prune
It is possible to obtain a far better time complexity than the Exhaustive Search algorithm. In this section
we will outline an algorithm based on a sweep line approach: it has a linear expected running time and is
called Sweep and Prune or coordinate sorting [Baraff et al., 2003a, Lin et al., 1994].

We will begin with introducing the algorithm in the 1D case, where the AABBs simply are bounded
intervals on the coordinate axis. The situation is depicted in Figure 12.19. First, all the interval endpoints
are sorted in increasing order along the coordinate axis, assuming for now that no two endpoints have
the same coordinate value. The idea is to let a sweep line go from minus infinity to infinity along the
coordinate axis, and update a status set, S, with every endpoint encountered. It is the purpose of this
status set to keep indices of those objects whose interval is currently crossing the sweep line as illustrated
in Figure 12.20. The update rule of the status set when the sweep line hits an interval endpoint is:

• If the sweep-line hits a starting endpoint, i.e., bi, then object i is added to the status set S.

• If the sweep-line hits an ending endpoint, i.e., ei, then object i is removed from the status set S.

It is immediately observed that the status set indicates which AABBs overlap along the coordinate axis,
and we can report all overlapping AABBs on the coordinate axis by extending the two update rules with
an extra auxiliary rule:

• When object i is about to be added to S, we report overlaps between i and all other objects currently
in S.

The extension to higher dimensions is straightforward. We simply perform a sweep along each coor-
dinate axis; afterward we count the number of times the same overlap has been seen. If we count the

“book” — 2005/9/30 — 15:44 — page 417 — #429✐
✐

✐
✐

✐
✐

✐
✐

12.3 PHYSICS-BASED ANIMATION 417

1�
3�

2�

5�

6�

4�

7�

axe�b�1� b�2� e�1�b�3�e�2� b�4�e�3� e�4� b�6� b�5�e�6� e�5�b�7� e�7�

S={b�1�,b�2�}�

Sweep Line�

Figure 12.20: The sweep line and the status set.

same number of overlaps as the number of dimensions, we immediately know that the two corresponding
AABBs overlap. This implies that all overlaps found on one coordinate axis should be matched against
all overlaps found on the other axis, which is a quadratic algorithm in the number of overlaps. However,
by introducing a counter table and modifying the update rules of the sweep-line slightly, we can get rid of
the unpleasant quadratic time matching. The modification is as follows (for three dimensions):

• Use a table of counters, where each counter keeps track of the number of coordinate axes two
AABBs i and j overlap on.

• When body i is about to be added to S we increment the counters between i and every other body
currently in S.

• If a counter between two bodies reaches the value 3, then we report an overlap between the two
bodies.

We now have Sweep and Prune in its most basic and pure form. If the endpoints are sorted along the
coordinate axis, it runs in linear time in the number of AABBs, which is very attractive. However, there
is nothing that guarantees that the endpoints will be sorted upon invocation of the Sweep and Prune
algorithm, and the algorithm therefore requires a presorting along all coordinate axes indicating that the
computational complexity is O(n log n) [Cormen et al., 1994], where n is the number of AABBs. This
is still better than the quadratic O(n2) running time of Exhaustive Search, but we can do even better by
taking a close look at the sorting of the endpoints.

Sweep and Prune requires that a list is sorted in increasing order. There are several sorting algorithms
[Cormen et al., 1994] available for doing this: quicksort, bubblesort, insertion sort, etc. We will use
insertion sort; later it will become clear why. For now, we will summarize how insertion sort works. For
more details, we refer to [Cormen et al., 1994]:

• Insertion sort scans the unsorted list from left to right

• When a number is encountered, which is smaller than its leftmost neighbor, then insertion sort:

“book” — 2005/9/30 — 15:44 — page 418 — #430✐
✐

✐
✐

✐
✐

✐
✐

418 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

4�1� 2� 3� 5� 6�

scan� mark�

(a) First mark

2�1� 4� 3� 5� 6�

mark�swap�

(b) Swap

2�1� 4� 3� 5� 6�

scan� mark�

(c) Next mark

2�1� 3� 4� 5� 6�

mark�swap�

(d) Second swap

Figure 12.21: Example of insertion sort.

1. Marks the position to the right of the number in the list.

2. The number is then repeatedly swapped with its leftmost neighbor until the number is greater
than or equal to the leftmost neighbor.

3. The original scan is continued from the marked position.

An example of how insertion works is shown in Figure 12.21. The worst-case time complexity of insertion
sort is O(n2). This occurs if numbers in the initial unsorted list are sorted in decreasing order from left to
right, in which case every number encountered in the scan is swapped to the front of the list, that is,

0 + 1 + 2 + 3 + · · · + (n− 1)︸ ︷︷ ︸
n- terms

=
n(n− 1)

2
≈ O(n2). (12.10)

If the list is nearly sorted in increasing order then insertion sort behaves much better. Only a few numbers
need to be swapped and they need not be swapped a very long way. Therefore, in this case, insertion sort
runs in expected O(n) time. This indicates that depending on how badly sorted the endpoints are, we can
expect Sweep and Prune to have a linear time complexity and a quadratic time complexity as lower and
upper limits.

Fortunately in the context of physics-based animation, we can expect a high coherence, which means
that the intervals of the AABBs along the coordinate axis only change slightly from invocation to invo-
cation of the Sweep and Prune algorithm. If we save the sorted intervals from the previous invocation,
and use these for the input to the current invocation of Sweep and Prune algorithm, then high coherence
implies that insertion sort can sort them in linear time, O(n). We have now found a broad-phase collision
detection algorithm which runs in expected O(n) time.

Nevertheless, there are still situations where Sweep and Prune has a quadratic running time as shown
in Figure 12.22. Here a 2D rigid body simulation is shown, where five rigid balls are falling under gravity
along the y-axis and colliding with a fixed object. The balls are only slightly displaced, such that at the
frame after the impact, their order along the y-axis is reversed. In this case, insertion sort is passed a list
of interval endpoints along the y-axis, which is sorted in reverse order. Luckily, in our experience this is
more a theoretical issue than a practical issue.

It is possible to optimize the Sweep and Prune algorithm even more. Inspired by how the interval
endpoint list was reused from the previous invocation of the algorithm, we will now try to reuse the list of
reported overlaps from the previous invocation as well. For this purpose we will extend our counter table

“book” — 2005/9/30 — 15:44 — page 419 — #431✐
✐

✐
✐

✐
✐

✐
✐

12.4 PHYSICS-BASED ANIMATION 419

1� 2� 3� 4� 5�
5�4�3�2�1�

t� t+dt�

x� x�

y�y�

Figure 12.22: Bad case for the Sweep and Prune algorithm resulting in quadratic running time.

to also include a pointer for a counter into the list of reported overlaps, if an overlap is reported for that
counter. Now let us examine what happens during the swapping operation of insertion sort.

• Imagine insertion sort is swapping bi to the left of ej , that is previously ej < bi but now ej > bi.
This indicates that i and j are now overlapping, so their counter is incremented and if its value is
three, an overlap is reported.

• The opposite might also occur if ej is swapped to the left of bi, meaning that i and j no longer
overlap. This time the counter between i and j is decremented and if a reported overlap exists, then
it is removed in constant time by using the overlap pointer between i and j.

• If insertion sort tries to swap bi and bj , then we do nothing. Similarly, we do nothing if it tries to
swap ei and ej .

With these modifications, we no longer need to have the sweep line and the status set represented explicitly.
The update actions of the sweep line is performed implicitly, when insertion sort performs a swap between
two endpoints. The pseudocode for sorting one coordinate axis in the Sweep and Prune algorithm can be
seen in Figure 12.23.

So far we have assumed that no two endpoints have the same coordinate value along a given coordinate
axis. If this happens, the algorithm will not report an overlap. In practice this can have fatal consequences.
A missing overlap means that no contacts are detected further down the collision detection pipeline, thus
the simulator might fail to react on a touching contact. An example of such a simulation is shown in
Figure 12.24. We will now deal with this degenerate case: if we apply the rule that b’s are to come before
e’s, then the inner while loop in Figure 12.23 becomes

While scan < left or (scan = left and left=e and scan=b) Do

The implication of this is that touching AABBs will also be reported. This is useful, since the surface of
the enclosing object could be touching the surface of the enclosing AABB.

“book” — 2005/9/30 — 15:44 — page 420 — #432✐
✐

✐
✐

✐
✐

✐
✐

420 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

algorithm coordinate-sort-axis(L : List(endpoints))
scan = head(L)
while L unsorted do

mark = right(scan),left = left(scan)
while scan < left do
if scan = bi and left = ej then

increment counter(i, j)
if counter(i, j)=3 then

report overlap(i, j)
else if scan = ej and left = bi then

decrement counter(i, j)
if counter(i, j)=2 then

remove overlap(i, j)
end if
scan = left,left = left(scan)

end while
scan = mark

end while
end algorithm

Figure 12.23: Sweep and Prune pseudocode.

Figure 12.24: Illustration that missing detection of overlaps in the broad-phase collision detection algo-
rithm can result in bad simulation behavior. A resting stack of rigid spheres in a gravitational field with
their AABBs superimposed. Simulation frames are shown from left to right, reported overlaps and detec-
tion of contacts only occur at places marked with an arrow. Observe that penetrations occur due to the
lack of collision resolving.

“book” — 2005/9/30 — 15:44 — page 421 — #433✐
✐

✐
✐

✐
✐

✐
✐

12.4 PHYSICS-BASED ANIMATION 421

x�

y�

Single 2D Level Grid�
resolution�

Figure 12.25: A single-level grid.

12.4 Hierarchical Hash Tables
Another approach to broad-phase collision detection is to use a spatial data structure, such as a rectilinear
grid. Mirtich [Mirtich, 1996] introduced a multilevel gridding algorithm, known as hierarchical hash
tables, which will be explained in this section.

Consider the simulated world divided into a rectilinear grid using the same size grid spacing along all
coordinate axis. Such a spatial subdivision is called a tiling. The bounded region, where the simulation
is expected to take place, can be represented by a minimum and maximum point in a manner similar to
an AABB. A resolution of the cells can then be given as the edge size of the grid cells as illustrated in
Figure 12.25 for a 2D example. If we have a tiling and a given cell resolution, ρ, every cell can be uniquely
identified by a triplet (α,β, γ) in 3D. The triplet consist of set of order indices indicating the order of a
cell along the respective coordinate axis. The idea of triplets is illustrated for the 2D case in Figure 12.26.
These triplets uniquely identify a given cell in the tiling and can be used as hash keys. Given an arbitrary
point, p, we can find the triplet of the enclosing cell in the tiling as

τ(p, ρ) =

(⌊
px − tx

ρ

⌋
,

⌊
py − ty

ρ

⌋
,

⌊
pz − tz

ρ

⌋)
= (α,β, γ) . (12.11)

Here t is the minimum point of the minimum cell.
Using (12.11), all cells in the tiling that overlap with a given AABB are easily found by identifying the

triplets spanned by the mapping of the minimum, pmin, and maximum point, pmax, of the given AABB,
that is, all triplets satisfying the relation

τ(pmin, ρ) ≤ (α,β, γ) ≤ τ(pmax, ρ). (12.12)

The idea is illustrated in the 2D case on Figure 12.27. If every cell can store the AABBs that it overlaps

“book” — 2005/9/30 — 15:44 — page 422 — #434✐
✐

✐
✐

✐
✐

✐
✐

422 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

x�

y�

Single 2D Level Grid�

(1,2)�

(2,1)�

(5,5)�

Figure 12.26: Example of triplets in 2D.

x�

y�

AABB in Single 2D Level Grid�

min�

max�

Figure 12.27: Triplets spanned by AABB.

“book” — 2005/9/30 — 15:44 — page 423 — #435✐
✐

✐
✐

✐
✐

✐
✐

12.4 PHYSICS-BASED ANIMATION 423

algorithm store(b : AABB)
for each c where τ (pmin, ρ) ≤ c ≤ τ (pmax, ρ) do

for each b′ ∈ c do
counter(b, b′) = counter(b, b′) +1
if counter(b, b′)=1 then

report overlap(b, b′)
next b′

add b to c
next c

end algorithm

Figure 12.28: Pseudocode for storing AABB in single-level grid.

with, then we have a data structure we can use for broad-phase collision detection. All we need is a table
of counters, where each counter remembers the number of cells where two AABBs, i and j, both were
mapped to.

If the counter has value zero, then no cell exists where both i and j were mapped to. If a counter has
value one, then there exists exactly one cell, where both i and j have been mapped to. If the counter has
value two, then there exists two different cells, and so on.

In the Exhaustive Search and Sweep and Prune algorithms we required the actual AABBs to overlap;
this is not necessary for gridding algorithms. Sometimes a gridding algorithm reports AABBs as being
overlapping, if there exists at least one cell in the tiling where they both are mapped to. In this case,
overlapping means that the approximate geometry (i.e., the AABBs) of the objects lie sufficiently close.
Of course one could extend such a gridding algorithm with an extra test, which examines for overlap with
approximate geometry. Therefore, in the remainder of this section we say overlapping whenever we mean
that there exists a cell where two AABBs are both mapped to.

This indicates a way to report AABBs lying sufficiently close to each other: when an AABB is mapped
into the tiling, the counters between the newly added AABB and those already stored in a cell is incre-
mented by one. If during this operation we encounter a counter that is incremented to the value one, then
it is the first time this overlap between the two AABBs is seen. The pseudocode for storing an AABB in
the grid is shown in Figure 12.28.

The next time the single-level gridding algorithm is invoked we must start by clearing the tiling, which
may be done by removing AABB in a similar way to how they were added. The difference is that this
time the counters are decremented, and when they reach a value of zero any reported overlap is removed.
The pseudocode for the removal operation is shown in Figure 12.29.

With the remove and store operations, we are now capable of using the tiling for doing broad-phase
collision detection, simply by iterating over all AABBs. For each AABB, we first remove it from the
tiling using its position from the last invocation. Then we update the position of the AABB for the current
invocation before finally storing the AABB in the tiling. The pseudocode for the algorithm is shown in
Figure 12.30. Notice that we need to know both the old and new position of the AABBs.

It is possible to apply some optimization to the gridding algorithm just described. Clearly a lot of
remapping is performed by the repeated removal and addition of an AABB. If we have high coherence, it

“book” — 2005/9/30 — 15:44 — page 424 — #436✐
✐

✐
✐

✐
✐

✐
✐

424 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

algorithm remove(b : AABB)
for each c where τ (pmin, ρ) ≤ c ≤ τ (pmax, ρ) do

remove b from c
for each b′ ∈ c do
counter(b, b′) = counter(b, b′) - 1
if counter(b, b′)=0 then

remove reported overlapb, b′)
next b′

next c
end algorithm

Figure 12.29: Pseudocode for removing AABB from a single-level grid.

algorithm single-level(B : Bodies)
for each b ∈ B do

remove(AABB(b))
compute new position of b
store(AABB(b))

next b
end algorithm

Figure 12.30: Single-level gridding algorithm for broad-phase collision detection.

is very likely that an AABB is remapped to the same cells in the tiling, and unnecessary computations are
thus taking place. We can remedy this by exploiting cached information from the previous invocation of
the gridding algorithm. If we cache the location of the minimum and maximum points of the AABB from
the previous invocation, then we can perform a test in the current invocation to see whether the current
positions of the minimum and maximum points of the AABB maps to the same triplets as in the previous
invocation. We only need to remap an AABB if the minimum and maximum points map to different triples
than they did in the previous invocation.

The simple gridding algorithm we have outlined so far, is not without problems. If ρ is too big, then
the algorithm is no better than Exhaustive Search, since every AABB will be mapped to the same triplet. If
ρ is too small, then we will spend a lot of time on mapping AABBs into the tiling. To avoid this we would
like the cells to be of the same size as the AABBs of the objects. However, the size of the objects can vary
greatly, so it is impossible to decide a good value of ρ that would work for all objects. In conclusion, the
single-level gridding algorithm is a good choice when all objects are of similar size.

For objects varying greatly in size we can use multiple levels in the gridding algorithm. Assume that
we have multiple tilings, for instance, m different tilings, each with its own resolution, and assume that
the i’th tiling has the resolution denoted by ρi. Furthermore, assume that all the tilings can be sorted
according to their resolutions, such that

0 < ρm < ρm−1 < ρm−1 < · · · < ρ2 < ρ1. (12.13)

“book” — 2005/9/30 — 15:44 — page 425 — #437✐
✐

✐
✐

✐
✐

✐
✐

12.4 PHYSICS-BASED ANIMATION 425

We define the size of an AABB, B to mean

size(B) = max
(
rmaxx − rminx , rmaxy − rminy , rmaxz − rminz

)
. (12.14)

We would like to have some means to describe how well B fits into a given tiling, say the j’th tiling. In
order to do so we will introduce two constants α and β as lower and upper bound of the fitness. We require
that there exist a resolution ρj , such that

α ≤ size(B)

ρj
≤ β and 0 < α < 1 ≤ β, (12.15)

is fulfilled. By picking specific values for α and β, we can control our sense of fitness. If α = 0.5 and
β = 1.0 in (12.15), then it means that B must have a length that is from 0.5 to 1.0 times the width of the
cells at resolution ρj .

Naturally, not all our resolutions will fulfill this constraint for a given AABB, and there might even be
more than one resolution fulfilling the constraint. In order to define a unique best-fitting resolution for a
given AABB, we pick the largest resolution fulfilling the constraint. That is, for B we have

res(B) = max

(
ρk | α ≤ size(B)

ρk
≤ β

)
, (12.16)

which is the maximum value of ρ fulfilling the constraint. The largest resolution is picked such that if
B was mapped into the corresponding tiling, then we will map B to fewer cells than if we had picked a
smaller resolution fulfilling the constraint. The semantics can be quite confusing, however, we adopt the
convention that

• Higher resolution (larger value of j in ρj) means smaller cell size (i.e. smaller ρ value)

• Lower resolution (smaller value of j in ρj) means larger cell size (i.e. larger ρ value)

Figure 12.31 shows a 1D example of the definitions introduced so far. In the example, tilings of different
resolutions are drawn on top of each other. The thick lines indicate the ρ-values of the tilings. When we
work with multiple levels, we will store (and remove) an AABB in all levels with a resolution that is lower
(having larger ρ-value) than or equal to the resolution of the AABB itself. Figure 12.32 illustrates how
an AABB, A, is mapped into the 1D multilevel tiling shown in Figure 12.31. The filled box indicates the
resolution of A, and as can be seen, A has the resolution of the tiling with a cell size similar to the size of
A.

The reporting of overlaps is handled a little differently from the case of the single-level algorithm
introduced previously: the counter between two AABBs, i and j, is only updated at resolution k if

ρk = max res(bi), res(bj). (12.17)

This condition essentially masks out the tiling having the best resolution for detecting an overlap between
i and j. The condition should be obvious, since we cannot use a minimum resolution value because only
one of the AABBs is mapped at this level. The maximum resolution value is the first level, where both

“book” — 2005/9/30 — 15:44 — page 426 — #438✐
✐

✐
✐

✐
✐

✐
✐

426 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

Low�
resolution�

High�
resolution�

Resolution�
value�

Figure 12.31: 1D multilevel gridding, showing correspondence between resolution definitions.

 A� A�

A�

A�

Resolution�
value�

res(A)=�
A�

Figure 12.32: 1D multilevel gridding, showing the mapping of an AABB
.

“book” — 2005/9/30 — 15:44 — page 427 — #439✐
✐

✐
✐

✐
✐

✐
✐

12.5 PHYSICS-BASED ANIMATION 427

AABBs are mapped into, and therefore the level with the best resolution for detecting overlap between the
two AABBs.

Figure 12.33(a) shows an example where two AABBs, A and B, are mapped into the multilevel grid.
In Figure 12.33(b) is another AABB, C , about to be mapped into the tilings. We leave it to the reader as an
exercise to determine the proper counter values. The pseudocode for the multilevel gridding algorithm is
shown in Figure 12.34, the multilevel store operation is shown in Figure 12.35, and the multilevel remove
operation is shown in Figure 12.36. The time complexity for updating the multilevel gridding algorithm
is linear, O(n), since the number of levels are limited and the α-β constraint equation gives an upper limit
on the number of cells that overlap an AABB, such that it takes constant time to store or remove an AABB
from the multilevel grid. Since we have n AABBs, it must take linear time to update the multilevel grid.
However, the total time complexity depends on the maximum number of AABBs mapped into a single
cell. If we denote this number by m, then the time complexity of the entire algorithm is O(n + m2). In
practice, the number of tilings and their resolutions, together with the α and β constants are chosen such
that m2 ≪ n, and such that the quadratic term can be ignored.

There are some additional benefits of using multilevel gridding. The time complexity is independent
on the configuration. We saw in the case of Sweep and Prune, that for some configurations, one could
expect the worst-case quadratic time complexity. The multilevel gridding algorithm does not suffer from
this weakness. Another advantage is that coherence does not change the time complexity, it only reduces
the workload, while Sweep and Prune was highly dependent on high coherence in order to perform well.

There are drawbacks, however, of this algorithm as well: in order for multilevel gridding to be efficient
in practice, one needs a good hash table implementation, which is not as common as list and tree data
structures. The worst drawback is that the algorithm may require a huge memory usage, in particular
if parameters are chosen poorly. In comparison, Exhaustive Search does not use any memory at all,
and the Sweep and Prune algorithm only needs the counter table, which in worst-case is O(n2), but in
practice, often is O(n), and the interval endpoint lists, which is O(n). The multilevel gridding algorithm
also needs a counter table as Sweep and Prune, however the multiple tilings can consume quite a lot of
memory: letting d be the dimension, m the number of levels, and ρ the maximum resolution value, then
the memory consumption of this spatial subdivision scale in the worst-case is O(md

ρ). In our experience,
multilevel gridding is competitive with Sweep and Prune for medium-sized configurations, as the memory
usage grows large for the multilevel gridding algorithm page swapping degrades performance and Sweep
and Prune becomes superior.

12.5 Using the Kinematics Principle

In the three broad-phase collision detection algorithms we have presented, we have used the approxima-
tion principle and the coherence and locality principles, but none of the algorithms have exploited the
kinematics principle. In this section we will present some ideas for how this last principle can be put to
use.

Sweeping volumes [Mirtich, 1996] is one way of incorporating knowledge about the future. These
come in many different variations, but they all share the same properties:

• They are volumes in 3D space.

“book” — 2005/9/30 — 15:44 — page 428 — #440✐
✐

✐
✐

✐
✐

✐
✐

428 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

B� B�

A� A,B� B�

A,B� B�

A,B�

Resolution�
value�

A� B�
counter(A,B)=1�

res(A)=�

res(B)=�

(a) box A and B are mapped

Resolution�
value�

B� B�

A� A,B� B�

A,B� B�

A,B�

A� B�

counter(B,C)=?�
C�

counter(A,C)=?�

res(C)=�

(b) Box C is mapped

Figure 12.33: Updating of counter value in a multilevel grid algorithm.

“book” — 2005/9/30 — 15:44 — page 429 — #441✐
✐

✐
✐

✐
✐

✐
✐

12.5 PHYSICS-BASED ANIMATION 429

algorithm multilevel(B : Bodies)
for each b ∈ B do

ρ = res(AABB(b))
for each tiling t where res(t) ≤ ρ do
remove(AABB(b), t)

next t
compute new position of b
for each tiling t where res(t) ≤ ρ do
store(AABB(b))

next t
next b

end algorithm

Figure 12.34: The multilevel gridding algorithm.

algorithm store(b : AABB,T : T iling)
for each c ∈ C where τ (pmin, ρT) ≤ c ≤ τ (pmax, ρT) do

for each b′ ∈ c do
if ρT = max (res(b), res(b′)) then

counter(b, b′) = counter(b, b′) +1
if counter(b, b′)=1 then

report overlapb, b′)
end if

next b′

add b to c
next c

end algorithm

Figure 12.35: The multilevel gridding store operation.

algorithm remove(b : AABB,T : T iling)
for each c ∈ C where τ (pmin, ρT) ≤ c ≤ τ (pmax, ρT) do

remove b from c
for each B′ ∈ c do
if ρT = max (res(b), res(b′)) then

counter(b, b′) = counter(b, b′) - 1
if counter(b, b′)=0 then

remove reported overlapb, b′)
end if

next b′

next c
end algorithm

Figure 12.36: The multilevel gridding remove operation.

“book” — 2005/9/30 — 15:44 — page 430 — #442✐
✐

✐
✐

✐
✐

✐
✐

430 CHAPTER 12. BROAD-PHASE COLLISION DETECTION

• They represent the space an object travels through in a given time duration t− tcur.

• They are often not tight, meaning they cover more space than the objects travel through; however,
they are always an upper bound.

Here we will derive a sweeping volume, which is an AABB, but our idea is not specific for AABBs and
could be applied to other volume types as well. From kinematics, we know something about the trajectory
of an object:

acm =
dvcm

dt
=

d2rcm

dt2
. (12.18)

In order to find a formula for the trajectory of an object, we will try to integrate the acceleration to find
rcm as a function of time. If we assume that the acceleration is constant in the near future, then

d2rcm

dt2
= acm, (12.19a)

∫ t

tcur

d2rcm

dt2
dt =

∫ t

tcur

acmdt, (12.19b)

drcm

dt
= vcm + acmt. (12.19c)

Integrating once more, w.r.t. time yields
∫ t

tcur

drcm

dt
dt =

∫ t

tcur

(vcm + acmt) dt, (12.20a)

rcm(t) = rcm + vcmt +
1

2
acmt2. (12.20b)

We thus have a function describing how the center of mass moves in the near future assuming that it moves
with constant acceleration. In the limit of very small time steps (t → tcur), this is a fair assumption, and
the trajectory computed will be a close approximation to the true trajectory of the object. Convergence
theory indicates that the approximation will be better and better the smaller time-steps we use. In the
theoretical limit the approximation will be exact. Therefore, the basic idea is to find the extreme points
of the trajectory along the coordinate axes of WCS and then place an AABB enclosing the object at
these extreme points. This is done by first placing smaller AABBs around each of the extreme positions
enclosing the object at these positions. Afterward, one large AABB is found enclosing all the smaller ones.
This final large AABB is computed as the sweeping volume of the object. This seems straightforward; we
only need to figure out:

• How do we find the extreme points?

• How do we find an enclosing AABB of a set of smaller AABBs?

We observe that the trajectory is described by a second-order polynomial, so its curve is a parabola. If we
assume that gravity is the only force acting on the object, then acm is pointing downward (i.e., [0,−1, 0]T).

“book” — 2005/9/30 — 15:44 — page 431 — #443✐
✐

✐
✐

✐
✐

✐
✐

12.5 PHYSICS-BASED ANIMATION 431

Figure 12.37: An AABB sweeping volume example. Sweeping volume is computed as the AABB cover-
ing the AABBs of object in initial, top, and final position.

The extreme points will then be the starting and ending point of the parabola and the top point. The large
enclosing AABB is found by taking the minimum and maximum coordinates of all the smaller AABBs.
The construction algorithm is shown in Figure 12.37.

Space-time bounds [Cameron, 1990] also describe how an object moves in the near future, but they
are very different from sweeping volumes. They represent the time dimension, hence for a 2D object the
space-time bound will be a 3D volume, and for a 3D object the space-time bound will be a 4D volume.
We usually work in 3D and thinking of 4D volumes might be a little difficult, but the benefits are

• Even though sweeping volumes intersect, the space-time bounds might not.

• With space-time bounds we can find the exact time of the intersection.

In conclusion, the extra dimension give us more detail of the movement.

“book” — 2005/9/30 — 15:44 — page 432 — #444✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 433 — #445✐
✐

✐
✐

✐
✐

✐
✐

13

Introduction to Narrow-Phase Collision De-
tection

There is a large number of narrow-phase collision detection algorithms, far too many to fit into a single
chapter in this book. Therefore, this short chapter serves as a brief introduction to concepts and goals in
narrow-phase collision detection, which we need to know before talking about contact determination in
Chapter 14. Later, in Chapter 15, Chapter 16, and Chapter 17 we will treat different groups of narrow-
phase collision detection algorithms in depth.

Broad-phase collision detection lists pairs of potential colliding objects, and the narrow-phase collision
detection examines each of these pairs in detail. For each pair of objects, the narrow-phase collision
detection determines whether the objects are separated, touching, or penetrating. Most existing algorithms
for narrow-phase collision detection are capable of returning much more detailed information, such as:

• separation distance

• penetration depth

• separation axis

• closest points

• closest features

The choice of the right narrow-phase collision detection algorithm depends on the later stages in the
animation pipeline; some examples are:

• closest points can be used in contact determination

• separation distance/axis may be needed for the computation of Time of Impact (TOI)

• penetration depth is required for calculating contact forces and backtracking

There is a wealth of literature on narrow-phase collision detection algorithms, and many differ-
ent approaches have been investigated. Spatial subdivision algorithms, like Binary Space-Partitioning
(BSP) tree [Melax, 2001], octree [Tzafestas et al., 1996, Ganovelli et al., 2000, Erleben et al., 2003b], k-
d trees, and grids [Ganovelli et al., 2000, Erleben et al., 2003b]; feature-based algorithms, like polygonal
intersection [Moore et al., 1988], Lin-Canny [Ponamgi et al., 1997], V-Clip [Mirtich, 1998b], and SWIFT
[Ehmann et al., 2001]; recursive search methods, like [Sundaraj et al., 2000] and simplex-based, like GJK
[Gilbert et al., 1988, Bergen, 2001]. Lately, volume-based methods, such as generalized Voronoi dia-
grams [Hoff, III et al., 1999] and signed distance maps [Guendelman et al., 2003, Bridson et al., 2003,

433

“book” — 2005/9/30 — 15:44 — page 434 — #446✐
✐

✐
✐

✐
✐

✐
✐

434 CHAPTER 13. INTRODUCTION TO NARROW-PHASE COLLISION DETECTION

Hirota, 2002] have become popular. Finally, there are algorithms based on bounding volume hierarchies.
It is beyond the scope of this chapter to explain all of these algorithms; we refer the reader to Chapter 15,
Chapter 16, and Chapter 17 for more details.

Narrow-phase collision detection algorithms are naturally divided into four main groups:

• Spatial Data Structures such as spatial subdivisions and bounding volume hierarchies

• feature-based

• simplex-based

• volume-based

In the spatial subdivisions, we approach the problem of collision detection by building a data structure
containing the geometry. The data structure is built by subdividing the object into pieces, for instance, by
clipping the object recursively by planes. Bounding volume hierarchies are very similar to this, but while
spatial subdivisions do not respect the underlying features of the geometry, bounding volume hierarchies
do. As an example, a subdivision algorithm might clip a face in a polygonal mesh into two pieces, each
stored in different locations of the data structure, while a bounding volume hierarchy never does this. It
will treat each face as an unsplitable atomic entity. More detail is found in Chapter 15.

A feature-based algorithm works directly on the features of an object. For polygonal meshes, the
features are the vertices, edges, and faces. A simple feature-based approach would clip every face of one
mesh against all the faces of the other mesh and vice versa. If the clipped result ends up being empty, then
no penetration of the objects has occurred, but if the result is not empty, then there will be a penetrating
volume of the objects. Feature-based algorithms are discussed in detail in Chapter 16.

A simplex-based algorithm is based on a simplex, which is the convex hull of an affinely inde-
pendent set of points. We will not go into further details here, but instead, we refer the reader to
[Gilbert et al., 1988, Cameron, 1997, Bergen, 1999, Bergen, 2001, Bergen, 2003b]. Simplex-based algo-
rithms often work by incrementally improving upon a simplex, which approximates the configuration
space of the objects. The subject has a mathematical nature, which tends to discourage some people.

Volume-based algorithms have a volumetric view of the objects. An example could be the sampling
of the signed distance function of an object onto a 3D rectilinear grid. In such a case, the closest points
and separation distances from a given location from the object can be found by looking up values and
gradients in the signed distance grid. These kind of algorithms are rather new compared to the spatial data
structures, feature-based, and simplex-based algorithms. Volume-based algorithms will be discussed in
Chapter 17.

The major challenges for narrow-phase collision detection are deforming geometry, self-intersections,
and penetration depths. For deforming geometry, the spatial data structures need to be updated in ev-
ery invocation of the narrow-phase collision detection algorithm, which is time consuming. Simplex-
and feature-based algorithms usually assume objects are convex, which might not hold after a deforma-
tion. Volume-based methods pose some of the same problems for deforming geometry as the spatial data
structures, e.g., a deformation would require an update of the signed distance map. Self-intersections
are unpleasant by nature, which is seen by an example: for a polygonal mesh, every face is touching its
neighboring faces, indicating a collision, but not a self-intersection. Search and traversal methods pose

“book” — 2005/9/30 — 15:44 — page 435 — #447✐
✐

✐
✐

✐
✐

✐
✐

13.0 PHYSICS-BASED ANIMATION 435

difficulties in effectively pruning away unnecessary tests. Existing algorithms for calculating penetration
depths are extremely slow.

In summary, narrow-phase collision detection algorithms solve the problem of determining whether
two objects intersect (intersection query) or how far apart they are (proximity query). Narrow-phase
collision detection algorithms often need to be superseded by a contact determination algorithm, which is
the subject of the next chapter.

“book” — 2005/9/30 — 15:44 — page 436 — #448✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 437 — #449✐
✐

✐
✐

✐
✐

✐
✐

14

Contact Determination

The task of computing regions of contact from the output of the narrow-phase collision detection algorithm
is called contact determination, and it is a pure geometrical problem. Before we can present algorithms
for contact determination, it is important to define what we mean by a region of contact and how it should
be represented.

The reader should be familiar with concepts and goals of narrow-phase collision detection as described
in Chapter 13. Detailed knowledge of specific narrow-phase collision detection algorithms is not required
for reading this chapter.

14.1 Contact Regions, Normals, and Planes
A touching point between the surfaces of two objects is called a contact point. In practice however,
this is not always a suitable representation. Quite often a simulation method needs information about
the neighborhood of a touching point, i.e., the shape. At the point of contact of two smooth surfaces, the
surfaces will have coinciding tangent planes, and these tangent planes serve as a good linear approximation
to the two surfaces at the point of contact. We call such a tangent plane the plane of contact, and its normal
the contact normal.

In a computer world, we work with polygonal objects and we cannot always take the myopic view of
the real world. Polygonal objects are inherently discontinuous over the edges and vertices. Therefore,
a slightly different approach is often used to represent the neighborhood information for contact points
between polygonal objects. The contact point is represented by two features, one from each polyhedra,
and the point of contact is usually computed as the closest point between the two features. Such a rep-
resentation is called a Principal Contact (PC). For polyhedron objects we have three different kinds of
features: a vertex, V , an edge, E, and a face, F . Due to symmetry, we only have six different types of
principal contacts: (V, V), (V,E), (V,F), (E,E), (E,F), and (F,F). Figure 14.1 illustrates the six dif-
ferent principal contacts. Observe that the closest point is not uniquely defined in all cases, and that some
types of principal contacts represent entire continuous regions of infinitely many contact points. These
problems will be deferred for later treatment in this section.

Since objects are represented by features; it seems natural to use them for representing contact points.
It is quite easy to deduce information about the shape of the surface in a neighborhood of a single touching
point. For instance, in the case of an (F, V) contact, the contact plane is obviously picked unambiguously
as the plane of the face. Finally, it is easier to recognize the same contact point evolving over time (i.e., a
temporal touching point) based on a pair of features rather than a 3D world location, because the features
will temporarily be the same pair by coherence, whereas the 3D world location could change substantially.

The finite precision of floating point representation introduces some problems in connection to touch-
ing contacts: intuitively we define a touching contact as the point between two objects where the distance
is exactly zero. However, numerical imprecision will make such a distance slightly nonzero, typically in

437

“book” — 2005/9/30 — 15:44 — page 438 — #450✐
✐

✐
✐

✐
✐

✐
✐

438 CHAPTER 14. CONTACT DETERMINATION

(a) (V, V) (b) (V, E) (c) (V, F)

(d) (E,E) (e) (E, F) (f) (F, F)

Figure 14.1: The six different principal contact types.

the range of 10−7–10−15, depending on the precision of computation. To help reduce such problems, we
introduce a collision envelope

around each object, as illustrated in Figure 14.2. The collision envelope works as a slightly soft
enlargement of the objects, defining a field around the object where it can consider touching contact with
other objects. That is, whenever the distance between the closest points of a feature pair is less than
the collision envelope, then the corresponding contact point is said to be a touching contact. The closest
points between a feature pair using a collision envelope might no longer be exactly the same for a touching
contact. To remedy, the point of contact, p, is usually computed as the mean of the closest points of the
two features, pA and pB

p =
pA + pB

2
. (14.1)

Thus, given two features, one from object A and one from object B, we need to be able to compute the
closest points between the features. In case of a (V, V) contact type, the closest points are simply given
by the vertex positions. In the case of an (E,V) contact type, we can project the position v of the vertex
V onto the edge E running from position o to position d and having direction u

pE = o + ((v − o) · u)u, (14.2)

“book” — 2005/9/30 — 15:44 — page 439 — #451✐
✐

✐
✐

✐
✐

✐
✐

14.1 PHYSICS-BASED ANIMATION 439

A� B�

Collision Envelope�

p�A�

p�B�

Figure 14.2: The collision envelope.

where u = d − o. If the projection lies between the two positions o and d, then the projection indicates
the closest point on the edge. If the projection lies outside the endpoints of the edge, then the closest
endpoint to the projection is taken to be the closest point. Figure 14.3 illustrates the (E,V) contact type.
In case of a (V,F) contact type, we project the position, v, of the vertex V onto the face plane of the face
F , represented by a face normal, n, and an arbitrary point, f , on the face,

pF = v − ((v − f) · n) n. (14.3)

This is illustrated in Figure 14.4. If the projected vertex lies inside the face boundary, then its position
gives the closest point on the face. If it lies outside, we can repeat the (V,E) case for each boundary edge
of the face in order to find the closest edge and the closest point on this edge.

The case of an (E1, E2) contact type is a little more difficult. Assume that the closest points, pE1
and

pE2
, between the two edges are given. Then

pE1
= o1 +

((
pE2
− o1

)
· u1

)
u1, (14.4)

and
pE2

= o2 +
((

pE1
− o2

)
· u2

)
u2. (14.5)

Inserting equation (14.5) into equation (14.4) yields

pE1
= o1 +

((
o2 +

((
pE1
− o2

)
· u2

)
u2 − o1

)
· u1

)
u1. (14.6)

Isolating P E1 results in

pE1
= o1 +

(
(o2 − o1) · (u1 − ku2)

1− k2

)
u1, (14.7)

“book” — 2005/9/30 — 15:44 — page 440 — #452✐
✐

✐
✐

✐
✐

✐
✐

440 CHAPTER 14. CONTACT DETERMINATION

O� D�
(v-o) u�

E�

V�

(v-o)�

p�
E�

p�V�

Figure 14.3: Closest point between vertex and edge.

n�

f�

v-f�

v�

-(v-f) n�

Figure 14.4: Projection of a vertex onto a face.

where k = u1 · u2. Finally, we can find pE2
by applying the (E,V) case. The two remaining cases of

the (E,F) contact type and the (F,F) contact type can be handled by decomposing them into a set of the
cases we already know how to handle. If the edge E runs between vertices O and D and the boundary
edges of F is given by {(E,E1), (E,E2), . . .}, then we can decompose the case (E,F) as follows:

(E,F)→ {(O,F), (D,F), (E,E1), (E,E2), . . .} (14.8)

If the boundary of the face F1 is defined by the edges
{
E1

0 , E1
1 , E1

2 , . . .
}

and the boundary of face F2 by{
E2

0 , E2
1 , E2

2 , . . .
}

, then we can decompose (F1, F2) into

(F1, F2)→
{
(E1

0 , F2), (E
1
1 , F2), . . . , (F1, E

2
0), (F1, E

2
1), . . .

}
. (14.9)

Actually, from this we can deduce that all contact points can be represented by three cases: (V,E), (E,E),
and (V,F), which is the smallest set of principal contact types we can use to represent contact points. The

“book” — 2005/9/30 — 15:44 — page 441 — #453✐
✐

✐
✐

✐
✐

✐
✐

14.1 PHYSICS-BASED ANIMATION 441

Figure 14.5: Contact regions of polyhedra objects.

Figure 14.6: Examples of contact geometry between polyhedral objects.

observant reader will have noticed that the (V, V) case is not included. This is because the contact point
could equally be represented by an (V,E) case. We will later elaborate on this redundancy in contact
point representation.

We define the contact region as the intersection of the two objects. Figure 14.5 shows two polyhedra
examples. Notice we can have multiple regions between two objects and regions are not necessarily planar.
For polyhedra objects, the contact region is a polygonal area, which consist of:

• single points

• line segments

• or closed polygons (perhaps with holes)

Figure 14.6 shows three examples of contact geometry between polyhedral objects. For convex polyhedra,
the contact regions is particularly simple. It is either a single point, a single line segment, or a closed planar

“book” — 2005/9/30 — 15:44 — page 442 — #454✐
✐

✐
✐

✐
✐

✐
✐

442 CHAPTER 14. CONTACT DETERMINATION

PC1 (VA, FB)
PC2 (EA, EB)
PC3 (FA, VB)
PC4 (EA, EB)

Figure 14.7: Contact region represented by polygonal vertices of the intersection.

convex polygon without holes. This indicates that we can represent contact regions by the vertices of the
polygonal regions. It is easy to determine principal contacts for representing these polygonal vertices. The
set of principal contacts used for representing the polygonal vertices is called a contact formation (CF).
Figure 14.7 illustrates the idea. In the figure, the CF consists of the principal contacts PC1, PC2, PC3,
and PC4.

The usage of contact formations is much more general and can be used even in the case of penetration,
as Figure 14.8 illustrates. In the figure, the CF could consist of the principal contacts,

PC1 (EA, FB),
PC2 (EA, FB),
PC3 (EA, FB),
PC4 (EA, FB).

It is apparent that the definition of a contact formation gives a valuable tool for representing contact
regions, but unfortunately the representation of a CF is not unique. Figure 14.9 shows an example where
a single (V,F) or four (E,F) contact points representing the same contact region.

When objects touch in real life, the contact normals are parallel to surface normals at the point of
contact, but this is not true for polyhedra objects as Figure 14.10 shows. Two methods for computing
contact normals can be used. We may pick the normal of the feature with the highest dimension, and
in case both features have the same dimension, we make a random pick. Alternatively, we can compute

“book” — 2005/9/30 — 15:44 — page 443 — #455✐
✐

✐
✐

✐
✐

✐
✐

14.1 PHYSICS-BASED ANIMATION 443

Figure 14.8: A penetrating contact formation.

Figure 14.9: Nonunique contact formation.

“book” — 2005/9/30 — 15:44 — page 444 — #456✐
✐

✐
✐

✐
✐

✐
✐

444 CHAPTER 14. CONTACT DETERMINATION

Figure 14.10: Contact normals for polyhedra are not easily defined. At the point of contact, the normal of
the triangle is nonparallel with the normal of the square.

Figure 14.11: A discontinuous change of contact normal. A box slides from left to right, when the left
lower corners of the box reach the tip of the Y -shape, normals are picked randomly from the (V, V)
contacts.

the normal as a unit vector along the direction of the closest points between a pair of features. The first
method suffers from discontinuity of contact normals, meaning that as a simulation proceeds, the direction
of the contact normal can change abruptly even when the motion is smooth, as illustrated in Figure 14.11.
In the figure, a box slides smoothly across a supporting object. In the first frame all normals are pointing
downward (we have (F, V) contact types), but at the instant the box reaches the state shown in the last
frame, the contact normals on the left side of the supporting object would be picked randomly from the
(V, V) contact type. None of these normals points in the same direction as the face normals previously
used. One remedy is to exploit caching of contact normals from previous frames to avoid abrupt changes
of the normals. However, this solution comes with a bookkeeping cost. In practice, the problem is often
ignored. The argument being that these types of contact often have a short lifespan so an end user will
never notice the problem in a real-time simulation. The second method for computing the contact normal
obviously breaks down in cases where the closest distance of the features is zero. In such cases, one often
resorts to using the first method for computing contact normals.

Knowing the contact point, p, and the contact normal, n, of a touching contact, we can define a contact

“book” — 2005/9/30 — 15:44 — page 445 — #457✐
✐

✐
✐

✐
✐

✐
✐

14.2 PHYSICS-BASED ANIMATION 445

A�

B�
Collision Envelope�

Q�thick�

Figure 14.12: A thick contact plane.

plane as the set of all points, x, that fulfills the equation of a plane

{x | (x− p) · n = 0} . (14.10)

Observe that for convex polyhedra, all touching contacts lie in the same plane, when no penetration occurs.
In this section we have given definitions of principal contacts and contact formations. We have dis-

cussed difficulties in computing contact points and contact normals; we have also treated the uniqueness
problem of contact formations. In Section 14.2 and Section 14.3 we will present two different algorithms
for computing the contact formation between two objects. The algorithms make use of the definitions and
concept introduced so far.

14.2 A Geometrical Algorithm

Assume that we are given the two closest features and two convex polyhedra, for instance, by V-Clip (see
Section 16.3) or GJK

[Gilbert et al., 1988, Cameron, 1997, Bergen, 1999, Bergen, 2001, Bergen, 2003b]. If they are within
the collision envelope, then we have a touching contact between the convex polyhedra. We will now
develop a simple algorithm to determine the CF. In the first step of the algorithm

• the two features will be the first principal contact in our CF

• the touching principal contact will be used to determine a contact plane Q

Since we are using a collision envelope, we will make Q a thick plane as shown in Figure 14.12. Because
the objects are convex, we know that all other features, which might cause a touching contact, must lie
within Q. So we start at the initial feature of object A and examine features in a breadth first traversal over
the mesh of object A. When a feature is found lying inside the thick plane Q, it is added to the impact
zone, ZA, of object A. The impact zone is thus the set of touching features. If a feature is encountered
lying outside Q, then the neighbors are not considered for further traversal. That is, we start at the first
feature and examine neighboring features recursively. If all points of a feature, XA, are inside Q, then we

“book” — 2005/9/30 — 15:44 — page 446 — #458✐
✐

✐
✐

✐
✐

✐
✐

446 CHAPTER 14. CONTACT DETERMINATION

Z�A�

Z�B�

Figure 14.13: Projected impact zones for both objects.

add feature to impact zone, ZA. Afterward, the same procedure is repeated for object B and we will have
two sets of features, ZA and ZB.

If we project the impact zones ZA and ZB onto (the thin) Q, then we have reduced our problem of
finding principal contacts to a two-dimensional problem. An example of how the projected impact zones
could look like is shown in Figure 14.13. One way to think of these impact zones is as the print pattern
of a wet soccer ball on the ground. The projected pattern corresponds to features; principal contacts can
therefore be determined by examining how the two patterns intersect each other.

To examine the intersection of the patterns, we first test projected edges from ZA for intersection
against projected edges of ZB , features that we considered to be open point sets. If an intersection is
found, we add the corresponding pair of edge features as a contact point to the CF. Figure 14.14 illustrates
the edge-edge case. Afterward, we test projected vertices from ZA against projected faces of ZB . If
a vertex is found to lie inside the boundary of a face, then a corresponding (V,F) contact is added to
the contact formation. Hereafter, the roles of A and B are interchanged as illustrated in Figure 14.16.
Similarly, we test projected vertices against projected edges. Figure 14.17 illustrates this step for our
example. In the final step, we test projected vertices against projected vertices. In the example, there is
none of these kind of intersections. Looking at all the intersecting projected features we can build the
contact formation for the touching convex objects.

The algorithm we have presented is fairly simple, and it is quite easy to implement. The concept of
using the thickening plane is a great way to combat numerical imprecision, and it is our experience that it
works well in practice. If objects become highly tessellated, then the algorithm will return many principal
contacts in the CF lying inside the polygonal intersection. It is possible to add a further postprocessing
step eliminating these principal contacts by computing the convex hull. The observant reader might argue
that the algorithm is ineffective due to the pairwise testing of projected features, which would lead to an
quadratic time complexity. However, the number of projected features is usually low, and the quadratic
time complexity will therefore be insignificant compared to the time consumed by the narrow-phase col-
lision detection algorithm. In case the number of projected features grows exceedingly large, a sweep line

“book” — 2005/9/30 — 15:44 — page 447 — #459✐
✐

✐
✐

✐
✐

✐
✐

14.3 PHYSICS-BASED ANIMATION 447

Z�A�

Z�B�

Figure 14.14: Edge intersections of the projected impact zones.

or spatial data structure approach could be used to reduce the quadratic time complexity.

14.3 A Contact Tracking Algorithm
Now we will look at an entirely different kind of contact determination algorithm, called contact tracking
[Mirtich, 1998a]. The algorithm is applicable to arbitrary shaped polyhedra, but only usable if a retroactive
detection is used, that is, a backtracking time-control algorithm. We will assume that the narrow-phase
collision detection is capable of returning pairs of intersecting features as is the case for bounding volume
hierarchies (BVHs) discussed in Chapter 15.

A backtracking algorithm means that the time control allows for penetrations to occur; when this
happens, the simulator is rewound to a state where penetrations disappear. If a contact point is missing,
then the simulation method will not be able to apply contact forces and/or contact impulses where they
are needed. As a consequence, penetrations will occur at these points, when the simulation is run forward.
This means that when we detect penetrating features, they actually represent a missing contact point.
Therefore, we can add a penetrating pair of features to the set of potential principal contacts in the CF.

After we have added potential principal contacts, we let the time control backtrack the simulation, and
next time the contact determination algorithm is invoked, we validate the set of potential principal contacts
to form the actual CF used to compute the contact forces and/or impulses.

When we validate the potential principal contacts, we require that their closest points are within the
collision envelope and that the closest points must be within the corresponding external Voronoi regions
of the features. Voronoi regions are discussed in Chapter 16. All principal contacts not fulfilling these
requirements are removed from the CF. A 2D example of the algorithm is shown in Figure 14.18.

One problem with the contact-tracking algorithm is that we can get redundant principal contacts. For
instance, if an edge penetrates a face, then both the edge and the endpoint lying below the face could be
used to represent the principal contact. We could compute the actual contact points of all principal contacts
and remove those with identical coordinates, but it would be better to use the concept of the smallest set

“book” — 2005/9/30 — 15:44 — page 448 — #460✐
✐

✐
✐

✐
✐

✐
✐

448 CHAPTER 14. CONTACT DETERMINATION

Z�A�

Z�B�

Figure 14.15: Intersection test of projected vertices of A against projected faces of B.

of principal contact types.
The contact tracking algorithm appears to be much more ad hoc than the geometrical approach, and

it is impossible to assert anything about its time complexity because it is highly intervened with the
backtracking of the simulator. However, the method is easily implemented and works well in practice.

“book” — 2005/9/30 — 15:44 — page 449 — #461✐
✐

✐
✐

✐
✐

✐
✐

14.3 PHYSICS-BASED ANIMATION 449

Z�A�

Z�B�

Figure 14.16: Intersection test of projected vertices of B against projected faces of A.

Z�A�

Z�B�

Figure 14.17: Intersection test of projected vertices against projected edges.

“book” — 2005/9/30 — 15:44 — page 450 — #462✐
✐

✐
✐

✐
✐

✐
✐

450 CHAPTER 14. CONTACT DETERMINATION

contact determination�
(validate CF)�

simulate forward�

contact determination�
(add penetrations to CF)�

backtrack�

contact determination�
(validate CF)�

simulate forward�

Figure 14.18: 2D example of contact tracking algorithm.

“book” — 2005/9/30 — 15:44 — page 451 — #463✐
✐

✐
✐

✐
✐

✐
✐

15

Bounding Volume Hierarchies

There are two types of spatial data structures: spatial subdivision and bounding volume hierarchies (BVH).
Spatial subdivision recursively partitions the embedded space of an object, whereas bounding volume hi-
erarchies are based on a recursive partitioning of the primitives of an object as stated in [Gottschalk, 2000].

Using spatial partitioning has the disadvantage that splitting of polygons is usually unavoidable. This
may increase the depth of the tree data structure, which is undesirable for performance reasons. Besides,
the cells produced by the partitioning tend not to cover the objects tightly, thus making the cells less
suitable for determining contact status when models are close together. This is a disadvantage in physics-
based animation where contact status needs to be determined very efficiently. Due to these problems
with spatial partitioning and space considerations in this book, we will not treat spatial partitioning here.
Instead we will focus on an in-depth treatment of bounding volume hierarchies.

Bounding volume hierarchies are popular and widely used in computer graphics for e.g. ray tracing
[Goldsmith et al., 1987], and in animation for e.g. cloth animation [Bridson et al., 2003], since they are
applicable to a more general shape than most feature-based and simplex-based algorithms. They tend to
generate smaller hierarchies than spatial subdivision algorithms and they offer a graceful degradation of
objects, which is highly useful when accuracy is to be traded for performance.

A bounding volume hierarchy (BVH) is a discrete representation of all levels of details. At the first
level, we have a coarse representation with less-to-no detail, usually a single bounding volume

(BV) of the object. At the next level, more detail of the object is represented, and we say we have
a finer scale. This level is often constructed by splitting the original object into disjunct partitions and
placing bounding volumes around each partitioning. The following levels reveal more details of the object
in a recursive fashion, by splitting the geometry of each disjunct partition at the previous level into several
disjunct subpartitions and placing a bounding volume around each of these subpartitions. The finest level
of the representation—the finest scale—is the object primitives, such as lines, triangles, or tetrahedra.

The successive scale refinement naturally introduces a parent-child relationship between bounding
volumes at succeeding levels, with the topology of a tree; therefore, the data structure is called a bounding
volume hierarchy.

15.1 Tandem Traversal
Tandem traversal is an algorithm for testing overlap between two BVHs. We will introduce tandem
traversal with an example. Consider a 2D stick object, as shown in Figure 15.1. The sticks are referred
to as the geometrical primitives or simply the primitives. In this example, we will use bounding circles,
implying that at the first level we place a single bounding circle enclosing the entire stick object as shown
in Figure 15.2. In order to obtain a more detailed version, the stick object is further divided into three
disjunct partitions: the first partition is given by the two topmost sticks, the next partition is given by the
two connected bottom-right sticks, and the last partition is given by the two leftover sticks. Enclosing

451

“book” — 2005/9/30 — 15:44 — page 452 — #464✐
✐

✐
✐

✐
✐

✐
✐

452 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

s�1�

s�2�

s�3�

s�4�
s�5�

s�6�

Figure 15.1: A 2D stick object; sticks are label S1, . . . , S6.

a�1�

Figure 15.2: A single circle, a1, enclosing the 2D stick object shown in Figure 15.1.

circles are placed around each of these partitions, as shown in Figure 15.3. Each of these three new
circles is linked to the initial circle representing the entire object. Finally, each of the three disjunct
partitions are split into two disjunct partitions, and for our example this is the finest level, since each
partition now contains a single stick. Enclosing circles are placed around each of these partitions, as
shown in Figure 15.4. The new circles are linked to the parent circles from the previous level shown
in Figure 15.3. The bounding volumes at the finest level are called the leaves. Quite often the leaves are
annotated by the geometry they enclose, in which case the BVH is annotated. We can now draw the tree of
the BVH we just constructed, as can be seen from Figure 15.5, using the labels introduced in Figure 15.1,
Figure 15.2, Figure 15.3, and Figure 15.4. This is an example of an annotated BVH. Drawing all the levels
superimposed on top of each other, as shown in Figure 15.6, we will gain more insight into how BVs at
different levels relate to each other. Notice that a BV does not necessarily enclose its children BVs; only
the geometry enclosed by its children needs to be strictly enclosed. Hence:

Property 15.1 (BV Property)
A Bounding Volume (BV) is defined such that: a BV at level i encloses the geometry of all its children at
level i− 1.

“book” — 2005/9/30 — 15:44 — page 453 — #465✐
✐

✐
✐

✐
✐

✐
✐

15.1 PHYSICS-BASED ANIMATION 453

b�1�

b�2�

b�3�

Figure 15.3: Three circles: b1, b2, and b3 enclosing three disjunct partitions of the 2D stick object as
shown in Figure 15.1. Notice that circles might overlap; it is the underlying geometry that is partitioned
into disjoint sets.

c�1�

c�2�

c�3�

c�4�
c�5�

c�6�

Figure 15.4: Circles: C1, C2, C3, C4, C5, and C6 at the finest level. Each enclosing a single stick of the
object, as shown in Figure 15.1.

a�1�

b�1� b�2� b�3�

c�1� c�2� c�3� c�4� c�5� c�6�

s�1� s�2� s�3� s�4� s�5� s�6�

Figure 15.5: Tree topology of BVH built in.

“book” — 2005/9/30 — 15:44 — page 454 — #466✐
✐

✐
✐

✐
✐

✐
✐

454 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

s�1�

s�2�

s�3�

s�4�
s�5�

s�6�

b�1�

b�2�

b�3�

a�1� c�1�

c�2�

c�3�

c�4�
c�5�

c�6�

Figure 15.6: All bounding circles of the BVH shown in Figure 15.5 drawn on top of each other.

It is important to notice that Property 15.1 only says something about how tight, but not how loose, a BV
can be fitted to its children. For instance, it might be useful to build a BVH such that parent BVs enclose
all the geometry of the children BVs.

Now let us try to see how we can use the BVH data structure. Imagine two identical and overlapping
stick objects, as shown in Figure 15.7. In the following, they will be referred to as the left and right
object. In order to determine whether the stick objects overlap, we will recursively examine their BVHs.
Starting at the two root bounding volumes, we see these overlaps, as shown in Figure 15.8. If the root
bounding volumes had not been overlapping, we could immediately conclude that it would be impossible
for the two objects to be colliding, using Property 15.1. Unfortunately, we cannot infer the opposite, and

Figure 15.7: Two identical and overlapping stick objects, each is identical to the stick object in Figure 15.1.

“book” — 2005/9/30 — 15:44 — page 455 — #467✐
✐

✐
✐

✐
✐

✐
✐

15.1 PHYSICS-BASED ANIMATION 455

Figure 15.8: Root BVs overlap, indicating possible collision at a finer level.

Figure 15.9: Left root BV from Figure 15.8 has been replaced by its children.

we must look for an answer at a lower scale. We do this by replacing one of the root volumes by its
children, say the left one, and we will have the situation depicted in Figure 15.9. This is called descending
because we are picking a path to move down the hierarchy toward the leaves. The rule for picking which
volume to descend along is called the traversal rule. As can be seen from the figure, we now have three
circles from the left hierarchy, which we test for overlap against the root circle from the right hierarchy.
Again, an overlap means that a collision might occur at the finest scale, and a separation means that no
collision is possible. In our case, all three circles of the left hierarchy overlap with the root circle of
the right hierarchy. To lower the chance of finding overlapping BVs, we replace the largest volume with
its children, as shown in Figure 15.10. We now test each of the three right circles against the three left
circles yielding a total of nine pairwise tests. Luckily only two of the nine pairwise tests are overlapping,

Figure 15.10: Right root BV from Figure 15.9 has been replaced by its children.

“book” — 2005/9/30 — 15:44 — page 456 — #468✐
✐

✐
✐

✐
✐

✐
✐

456 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Figure 15.11: Overlapping circles from the right object in Figure 15.10 have been replaced by their chil-
dren.

Figure 15.12: Overlapping circles with largest volume in Figure 15.11 have been replaced by their chil-
dren.

indicating a collision at a finer scale. The remaining seven pairwise tests are nonoverlapping and can thus
be discarded from further consideration. This is called pruning. The two pairwise overlapping cases are
between circles of the same size, so we randomly choose to descend down the right hierarchy illustrated in
Figure 15.11. Here the top circle from the left hierarchy is tested against the two topmost circles from the
right hierarchy, and the bottom circle from the left hierarchy is tested against the two bottom most circles
from the right hierarchy. The bottom circle from the left hierarchy and the bottom rightmost circle from
the right hierarchy are nonoverlapping and are therefore pruned. We pick the largest volume to descend
along giving us the situation in Figure 15.12. At this finest level, only two BVs are overlapping, the two
topmost circles and the two bottommost circles, all other pairs of circles are pruned. Having reached
the leaves of the BVHs, the only way we can obtain more details about the collision between the two
stick objects is by considering the annotated primitives. This can be done in two different ways. In the
first method, we replace the BVs from one hierarchy by the enclosed primitives, and test these primitives
against the BVs from the other hierarchy, as shown in Figure 15.13. If the pairwise primitive-BV test
indicates overlap the remaining overlapping BVs are replaced by their enclosed primitives, and we are
now left with pairwise primitive tests, as shown in Figure 15.14. From these pairwise primitive tests we
can now return a precise description of the overlapping of the two stick objects.

“book” — 2005/9/30 — 15:44 — page 457 — #469✐
✐

✐
✐

✐
✐

✐
✐

15.1 PHYSICS-BASED ANIMATION 457

Figure 15.13: Replacing overlapping leaf circles from right object in Figure 15.12 with annotated primi-
tives.

Figure 15.14: Replacing overlapping leaf circles from left object in Figure 15.13 with annotated primi-
tives.

The other method simply skips the step of testing primitives against BVs. This has the benefit of
simplifying the implementation efforts, since one can skip the code for overlapping tests between BVs
and primitives and only consider the two cases of pairwise BVs and pairwise primitives. Although the
pairwise BV and primitive testing is often less expensive than the pairwise primitive testing and could
lead to further going directly for the pairwise primitive testing, it means a reduction in the number of
iterations are needed. Therefore, there is a tradeoff between the number of iterations and the complexity
in the overlap testing.

The recursive collision query we performed in the example above is called a recursive tandem traversal
because two hierarchies are traversed simultaneously in a recursive manner. Figure 15.15 illustrates a
pseudocode version of the collision query algorithm. In practice, it is often a bad choice to implement the
recursive tandem traversal by using recursive calls [Gottschalk, 2000] because the number of primitives
in an object can be quite large and the hierarchies for such large objects will be even larger. Hence, the
number of recursive calls could potentially be very large, leading to a memory stack overflow on the
memory heap.

Fortunately the recursive traversal is easily rewritten into an iterative traversal by using a first-in-first-
out queue (FIFO): initially, the root bounding volumes are pushed onto the queue, then a loop is set up,
popping the two first pairs of volumes from the queue, and the overlapping test is performed as usual.

“book” — 2005/9/30 — 15:44 — page 458 — #470✐
✐

✐
✐

✐
✐

✐
✐

458 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm recursive(A : BV, B : BV)
if not colliding(A,B) then

return

if leaf(A) and leaf(B) then
contact-determination(A,B)
continue

end if

if descend(A) then
for all children C of A do
recursive(C,B)

next C
if descend(B) then

for all children C of B do
recursive(A,C)

next C
end algorithm

Figure 15.15: Recursive tandem traversal collision query.

However, when the actual descend is about to be performed, instead of invoking a method recursively, the
descended volumes are pushed onto the queue and thus processed later in the loop. Figure 15.16 shows
an iterative version of the pseudocode from Figure 15.15. Algorithmic variations can be applied to the
traversal scheme. For instance, alternative traversal orders could be used: preorder, in-order, or post-order.
The first corresponds to a breadth-first traversal, the last two are similar to depth-first traversals. Observe
that if a stack is used instead of a queue in the iterative traversal, then we will have a depth-first traversal
instead of a breadth-first traversal.

The idea of using a queue can be taken one step further by introducing a priority on the pairwise
BV tests. This is useful, if one wants to perform a time-critical tandem traversal. In most cases there
will be more than two objects in a world; a time-critical query would be to consider all pairs of colliding
objects. The broad-phase collision detection, of course, returns all such pairs that need to be considered
(see Chapter 12); therefore, all pairs of root BVs are initially pushed onto the queue and given a priority.
Afterward, a loop is set up similar to the pseudocode shown in Figure 15.16. The only difference is that
an extra condition is added to the loop, testing whether more time is available for performing the collision
query. Figure 15.17 outlines the pseudocode for a time-critical collision query. It is important to notice
that all object pairs are handled simultaneously: since each BV pair pushed onto Q gets a priority, we will
descend simultaneously through all BVHs according to whatever priority rule is applied. For more details,
see [O’Sullivan et al., 1999, Dingliana et al., 2000].

15.2 Coordinate Space Updates
We’ll examine some of the details in performing the collision queries in Figure 15.15, Figure 15.16, and
Figure 15.17. We need to consider at least two kinds of coordinate spaces when we perform a query.

“book” — 2005/9/30 — 15:44 — page 459 — #471✐
✐

✐
✐

✐
✐

✐
✐

15.2 PHYSICS-BASED ANIMATION 459

algorithm iterative(A : BV, B : BV)
Queue Q
push(Q,A, B)
while not Q empty do

pop(Q,A, B)
if not colliding(A,B) then
continue

if leaf(A) and leaf(B) then
contact-determination(A,B)
continue

end if
if descend(A) then
for all children C of A do

push(Q,C, B)
next C

if descend(B) then
for all children C of B do

push(Q,A, C)
next C

end while
end algorithm

Figure 15.16: Iterative Collision Query.

algorithm time-critical(. . .)
Queue Q

O = results from broad-phase
for all pairs of overlap (A,B) ∈ O do

push(Q,A,B)
next (A, B)

while not Q empty and time left do
pop(Q,A, B)
...

end while
end algorithm

Figure 15.17: Time-Critical Collision Query. BV pairs are kept in a queue; during traversal, pairs are
popped off the queue and tested until time is up or the queue is empty.

“book” — 2005/9/30 — 15:44 — page 460 — #472✐
✐

✐
✐

✐
✐

✐
✐

460 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

A�

B�

WCS�

Figure 15.18: Geometries A and B are defined in their model spaces, which are placed in a common world
coordinate system.

Usually the object geometry is created off-line in another application, and the coordinate space in which
the object was initially created is called the model space, or model frame. When the object is used in
an animation or simulation, it is moving around in a coordinate space called the world coordinate system
(WCS). WCS is a fixed global coordinate frame, and any motion can be described absolutely in it. The
model frame is fixed w.r.t. to the object, meaning that if the object moves and translates in the world
coordinate system, then so does the model frame.

BVHs are built from the geometry of an object, therefore it is most natural to represent them in the
model frame. When we perform an overlap test between two BVs from different objects, we need to bring
these into a common coordinate frame in order to perform the test. This action is called BV updating or
simply updating. Different updates need to be considered for rigid and deformable objects. Deformable
objects are usually represented in WCS, and during a simulation, the world coordinate position and shape
of the individual geometric primitives of the deformable object are altered, causing the initial BVH to
become misaligned. Deformable objects thus require a different kind of update involving possible re-
building, rebalancing, and refitting of BVHs. This will be treated in Section 15.7. For rigid objects, three
possibilities are available for BV updating. Consider two objects A and B, as shown in Figure 15.18.
We can transform the BV from the model frame of A into the model frame of B or vice versa, and these
two kinds of transformations are referred to as a model space update. The third and last possibility is to
transform both BVs from their model frames into the common world coordinate system, which is called a
world space update.

A third local coordinate system often used for rigid objects is the body frame. This is an object-fixed
coordinate frame with the origin placed at the center of mass and the axes aligned with the principal axes
of inertia. During simulation, it is the body frame of a rigid object which is moved, and before starting a

“book” — 2005/9/30 — 15:44 — page 461 — #473✐
✐

✐
✐

✐
✐

✐
✐

15.2 PHYSICS-BASED ANIMATION 461

original AABB� refitted AABB�wrapped AABB�

Figure 15.19: An original AABB is rotated into an OBB, two strategies are shown to make the OBB an
AABB again: an expensive refitting of the BV yields optimal tight fit (RIGHT), or a cheap wrapping
yields a loose fitting (MIDDLE).

collision query we must first determine where the model frame is placed in the world coordinate system
before we can apply either a model space update or a world space update to the BVs. Fortunately, the
transformation between the body frame and model frame is always the same and needs to be found only
once at initialization time.

For BVs aligned to a specific frame such as an axes aligned bounding box (AABB), a rotational motion
will make the AABB nonaligned, that is, turn it into an oriented bounding box (OBB). Thus the BV updat-
ing for AABBs not only involves coordinate transformations but also requires a realignment. Figure 15.19
illustrates the problem together with two solutions. Refitting the BV is computationally expensive, since
it requires us to examine all the geometric primitives covered by the BV and find the smallest AABB. The
benefit is that the new AABB will have a tight fit, and thus provide the best pruning capability. Another
less expensive approach is to place an AABB around the OBB, thus avoiding having to examine all the
geometry covered by the BV. This is a fast and cheap solution, but the new BV will be loose, imply-
ing a worsened pruning capability. The loose method is commonly referred to as approximate, dynamic
updating or simply, wrapping. The difference between the two methods is illustrated in Figure 15.19.

Some geometries are nonaligned, such as OBBs, and nonaligned BV types do not require refitting.
Some BV types are even more favorable. For instance, spheres are completely independent of their orien-
tation, implying that only their positions need to be considered for the update.

There is both a performance and a fitting aspect to the model space update, since only one BV needs
to be updated, implying half the work compared to a world space update. Only the updated BV might
suffer from a looser fit, in contrast to a world space update where both BVs might suffer from a looser
fit. Due to the performance and fitting benefits, model space updating is often preferred over world space
updating.

Figure 15.20 contains pseudocode for a model space update, and Figure 15.21 contains pseudocode
for a world space update.

In every single BV comparison, at least one BV update is taking place; as we saw in the simple stick
object example in Section 15.1, a single BV can be part of many BV comparisons. In the example, we
first tested two root BVs, but in the second iteration only one of these was descended, resulting in several
BV comparisons between children and a root. Thus the root BV might be wastefully updated at each

“book” — 2005/9/30 — 15:44 — page 462 — #474✐
✐

✐
✐

✐
✐

✐
✐

462 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm colliding(AA, BB)
Let TAB be transform from B to A
BA = TAB(BB)
return overlap(AA, BA)

end algorithm

Figure 15.20: Model space update from model frame of B, to model frame of A. Subscript-denoted
coordinate space representation.

algorithm colliding(AA, BB)
Let TWCS,A be transform from A to WCS
Let TWCS,B be transform from B to WCS
AWCS = TWCS,A(AA)
BWCS = TWCS,B(BB)
return overlap(AWCS, BWCS)

end algorithm

Figure 15.21: World space update. Subscript-denoted coordinate space representation.

comparison. This should be avoided by using a caching strategy, for example.
A simple approach to update caching is to let the node in the hierarchy have two BVs associated with

it: one native BV, which is the BV originally created in the model space, and a second BV, which is the
updated BV together with a time stamp of the current collision query. During a comparison, one first
examines the time stamp of the nodes. If a node does not have an up-to-date time stamp, then the second
BV is updated by using the current transformation on the native BV. Finally, the time stamp is set to reflect
that the BV has been updated. After having taken care of time stamp testing and possible BV updating,
an overlap test can be performed between the two updated BVs. This strategy is simple, but there are
some drawbacks. First, the amount of storage needed for a BVH is almost doubled, since two BVs are
needed for each node in the hierarchy instead of just one. Second, it places some restrictions on world
space updates, since two identical objects cannot share the same BVH data structure. Nevertheless, there
is no problem for the model space update, since there is no problem in testing the native BV against the
updated BV in a shared BVH. That is, for a world update, the second BV update will overwrite the first.

15.3 Approximating and Hybrid BVHs

Figure 15.22 shows a space fighter. The space fighter is a polygonal model consisting of little more than
80,000 faces. If we were to build a traditional balanced binary BVH, where each leaf covers exactly one
face, then we will need a binary tree with 80, 000 + (80, 000 − 1) = 159.999 ≈ 160K nodes. The kind
of object shown is suitable for a gaming context, but in this context, a BVH of 160K nodes would be
considered gigantic and of little practical usage.

To obtain a workable representation for a time-critical application such as a game, we will start by

“book” — 2005/9/30 — 15:44 — page 463 — #475✐
✐

✐
✐

✐
✐

✐
✐

15.3 PHYSICS-BASED ANIMATION 463

Figure 15.22: A space fighter polygon mesh.

approximating the object. As can be seen in the first row of Figure 15.23, we have done a volume sampling
of the object. We have manually placed a set of primitive BV types: cylinders, spheres, and OBBs. The
BVs are placed such that they closely resemble the object. Observe that at some places the original object
sticks outside the volume sampling; other places the volume sampling floats a little bit over the object.
This is perfectly legal for an approximation.

The BVs in the volume sampling will be used as leaf nodes in the resulting BVH. The topology of the
resulting BVH is drawn to the left of the space fighter as it is being built.

Next we will try to find the parents of the leaf nodes. This is done by merging close leaf volumes, and
then approximating them by a suitable BV type. In the next row, we see how the cylinders and OBBs of
the three wings have been merged into three OBBs. In the next step, the cockpit part and the three wings
are merged into a single root sphere.

Counting the number of nodes in the final BVH, we see that the BVH contains a total of 16 nodes,
yielding an improvement of a factor of 160, 000/16 ≈ 10000 in size. The decrease in size is not only
reflected in storage requirements, but also the performance of a collision detection query is drastically
improved.

In this example, we have chosen not to annotate the leaves of the BVH with the primitives they
cover. This means that a collision detection query will determine penetration based solely on the leaf BV
geometries. The kind of hierarchy shown in Figure 15.23 is termed an approximating heterogeneous BVH
or an approximating hybrid BVH. It is called approximating because the leaves only approximate the true
shape (surface) of the underlying object. The phrase heterogeneous or hybrid reflects the fact that different
kinds of BV types are used. The opposite, where only a single BV type is used, is sometime referred to as
a homogeneous BVH.

Approximating hybrids are particularly effective, but it is difficult to automate the construction of

“book” — 2005/9/30 — 15:44 — page 464 — #476✐
✐

✐
✐

✐
✐

✐
✐

464 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

f�d� e�c�a� d� e�b�a� d� e�b�a�

(a)

f�d�

g�

e�c�a� d�

g�

e�b�a� d�

h�

e�b�a�

(b)

i�

f�d�

g�

e�c�a� d�

g�

e�b�a� d�

h�

e�b�a�

(c)

Figure 15.23: Example of an approximating heterogeneous BVH. BVH is built bottom up using a volume
sampling for the leaves.

“book” — 2005/9/30 — 15:44 — page 465 — #477✐
✐

✐
✐

✐
✐

✐
✐

15.4 PHYSICS-BASED ANIMATION 465

approximating hybrid BVHs. Such hierarchies are quite common in computer games and often they are
hand-modeled as illustrated, which is a tedious, time-consuming, and error-prone approach. In our opin-
ion, the most difficult part of an automatic construction method is to obtain the initial volume sampling,
also called an object segmentation. Two different policies can be applied for a volume sampling: fully
conservative coverage or sample-based coverage.

Figure 15.24 illustrates how the approximating hybrid BVH is used in a collision query. The figure
should be read in a top-down manner. The left column shows the result of the recursive BV overlap test,
and the right column shows how the corresponding traversal rule replaces an overlapping BV with its
children. Observe that the traversal rules will pick the largest volume to descend. If two overlapping
volumes are the same size, a random volume is picked. The recursive collision query ends when two
leaf BVs are tested for overlap. In this illustrative example the collision query ends with having found a
touching contact between two cylinders, one from each space fighter.

As can be seen from Figures 15.23 and 15.24, an approximating BVH provides a progressive re-
finement of an object. In a collision query, this property can be used to interrupt the collision query if
available time is exhausted, and use the overlapping BVs at the level where the query was interrupted to
form a contact point for the collision resolving. Usually sphere trees are used for this [Hubbard, 1996,
O’Sullivan et al., 1999, Dingliana et al., 2000, Bradshaw et al., 2004].

15.4 Performance and Complexity
To achieve a good performance of a collision query, one seeks good pruning capabilities of the BVs in
the BVH. This implies that a BV comparison is capable of rejecting a pair of BVs for further processing
at the earliest possible level. Obtaining good pruning capabilities has an impact on both the topology of
hierarchy and the fitness of BVs. There is not a single overall goal for constructing a BVH with good
pruning capabilities, but rather it’s a tradeoff between different properties of the BVs. As a consequence
it becomes very application dependent to pick the best way to build a BVH.

We saw some properties of the BVs in a BVH from the simple stick object example in Section 15.1. At
each level of the hierarchy, the primitives covered by a single BV at that level are also covered by the union
of that BV’s children at the next level, and the leaf nodes in the hierarchy each cover a single primitive.
Furthermore, child BVs can extend beyond the space of their parent, and sibling BVs can overlap each
other.

It is important the BVs are as tight fitting as possible to be able to reject a BV comparison at an early
stage, simply because tighter fitting BVs cover a smaller space and thus it is less likely that other BVs will
cover the same space.

A similar argument holds for reducing the amount of overlap between siblings in the hierarchy. A
large overlap between siblings indicates that they cover the same space, thus a traversal might descend
simultaneously down two paths in the hierarchy. If there were no overlap between siblings, the traversal is
more likely to pick only one of the paths. In practice, trying to reduce the overlap between siblings implies
looser fitting BVs and vice versa, thus the two desired properties for obtaining good pruning capabilities
are conflicting.

To reduce overlap while having a tight fit of BVs, one could adopt more complex BV shapes, such as
those with increasing complexity: spheres are simple, axes aligned bounding volumes (AABBs), oriented

“book” — 2005/9/30 — 15:44 — page 466 — #478✐
✐

✐
✐

✐
✐

✐
✐

466 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Figure 15.24: Example of collision query using the approximating hybrid BVH from Figure 15.23.

“book” — 2005/9/30 — 15:44 — page 467 — #479✐
✐

✐
✐

✐
✐

✐
✐

15.4 PHYSICS-BASED ANIMATION 467

Faster overlap tests�

Fewer overlap tests�

Spheres� AABBs� OBBs� Convex Hulls�

Figure 15.25: Tradeoff between BV geometry complexity, number of overlap tests performed in a traver-
sal, and the cost of performing a single overlap test.

bounding boxes (OBBs), and convex hulls. In general, one could choose any kind of BVs, convex or non-
convex. We only need to know how to fit it to a subset of primitives, and how to detect overlaps between
two BV.

Theoretically, we could pick a very complex BV fulfilling our two requirements for good pruning
capabilities; however, this will not resolve our problem of obtaining good performance due to tradeoffs
between BV geometry complexity, cost of BV overlap tests, and number of overlap tests.

Imagine having picked a complex geometry with perfect pruning capabilities, implying tightest pos-
sible fit and no overlap between sibling BVs. The traversal algorithm would pick the optimal path down
the hierarchies during a traversal such that no wrong path is examined. In such a case, the number of
overlap tests is reduced to a bare minimum. Unfortunately, the cost of performing an overlap test be-
tween two complex geometries is expected to increase with complexity, and therefore it might be better
to have picked a simpler geometry, with a cheaper overlap test, even though we will perform a number of
unnecessary overlap tests due to the loss in pruning capability. This is illustrated in Figure 15.25.

Two definitions for measuring the tightness of a BV are presented in [Zachmann et al., 2003b]:

Definition 15.1 (Tightness by Hausdorff Distance)
Let B be a BV, G some geometry covered by B. The Hausdorff distance, h(B,G), is defined to be

h(B,G) = max
b∈B

min
g∈G

d (b,g) , (15.1)

“book” — 2005/9/30 — 15:44 — page 468 — #480✐
✐

✐
✐

✐
✐

✐
✐

468 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

where b is a point on the surface of B and g is a point on the geometry. G, d(·, ·) is the distance between
two points. The Hausdorff distance measures the maximal distance of B to the nearest point in G. Let the
diameter of the geometry G be defined as

diam(G) = max
g,f∈G

d (g,f) , (15.2)

then we can define a tightness measure, τ , as

τ =
h(B,G)

diam(G)
. (15.3)

The Hausdorff distance can be computationally extensive and numerically sensitive to compute. A tight-
ness measure based on volume can therefore be used:

Definition 15.2 (Tightness by Volume)
Let C(B) be the set of children of a BV B, let vol(B) be the volume of a BV B, then tightness, τ , can be
defined as

τ =
vol(B)∑

c∈C(B) vol(c)
. (15.4)

If L(B) is the set of leaf BVs beneath B, then an alternative tightness definition can be used:

τ =
vol(B)∑

l∈L(B) vol(l)
. (15.5)

The topology of the tree structure can be described by the number of children a nonleaf node has. If
all nonleaf nodes have n children, then we have an n-ary tree. A frequently used case is n = 2, which
is also called a binary tree. The number of children is often referred to as the cardinality or the degree.
Given the maximum degree, d, and the number of primitives, n, the height, h, of the complete tree is at
least

h ≥ ⌈logd (n)⌉ , (15.6)

where equality only holds when the tree is balanced. The height of a tree is defined as the number of nodes
encountered on the longest path from any leaf node to the root node. Furthermore, the BVH will have at
most, 2n − 1 nodes and n of these are leaves. This follows quite easily, since a binary tree will have the
smallest (sensible) degree, and any higher degree will lower the number of internal nodes. These bounds
on BVH height and node count only hold when leaf nodes cover exactly one distinct primitive.

The topology of the BVH can also play an important role for the performance of a collision query.
Often, balanced binary trees are wanted since these are known to have good search properties. However,
as our previous examples show, a hierarchy does not need to be binary. In fact, quad-trees and octrees
have been reported to be significantly faster than binary trees [Mezger et al., 2003, Larsson et al., 2001].
Furthermore, as far as we know, there have been no experiments showing that binary balanced BVHs are
always the best choice. For instance, one could argue that for approximating BVHs queries, it would be
feasible to have the BVH balanced w.r.t. volume [Somchaipeng et al., 2004].

“book” — 2005/9/30 — 15:44 — page 469 — #481✐
✐

✐
✐

✐
✐

✐
✐

15.4 PHYSICS-BASED ANIMATION 469

Figure 15.26: Dumbbell, showing two ends with nearly equal volume, but with a large difference in
number of primitives.

As an example, imagine a dumbbell figure where one end is finally tessellated, and the other end has
a coarse tessellation as shown in Figure 15.26. From a volume-approximating viewpoint, both ends are
equal, since they have nearly the same amount of volume inside them. From a surface point of view, one
end is much heavier than the other and requires a finer subdivision. Thus, creating a balanced hierarchy
w.r.t. volume and number of primitives will be focused quite differently.

For surface-based BVHs, OBBs are superior over spheres and AABBs [Gottschalk, 2000]. AABBs
[Bergen, 1997, Larsson et al., 2001] are the preferred choice for deformable objects. The reason is that
during simulation, the BVs in the BVH constantly need to be updated, and the cost of refitting an OBB is
very expensive compared with the cost of refitting an AABB. Hence, AABBs can outperform OBBs, even
though OBBs have better pruning capabilities. For volume-based methods, spheres are often the preferred
choice [Hubbard, 1996, O’Sullivan et al., 1999, Bradshaw et al., 2004].

In general, one tries to keep the overall size of the BVH as small as possible; with a small height these
two properties are known to improve the speed of a search through the tree structure. Obviously for a
surface-based BVH, the number of primitives have a direct impact on these two desired properties, since
increasing the number of primitives will make the BVH large and increase the height as well.

Let’s summarize the characteristic of a good BVH:

• small size

• small height

• good pruning capabilities; no overlap between BVs at the same level and smallest fitting BVs

• balanced hierarchy—in terms of data structure and in terms of volume

Frequently, the time required to perform a collision query is approximated by the linear combination

T = NvTv + NpTp (15.7)

“book” — 2005/9/30 — 15:44 — page 470 — #482✐
✐

✐
✐

✐
✐

✐
✐

470 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Here, Nv and Np denote the number of overlap tests for bounding volumes and primitives respectively,
and Tv and Tp denote the corresponding average times to perform these tests.

Generally speaking, one seeks to make Nv and Np as small as possible by picking the bounding
volume with the best pruning capability for the problem at hand. Also Tv and Tp should be as small as
possible by choosing simpler geometries. Unfortunately, these two minimization goals are conflicting as
explained earlier.

The particular query in question also has an impact on the running time. If a close proximity query is
performed, for example, a cloth falling over an object, then Np is likely to increase rapidly. The primitive
testing is in many cases more expensive than the simpler bounding volume overlap testing.

A third term should be included in the time cost, such that the BV updating is taken into account. This
was suggested in [Klosowski et al., 1998] yielding

T = NvTv + NpTp + NuTu (15.8)

This update term covers transforming BVs into the same coordinate frame before performing an overlap
test. This transform might include a dynamic update of the BV geometry itself. For instance, if an
AABB BVH is built and kept in the model space of a rigid object, then the model frame will have a
different orientation than the world frame during rotational motion, indicating that the AABBs are no
longer AABBs, but have become OBBs.

One resolution to the problem would be to update the OBB into an AABB, such that an AABB overlap
test can be performed. The drawback is that the updated AABB could have a much looser fit than the OBB.
This was discussed in detail earlier; we refer the reader to Figure 15.19. Another approach would be to
perform a more expensive overlap test, capable of dealing with the OBB instead of the AABB.

For deformable objects, the updating cost is a little different. It is actually more of a refitting cost,
implying that the average time Tu might not be a constant. As an example, imagine a simple update
strategy as follows: before a query, the two BVHs are updated in a bottom-up fashion, leafs are refitted
to cover their annotated primitive, internal nodes are refitted to tightly cover the primitives given by the
union of the primitives covered by their children, and the root is refitted to cover all primitives. Obviously,
the leaf refitting is very cheap, and the closer an internal node is to the root, the more expensive the update
will be. Deformable objects will be treated more thoroughly in Section 15.7.

Lower and upper bounds on a balanced binary BVH consisting of ideal BVs have been proven
[Gottschalk, 2000]. An ideal BV is defined as one with perfect pruning capability, that is, it is so tight
fitting that it only overlaps with other BVs if the covered geometry overlaps. Suppose we have two mod-
els each consisting of n primitives. Assume that the BVHs are perfectly balanced using ideal BVs. If the
models are touching and there are k > 0 contacts, then the number of BV tests required to identify all k
contacts is at least

νl(n, k) = 2 log2(n
2/k) + 2k − 1, (15.9)

and at most
νu(n, k) = 2k log2(n

2/k) + 2k − 1. (15.10)

Obviously the lower bound on the number of ideal BV tests is also a lower bound of real BV tests. The
upper bound represents the worst-case performance for ideal BVs, and therefore it represents a lower
bound on the worst-case performance for ordinary BVs.

“book” — 2005/9/30 — 15:44 — page 471 — #483✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 471

Query Complexity� Greater�Lesser�

Fewer�

Further apart�

Lesser� Greater�

Closer Together�

More�Primitives�

Proximity�

Shape Complexity�

Figure 15.27: The performance impact of primitive count, proximity type, and shape complexity on a
collision query.

Of course, in the real world there is no such thing as an ideal BV, and we are left with real BVs. A
worst-case time complexity for real BVs is difficult to derive, if possible at all, due to the many factors
involved—the complexity of the object shape, the number of primitives in the object, the BV geometry,
the topology of the BVH, etc.

Of course, it is possible to construct situations where the worst imaginable time complexity will be
O(n2); for instance, if one were to create and place two objects, such that all their primitives were in-
tersecting each other. However, in physics-based animation we often work with objects that resemble
real-world objects, implying that the geometry for solids is a connected nonintersecting twofold, and at
least in their rest shape they are nonintersecting with themselves. A O(n2) time complexity is therefore
not likely to occur. Figure 15.27 illustrates our discussions on the time complexity of a collision query.

15.5 Hierarchy Construction Methods
There are many approaches for building BVHs. They can be classified into three main classes: top-down,
bottom-up, and incremental methods. Their names reflect how the BVH is traversed during creation of the
nodes in the hierarchy. In Section 15.1 and in Section 15.3 we described two different ways for obtaining
the example BVHs: the stick object applied a top-down method, whereas the star fighter model used a
bottom-up approach. We have not shown any examples of an incremental method, but here, the general
idea is to extend a BVH incrementally. Incremental methods are, to our knowledge, not widely used in
collision detection. Each of the three main groups can be further subdivided into subgroups.

Top-down methods can be grouped as being based on a subdivision scheme or a statistical approach.
Both of these subgroups are treated in detail in Section 15.5.1.

Bottom-up methods come in two flavors, depending on whether a volumebased BVH or a surface
BVH is wanted. Volume-based BVHs usually start out by performing some sort of volume sampling of
an object. Medial surfaces are very popular for volume sampling. Alternatively, diffusion-based methods,

“book” — 2005/9/30 — 15:44 — page 472 — #484✐
✐

✐
✐

✐
✐

✐
✐

472 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

such as using scale space and deep structure may be used [Somchaipeng et al., 2004]. Alternatives are
convex decompositions or simply voxelizations; even subdivisions by octrees have been used to obtain a
volume sampling of an object. Surface-based BVHs tend to be based on a merging strategy. Here, BVs are
initially formed for the leaves of the BVH and various strategies can then be applied to pick BVs, which
undergo a merging operation. Theoretically, it is an all-pair problem for picking two BVs, and even worse
if a higher degree of the BVH is wanted. The problem could be cast into a optimization problem. Graph
theory is also a popular choice, where nodes correspond to BVs and edges to possible merges. Greedy
algorithms for picking edge-candidates for merges are often adopted.

Incremental methods are governed by two main problems: finding a place to insert a BV and then
updating the BVH [Zachmann et al., 2003b].

The various methods are summarized here:

Top-down methods

• Statistical approach

• Subdivision

Bottom-up methods

• Volume sampling

– Structural information (medial surfaces)
– Diffusion
– Convex decomposition, voxelization

• Merging

– Optimization problems
– Graph theory
– Greedy (deterministic) algorithms

Incremental methods

• Inserting a BV, updating hierarchy

In the following subsections we will treat both top-down and bottom-up methods in more detail; incre-
mental methods are only briefly touched.

15.5.1 Top-Down Methods

A top-down method usually adopts a fit-and-split strategy, where for a given collection of primitives, a
BV is fitted to cover all the primitives, and then the collection is partitioned into two or more groups. For
each group a new BV is fitted and the collection is partitioned again. This is repeated until each group
only contains a single primitive. Figure 15.28 illustrates the basic idea in pseudocode. Two operations
need to be considered in order to apply a top-down method:

“book” — 2005/9/30 — 15:44 — page 473 — #485✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 473

algorithm fit-and-split(parent,primitives)
bv = BV(primitives)
add bv as child to parent
groups = split(primitives)
for each g in groups do

fit-and-split(bv,g)
next g

end algorithm

Figure 15.28: Fit-and-split strategy of a top-down method.

Fitting Given a collection of primitives and a BV type, how do we find the smallest and tightest fitting
BV?

Splitting Given a collection of primitives and the degree, d, how do we split the collection into d groups?

The task of fitting a BV to a collection of primitives is deferred to Section 15.6. In this section we will
only consider the task of splitting a collection of primitives into two or more groups.

Top-down methods are easily implemented. They are probably also the most common used in practice.
Most splitting methods seek a binary partitioning of the primitives resulting in binary BVHs. It is easier
to split a set of primitives into two disjunct groups than into three or four groups simply because given a
single primitive, one only needs to consider a single yes-no decision. It is also desirable to make the BVH
balanced, to give it a good overall worst-case seeking complexity. Having balanced binary BVHs yields
an O(log2 n) depth (height) for n primitives.

Most splitting methods are based on the idea of first choosing a splitting axis to indicate a direction
of splitting. Hereafter, a splitting point on the axis is often determined and a splitting or dividing plane
can be set up, having the axis as normal and containing the splitting point. Having obtained a splitting
plane, one is left with the task of deciding which side of the plane a primitive is mapped to. Most often
the decision is based on the position of the centroid of the primitive w.r.t. the splitting plane. Figure 15.29
contains 2D illustrations of the concepts and terms we have introduced.

Without clever search structures the partitioning of k primitives takes O(k) time. If the fitting process
is also O(k) for k primitives, then the BVH building process has the same recurrence relation as quicksort,
that is, expected O(n log n). If the BVH is reasonably balanced however, the worst-case running time is
O(n2). If the fitting is not linear in the number of primitives, but for instance O(n log n), which is the
case when a convex hull computation is involved, then the BVH building takes O(n log2 n).

15.5.1.1 A Subdivision Method

Using a subdivision method for finding the splitting plane is often fast and simple. For instance, in
[Klosowski, 1998] a splitting plane orthogonal to the x-, y-, or z-axis is picked based upon the following
criteria:

Min Sum: Choose the axis that minimizes the sum of the volumes of the two resulting children.

“book” — 2005/9/30 — 15:44 — page 474 — #486✐
✐

✐
✐

✐
✐

✐
✐

474 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Splittin
g Axis�

Splitting�
 Point�

Primitive�

centroid�

Splitting Plane�

Figure 15.29: Often-used terms and concepts in top-down methods.

Min Max: Choose the axis that minimizes the larger of the volumes of the two resulting children.

Longest Side: Choose the axis along which the BV is longest.

The last method does not make much sense if spheres are used, but works great for AABBs, k-DOPs,
OBBs, or similar BV types. The idea in min sum and min max is to try out all axes, and pick an axis
according to some greedy optimization strategy. They both require that six BVs must be computed, one
pair for each axis, involving six fitting operations.

An alternative algorithm not restricted to using a splitting plane orthogonal to the coordinates axis
works by taking as input a set F of BVs each enclosing one primitive and a set C of points, which are the
barycenters of the primitives. The algorithm starts by finding ci, cj ∈ C with almost maximal distance. In
[Zachmann, 1998], a nearoptimal pair is found by a simple O(n) heuristic. Then a splitting axis parallel
to cicj is determined and C is sorted along that axis, which induces a sorting on F . After these initial
steps, which are done for every recursion, F can be split in two parts F1 and F2. To start with F1 = fi,
F2 = fj , where fi, fj are associated to ci, cj , respectively, then, all other f ∈ F are treated in an iterative
manner one by one and assigned to either F1 or F2, according to whichever BV increases the least. If both
BVs of F1 and F2 increase equally and in particular, if they do not increase at all, then f is added to the
set, which has the least polygons.

According to [Zachmann, 1998], the algorithm produces good trees that are fairly well balanced. Fur-
thermore, the algorithm is geometrically robust and can be applied to all unstructured models, that is, no
adjacency information is needed or connectivity restrictions required. A very strong point of the algorithm
is that it is capable of dealing with degenerate primitives, such as polygons collapsing to lines, points, or
worse.

15.5.1.2 A Statistical Method

In order to increase the pruning capabilities of the BVH, we seek to make BVs fat, that is, we would like
to avoid having long thin BVs. These span a large area of space, thus increasing the chance of overlapping
a lot of other BVs. If the BV is more like a cubic or spherical shape, it will in a sense, be more local,

“book” — 2005/9/30 — 15:44 — page 475 — #487✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 475

Bad
 Split�

Good Split�

Figure 15.30: 2D example of a bad split and a good split.

implying a better chance for pruning. Therefore, splitting along the axis of maximum spread increases the
chance of creating more fat BVs than long thin BVs. Figure 15.30 illustrates the idea in a 2D Example
where a rocket object is shown, together with a bad and good split. In the following, we will consider the
theory for spatial point distributions and derive the covariance matrix. Afterward, we will give some hints
on how to generalize the results.

Consider Figure 15.31. We have drawn a set of points in 2D and assume that we want to split along
an axis with maximum variance. In general, we have a point set with N Points:

P = {p1,p2, . . . pN} . (15.11)

Usually the points belong to 3D space, that is,

pi ∈ R3, for i = 1, . . . ,N. (15.12)

The mean is given by

m =
1

N

∑

i

pi. (15.13)

The direction of the maximum variance is denoted by the vector n. As can be seen from Figure 15.31, it
is quite easy for a human being to intuitively pick n. If we subtract the mean from each pi we get a new

“book” — 2005/9/30 — 15:44 — page 476 — #488✐
✐

✐
✐

✐
✐

✐
✐

476 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

x�

y�

m�

n�

n�

Figure 15.31: Illustration of what is meant by the axis of maximum spread.

point set:
Q = {q1,q2, . . . ,qN} , (15.14)

where
qi = pi −m, for i = 1, . . . ,N. (15.15)

The direction, n, of maximal variance is also the direction that maximizes the square sum of the projection
of Q onto n,

v =
1

N

∑

i

(n · qi)
2 . (15.16)

We want to maximize v w.r.t. n under the condition that enormn = 1. This is equivalent to maximizing
the expression

v + λ (n · n− 1) , (15.17)

where λ is a Lagrange multiplier. The maximum must occur at zero derivative, so we differentiate with
respect to nx, ny and nz

d

dnx

(
1

N

∑

i

(n · qi)
2 + λ (n · n− 1)

)

= 0, (15.18a)

d

dny

(
1

N

∑

i

(n · qi)
2 + λ (n · n− 1)

)
= 0, (15.18b)

d

dnz

(
1

N

∑

i

(n · qi)
2 + λ (n · n− 1)

)

= 0. (15.18c)

“book” — 2005/9/30 — 15:44 — page 477 — #489✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 477

For the derivative w.r.t. nx we get

d

dnx

(
1

N

∑

i

(n · qi)
2 + λ (n · n− 1)

)

= 0, (15.19a)

⇓
1

N

∑

i

d

dnx
(nxqix + nyqiy + nzqiz)

2 + λ
d

dnx

(
n2

x + n2
y + n2

z − 1
)

= 0, (15.19b)

⇓
1

N

∑

i

2 (nxqix + nyqiy + nzqiz) qix + λ2nx = 0, (15.19c)

⇓
1

N

∑

i

(nxqix + nyqiy + nzqiz) qix + λnx = 0. (15.19d)

Obviously we get similar equations for the derivative w.r.t. ny and nz , so we end up with

1

N

∑

i

(nxqix + nyqiy + nzqiz) qix + λnx = 0, (15.20a)

1

N

∑

i

(nxqix + nyqiy + nzqiz) qiy + λny = 0, (15.20b)

1

N

∑

i

(nxqix + nyqiy + nzqiz) qiz + λnz = 0. (15.20c)

We can rewrite this into a matrix equation
⎡

⎣
1
N

∑
i q

2
ix

1
N

∑
i qiyqix

1
N

∑
i qizqix

1
N

∑
i qixqiy

1
N

∑
i q2

iy
1
N

∑
i qizqiy

1
N

∑
i qixqiz

1
N

∑
i qiyqiz

1
N

∑
i q2

iz

⎤

⎦

︸ ︷︷ ︸
C

⎡

⎣
nx

ny

nz

⎤

⎦ = −λ

⎡

⎣
nx

ny

nz

⎤

⎦ (15.21)

That is,
Cn = −λn (15.22)

The matrix C is symmetric and is called the covariance matrix. Furthermore, this is an eigenvalue problem
with n and λ as eigenvector and eigenvalue of C . Hence the eigenvector with maximum eigenvalue

is the splitting axis. Splitting can now occur in two ways:

• Divide the primitives into two disjunct sets, by using a splitting plane at the mean.

• Project the centroids of the primitives onto the splitting axis and find the median. Then use a
splitting plane running through the median.

“book” — 2005/9/30 — 15:44 — page 478 — #490✐
✐

✐
✐

✐
✐

✐
✐

478 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm bottom-up(L)
C = L
while |C| > 1 do

set P empty
while C not empty do
choose subset S from C
B = BV (S)
add S as children to B
add B to P

end
C = P

end
root = C

end algorithm

Figure 15.32: Pseudocode illustration of a general bottom-up method. Taking a set, L, of leaf BVs as
argument, the set C denotes the children BVs and P the new parent BV.

Picking the median over the mean ensures a balanced BVH, however, using the median over the mean
yields no improvement on the running times of a collision query [Klosowski et al., 1998]. Numerical
experiments indicate the mean outperformed the median.

Although covariance clearly shows how to obtain a sensible splitting axis, it is by no mean trivial to
do so. There are many pitfalls involved in computing a good covariance matrix for a set of primitives. We
deal with this in full detail in Section 15.6.1.

The splatter method [Klosowski, 1998] is slightly different. It consists of first projecting the centroids
of the primitives onto each of the three coordinate axes and then calculating the variance of each of the
resulting distributions. Hereafter, one chooses the axis yielding the largest variance.

15.5.2 Bottom-Up Methods
In bottom-up methods the idea is to start by fitting BVs for the leaves of the BVH and then merging
the leaves of subsequential nodes until the root is reached. A new BV must be created after each merge
covering the entire subtree.

Given n primitives, then n−1 merges are required in order to build the BVH. Determining an enclosing
BV after a merge can be done in O(1) time, if one simply lets the BV enclose the geometry of the
immediate children. For k primitives in the subtree, a fitting, which examines all the covered primitives
one by one will take O(k). If extremal points or a similar measure is sought, then the complexity is
O(k log k). The total BVH construction time would be O(n), O(n log n), and O(n log2 n) using these
fitting strategies respectively. Of course, here we have implicitly assumed that it takes O(1) time to decide
which nodes should be merged into a new parent node.

A pseudocode illustration of the basic idea of a bottom-up method is shown in Figure 15.32. There
are two main difficulties in a bottom-up method:

• picking a subset of BVs at level l, which should form a parenting BV at level l − 1

“book” — 2005/9/30 — 15:44 — page 479 — #491✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 479

d�

c�
a�

b�
e�

f�

g�
h�

i�
j�

k�

l�

heap�

a�
b�c�d�

e�
f�
g�

h�i�
j�k�

l�

mesh + dual�

pr
io

rit
y�

Figure 15.33: Basic data structures used by the bottom-up mesh connectivity method.

• computing the BV at level l − 1

In the following, we will treat the first problem and defer the second to Section 15.6.

15.5.2.1 Mesh Connectivity

Mesh connectivity is the dominant strategy for applying BVHs to deformable objects [Volino et al., 1998,
Volino et al., 2000, Larsson et al., 2001, Bridson et al., 2002, Bergen, 1997]. [Larsson et al., 2001] reports
a performance increase of up to 10% for the collision query when using mesh connectivity. Deformable
objects will be treated further in Section 15.7. Here, we will describe a bottom-up construction method
from [OpenTissue, 2005], inspired by [Hubbard, 1996, Larsson et al., 2001, Bridson et al., 2002].

Given a mesh, the topology can be used to guide the bottom-up construction. Initially, leaf BVs are
created, such that they cover exactly one face in the mesh. At the same time, a graph data structure is being
built to represent the dual graph of the mesh. The dual graph is constructed as follows: a node is created
in the graph for every face, and edges are inserted between nodes in the graph if their corresponding faces
are neighbors in the mesh as illustrated in Figure 15.33. The graph edges describe potential merges of
leaf nodes into parent nodes. During initialization, all edges are assigned a priority penalizing a potential
merge between the BVs stored in the end nodes. All the edges are then inserted into a priority heap,
allowing the algorithm to incrementally pick the edge with minimum priority. Thus the edge, which
represents the two BVs that are most beneficial, are merged into a parent BV. Whenever a merge operation
is performed, the corresponding graph edge is collapsed, thereby melting the two end nodes of the edge
into a single node. The main loop of this algorithm is shown in pseudocode in Figure 15.34. When an
edge collapse occurs, one has to guard against inconsistencies in the graph data structure. For instance, if
multiple edges exist between the two merging end nodes, self-loops will exist in the resulting graph, and
these must be removed during the edge collapse since it makes no sense to merge a node with the node
itself. There is a direct correspondence between a node in the graph and a BV node. Therefore, we keep

“book” — 2005/9/30 — 15:44 — page 480 — #492✐
✐

✐
✐

✐
✐

✐
✐

480 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm construct(G)
Heap Q
for all edges e ∈ G do

e.priority = cost(e)
add e to Q

next e
while Q not empty do

e = pop(Q)
collapse(e,G, Q)
sort Q

end
end algorithm

Figure 15.34: Main loop.

a pointer to the current BV, which the node represents. Furthermore, we keep track of the height this BV
has in the BVH that is being built.

Due to BV fitting, it is beneficial to keep track of the mesh geometry that is covered by a graph node,
thus every time we collapse an edge in the graph, the resulting node will contain the union of the geometry
covered by the two end nodes before the edge collapses.

After a merging operation, some edges in the graph will have updated one of their end nodes to the
merged node, thus they need to get their priority updated. The heap must also be updated to reflect changes
in priorities.

Figure 15.35 contains the details of an edge collapse operation in pseudocode. The cost function, used
to assign priorities to the graph edges, can be used to control the overall topology of the BVH. A useful
practical cost function consists of the sum of the heights of the BVs stored in the end nodes. This cost will
try to favor a balanced BVH.

Other criteria could be the volume that a resulting BV would have if a merge was carried out, thereby
favoring smallest possible BVs. However, there is no telling if a greedy pick of smallest BV would yield
a final BVH where all nodes are as small as possible.

A real-life example of a BVH built with the mesh connectivity method is shown in Figure 15.36. The
bottom-up method we have outlined is not specific for mesh connectivity, but rather a general graph-based
algorithm driven by a greedy deterministic optimization algorithm. This implies that the graph does not
need to be built from the dual graph of a mesh; instead, it could be the dual graph of the generalized
Voronoi diagram of a volume sampling, which could be used to build approximating hybrid BVHs as
shown in Figure 15.23.

15.5.3 Incremental Methods

Incremental methods are based on an insertion principle. Initially the BVH is empty, and BVs from
an elementary set are inserted one by one into the hierarchy [Zachmann et al., 2003b]. Most incremental
methods have complexity O(n log n) [Zachmann et al., 2003b]. The elementary set of BVs can be thought
of as the set of leaf BVs in the resulting BVH. The elementary set of BVs could consist of a set of BVs,

“book” — 2005/9/30 — 15:44 — page 481 — #493✐
✐

✐
✐

✐
✐

✐
✐

15.5 PHYSICS-BASED ANIMATION 481

algorithm collapse(e,G, Q)
[S, D] =getEndNodes(e)
add D.geo to S.geo
B = BV (S.geo)
add S.bv and D.bv as children to B
S.bv = B
S.height = min(S.height, H.height) + 1
for all edges h between S and D do

remove h from G
remove h from Q

next h
for all edges h incidient to D do

move h from D to S
next h
delete D from G
for all edges h incident to S do

h.priority = cost(h)
next h

end algorithm

Figure 15.35: Edge collapse operation.

Figure 15.36: Illustration of AABB BVH built using mesh connectivity, left image shows original polyg-
onal mesh, middle image shows mesh with leaf AABBs superimposed, right image shows all AABBS at
height four in the BVH.

“book” — 2005/9/30 — 15:44 — page 482 — #494✐
✐

✐
✐

✐
✐

✐
✐

482 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm incremental(B)
while B not empty do

choose b ∈ B
if BVH empty then

root = b
continue

else
ν = root
while ν ̸= leaf do

choose child ν′ of ν
ν = ν′

end while
end if
insert b into ν

end while
end algorithm

Figure 15.37: A typical incremental construction method taking an elementary set, B, of BVs as argument.

where each BV in the set encloses a uniquely determined primitive. In other words, for a polygonal soup,
each polygon is enclosed by a single BV, and all these BVs form the elementary set. The elementary set
could also be built from an object segmentation, i.e., a volume sampling of an object can be a set of known
BV geometry types.

The general idea is to traverse the BVH built so far in order to find a node, which dictates an insertion
point for the next elementary BV. We’ll label the insertion point node ν and the elementary node that
should be inserted, b. A pseudocode illustration is presented in Figure 15.37. When a suitable ν is found,
an insertion will take place. In a typical insertion, ν will be the parent of b. If ν was a leaf prior to
insertion, an extra sibling node must be created, which will contain the elementary BV originally stored
in ν.

Having inserted a new BV in the BVH, the BV properties of all the ancestors might have been de-
stroyed. In order to correct this one could traverse the insertion path backward from the newly inserted
BV to the root, and while doing so update every BV node on the path to cover its children.

Many variations over this scheme exist, however they all must deal with three basic problems:

• picking the next b from B, such that a good BVH will be built

• choosing the best child ν ′ during the traversal of the insertion path

• applying a good strategy to update the BVs on the insertion path after the insertion has taken place

An optimization strategy can be applied to make these decisions by attributing bs with a cost function and
nodes ν in the BVH with another cost function, and then making choices which minimize the cost.

“book” — 2005/9/30 — 15:44 — page 483 — #495✐
✐

✐
✐

✐
✐

✐
✐

15.6 PHYSICS-BASED ANIMATION 483

15.6 Smallest Enclosing Volume
Many types of BVs have been presented in the literature. The three most simple and widespread are
spheres, AABBs, and OBBs. In the following, we will describe fitting methods for these. We refer the
interested reader to references in Section 15.9 for more details on other types of BVs.

15.6.1 Fitting an OBB
A frequently used representation for an OBB is a center position, c, and an orientation, R, given as
a rotation matrix. Each column in R is a unit vector along a major axis of the OBB, and three half
length extents along the three axes of the OBB. Thus, in a precomputation step the half length extents are
computed. Let’s for a moment assume that the orientation of the OBB is given as

R =
[
v1 v2 v3

]
. (15.23)

For the vertices, pi with i ∈ [1..k], of the set of primitives, we could compute the upper and lower extremes
along each axis of the sought OBB by

u1 = max (v1 · p1, . . . ,v1 · pk) , (15.24a)

u2 = max (v2 · p1, . . . ,v2 · pk) , (15.24b)

u3 = max (v3 · p1, . . . ,v3 · pk) , (15.24c)

l1 = min (v1 · p1, . . . ,v1 · pk) , (15.24d)

l2 = min (v2 · p1, . . . ,v2 · pk) , (15.24e)

l3 = min (v3 · p1, . . . ,v3 · pk) . (15.24f)

The width w, height h, and depth d of the OBB would be given by

w = u1 − l1, (15.25a)

h = u2 − l2, (15.25b)

d = u3 − l3. (15.25c)

The half length extents are therefore given by (w/2, h/2, d/2), and finally the center of the OBB by

c =
1

2

(
l1 + u1

)
v1 +

1

2

(
l2 + u2

)
v2 +

1

2

(
l3 + u3

)
v3. (15.26)

In conclusion, knowing the orientation of the OBB, it is quite easy to compute its center and extents.
Unfortunately, that was under the assumption of known orientation of the OBB.

Generally speaking, if the set of primitives has a long and thin shape, so should the tightest enclosing
OBB fitting the set of primitives. Covariance as discussed in Section 15.5.1.2 provides us with a powerful
tool for finding an enclosing volume. For instance, we could use the axis of maximum variance to set
up an orientation for an OBB. Figure 15.38 shows a 2D example where extremal points along the axes

“book” — 2005/9/30 — 15:44 — page 484 — #496✐
✐

✐
✐

✐
✐

✐
✐

484 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

x�

y�

m�

n�

n�

Figure 15.38: Using maximum variance to find the orientation of OBB.

x�

y�

m�
n�

n�

(a) No misalignment

x�

y�

m�

n�

n�

(b) Misalignment caused by internal nodes

Figure 15.39: Influence of interior vertices causing a significant misalignment of the enclosing OBB.

“book” — 2005/9/30 — 15:44 — page 485 — #497✐
✐

✐
✐

✐
✐

✐
✐

15.6 PHYSICS-BASED ANIMATION 485

x�

y�

m�

n�

n�

Figure 15.40: Using points lying on the convex hull only to avoid misalignment caused by interior points.

of maximum variance are used to compute an OBB. However, this headless approach suffers from some
difficulties arising form the distribution of the points. For instance, the influence of interior vertices can
cause an arbitrary misalignment of the enclosing OBB, as illustrated in Figure 15.39(b). To get around
this, we could try to eliminate the contribution of interior points to the covariance. For instance, we could
compute the convex hull of the set of points and then only use the points lying on the surface of the convex
hull, thus ignoring all points lying inside the convex hull, as illustrated in Figure 15.40. It appears from
Figure 15.40 that we have solved all our troubles, but misalignment could still in fact occur. If there is a
nonuniform distribution of points on the convex hull, it could cause an arbitrary bad misalignment, as can
be seen from Figure 15.41. The problem could be seen as a sampling artifact, and one way to remedy it
would be to resample the surface of the convex hull with points to obtain a uniform distribution. However,
this is a costly operation to perform and by no means as trivial as it may sound. A far better solution is to
take the limiting case where we resampled the surface of the convex hull with infinitely many points, such
that they would cover the entire surface in a uniform manner. This actually corresponds to integrating over
the surface of the convex hull as shown in Figure 15.41(b).

Although this method is general, some point sets can still cause misalignment due to special symmetry,
such as is illustrated in Figure 15.42. There are currently no known methods to get around this. The
covariance-based method we have outlined does not yield optimal OBBs, and they can easily be shown to
be suboptimal. In Figure 15.43 the nonoptimality of the covariance-based alignment method is illustrated.
In Figure 15.43(a), an initial object with its covariance-aligned OBB is shown. In Figure 15.43(b) a
slightly altered object is shown superimposed on the original object. The object has been altered so that
its convex hull still lies inside the original OBB, shown with dotted lines. The alteration is shown grayed.
The change in shape causes the covariance alignment to pick another orientation of the OBB, shown with
solid lines. The change in orientation causes a slight change in the extents of the OBB. Because the altered
OBB covers the altered object, and the altered object covers the initial object, then the altered OBB also
covers the initial object. By construction, the initial OBB covers the altered object. In essence we have
two distinct OBBs both covering two different objects.

“book” — 2005/9/30 — 15:44 — page 486 — #498✐
✐

✐
✐

✐
✐

✐
✐

486 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

x�

y�

m�

n�

n�

(a) Misalignment caused by nonuniform point
distribution.

x�

y�

(b) Integrate covariance over surface of convex
hull to avoid misalignment.

Figure 15.41: Nonuniform distribution of points on the convex hull causing misalignment of OBB.

x�

y�

m�

n�

n�

Figure 15.42: Special geometry causing bad misalignment; square has same statistical spread in all direc-
tions, any may be a chosen orientation. The figure illustrates the worst-case fit.

Now let us try to derive formulas for integrating the covariance matrix over the surface of the convex
hull. Let x denote a random point on the surface of the convex hull, then the entries of the covariance
matrix

C =

⎡

⎣
C00 C01 C02

C10 C11 C12

C20 C21 C22

⎤

⎦ , (15.27)

is by definition given as

Cij = E [xixj]−E [xi] E [xj] ∀i, j ∈ [0..2] , (15.28)

where E[·] is the statistical expectation operator, and xi and xj is the i’th and j’th coordinate of the
random point. This is the statistical definition of covariance in comparison to the geometrical definition
in (15.21). If we let S denote the surface of the convex hull and dA a differential area element, then the

“book” — 2005/9/30 — 15:44 — page 487 — #499✐
✐

✐
✐

✐
✐

✐
✐

15.6 PHYSICS-BASED ANIMATION 487

(a) Initial object with its
covariance-aligned OBB.

(b) Slightly altered object inside
initial OBB, however,

covariance-aligned OBB is
different.

Figure 15.43: Covariance-aligned OBBs are suboptimal.

expectations above is by definition given as

E [xi] =

∫
S xidA∫
S dA

, (15.29a)

E [xj] =

∫
S xjdA∫

S dA
, (15.29b)

E [xixj] =

∫
S xixjdA∫

S dA
. (15.29c)

Without loss of generality we will assume that the surface of the convex hull consists of a set of triangles,
T k for k = 1, . . . ,K. If this is not the case, these triangles can easily be obtained by standard triangular-
ization methods [Berg et al., 1997, O’Rourke, 1998]. The three vertices of the k’th triangle are given by
pk, qk, and rk. A parameterization of the k’th triangle is written as

x(s, t) = pk + uks + vkt, where s ∈ [0, 1] , t ∈ [0, 1− s] , (15.30)

and the area of the k’th triangle, Ak, is written as

Ak =
1

2

∥∥∥uk × vk
∥∥∥

2

, (15.31)

where uk = qk − pk and vk = rk − pk. The total integrals over the surface S can be viewed as the sum
of integrals over each of the triangles. In particular, the denominator in the above equations is

∫

S
dA =

∑

k

∫

T k
dA. (15.32)

“book” — 2005/9/30 — 15:44 — page 488 — #500✐
✐

✐
✐

✐
✐

✐
✐

488 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Now the main idea is to change the integration variable to s and t, such that we can use our parameter-
ization to evaluate the expectation integrals in (15.29a), (15.29b), and (15.29c). The change of variable,
when integrating any function f(s, t) over the triangle, is given by

∫

T k
fdA =

∥∥∥uk × vk
∥∥∥

2

∫ 1

0

∫ 1−s

0
f(s, t)dtds. (15.33)

Applying this strategy to the denominator in (15.29a), (15.29b), and (15.29c) yields
∫

S
dA =

∑

k

∫

T k
dA (15.34a)

=
∑

k

∥∥∥uk × vk
∥∥∥

2

∫ 1

0

∫ 1−s

0
dtds (15.34b)

=
∑

k

∥∥∥uk × vk
∥∥∥

2

∫ 1

0
(1− s) ds (15.34c)

=
∑

k

∥∥∥uk × vk
∥∥∥

2

1

2
(15.34d)

=
∑

k

Ak = A. (15.34e)

The area of the convex hull is thus the sum of all triangle areas. Applying the same recipe to the enumerator
in (15.29a) yields

E [xi] =
1

A

∫

S
xidA (15.35a)

=
1

A

∑

k

∫

T k
xk

i dA, (15.35b)

and changing the integration variable and substituting parameterization give
∫

T k
xk

i dA =
∥∥∥uk × vk

∥∥∥
2

∫ 1

0

∫ 1−s

0
xk

i dtds (15.36a)

=
∥∥∥uk × vk

∥∥∥
2

∫ 1

0

∫ 1−s

0

(
pk + uks + vkt

)

i
dtds (15.36b)

=

(∥∥∥uk × vk
∥∥∥

2

∫ 1

0

∫ 1−s

0
pk + uks + vktdtds

)

i

. (15.36c)

Notice that subscript refers to the i’th coordinate. Trivially solving the integrals yields
∫

T k
xk

i dA =

(∥∥∥uk × vk
∥∥∥

2

1

6

(
pk + qk + rk

))

i

. (15.37)

“book” — 2005/9/30 — 15:44 — page 489 — #501✐
✐

✐
✐

✐
✐

✐
✐

15.6 PHYSICS-BASED ANIMATION 489

Rewriting, we get
∫

T k
xk

i dA =

((
1

2

∥∥∥uk × vk
∥∥∥

2

)(
1

3

(
pk + qk + rk

)))

i

(15.38a)

= Akmi, (15.38b)

where mk = 1
3

(
pk + rk + qk

)
is mean of the k’th triangle. Back substitution leads to the following

solution for the first expectation
E [xi] =

∑

k

Akmi. (15.39)

It is trivial to see that by the same derivation, the solution to the second expectation is given as

E [xj] =
∑

k

Akmj. (15.40)

The exact same approach can now be applied to the third and last expectation integral, that is,

E [xixj] =
1

A

∫

S
xixjdA (15.41a)

=
1

A

∑

k

∫

T k
xk

i x
k
j dA. (15.41b)

Changing integration variables and substituting the triangle parameterization leads to the following results
with a bit of mathematical handiwork:

E [xixj] =
1

A

∑

k

2Ak

24

(
9mk

i m
k
j + pk

i p
k
j + qk

i q
k
j + rk

i r
k
j

)
. (15.42)

The derivation is long and quite trivial so we refer the interested reader to [Gottschalk, 2000] for a detailed
proof. By back substituting into the definition of covariance we obtain the desired result

Cij = E [xixj]− E [xi]E [xj] (15.43a)

=
1

A

∑

k

1

24

(
9mk

i m
k
j + pk

i p
k
j + qk

i q
k
j + rk

i r
k
j

)
−mS

i mS
j , (15.43b)

where mS is the mean point of the entire surface. Observe that the covariance matrix is symmetrical,
meaning that only six entries need to be evaluated.

15.6.2 Fitting an AABB
The axes aligned bounding box (AABB) was treated in detail in Chapter 12, and may be considered a
special case of an OBB, where the orientation is given as

R =
[
v1 v2 v3

]
, and v1 = [1, 0, 0]T ,v2 = [0, 1, 0]T ,v3 = [0, 0, 1]T . (15.44)

“book” — 2005/9/30 — 15:44 — page 490 — #502✐
✐

✐
✐

✐
✐

✐
✐

490 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Therefore, we can compute the minimum and maximum points of an AABB by

u1 = max (v1 · p1, . . . ,v1 · pk) , (15.45a)

u2 = max (v2 · p1, . . . ,v2 · pk) , (15.45b)

u3 = max (v3 · p1, . . . ,v3 · pk) , (15.45c)

l1 = min (v1 · p1, . . . ,v1 · pk) , (15.45d)

l2 = min (v2 · p1, . . . ,v2 · pk) , (15.45e)

l3 = min (v3 · p1, . . . ,v3 · pk) , (15.45f)

and then we have
rmin =

[
l1, l2, l3

]T
, and rmax =

[
u1, u2, u3

]T
. (15.46)

Notice that there is no need to save the orientation, since it is given implicitly.

15.6.3 Fitting a Sphere
We’ll first consider some simple cases where the set of primitives we want to enclose consists of a set of
one point, two points, three points, and four points. We label these points as v0, v1, v2, and v3. Also, we
assume that all points are in general position, that is, no four points lie in the same plane, no three points
lie on the same line, and no two points have equal coordinates.

In case we only have a single point, we can trivially find an enclosing sphere by setting the center, c,
equal to the point and the radius, r, to zero:

c = v0, (15.47a)
r = 0. (15.47b)

In case we have two points, they must both lie on the surface of the smallest enclosing sphere, meaning
that they are equidistant from the center of the enclosing sphere

c = 1
2 (v1 − v0) + v0, (15.48a)

r = 1
2 ∥v1 − v0∥2 . (15.48b)

In the case where we have more than two points, and if all points do not lie on the surface of the enclosing
sphere, then we can reduce the problem to the trivial case above.

So without further fuss, we assume that all points lie on the surface of the smallest enclosing sphere,
implying that they are all equidistant from the center of the sphere. Let n denote the number of points,
either three or four, then we have

∥c− vi∥2 = r 0 ≤ i ≤ n. (15.49)

If we take the square and rewrite the above constraints, we have

(c− vi) · (c− vi) = r2, (15.50a)
⇓

c · c− c · vi − vi · c + vi · vi = r2, (15.50b)

“book” — 2005/9/30 — 15:44 — page 491 — #503✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 491

for all 0 ≤ i < n. If we subtract the equation i = 0 from all the equations with i > 0, then we find

c · c− c · vi − vi · c + vi · vi − (c · c− c · v0 − v0 · c + v0 · v0) d = r2 − r2, (15.51a)
⇓

−c · vi − vi · c + vi · vi + c · v0 + v0 · c− v0 · v0 = 0, (15.51b)
⇓

−2vi · c + 2v0 · c− 2v0 · v0 = −vi · vi − v0 · v0. (15.51c)

We now add +2vi · v0 to both sides of the equation to give

−2vi · c + 2v0 · c− 2v0 · v0 + 2vi · v0 = −vi · vi − v0 · v0 + 2vi · v0, (15.52a)
⇓

(vi − v0) · (c− v0) = 1
2 (vi − v0) · (vi − v0) , (15.52b)

⇓
(vi − v0) · (c− v0) = 1

2 ∥vi − v0∥22 . (15.52c)

Using the matrix and vector notation

M =

⎡

⎢⎢⎢⎣

v1 − v0

v2 − v0
...

vi − v0

⎤

⎥⎥⎥⎦
, b =

⎡

⎢⎢⎢⎣

1
2 ∥v1 − v0∥22
1
2 ∥v2 − v0∥22

...
1
2 ∥vi − v0∥22

⎤

⎥⎥⎥⎦
, (15.53)

we can write the derivations for all the equations 0 < i < n as

M (c− v0) = b, (15.54)

which allows us to write the solution for the center of the enclosing sphere as

c = v0 + M−1b, (15.55)

and the radius as
r = ∥c− v0∥2 =

∥∥M−1b
∥∥

2
. (15.56)

In the case where we have three points, which lie in the same plane, then the sphere center will also lie
in that plane and M ∈ R2×2. For four points, M ∈ R3×3. M will always be invertible [Eberly, 2005a]
regardless of the number of points.

A randomized algorithm can now be used to compute the minimum enclosing sphere of a point set
with n ≥ 1 points using the above results. The idea is a simple trial and error strategy, where a minimum
sphere is first constructed from a subset of the point set, and then it is verified whether all points lie inside
the sphere. If so, the algorithm terminates, and if not, a new point has been found lying outside the sphere.
The new point is then used as a surface point in the computation of a new minimum enclosing sphere.
The algorithm continues in this manner until all points lie inside the sphere. The algorithm is called the
Welzl algorithm [Welzl, 1991, Berg et al., 1997], and Figure 15.6.3 shows a pseudocode version of the
algorithm. For more details, we refer the reader to [Welzl, 1991, Berg et al., 1997].

“book” — 2005/9/30 — 15:44 — page 492 — #504✐
✐

✐
✐

✐
✐

✐
✐

492 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

function mini-ball(P)
return compute-mini-ball(π(P),∅)

function compute-mini-Ball(P,R)
if P = ∅ or |R| = 4

D =circumscribed-sphere(R)
else

p = tail(P)
D = compute-mini-Ball(P − {p}, R)
if p /∈ D

D = compute-mini-Ball(P − {p}, R ∪ {p})
move p to head of P

return D

Figure 15.44: Welzl algorithm for computing minimum enclosing sphere.

15.7 Handling Deformable Objects

Deformable objects are challenging for BVHs. Typically, a BVH will be calculated for an object’s initial
rest shape, but during a simulation the deformation of the object will cause the BVH to come out of sync
with the object shape. Even worse, the deformations can be so extreme that self-intersections can also
occur.

15.7.1 Updating the BVH

The simplest solution to getting the BVH to cover the geometry after a deformation is to rebuild it from
scratch; however, this is not computationally very attractive, and prohibits real-time or even interactive
use of the BVH.

A faster approach is to refit the current misaligned BVH. Reports have shown that it is about 10
times faster to refit an AABB tree of a triangle mesh than to rebuild the AABB tree [Bergen, 1997].
In general, if we have a fast method like O(1) to refit a parent BV to cover its children BVs, then we
could simply traverse the BVH in a bottom-up fashion. For example, for a deformable object, a leaf
usually covers a single polygon, indicating that it is fast to refit the leaf BVs, and if refitting of parents
based on their children BVs is fast, such as time O(1), then the algorithm runs in O(n) complexity.
This is a so-called bottom-up update used by many [Bergen, 1997, Volino et al., 1998, Volino et al., 2000,
Bridson et al., 2002, Mezger et al., 2003]. It is a fast and simple scheme, but has several drawbacks.

First of all, the bottom-up update requires one to traverse the entire BVH, which may not be a serious
drawback for self-intersections, since in this case it is likely that all BVs will be visited in the collision
query anyway.

A second problem with the bottom-up update is that not all BV types can be updated in O(1) time.
Some BV types, like AABBs and k-DOPs, share the nice property that if they tightly cover their children
BV, then they also tightly cover the geometry of their children [Larsson et al., 2003]. Therefore, it is
sufficient only to consider the children BV geometries when refitting a BV of these types, yielding a

“book” — 2005/9/30 — 15:44 — page 493 — #505✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 493

Original Refitted Rebuild

Figure 15.45: Illustration of refitting versus rebuilding. The two children AABBs of the root AABB are
shown in the figure. Observe the large sibling overlap that occurs with refitting.

complexity of O(d), where d is the branching factor, usually a small constant such that O(d) ≈ O(1).
Other BV types, such as OBBs or spheres, require us to examine all the geometry covered by the subtree
of a BV in order to refit with a tight BV. If the subtree covers k primitives, then a good OBB fit can
be obtained in O(k log k), implying a worse-case O(n2 log n) complexity for the entire update. A good
sphere fit can usually be obtained in expected O(k) complexity yielding a total of O(n2).

A third problem with the bottom-up update is that even in case of tight refitted BVs, pruning capa-
bilities can deteriorate, due to an increasing overlap between sibling BVs. Deformations that keep the
adjacency relation intact have been reported to have no significant performance deterioration for intersec-
tion [Bergen, 1997].

Figure 15.45 illustrates the problem of large overlap between sibling BVs, and shows how this problem
could have been avoided by rebuilding the BVH. The first drawback of having to traverse the entire BVH
can be avoided by a top-down approach, such that only those BVs used in a collision query are refitted.

If two objects are distant, then only their root BVs will need to be updated, and if two deformable
objects overlap only in a few places, then the tandem traversal will only require refitting of a few BVs.
However, the top-down approach will not yield good performance when we consider self-intersections or
close parallel proximities, such as cloth or skin on a human being, where every primitive is in contact with
at least one primitive from the other object. In these cases, a collision query will traverse almost the entire
BVHs of both objects and require most of the tree to be refitted.

One advantage of the top-down method is that it is easily added to the collision query. During a world
space or model space update, one simply also refits the two BVs. The top-down method also suffers from
the two other problems that the bottom-up method had: for certain BV types, tight refitting is slow, and
pruning capabilities can deteriorate, even with tight refitting sibling.

Finally, comparing top-down with bottom-up methods, we can see that bottom-up methods rely on
the fact that the children have been refitted prior to refitting a BV, which is not required for the top-down
method. Thus, unless we want to evaluate the children, their children, and so on before refitting a BV, we
need to come up with a clever way of avoiding the traversal of the entire BVH. In [Larsson et al., 2001]

“book” — 2005/9/30 — 15:44 — page 494 — #506✐
✐

✐
✐

✐
✐

✐
✐

494 CHAPTER 15. BOUNDING VOLUME HIERARCHIES
To

p
D

ow
n�

B
ot

to
m

-U
p�

level (m/2)�

level (m/2)+1�

leaves�

root�

Figure 15.46: Illustration of hybrid update, first levels of BVH are refitted bottom-up, the levels below
m/2 are refitted in a top-down fashion.

the problem is solved by letting each BV in the hierarchy store the primitives covered by its subtree. Thus,
in a top-down update method, one can simply refit a BV to cover the primitives stored in the BV. However,
as pointed out by the authors, this results in a memory drawback.

A hybrid update is suggested in [Larsson et al., 2001] where a bottom-up update is mixed with a top-
down update, in the hope that a combination will give the advantages of both methods. The main idea is
to try to minimize the number of BV updates. For a tree with depth m, the hybrid update method initially
updates the m/2 first levels bottom up. During a collision query, when nonupdated BVs are reached,
they can either be updated top-down as needed, or a specified number of levels in their subtrees can be
updated using a bottom-up method. Figure 15.46 illustrates the basic idea of the hybrid update method.
According to [Larsson et al., 2001] their method is roughly five times faster than [Bergen, 1997]. One
will also observe that their numerical experiments hint that the complexity of the hybrid update method
is similar to the bottom-up method, although the constants seem to be half as big for the hybrid update as
for the bottom-up update (see Figure 3 in [Larsson et al., 2001]).

15.7.2 Handling Self-Intersections
By the nature of physical objects, their surfaces are fully connected and closed, implying that all primitives
are in touching contact with their immediate neighbors. Thus, even without self-intersections, we will have
O(n) contacts in a deformable object consisting of n primitives. Equation (15.10) therefore implies that
without self-intersections, we should not expect to perform a collision query better than

2n log2(n) + 2n− 1 ≈ O(n log2 n). (15.57)

For a deformable object, this is a lower bound, because we cannot exploit the idea of pruning as we did
for static objects. Since every part of an object obviously collides with itself, taking a BVH and testing it
against itself will cause us to traverse all the way down all the paths to the leaves.

Using the tandem traversal blindly will produce a lot of redundant work as we will show later. The
literature has proposed two solutions to improve upon the complexity and redundancies of the traversal

“book” — 2005/9/30 — 15:44 — page 495 — #507✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 495

A�

1�

2�

3�4�

5�

B�

C�D� E�

F�

G� H�

Figure 15.47: Simple 2D example BVH for self-intersection query. The figure shows the original, finest,
mid, and coarsest levels.

A�

B� C�

D�F� G� H�

5� 4� 3� 1� 2�

E�

Figure 15.48: Topology of BVH from Figure 15.47.

problem: extending the overlap test in the tandem traversal with several other kinds of tests and using a
single traversal instead of a tandem traversal.

The traditional tandem traversal can be extended to include self-intersection by making sure that prim-
itive pair testing is only performed if the primitives do not share a common point such as a vertex of a
face. This will disregard immediate neighbors and the primitive itself from primitive pair testing.

We’ll study the problems of using BVHs blindly for self-intersection testing by a simple example.
In Figure 15.47 we show a small stick figure consisting of five sticks forming a diamond together with
the BVs that form a BVH. The topology of the BVH is shown in Figure 15.48. Observe that we have
chosen AABBs and that the BVH was built using mesh connectivity. A bounding volume test tree (BVTT)
is shown in Figure 15.49, which is the result of performing a tandem traversal of the BVH shown in
Figure 15.48 against itself. From the figure it is evident that the pruning capabilities have degraded com-
pletely for a self-intersection test. Only in the C-G overlap were the traversals able to prune, as shown
grayed in the figure. From the BVTT we see that a total of 40 BV overlap tests are performed, from which
8 primitive pair tests are performed.

In comparison with a brute all-sticks against all-sticks, which yields 10 tests, disregarding redundant
tests will result in only 5 primitive pair tests. Obviously, the brute-force approach out performs the BVH

“book” — 2005/9/30 — 15:44 — page 496 — #508✐
✐

✐
✐

✐
✐

✐
✐

496 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

BC� CC�

CD� CE�

DD� ED� DE� EE�

AA�

AC�AB�

CB�

CF� CG� CH�

DF� EF�

25�

DH� EH�

13�

BB�

BF� BG� BH�

FF� GF� HF� FG� GG� HG� FH� GH� HH�

53�35�

BD� BE�

FD� GD� HD�

41� 31�

FE� GE� HE�

42�52�

Figure 15.49: Bounding Volume Test Tree (BVTT), each node represents a BV test, children represent a
descend in the tandem traversal, and primitive pair testing is shown as annotated triangles.

in this case.
In a real application, objects would be much bigger, and the extent of a single primitive would be far

less than the extent of the entire model, implying that for a bigger BVH the traversal will be able to better
prune those primitives lying distant from each other, such as the C-G overlap test in the example above. In
conclusion, for large n, the BVH will beat the all-pair O(n2) complexity with its O(n log2 n) complexity.

Some properties should be noted from the example: out of the 40 BV overlap test, 16 of them had
redundancies, implying that 8 of these where done twice. In four cases, these redundant BV overlap tests
led to primitive pair tests, implying that two primitive tests were done twice. We also see that if one can
catch redundant tests lying close to the root, substantial improvements can be made. For instance, in the
case of the redundant C-B and B-C test, only one of their subtrees needs to be explored, thus pruning the
B-C tree would reduce the work with 9 BV overlap tests and 4 primitive tests.

Since we already know that every leaf of the BVH will collide with the BVH, there is really no need
to perform a tandem traversal. Instead, we can perform a single traversal. The idea is to iterate over
all leaf BVs, testing each of them recursively against the entire BVH. The pseudocode for the single
traversal is presented in Figure 15.50. For completeness, we have shown the BVTT in Figure 15.51 using
a single traversal for self-intersection testing of the BVH shown in Figure 15.48. In comparison with
Figure 15.49, notice that we perform just slightly better. This time there is a total of 38 BV overlap tests.
We still perform the same amount of primitive pair tests, and there are still 16 redundant BV overlap tests;
however, there is one difference. The redundancies are all leaf BV overlap tests—no internal redundant
BV overlap tests exists. However, we can still not beat the brute-force method for the example. Another
important observation is that the BVTTs for the single traversal have less height than the BVTT for the
tandem traversal.

A modified tandem traversal is presented in [Volino et al., 2000] for self-intersection testing. Fig-
ure 15.52 shows the modified self-intersection traversal in pseudocode. The modified traversal exploits
the fact that there is no need to test a BV against itself. It completely removes all redundant overlap tests,
since the recursive sibling testing is invoked such that a tandem traversal is run only once between two
children. To see the advantage of this traversal, a BVTT is shown in Figure 15.53. As seen in the figure,
the number of overlap tests has dropped to 12, and the number of primitive tests is 3. The self-test algo-
rithm is invoked 8 times. There is no redundant overlap tests or primitive tests. This modified traversal
beats the brute-force approach, and it avoids the redundant leaf BV testing, which the single traversal

“book” — 2005/9/30 — 15:44 — page 497 — #509✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 497

algorithm self-intersect(A : BV H)
for all leaf BVs B in A do

single(root,B)
next B

end algorithm

algorithm single(A : BV, B : BV)
Queue Q
push(Q,A)
while not Q empty do

pop(Q,A)
if not colliding(A,B) then
continue

if leaf(A) then
contact-determination(A,B)

else
for all children C of A do

push(Q,C)
next C

end if
end while

end algorithm

Figure 15.50: Single traversal for self-intersection testing.

suffers from.
Mezger et al. [Mezger et al., 2003] have extended the work in [Volino et al., 1998] by using a top-

down splitting approach for building k-DOP trees, and a BV inflation technique, where applied, to ac-
commodate proximity queries of a moving and deforming object. Furthermore, they have extended the
curvature testing used by [Volino et al., 1998, Volino et al., 2000], with several other heuristics. We refer
the reader to [Mezger et al., 2003] for more details. Here we will limit ourselves to present the basic idea
behind the curvature testing extension.

As we have seen, the adjacent structural nature of primitives causes a performance degradation on the
BVH traversals, leading to deep BVTTs traversing all the way down to leaf BV tests. Both the tandem,
single, and modified traversals we have presented seem to suffer from these artifacts. However, these
problems will be remedied by extending the traversals with a curvature test.

AH�

BH� CH�

DH� EH�

13�

FH� GH� HH�

53�

AG�

BG� CG�

FG� GG� HG�

AF�

BF� CF�

DF� EF�FF� GF� HF�

25�35�

AE�

BE� CE�

DE� EE�FE� GE� HE�

52� 42�

AD�

BD� CD�

DD� ED�FD� GD� HD�

41� 31�

Figure 15.51: Bounding Volume Test Tree (BVTT) for single traversal. Compare with Figure 15.49.

“book” — 2005/9/30 — 15:44 — page 498 — #510✐
✐

✐
✐

✐
✐

✐
✐

498 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm self-test(A : BV)
if leaf A then

return
end if
for all children C of A do

self-test(C)
for all children D right of C do
recursive(C,D)

next D
next C

end algorithm

Figure 15.52: Modified traversal for self-intersection testing. Siblings are tested against each other using
the traditional recursive tandem traversal (see Figure 15.15); a child is tested against itself by a recursive
call on all of its children.

A�

B� C�

FG�F� G� H�FH� GH� D� DE� E�FC� HC�

FD� FE� HD� HE�
53�

52� 31�

BC�

GC�

Figure 15.53: BVTT of modified traversal from Figure 15.52 on BVH from Figure 15.48. Square nodes
denote calls to self-test, circles are calls to recursive tandem traversal.

In Figure 15.54, we show a simple example: A stick is bent from being completely flat to self-
intersecting. We would like to formalize this measure of bending, such that we could use it in a BVH
traversal. If we, for instance, knew a surface was flat, then there would be no need to perform any self-
intersection testing on the surface. Looking at the normals of the stick, these tell us something about how
much the stick is being bent. In the 2D case, it is obvious that in order for the stick to bend over and
self-intersect, there must be two normals at some point on the surface where the angle between them is
greater than π radians. This angle is directly related to the curvature.

The requirement for the difference in normals to be more than π radians is a necessity, but not a
sufficient condition for a self-intersection, as can be seen in Figure 15.55. Clearly the curvature suggests
that there might be a self-intersection where there is none. Thus, we can only use a curvature test to prune
away flat cases, not curled up cases. Moving into 3D from 2D complicates matters a little bit, since we
now have a 2D surface bending in 3D space.

“book” — 2005/9/30 — 15:44 — page 499 — #511✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 499

Figure 15.54: A stick bending in 2D with self-intersection.

Figure 15.55: A stick where curvature indicates a self-intersection, but there is none.

The problem is that even though the curvature indicates a flat surface, the surface might still be self-
intersecting, such as the example of an elastic rubber sheet lying on a table, where two corners meet
without bending the sheet too much out of the plane. Figure 15.56 illustrates the problem. A sufficient
criteria is to require that the projected surface boundary onto a plane nearly coplanar with the flat surface
does not self-intersect. These observations lead to the following definition:

Definition 15.3 (Curvature Criteria)
A continuous surface, S, with boundary, C , does not have any self-intersections when the following crite-
ria are met:

• there exists a vector v for which the normal n(p) at every point p ∈ S fulfill

v · n > 0 (15.58)

• the projection of C onto the plane orthogonal to v has no self-intersections

The definition is illustrated in Figure 15.57. When we apply the curvature test, we will need to update

“book” — 2005/9/30 — 15:44 — page 500 — #512✐
✐

✐
✐

✐
✐

✐
✐

500 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Figure 15.56: A 2D self-intersecting surface in 3D space.

v�

C�

S�

Figure 15.57: A continuous surface S, with boundary C , fulfilling the curvature criteria (see Defini-
tion 15.3).

“book” — 2005/9/30 — 15:44 — page 501 — #513✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 501

a�

b� c�

d�

Figure 15.58: An example surface region, consisting of four faces, a, b, c, and d with their respective
normals.

a�

b� c�

d�

Figure 15.59: Curvature information stored for leaf BVs.

the BVH with curvature information. Here we implicitly assume that a mesh-connectivity was used to
build the BVH, implying that a BV node in the BVH covers a surface region. Its parent BV will cover
a larger surface region, being the union of the BV node and its siblings. Furthermore, the parent surface
region is a connected region implying that for two arbitrary points a continuous and unbroken curve can
be drawn on the surface connecting the two points.

Instead of trying to compute how big the normal angles are for each surface region, it is more efficient
to store the half space, from which a vector v can be found. Figure 15.58 shows a simple model we will
use to illustrate the idea. Here a simple surface region is shown, consisting of four faces: a, b, c, and d.
The corresponding BVH consists of 4 + 3 = 7 BVs: four leafs, two intermediate BVs each covering half
of the surface, and one root BV covering the entire surface.

For each leaf BV we will store the half space, from which a valid v-vector can be found for the
corresponding surface as illustrated in Figure 15.59. Here circle cones are used to represent the valid
directions for v-vectors. When the BVH is updated in a bottom-up fashion, the curvature information
can easily be propagated from the leaf BVs to the root BV. The half-space cone for a valid v-vector for
a parent BV is found as the intersection of the half-space cones for its children. This is illustrated in
Figure 15.60. In the figure, the big arrows point in the direction of a parent BV. Observe that one can

“book” — 2005/9/30 — 15:44 — page 502 — #514✐
✐

✐
✐

✐
✐

✐
✐

502 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

a�

b� c�

d�

Figure 15.60: Curvature information propagated from leaf BVs to root BV.

easily find a suitable v-vector from the half-space cone of the root, which will work as a v-vector for the
entire surface.

In practice, one does not store an actual half-space cone. Instead, the space of possible v-vectors
is discretized onto a fixed set of directions. These directions could, for instance, be picked from an axis-
aligned unit cube as follows: each vertex, edge middle, and face middle yields a vector direction, providing
us with a total of 26 directions. Other geometries are discussed in [Volino et al., 2000].

The benefit of the discretization is that half spaces can be efficiently implemented as bit-patterns. For
instance, the 26 direction cubes can be encoded by attributing each BV in the BVH with a 32-bit unsigned
integer, where each of the 26 first bits indicates whether the normal direction would be a valid v-vector for
the surface region covered by the BV. During propagation of curvature information from leaf BVs to root
BV, the curvature information of a parent is easily found by taking the bit-wise AND of all the bit-patterns
of the children BVs.

The self-intersection testing from Figure 15.52 is easily extended with the curvature testing. If the
curvature criteria passes for a surface covered by a BV, then the recursion stops. This is shown in Fig-

“book” — 2005/9/30 — 15:44 — page 503 — #515✐
✐

✐
✐

✐
✐

✐
✐

15.7 PHYSICS-BASED ANIMATION 503

algorithm self-test(A : BV)
v = get v-vector of A
if valid v then

if not projectedBoundaryIntersect(A,v) then
return

end if
end if
if leaf A then

return
end if
for all children C of A do

self-test(C)
for all children D right of C do
recursive(C,D, true)

next D
next C

end algorithm

Figure 15.61: Modified traversal with curvature testing.

ure 15.61. Observe that the recursive tandem traversal has been extended with an extra argument, which
we will explain in detail shortly. When testing siblings against each other, we would also like to exploit
the benefits of the curvature test. Obviously, the BVs of the siblings will overlap if the surfaces covered
by the sibling BVs are adjacent, that is, they share a common border. So we cannot hope to rely on the
BV overlap test to prune the nearly flat adjacent surface regions covered by two sibling BVs. The BV
overlap testing, however, will still work fine for pruning nonadjacent surfaces. Figure 15.62 illustrates the
usefulness of the BV overlap test compared to the curvature test. As seen from Figure 15.62, we would
like to extend the recursive tandem traversal with a curvature test when we are dealing with two BVs that
represent adjacent surface regions. The extended recursive tandem traversal is shown in Figure 15.63. The
pseudocode in Figure 15.63 seems straightforward, but we have omitted one detail for clarity: how does
one determine whether two surface regions are adjacent? As suggested by [Volino et al., 2000], each BV
in the BVH is annotated with a list of surface vertices lying on the boundary of the surface region covered
by the BV. The list only contains vertices indicating adjacency with another surface. In other words, no
two vertices are added to the vertex list of the BV representing the same adjacency information. The vertex
list can be created initially, when the BVH is being built. Thus, there is no need to update any adjacency
information during simulation. An adjacency test can now be performed by comparing the vertex lists of
two regions: if they share a vertex, then the regions are deemed to be adjacent. Theoretically speaking,
cases could be conceived where the vertex list could be rather long, implying an expensive adjacency test.
However, [Volino et al., 2000] report that for the usual cases, the lists hardly exceed six vertices, meaning
that the adjacency can be considered to have constant complexity. Figure 15.64 shows an example of two
vertex lists for two surface regions. According to [Volino et al., 2000], the boundary intersection testing
is never decisive in the final collision detection process, and is therefore not performed. We would like to
note that the boundary testing only makes sense for a surface with an open boundary, implying that it is
superfluous for closed surfaces. [Volino et al., 2000] reports that the curvature testing yields an algorithm

“book” — 2005/9/30 — 15:44 — page 504 — #516✐
✐

✐
✐

✐
✐

✐
✐

504 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

Non Adjacent Surfaces rely on BV overlap�

Adjacent Surfaces rely on curvature criteria�

overlap ~ detection� No overlap ~ No detection�

Curvature test succes ~ No detection�Curvature test failed ~ detection�

Figure 15.62: Illustration showing that the BV overlap test is well suited for nonadjacent surfaces, but for
adjacent surfaces the curvature test is better.

that is linear in the number of colliding faces, which is far better than the O(n log n) lower bound we have
for the simple-minded use of the traversals.

15.8 Contact Determination with BVHs

When using BVHs for physics-based simulation, we are interested in obtaining a set of contact points as
explained in Chapter 14. Typically a contact determination algorithm is used for processing the results
from a narrow-phase collision detection algorithm. This approach can also be taken when using BVHs by
enqueuing primitive pairs as the collision query algorithm encounters them, for example, in line eight of
Figure 15.16. However, a separate contact determination phase is usually not needed when using BVHs,
but can instead be intervened with the collision query. That is, during the collision query a contact deter-
mination routine is invoked, which processes two primitive pairs, such as two triangles, and produces a
set of contact points, which is enqueued as the collision result of the BVH collision query. This section
discusses this approach to contact determination, while doing the collision detection queries of BVHs.
As will be explained, the main problem with this approach is that certain degenerate cases result in mul-
tiple reports of identical contact points. A few examples of degenerate cases is shown in Figure 15.65

“book” — 2005/9/30 — 15:44 — page 505 — #517✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 505

algorithm recursive(A : BV, B : BV , adjacent)
if not colliding(A,B) then

return
end if
if adjacent then

adjacent = AdjacentState(A,B)
if adjacent then

v = get v-vector of (A, B)
if valid v then

if not projectedBoundaryIntersect(A,B,v) then
return

end if
end if

end if
end if
if leaf(A) and leaf(B) then

contact-determination(A,B)
return

end if
if descend(A) then

for all children C of A do
recursive(C,B,adjacent)

next C
end if
if descend(B) then

for all children C of B do
recursive(A,C,adjacent)

next C
end if

end algorithm

Figure 15.63: Recursive tandem traversal extended with curvature testing.

and Figure 15.70. self-intersection adds yet another complication to these multiplicities, as illustrated in
Figure 15.74.

Multiple reported identical contact points are undesired in physical simulation due to several reasons:
first, they provide a performance decrease in iterative methods for collision resolving. However, they sel-
dom cause different physical behavior or problems with the computations involved in the iterative collision
resolving. Second, imagine that collision resolving is done by back-projecting penetrating contacts, that
is, the first time a contact is encountered it will be projected to resolve penetration. If the new projected
state is not reflected in the remaining multiple reported contacts, then further excessive projections will
be carried out, yielding a final unwanted position. Finally, in the case of simultaneous collision resolving,
such as the constraint method in Chapter 7, multiple reported identical contact points lead to numerical
instability in the system matrix, meaning that not only do they cause a performance decrease, but they
could also result in unsolvability of the numerical methods.

Generally we could take two avenues to handle the problem. First, we could introduce a postprocessing

“book” — 2005/9/30 — 15:44 — page 506 — #518✐
✐

✐
✐

✐
✐

✐
✐

506 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

B�

A�A�

A�

B�

B�

Figure 15.64: Illustration showing vertex lists for two surface regions, A and B. Notice that only a very
few number of vertices is needed to capture all adjacency information about the two surfaces.

step of the BVH collision query, which filters out multiple reported contact points, and second, we could
devise some sort of clever bookkeeping during the traversal query, which is able to prune away multiple
contact points before they are even considered. The first solution is really just a reintroduction of a contact
determination phase to the collision detection engine, and therefore really not interesting. Besides, the
filtering needed indicates, at worst, an O(n2) time-complexity, which is undesirable. Therefore, we will
focus on the second solution here.

When doing physics-based animation, there are two kinds of collision detection queries that interest us:
interference and proximity queries. An interference query will search for the actual intersection between
two objects, while a proximity query will search for the nearest parts of two objects. The important thing
to notice is that an interference query only works when penetrations have occurred, whereas a proximity
query will return results even when objects are separated by a small threshold. Interference queries could
prove to be a problem in simulation since the simulation method tries to avoid penetrations. Contact
tracking is a possible way to resolve this, however, proximity testing is far better but requires knowledge
of the movement of the objects as will be discussed in Section 15.8.2.

“book” — 2005/9/30 — 15:44 — page 507 — #519✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 507

(A) (B) (C)

Figure 15.65: Interference queries can lead to multiple reported (E,F) contacts.

15.8.1 Interference Query

Contact points between polygonal objects are often represented by a pair of features, such as (V, V),
(V,E), (V,F), (E,E), (E,F), and (F,F), where V is a vertex, E is an edge, and F is face. This was
introduced in Chapter 14.1. For polygonal objects, (E,F) contact points are sufficient for representing
the vertices of intersection between two objects, which will be the focus for interference query in the
following. Case A in Figure 15.65 illustrates this. Here, two objects, each consisting of two triangles,
are intersecting each other. Observe that the (E,F) intersections result in four intersection points, which
describe the vertices in the polyline representing the intersection between the two objects.

Case B shows a more difficult case, where one of the intersection points is given by an edge-edge
intersection. However, one could just as easily pick one of the faces of the square object together with
the intersecting edge from the triangular object, yielding an (E,F) contact point representing the same
intersection point as the (E,E) contact point. There is some ambiguity in picking a face from the square
object, since both faces yield the same intersection point, but two different contact points. Recall that
contact points are uniquely identified by the features that constitute them, not by the position of the point
in 3D space.

The case could become even more complicated. Imagine moving the square object such that the
intersecting edge intersects one of the end points of the edge from the triangular object. Now the ambiguity
in contact point representation is even higher; a single (V,E) type, or one of two (E,E) types or one of
five (E,F) types could be picked. However, the important thing to notice is we can pick an (E,F) contact
type.

Case C shows another challenging case. Here, one intersection point is given by an (E,E) contact
point type and can be resolved in the same manner as we just discussed for case B. The main difficulty
illustrated by this example is that the other intersection point, which is given by a (V,F) contact point
type, consists of the vertex of the square object and the face of the triangular object. Again, we see that
we could pick one of the incident edges of the vertex from the square object, which is not coplanar with
the face of the triangular object. Again we end up with an (E,F) type of contact, and again we have the
same ambiguity in picking an edge, since both the edges lying above and below the triangular face will
result in a contact point representing the same intersection point. We did ignore the edge from the square

“book” — 2005/9/30 — 15:44 — page 508 — #520✐
✐

✐
✐

✐
✐

✐
✐

508 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

object that is coplanar with the face of the triangular object. Picking this edge would result in a very bad
situation, since this edge is collinear with the other contact point.

In conclusion, we see that in the case of intersection, it is always possible to pick an (E,F) type
contact point to represent any intersection point between two polygonal objects. We also conclude that
there is an ambiguity in picking the (E,F) contact. This indicates a nonuniqueness, when we want to
identify contacts by the features constituting them. The nonuniqueness would be devastating for any kind
of bookkeeping algorithm and is therefore unwanted.

If we allowed reporting types of contact other than (E,F), then the nonuniqueness could be removed
by always picking the contact representing the lowest dimension of features: a vertex has zero dimensions,
an edge has one dimension, and a face has two dimensions.
Theorem 15.1 (Uniqueness of Contact Point Representation)
Let FA and FB be the features from objects A and B, and let dim(·) be a function returning the dimension
of a feature, then FA and FB constitute a unique contact point, if, and only if,

dim(FA) + dim(FB) = min(dim(F ′
A) + dim(F ′

B)), (15.59)

where F ′
A and F ′

B could be any neighboring features of the features FA and FB, including the features
themselves in direct contact with the intersection point.

It should now be easily seen that in case A the four (E,F) contacts have the lowest dimension, in case
B it is the (E,F) contact and the (E,E) contact that have the lowest sum, and in case C it is the (E,E)
contact and the (V,F) contact. Observe that by this rule we can never have an (F,F) type contact, since
it will always be possible to decompose such a contact into a set of contacts with lower dimension.
Proof of Theorem 15.1:

(V, V) case: The neighbors of a vertex are the incident edges and the incident faces. Therefore, picking
the neighbors of either the vertex of object A or B will increase the dimension sum.

(V,E) case: The only possible way of reducing the dimension sum is if the edge could be replaced by
one of its neighboring endpoints. However, this would indicate that the end vertex is touching the
intersection point, and a (V, V) type would be the correct answer. If the intersection point is not
touching the endpoints, then the edge can only be updated to one of its neighboring faces, which
will indicate an increase in the dimension sum. The vertex itself cannot be replaced by any of its
neighbors since this would imply an increase in the dimension sum as well.

(V,F) case: The same arguments as previously apply to the vertex; the face has only lower dimensional
neighbors, the edges and vertices on its perimeter. If the intersection point is not touching the
perimeter, then we cannot reduce the dimension sum.

(E,E) case: Obviously, none of the edges can be replaced by their neighboring faces, since this will
result in a dimension increase. The only possibility for a reduction, is to replace one or both edges
with one of their neighboring end vertices. This would mean that the intersection point is touching
the end vertices and that the replacement would be valid and correct and result in either a (V,E) or
(V, V) type case, which we already have proved.

“book” — 2005/9/30 — 15:44 — page 509 — #521✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 509

(E,F) case: The only possibility for decreasing dimension of E is by picking one of its end-points, which
is impossible, unless the intersection point touches one of them, in which case we are in (V,F) case,
which we have already proved. The only possibility left is replacement of F by one of its neighbors,
but this is impossible, if they are not touching the intersection point. !

Usually a good rule of thumb is to treat the case analysis by testing the most restrictive cases first. In our
case that would mean:
theorem 15.1 (Rule of most restrictive case first)
Given two triangles, it is first verified whether there are any (V, V) contacts, then (V,E) types, followed
by (V,F), (E,E), and ending with (E,F) types.

In this way, testing the most restrictive cases first will allow us to disregard the special cases of higher
dimensional cases. As an example, imagine we have a (V, V) type of contact. Having reported this
contact, we need not consider the cases where the edge on a (V,E) contact reduces to one of its end-point
vertices.

The Proof 5 and Proposition 15.1 can straightforwardly be combined into an algorithm for contact
determination based on a case analysis. A pseudocode version of this algorithm is shown in Figure 15.66.

As seen from the pseudocode, there are roughly 102 lookups, which is quite a lot of tests for previously
reported contacts. This is computationally infeasible unless a very cheap lookup method is available. If
BVH data structures are not shared among objects, meaning for instance, that two identical box objects
would each have their own instance of a BVH, then a cheap lookup function can be constructed by ob-
serving the fact that a single nonface feature can only be part of exactly one reported contact point. All
features could therefore be attributed by a pointer to the reported contact they are part of, and thus provide
a cheap constant time test for previously reported contacts. Of course, all contact pointers of the features
must be reset to null prior to a query.

If one only cares about knowing whether a feature could be part of a new contact point, then a more ef-
ficient time-stamping scheme could be adopted: instead of a contact point pointer, each feature is attributed
with a time-stamp. Whenever a feature pair is used to report a contact point, then their time-stamps are
updated with the current time. Whenever one encounters a feature pair and wants to know if these could
constitute a new contact point that should be reported, one simply tests that both their time-stamps are less
than the current time. If this is true, then a new contact point can be reported.

The proposed idea of using a pointer or time-stamp requires a huge memory usage, since objects
cannot share the same BVH instance. Observe however, that when working with deformable objects,
separate instances are needed, since two geometries can deform in many different ways. The consequence
is that the updated BVHs do not look the same even though the initial geometry of two deformable objects
were identical. This implies that the outlined strategy for a fast lookup method is feasible for interference
detection of deformable objects.

If BVHs are shared among objects, which is often the case for rigid objects, another lookup method
must be devised. A simple solution would be to give every feature a unique index, and then use the indices
to look up contact point information in a map or similar data structure.

Consider case A once again. Assume we are using the contact determination outlined above. Then,
as can be seen in Figure 15.65, the upper object has two faces; we’ll label them FA and FB . Similarly,

“book” — 2005/9/30 — 15:44 — page 510 — #522✐
✐

✐
✐

✐
✐

✐
✐

510 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

void interference-detection-by-case-analysis(TA, TB)
for all vertex pairs (VA, VB) where VA in TA and VB in TB

if (VA, VB) not reported before then
if dist(VA, VB)<ε then

report (VA, VB)
end if

end if
next (VA, VB)

for all vertices VA in TA and all edges EB inTB

if (VA, EB) not reported before (VA, VE) where VE in EB then
if dist(VA, EB)<ε then

report (VA, EB)
end if

end if
next (VA, EB)
repeat above loop with A and B reversed

for all vertices VA in TA

if dist(VA, TB)<ε and VA inside perimeter of TB then
report (VA, TB)

end if
next VA

repeat above loop with A and B reversed

for all vertex pairs (EA, EB) where EA in TA and EB in TB

if (EA, EB) not reported before then
if no mixed endpoints vertex pairs of EA or EB reported then

if dist(EA, EB)<ε then
report (EA, EB)

end if
end if

end if
next (EA, EB)

for all edges EA in TA

if no endpoints of EA have been reported then
if EA intersect TB inside perimeter then
report (EA, TB)

end if
end if

next EA

repeat above loop with A and B reversed
end algorithm

Figure 15.66: Contact determination by case analysis for interference queries.

“book” — 2005/9/30 — 15:44 — page 511 — #523✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 511

the lower object has two faces; we’ll label these FC and FD . FA and FB share a common edge, labeled
Eupper. Similarly, the faces from the lower object share an edge, which we’ll label E lower. As seen from
the figure, both faces of the upper object intersect with both faces of the lower object. This means that
during a BVH traversal the following pairs of primitive test will be generated.

Leaf tests Contact Points
(fA, FC) → (Eupper − FC), (Elower − FA)
(fA, FD) → (Eupper − FD), (Elower − FA)
(fB, FC) → (Eupper − FC), (Elower − FB)
(fB , FD) → (Eupper − FD), (Elower − FB)

The rightmost column shows the possible contact points that can be generated from each pairwise primitive
test. The table shows that four unique contact points will exist, as we expected. However, the table also
shows that each contact point will be reported twice if we do not guard against multiple reported contact
points. This artifact is unavoidable and comes from the fact that neighboring triangles share features.
Therefore, it is a problem one always has to consider when using BVHs. The contact determination
algorithm we have outlined, will prevent this artifact. In our discussion so far we have implicitly assumed
that we have complete topology information about the underlying geometry. If this is not the case, such as
for a triangle soup, we are in real trouble, because the same edge and vertices might be redundantly stored
in a triangle soup. Therefore, it is nontrivial to uniquely identify features.

We will now outline another more practical approach to the problem of interference intersection. The
main idea is to consider only (E,F) contact point types, since these are sufficient for representing any
intersection. As previously explained, there is sometimes an ambiguity in picking (E,F) contacts, for
example, case B and C in Figure 15.65. The ambiguity implies that two different (E,F) contacts might
be reported, which represent the same intersection point. In the following, we will ignore this ambiguity
problem. This is not as bad as it might seem, since in practice these degenerate cases rarely exist, and even
if they do, they are short-termed. The reason for this is that cases like B and C in Figure 15.65 require
perfectly aligned and positioned objects. In a general simulation, numerical inaccuracies and round off
errors will cause small perturbations, even in the case of perfectly aligned objects. However, theoretically
speaking, there is a danger for some of the problems we discussed earlier regarding badly conditioned
numerics for simultaneous collision resolving. If an iterative method is chosen instead, the proposed
intersection strategy that we will outline will not prove to be a problem.

Let’s label the vertices of a triangle in counterclockwise order by v0, v1, and v2. Then the edges of a
triangle are given by the pairs of vertices (v0 − v1), (v1 − v2), and (v2 − v0). Given two triangles TA and
TB , there is a potential of six (E,F) contact points. The interference algorithm starts out by an exhaustive
test of all six potential contact points, as shown in Figure 15.67. Now let’s consider the steps involved
in taking care of a single edge-face test. First we need to ensure that we do not have multiple reported
identical edge-face contacts. This can be done by the strategies we elaborated on previously.

If we pass the test for multiple reported contact points, then we need to determine whether there really
is a possibility of an edge-face contact. This can be done by testing the signed distance of the edge vertices
w.r.t. the face plane. However, we need to consider the C case shown in Figure 15.65. What should we do
if the signed distance is zero? In the case of the horizontal edge characterized by both vertices having zero
distance, we simply ignore it. Since we are looking for interference, it seems appropriate to favor edges

“book” — 2005/9/30 — 15:44 — page 512 — #524✐
✐

✐
✐

✐
✐

✐
✐

512 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm practical-interference(Ta, Tb)
do-Edge-Face(TA.v0, TA.v1, TB)
do-Edge-Face(TA.v1, TA.v2, TB)
do-Edge-Face(TA.v2, TA.v0, TB)
do-Edge-Face(TB.v0, TB.v1, TA)
do-Edge-Face(TB.v1, TB.v2, TA)
do-Edge-Face(TB.v2, TB.v0, TA)

end algorithm

Figure 15.67: Edge-face interference tests of two triangles.

lying mostly on the backside of the triangle. Therefore, we will ignore edges where all vertices have a
nonnegative signed distance w.r.t. to the face plane. Looking at case C in Figure 15.65, this means that we
prune the coplanar edge and the edge on the front side of the face of the triangular object.

Having determined that the edge actually crosses the plane of the triangle, we can now compute the
intersection point between the edge and the plane of the triangle. This is done by parameterization of the
edge, and if the edge is given by the vertices v0 and v1, then any point on the edge can be given by the
parameterization

u(t) = (v1 − v0) t + v0, where t ∈ [0..1] . (15.60)

Due to the linearity of the edge, the signed distance of any point is given by

dist(plane(T),u(t)) = (dist(plane(T),v1)− dist(plane(T),v0)) t + dist(plane(T),v0). (15.61)

The intersection is given by the fact that the signed distance w.r.t. the face plane is zero. Exploiting this
fact in the above equation allows us to solve for the parameterization parameter. This yields

t =
dist(plane(T),v0)

dist(plane(T),v0)− dist(plane(T),v1)
. (15.62)

Knowing the value of the t-parameter, the intersection point can be computed by using the parameteriza-
tion. Having found the intersection point, we can now detect if the edge-face case we are testing constitutes
a new contact point by testing whether the intersection point lies inside the triangle boundary. Barycentric
coordinates, to be explained below, are very efficient for determining whether a point lies inside a triangle,
and we will therefore use these in the last part of our test. The barycentric coordinates w0, w1, and w2 are
defined such that

u′(t) = w0v0 + w1v1 + w2v2 (15.63)

is the point in the plane of the triangle closest to u(t). If 0 ≤ w0, w1, w2 ≤ 1, then the point lies inside or
on the perimeter of the triangle. Computing the barycentric coordinates, w0, w1, and w2 of u(t) implies
solving the linear system

[
(v0 − v2) · (v0 − v2) (v0 − v2) · (v1 − v2)
(v0 − v2) · (v1 − v2) (v1 − v2) · (v1 − v2)

] [
w0

w1

]
=

[
(v0 − v2) · (u− v2)
(v1 − v2) · (u− v2)

]
, (15.64a)

w0 + w1 + w2 = 1. (15.64b)

“book” — 2005/9/30 — 15:44 — page 513 — #525✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 513

We introduce the shorthand notation
[
a11 a12

a12 a22

] [
w0

w1

]
=

[
b1

b2

]
. (15.65)

Isolating w1 from the second equation yields

w1 =
b2 − a12w0

a22
(15.66a)

=
b2

a22
− a12

a22
w0, (15.66b)

and substituting this into the first gives

a11w0 + a12((b2 − a12w0)/a22) = b1, (15.67a)
⇓

a11w0 + (a12/a22)b2 − a12(a12/a22)w0 = b1, (15.67b)
⇓

(a11 − a12(a12/a22))w0 = b1 − (a12/a22)b2. (15.67c)

Letting f = a12/a22 gives

m =
a11 − a12

f
, (15.68a)

n = b1 − fb2, (15.68b)

we have

w0 =
n

m
, (15.69a)

w1 =
b2

a22
− fw0, (15.69b)

w2 = 1− w0 − w1. (15.69c)

Since we always have a11 > 0 and a22 > 0, a solution will always exist regardless of the value of a12,
b1, and b2. A pseudocode implementation of the computation of the barycentric coordinates is shown in
Figure 15.68. We have now walked through all the details of the edge-face testing. A complete pseudocode
version of the test is given in Figure 15.69.

15.8.2 Proximity Query
A proximity query is the process of finding nearest and possible touching parts of two objects. The concept
of contact points is easily expanded to cover separated objects as the closest points between features of
two polygonal objects. Thus, the term contact point is used even for objects in close proximity without
contact.

“book” — 2005/9/30 — 15:44 — page 514 — #526✐
✐

✐
✐

✐
✐

✐
✐

514 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm barycentric-coords(v0, v1, v2, u)
a11 = (v0 − v2) · (v0 − v2)
a12 = (v0 − v2) · (v1 − v2)
a22 = (v1 − v2) · (v1 − v2)
b1 = (v0 − v2) · (u − v3)
b2 = (v1 − v2) · (u − v3)
f = a12/a22

m = (a11 − a12f)
n = b1 − (b2f)
w0 = n/m
w1 = b2/a22 − fw0

w2 = 1 − w0 − w1

return (w0, w1, w2)
end algorithm

Figure 15.68: Computation of barycentric coordinates.

algorithm do-Edge-Face(v0, v1, T)
if existEdgeFace(v0, v1, T) then
return

end if
d0 = dist(plane(T), v0)
d1 = dist(plane(T), v1)
if d0 ≥ 0 and d1 ≥ 0 then
return

end if
if d0 < 0 and d1 < 0 then
return

end if
u = intersection(v0, v1, T)
(w0, w1, w2) =barycentric-coords(v0, v1, v2, u)
if inside(w0, w1, w2) then
report (v0, v1, T)

end if
end algorithm

Figure 15.69: Edge-face interference test

“book” — 2005/9/30 — 15:44 — page 515 — #527✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 515

(A) (B) (C)

Figure 15.70: Proximity queries can lead to multiple reported (V,F) contacts (A and B) or (E,E) contacts
(C).

When doing proximity queries, we could apply the same strategy for reporting unique contact points
as presented in the previous section. However, a simpler strategy is available based on the following: in
the case of a proximity query, (V,F) and (E,E) contact points are sufficient for representing any contact
region between two polygonal objects. Since there are no penetrations, there is no need for (E,F) contact
points.

As in the case of interference, we encounter the problems of ambiguity and multiple reported identical
contact points. The latter being a consequence of neighboring triangles sharing common boundaries,
as explained in the previous section. Here, we’ll briefly study the problem of ambiguity and convince
ourselves that (V,F) and (E,E) contact types are sufficient.

Looking at case A in Figure 15.70, we see that the minimum dimension contact is a (V, V) type, which
is a unique contact for this sort of touching contact. However, we could just as well have picked any pair
of edges, one from the upper object and one from the lower object, or we could have picked the vertex
from one of the objects and an arbitrary face from the other object. It is obvious that we can suffice with
(V,F) and (E,E) contact types for this kind of touching contact, and it is apparent that the ambiguity for
this case is really bad. The number of possible contact points for representing the same touching point
is quadratic in the number of features containing the touching point. However, in any simulation system,
this kind of contact will occur rarely, and even if something similar is set up, numerical accuracies and
round-offs will add perturbations.

In case B in Figure 15.70, we have a trivial example of a (V,F) type of contact. In this case there
is no ambiguity, however, imagine moving the cone such that the vertex lies on top of the border of the

“book” — 2005/9/30 — 15:44 — page 516 — #528✐
✐

✐
✐

✐
✐

✐
✐

516 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

triangle. The touching point could still be represented by the (V,F) contact, but again we have ambiguity
in choosing a representation for the touching contact.

The C case in Figure 15.70 illustrates the ideal (E,E) type of contact, where there is no ambiguity in
the representation. However, displacing one of the objects, such that the touching point on the common
edge is moved to the boundary of the other object, results in ambiguity of the contact representation.

Actually, case B and C show why it is (V,F) and (E,E) contact types that are the smallest set of
contact types that suffice for representing a touching contact region between two polygonal objects, since
in these two cases the contact types are the minimum dimension representing the touching point.

Usually collision queries are invoked at discrete times. This leads to well-known artifacts, such as
tunneling—objects that pass through each other (see Chapter 6.4). For proximity queries with BVHs, it
can also lead to unexpected interference, such as penetration of objects. This is undesirable, since we are
seeking only touching or near-touching contacts. This calls for continuous collision detection.

15.8.3 Continuous Collision Detection

Unlike discrete collision detection, continuous collision detection deals with every collision event in a
given time span. There are two flavors of continuous collision detection. We can either look forward in
time, from the current instance of invocation to the next expected instance, or we can look backward in
time, from the current instance of invocation to the previous instance.

Assuming that the time-step is small, it is justified to look upon the motion between the two instances
of time as being linear. The error in this assumption is linear in the size of the time-step, h, that is,
O(h). From a convergence theory point of view, we can simply let the time-step go to zero and the
approximation would be exact. In practice, this is of course, impossible, but the error can be made so
small that it is negligible compared to errors coming from numerical inaccuracies and round off.

Having assumed linear motion, we can compute the space swept by a single triangle over the time-
step. Say that the three vertices of a triangle move with velocities u0, u1, and u2, then we expect the
triangle to be at the candidate positions given by

v′
0 = v0 + hu0, (15.70a)

v′
1 = v1 + hu1, (15.70b)

v′
2 = v2 + hu2. (15.70c)

If we look backward, the candidate positions would be

v′
0 = v0 − hu0, (15.71a)

v′
1 = v1 − hu1, (15.71b)

v′
2 = v2 − hu2. (15.71c)

Or even better, if we cached vertex positions, then we would know the exact candidate position, without
having to compute them as above. Instead, we could estimate the linear velocity they must have moved

“book” — 2005/9/30 — 15:44 — page 517 — #529✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 517

with as

u0 =
v0 − v′

0

h
, (15.72a)

u1 =
v1 − v′

1

h
, (15.72b)

u2 =
v2 − v′

2

h
. (15.72c)

A simple approach to continuous collision detection is to update the BVH prior to a collision query, in the
same way we would do for a deformable object. The only difference is in how the leaf-bounding volumes
are updated. Traditionally, these would enclose the geometry at the current instant of time. However, for
continuous collision detection, we would make it enclose the geometry both at the current position and at
the candidate position. So in the case of AABBs this would imply

pmin = min
(
v0,v1,v2,v

′
0,v

′
1,v

′
2

)
, (15.73a)

pmax = max
(
v0,v1,v2,v

′
0,v

′
1,v

′
2

)
. (15.73b)

Observe that the update of the BVH is the same regardless of the flavor of the continuous collision detec-
tion. The only difference lies in how the candidate positions are picked.

The approach we have described here is most convenient for deformable objects, where the BVHs
are not shared among objects, and BVHs are updated anyway to adapt to the deformation of objects. For
rigid objects, continuous collision detection can be made more efficient simply by updating the pairwise
BVs during the traversal, but before they are tested against each other for collision (see [Eberly, 2005b,
Eberly, 2005c] for an example or [Redon et al., 2002, Redon, 2004b, Redon, 2004b, Redon et al., 2004b,
Redon et al., 2004a] for more details on continuous collision detection).

During a query traversal when two overlapping leaf bounding volumes are encountered, this indicates
a possible contact over the time-step we are looking at. Therefore, the contact determination needs to find
the point in time where a touching contact first appears.

The contact determination works by examining all possible contact types, exactly as we did in the case
of interference. However, this time we look for (V,F) and (E,E) contacts. The pseudocode is shown in
Figure 15.71. In each of the contact cases, first we will try to find the time of collision and then perform
the contact determination of the geometries at their positions at that time.

Due to our assumption of linear motion over the time interval, h, the time of contact must be char-
acterized by the vertex lying in the face plane in the case of a (V,F) contact or by the two edges being
coplanar in the case of an (E,E) contact. Regardless of the case, we seek a point in time where four
points all lie in the same plane.

The idea is to use three points to compute a plane normal, and then use one of the three points to find
a distance between the plane and the origin. Finally, the fourth point is used for a point in the plane test.
For convenience, in the case of the (V,F), let us label the points of the triangle in counterclockwise order:
x1, x2, and x3 and the point of the vertex x4. In the case of an (E,E) type, we label the end-points of
the first edge x1 and x2, and the end-points of the second edge x3 and x4. The corresponding velocities
are in both cases labeled u1, u2, u3, and u4. Now we’ll set up two vectors x2 − x1 and x3 − x1, and

“book” — 2005/9/30 — 15:44 — page 518 — #530✐
✐

✐
✐

✐
✐

✐
✐

518 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm practical-proximity(Ta, Tb)
do-Vertex-Face(TA.v0, TB)
do-Vertex-Face(TA.v1, TB)
do-Vertex-Face(TA.v2, TB)

do-Vertex-Face(TB.v0, TA)
do-Vertex-Face(TB.v1, TA)
do-Vertex-Face(TB.v2, TA)

do-Edge-Edge(TA.v0, TA.v1, TB.v0, TB .v1)
do-Edge-Edge(TA.v1, TA.v2, TB.v0, TB .v1)
do-Edge-Edge(TA.v2, TA.v0, TB.v0, TB .v1)

do-Edge-Edge(TA.v0, TA.v1, TB.v1, TB .v2)
do-Edge-Edge(TA.v1, TA.v2, TB.v1, TB .v2)
do-Edge-Edge(TA.v2, TA.v0, TB.v1, TB .v2)

do-Edge-Edge(TA.v0, TA.v1, TB.v2, TB .v0)
do-Edge-Edge(TA.v1, TA.v2, TB.v2, TB .v0)
do-Edge-Edge(TA.v2, TA.v0, TB.v2, TB .v0)

end algorithm

Figure 15.71: Practical proximity contact determination between two triangles.

take the cross product of these two to obtain a plane normal

n = ((x2 − x1)× (x3 − x1) . (15.74)

The point x1 must lie in the plane, so the distance, d, to the origin is given by

d = n · x1. (15.75)

In order for the last point to lie in the plane, then its distance to the plane must be zero, that is,

n · x4 − d = 0. (15.76)

Substitution leads to
((x2 − x1)× (x3 − x1)) · (x4 − x1) = 0. (15.77)

Whenever this equation is fulfilled, the four points will lie in the same plane. The last thing we need to
consider is the motion of the points. That is, we have

((x2(t)− x1(t))× (x3(t)− x1(t))) · (x4(t)− x1(t)) = 0, (15.78)

and we want to determine the smallest nonnegative value t < h, which makes the above equation true.

“book” — 2005/9/30 — 15:44 — page 519 — #531✐
✐

✐
✐

✐
✐

✐
✐

15.8 PHYSICS-BASED ANIMATION 519

Now we find

x1(t) = x1 + u1t, (15.79a)
x2(t) = x2 + u2t, (15.79b)
x3(t) = x3 + u3t, (15.79c)
x4(t) = x4 + u4t. (15.79d)

By substitution we have

(((x2 − x1) + (u2 − u1) t)× ((x3 − x1) + (u3 − u1) t)) · ((x4 − x1) + (u4 − u1) t) = 0. (15.80)

This is a cubic polynomial, and an analytical solution exists. Its three roots can be found, and the ver-
tice’s positions can thus be found at the specific times. A rounding error may hide a collision at the
boundary between two time-steps; a test at the end of the time-step t = h should therefore by performed
[Bridson et al., 2002].

Having found the point in time where the four points are coplanar, the (V,F) case is similar to the
(E,F) case in the interference testing after having found the intersection point. The difference is that
the vertex position at the time of contact replaces the intersection point. The pseudocode in Figure 15.72
illustrates the basic idea. We will now focus on the (E,E) case. As in the (V,F) case, we first find the
roots, and then we examine the geometries in ascending order.

For simplicity we let x1, x2, x3, and x4 denote the edge geometry positions at the instance in time
corresponding to a root. First we test whether the edges are parallel. This is the case, when

(x2 − x1)× (x4 − x3) = 0. (15.81)

In practice, an equality test will not work, so we use a threshold test instead. If the test succeeds, then a
dimension reduction technique can be used by projecting the vertices of one edge onto the line running
through the edge. However, one could also simply drop the case, since if a touching contact exists, it could
just as well be represented by two (V,F) type contacts. Therefore, we will only consider the general case
where the two edges are in general position, that is, there is exactly one touching point between them.

Parameterization of the two edges with the a and b parameters, yields

x1 + a (x2 − x1) , (15.82a)
x3 + b (x4 − x3) . (15.82b)

The touching point between the two lines must also be the closest point, and the closest point is character-
ized by the minimum distance, so we seek the values of a and b, which minimizes

√
((x1 + a (x2 − x1))− (x3 + b (x4 − x3)))

2. (15.83)

Taking the derivative w.r.t. a and b yields the so-called normal equations,
[

(x2 − x1) · (x2 − x1) − (x2 − x1) · (x4 − x3)
− (x2 − x1) · (x4 − x3) (x4 − x3) · (x4 − x3)

] [
a
b

]

=

[
(x2 − x1) · (x3 − x1)
− (x4 − x3) · (x3 − x1)

]
.

(15.84)

“book” — 2005/9/30 — 15:44 — page 520 — #532✐
✐

✐
✐

✐
✐

✐
✐

520 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

algorithm do-Vertex-Face(v,T)
if existVertexFace(v,T) then

return
end if
for each root t in ascending order do

x1 = T.v1 + tT.u1

x2 = T.v2 + tT.u2

x3 = T.v3 + tT.u3

x4 = v + tv.u
H = triangle(x1, x2, x3) d0 = dist(plane(H), x4)
d1 = dist(plane(H), x4)
if d0 ≥ 0 and d1 ≥ 0 then
return

end if
if d0 < 0 and d1 < 0 then
return

end if
u = intersection(x4, H)
(w0, w1, w2) =barycentric-coords(x1, x2, x3, x4)
if inside(w0, w1, w2) then

report (v, T)
return

end if
next t

end algorithm

Figure 15.72: Vertex-face proximity test.

Solving for a and b, we can compute the closest points between the two lines running through the two
edges. If a and b both are not below zero or above one, then a contact point can be reported. The
pseudocode is outlined in Figure 15.73. When looking backward in time we are actually seeking the first
point of contact. This point in space is attractive for simulation methods, since it implies the point in time
a simulation should be rewound in order to avoid penetration.

15.8.4 Self-Intersection

Self-intersection queries add one more complication to the contact determination discussed in the previous
sections. Observing that neighboring faces touch each other along common boundaries, trivially leads to
a self-intersection along these common boundaries. In Figure 15.74, two triangle faces are shown, and
during a query of self-collision, the bounding volumes of these two faces trivially intersect each other
leading to a primitive test between the two faces. However, we already know that the two faces would
result in contact points being reported corresponding to the shared boundary between the faces. A simple
prescreening can be applied to the contact determination avoiding the unpleasanties of this problem. The
prescreening consists of a quick rejection, and we only run contact determination on triangular faces,
which do not share any nodes. Thus, no immediate neighboring triangles will yield any contact points.

“book” — 2005/9/30 — 15:44 — page 521 — #533✐
✐

✐
✐

✐
✐

✐
✐

15.9 PHYSICS-BASED ANIMATION 521

algorithm do-Egde-Edge(x′
1, x

′
2, x

′
3, x

′
4)

if existEdgeEdge(x′
1, x

′
2, x

′
3, x

′
4) then

return
end if
for each root t in ascending order do

x1 = x′
1 + tu1

x2 = x′
2 + tu2

x3 = x′
3 + tu3

x4 = x′
4 + tu4

if (x2 − x1) × (x4 − x3) > ε then
return

end if
(a, b) =closest-point(x1, x2, x3, x4)
if 0 < a < 1 and 0 < b < 1 then

report (x′
1, x

′
2, x

′
3, x

′
4)

return
end if

next t
end algorithm

Figure 15.73: Edge-edge proximity test.

15.9 Previous Work

Bounding volume hierarchies have been around for a long time. Consequently, there is a huge wealth of
literature on bounding volume hierarchies. Most addresses homogeneous bounding volume hierarchies
and top-down construction methods. A great variety of different types of bounding volumes has been
reported: spheres [Hubbard, 1996, Palmer, 1995, Dingliana et al., 2000], axes aligned bounding boxes
(AABBs) [Bergen, 1997, Larsson et al., 2001], oriented bounding boxes (OBBs) [Gottschalk et al., 1996,
Gottschalk, 2000], discrete orientation polytypes (k-DOPs) [Klosowski et al., 1998, Zachmann, 1998],
quantized orientation slabs with primary orientations (QuOSPOs) [He, 1999], spherical shell and swept
sphere volumes (SSVs) [Krishnan et al., 1998, Larsen et al., 1999]. In general, it has been discovered that

Figure 15.74: Self-intersection needs special treatment of neighboring faces, since neighborship implies
self-intersection along common edges.

“book” — 2005/9/30 — 15:44 — page 522 — #534✐
✐

✐
✐

✐
✐

✐
✐

522 CHAPTER 15. BOUNDING VOLUME HIERARCHIES

there is a tradeoff between the complexity of the geometry of a bounding volume and the speed of its
overlap test and the number of overlap tests in a query.

In contrast to bounding volumes types, only a little has been written on approximating bounding
volume hierarchies. To our knowledge, [Hubbard, 1993] pioneered the field, where octrees combined with
simulated annealing were used to construct a sphere tree. In [Palmer et al., 1995, Palmer, 1995], a superior
bottom-up construction method was added, which is based on medial surface (M-reps) [Hubbard, 1996].
More recently, [O’Sullivan et al., 1999, Dingliana et al., 2000] used approximating sphere-trees built in a
top-down fashion based on an octree for time critical collision detection, and [Bradshaw et al., 2004] used
an adaptive m-rep approximation based on a top-down construction algorithm.

Even less has been written about heterogeneous bounding volume hierarchies, although object hi-
erarchies of different primitive volume types are a widely used concept in most of today’s simulators
[ODE, 2005, Vortex, 2005, Karma, 2005]. The SSVs [Larsen et al., 1999] is one of the most recent pub-
lications. The general belief is, however, that heterogeneous bounding volumes do not change the funda-
mental algorithms, but merely introduce a raft of other problems. It is also believed that heterogeneous
bounding volumes could provide better and more tightly fitting bounding volumes resulting in higher
convergence toward the true shape volume of the objects. This could mean an increase in the pruning
capabilities and a corresponding increase in performance.

Most of the work with bounding volume hierarchies has addressed objects that are represented by
polygonal models. Many experiments also indicate that OBBs (and other rectangular volumes) provide
the best convergence for polygonal models [Gottschalk et al., 1996, Gottschalk, 2000, Zachmann, 1998,
Larsen et al., 1999], while spherical volumes are believed to converge best toward the volume. The un-
derlying query algorithms for penetration detection, separation distance, and contact determination of
bounding volume hierarchies have not changed much. In their basic form, these algorithms are noth-
ing more than simple traversals [Gottschalk, 2000]. The stack-list traversal [Zachmann et al., 2003a] is
thread-safe and overcomes the problem of inefficient updating of BVs, meaning that queries can be done
in parallel even though they share the same BVH data structure.

M-rep-based methods are the state of art for bottom-up construction methods [Hubbard, 1996] and
top-down construction [Bradshaw et al., 2004]. For deformable objects such as cloth, bottom-up construc-
tion based on mesh topology [Volino et al., 1995, Volino et al., 2000, Bridson et al., 2002] is the preferred
choice. In [Bergen, 1997], a median-based top-down method was proposed for building an AABB tree.
[Larsson et al., 2001] suggested using a mesh connectivity tree in a top-down construction method. Ex-
tensions to deformable surfaces by curvature test are discussed in [Volino et al., 1995, Volino et al., 2000],
In [Larsson et al., 2003] an update method for morphing deformation based on blending is proposed. The
method out performs their hybrid update method [Larsson et al., 2001], but is not as generally applicable.

In [Bergen, 1997], initial AABB trees are built in local object coordinate systems. The trees are
built using classical top-down splitting methods, and the entire AABB tree is updated in a bottom-
up fashion ensuring that making parent AABBs enclose their children AABBs. During runtime, the
AABB trees are moved causing the local defined AABBs to become OBBs. A variation of the sep-
aration axis overlap test method is used to deal efficiently with this problem. Self-intersections are
treated in [Volino et al., 1995, Volino et al., 2000] by organizing the boundary of an object into a hier-
archical representation of subsurfaces, each of which has no self-intersections. The BucketTree algorithm
[Hirota, 2002, Ganovelli et al., 2000] is, in our opinion, interesting because it takes a different approach to

“book” — 2005/9/30 — 15:44 — page 523 — #535✐
✐

✐
✐

✐
✐

✐
✐

15.9 PHYSICS-BASED ANIMATION 523

updating a spatial data structure, which is easily extended to more complex scenarios. Instead of updating
the spatial data structure at every iteration, a fast method is used to remap primitives into the spatial data
structure. In [Larsson et al., 2001], a top-down method is used for building AABBs in order to handle
deformation of arbitrary vertex positioning of meshes, and mesh connectivity is analyzed when splitting
parents to children. Furthermore, in order to minimize the number of AABB updates, the method uses
a top-down update approach while doing a tandem traversal. A bottom-up update method is used on the
remaining subtree when at predefined depth.

Even though there are several ways for constructing bounding volume hierarchies, there has been
a tendency to use top-down methods. Some believe that bottom-up methods would be superior to top-
down methods in the sense that smaller and tighter bounding volume hierarchies can be constructed.
Most recent work with bounding volume hierarchies has focused on trying out new kinds of bounding
volumes, figuring out better methods for fitting a bounding volume to a subset of an object’s underlying
geometry, finding faster and better overlap test methods, and comparing homogeneous bounding volume
hierarchies of different bounding volume types with each other. In order to improve performance of
traversal algorithms, depth control, layered bounding volumes, caching bounding volumes, and shared
bounding volumes have been studied.

Depth control: In time-critical applications it can sometimes be beneficial to set a limit on the depth
a traversal is allowed to proceed in a bounding volume hierarchy, thereby trading accuracy for
performance [Hubbard, 1993].

Layered bounding volumes: Having recognized the tradeoffs between the complexity of the geometry
of the bounding volumes and their overlap test speed, simpler geometries are tried out first in order
to get a quick rejection test. Spheres are most commonly used [Gottschalk, 2000, Eberly, 2005b].

Caching bounding volumes: Caching bounding volumes from previous invocations create witnesses that
can exploit spatial and temporal coherence [Gottschalk, 2000, Eberly, 2005b].

Shared bounding volumes: This changes a hierarchy from a tree into a DAG [Hubbard, 1996].

“book” — 2005/9/30 — 15:44 — page 524 — #536✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 525 — #537✐
✐

✐
✐

✐
✐

✐
✐

16

Feature-Based Algorithms

A feature-based algorithm works directly on the features of an object. For polygonal meshes, the fea-
tures are the vertices, edges, and faces of the meshes. In other words, a feature is a geometric primitive,
and we therefore classify a narrow-phase collision detection algorithm as being feature based whenever
the algorithm works directly on the geometric primitives of the objects. This is a broad classification
and there is a wealth of literature on feature-based narrow-phase collision detection algorithms, and
many different approaches have been investigated: polygonal intersection [Moore et al., 1988], Lin-Canny
[Ponamgi et al., 1997], V-Clip [Mirtich, 1998b], SWIFT [Ehmann et al., 2001], and recursive search meth-
ods [Sundaraj et al., 2000], just to mention a few.

16.1 CULLIDE
The naive approach to the collision detection problem would be to take every geometric primitive and
test it against every other primitive, which leads to a brute-force, all-triangle pair clipping algorithm, with
complexity O(n2).

Quadratic complexity algorithms are unattractive in physics-based animation; nevertheless, exhaustive
pair testing is not dependent on spatial structures and is generally applicable to arbitrary complex shapes
with all kinds of degeneracies, such as holes, open boundaries, flipped faces, etc.

Exhaustive search algorithms make no real distinction between handling self-intersections and object-
object intersections, leading to improvements investigated in the literature.

To avoid the all pair testing, the ideas of broad-phase collision detection can be exploited; for in-
stance, each primitive could be bounded by a single AABB followed by a sweep and prune algorithm (see
Section 12.3) in order to quickly find potential overlapping triangle pairs. This approach appears to be
superior, since the method should run an expected O(n) time, and since it’s generally applicable to both
deformable objects, open surfaces, and even triangle soups. However, it useless for the following reasons
[Hirota, 2002]: We need to keep close-pair counters for counting the number of axes that two AABBs
overlap, and the storage requirement is likely to be O(n2) due to the neighborhood relation of primitives.
For volumetric meshes such as tetrahedra meshes, every tetrahedra inside an object shares triangular faces
with at least four other neighboring tetrahedra. AABB boxes for volumetric meshes will thus overlap by
this structural relationship, and a lot of false AABB overlaps will be reported.

Graphics hardware may be used to speed up collision detection, and in [Govindaraju et al., 2003]
CULLIDE is proposed to prune primitives from a potentially colliding set (PCS) as an efficient prepro-
cessing step prior to an exhaustive search.

Initially, the PCS contains all objects. All elements of the PCS are then rendered in a two-pass algo-
rithm, first in a forward order and then in reverse order.

While rendering objects, visibility queries are done to remove elements from the PCS, which is known
not to be colliding with any other elements in the PCS. After the second pass, fully visible objects are

525

“book” — 2005/9/30 — 15:44 — page 526 — #538✐
✐

✐
✐

✐
✐

✐
✐

526 CHAPTER 16. FEATURE-BASED ALGORITHMS

removed from the PCS. This strategy is applied iteratively until no more changes are made to the PCS.
Hereafter, one can perform exact collision detection on the primitives that are left in the PCS.

Other algorithms based on stencil and/or depth testing also use graphics hardware to accelerate col-
lision detection [Hoff III et al., 2001, III et al., 2002, Heidelberger et al., 2003, Heidelberger et al., 2004].
These algorithms require read back of either the stencil and/or depth buffers, which can be expensive on
commodity graphics hardware.

The CULLIDE algorithm is based on visibility queries, computed by image-space occlusion queries,
which are supported on most graphics hardware. Occlusion queries have low bandwidth, unlike buffer
read-backs, and are therefore cheap to perform on commodity graphics hardware (for more specific details
see [SGI, 2005]). An occlusion query returns the number of rasterized fragments, which passed the depth
test. Setting up the prober depth test, it is thus possible to count how many pixels are occluded by other
objects already rendered onto the screen.

Given an environment of n objects, O1, O2, . . . , On, each represented as a collection of triangles, we
want to find out which objects overlap and compute the overlapping triangles. If an object Oi is not in
the PCS, then Oi does not collide with any object in the PCS. This property is used to prune object pairs,
which need to be considered for exact collision detection. Given a set S of objects, we test the relative
visibility of an object O with respect to S, by testing if any parts of O are occluded by S. If we rasterize
all objects in S, then O is considered fully visible when all fragments generated by rasterization of O have
a depth value less than the corresponding pixels in the frame buffer, where we assume that depth values
increase as we go into the screen. If O were colliding with something in S, then some fragments must be
behind those rasterized from S, when rasterizing O. This is not the same as saying that we always have a
collision when fragments of O are found to be behind those from S. On the other hand, if we know that
all fragments of O are in front of all those from S, then O can not be colliding with anything in S. This
observation leads to the following lemma:

Lemma 16.1 (Noncolliding Object)
An object O does not collide with a set of objects S, when O is fully visible with respect to S.

We will use this lemma to prune objects from the PCS. The naive approach for this would be to test each
object in the PCS against all remaining objects, however this leads to an O(n2) complexity. An efficient
approach can be derived from the following lemma:

Lemma 16.2
For n objects, O1, . . . , On, in the potentially colliding set (PCS) and two sets Si−1 = {O1, . . . , Oi−1}
and Si+1 = {Oi+1, . . . , On}. If object Oi is fully visible both w.r.t. Si−1 and Si+1 then Oi is fully visible
w.r.t. the set S = Si−1 ∪ Si+1. Hence Oi is fully visible w.r.t. to all other objects in PCS

We can use the Lemma 16.2 to prune objects from the PCS in linear time, by iterating over the objects in
two passes. When object Oi is treated in the first pass, it is tested if Oi is fully visible w.r.t. Si−1. After
having performed the test, we can add Oi to Si−1 simply by rasterizing Oi to obtain Si = Si−1∪Oi. Now
we are ready to test Oi+1 against Si. In the second pass, the object order is reversed, implying that Oi is
tested against Si+1. Adding Oi to Si+1 we get the set Si = Si+1∪Oi, and we are ready to test object Oi−1

for full visibility against Si. This two-pass algorithm is shown in pseudocode in Figure 16.1. If an object
Oi were determined to be fully visible in both render passes, then we know that it is fully visible w.r.t.

“book” — 2005/9/30 — 15:44 — page 527 — #539✐
✐

✐
✐

✐
✐

✐
✐

16.1 PHYSICS-BASED ANIMATION 527

algorithm reduce(PCS)
clearDepthBuffer()
for each o in PCS do

DepthTest(GREATER_EQUAL)
DepthMask(FALSE)
BeginOcclusionQuery()
render o
EndOcclusionQuery()
fullyVisible(o) = (GetQueryObject(o)==NONE)
DepthTest(LESS)
DepthMask(TRUE)
render o

next o
reverse PCS
clearDepthBuffer()
for each o in PCS do

DepthTest(GREATER_EQUAL)
DepthMask(FALSE)
BeginOcclusionQuery()
render o
EndOcclusionQuery()
fullyVisible(o) &= (GetQueryObject(o)==NONE)
DepthTest(LESS)
DepthMask(TRUE)
render o

next o
remove all fully visible o from PCS

end algorithm

Figure 16.1: Reduction of the PCS in CULLIDE.

both Si−1 and Si+1. Thus, according to Lemma 16.1 Oi can be safely removed from PCS. The pruning
algorithm has linear complexity in the number of objects in the PCS.

It can be somewhat difficult to see through the logic of the depth test and depth mask operations in the
algorithm listed in Figure 16.1, so we will present here a small example, where the PCS consists of five
objects labeled a, b, c, d, and e (in that order) as seen in Figure 16.2. Notice that the depth values at the
far and near clipping plane are z = 1 and z = 0 During the first render pass:

• When object a is rendered, all z-values are one. Thus, the greater-than-equal depth test fails on all
fragments being rendered, and the fully visible flag for a is set. Finally, a is written to the depth
buffer, and the next object is b.

• Object b lies in front of a, implying that its z-values are all less than those currently in the z-buffer.
Thus b is also set to be fully visible.

• Finally, object c is rendered and set to be fully visible, since all z-values are less than those stored
in the z-buffer.

“book” — 2005/9/30 — 15:44 — page 528 — #540✐
✐

✐
✐

✐
✐

✐
✐

528 CHAPTER 16. FEATURE-BASED ALGORITHMS

Far� Near�

z = 1� z = 0�

a�

b�

c�

d�
e�

Z�

Figure 16.2: Small CULLIDE example.

• When object d is rendered something different occurs: a small part lies behind object c, so object d
will not be set to be fully visible since some fragments will fail the greater-than-equal test.

• Similarly, when rendering object e, some parts are lying behind objects d, causing fragments to pass
the greater-than-equal test.

In the second pass, the objects are rendered in reverse order:

• Object e will be found to not occlude anything, being the first object that is rendered. However,
object e was determined as not being fully visible in the first pass, so no changes are made to the
state of object e.

• When rendering, object d fragments will pass the greater-than-equal test, no changes are made to
object d as it was already determined to be not fully visible in the first pass.

• Object c lies in front of anything else being rendered so far; since it was determined to be fully
visible in both the first and second pass, it is declared to be a fully visible object.

• A similar thing happens for object b.

“book” — 2005/9/30 — 15:44 — page 529 — #541✐
✐

✐
✐

✐
✐

✐
✐

16.1 PHYSICS-BASED ANIMATION 529

algorithm CULLIDE(Objects)
PCS = Objects
do

reduce(PCS)
for each o in PCS do
if o not primitive then

remove o from PCS
add subobjects of o to PCS

end if
next o

while non primitive objects exist in PCS
end algorithm

Figure 16.3: Main loop of CULLIDE.

• Object a lies in front of object b, thus fragments will pass the greater-than-equal test and the state
of object a is set to be non fully visible.

When removing objects from the PCS only b and c were determined to be fully visible, thus a, d, and e
are left in the PCS. Performing an iteration more will prune object a, and we are left with only object d
and e, which will never be pruned from the PCS and in the end will be passed along for exact collision
detection.

To minimize the number of triangles that are up for rasterization, a hierarchical decomposition of
objects can be devised. Initially each object is enclosed by an AABB. Then the reduce algorithm is
performed three times, using the three world axis as projection axes. Hereafter the AABB representation
of the objects can be replaced by a set of subobjects, which are used in the next reduction step of the PCS.
Each time a reduction has been performed, objects in the PCS are replaced by subobjects. Eventually
objects in the PCS will be decomposed into their respective triangles. The finally output from CULLIDE
will therefore be a set of potentially colliding triangles.

CULLIDE could be initialized with each triangle initially being an object in the PCS, however this
approach will have poor performance. It is beneficial to use a subobject to quickly home in on regions
of objects with colliding triangles. Since a fully visible subobject may mean that several hundred or even
thousands of triangles are pruned in one reduction step. The subobjects can be computed dynamically on
the fly. For instance, by collecting a subset of k triangles making up the object into a single subobject,
another k triangles into another subobject, and so forth.

To recap the idea is to iteratively continue decomposing objects in the PCS into subobjects, until all
objects in the PCS consist of a single primitive, i.e., a single triangle. Figure 16.3 illustrates the idea in
pseudocode.

CULLIDE has many benefits, no precomputed data structures are required, no topology information is
needed, no temporal coherence is exploited. Thus, CULLIDE is applicable to both static and deformable
objects—even flying triangle soups can be dealt with. Furthermore, the triangle count is also allowed to
change from iteration to iteration. Many factors have an impact on the overall algorithm, object count,
subobject strategy, number of triangles, projection direction used during the reduce algorithm, etc. We

“book” — 2005/9/30 — 15:44 — page 530 — #542✐
✐

✐
✐

✐
✐

✐
✐

530 CHAPTER 16. FEATURE-BASED ALGORITHMS

refer the interested reader to [Govindaraju et al., 2003] for details on a performance analysis of CULLIDE.
In [Boldt et al., 2004], the CULLIDE algorithm has been extended to handle self-intersections. There are
however, serious performance issues that must be addressed.

16.2 Optimal Spatial Hashing
In the previous section, we saw how the brute-force of graphics hardware was exploited to speed up naive
exhaustive searching to prune unneeded primitive pair tests. In this section, we will present optimal spatial
hashing [Teschner et al., 2003]. This algorithm does not use graphics hardware; instead, spatial locality
is exploited. The algorithm is designed for deformable objects represented by a tetrahedra mesh, but it
can be equally well applied to a triangular mesh or soup. The conversion is straightforward and we leave
this as an exercise for the reader. optimal spatial hashing uses a two-pass algorithm. First, vertices are
mapped into a hash map, and in the next pass, tetrahedras are tested against the hash map to find potential
colliding vertices. The novelty is that it is not the tetrahedra that are stored into the hash map as is done in
other gridding algorithms as suggested in BucketTree

[Ganovelli et al., 2000].
Given an infinite uniform rectilinear grid in 3D space, characterized by a user-specified grid cell size,

l, we can discretize any given point, r = [x, y, z]T , in space

p =
[⌊x

l

⌋
,
⌊y

l

⌋
,
⌊z

l

⌋]T
(16.1)

The integer coordinate, p, can be thought of as a 3D index, mapping the point r into a uniquely determined
index. A full 3D grid of cells would require a prohibitive amount of storage, so instead, we will use a 1D
hash map and a hash function, hash(·), which maps a discretized point into a 1D index. The hash function
suggested in [Teschner et al., 2003] is

hash(p) = (xp1 xor yp2 xor zp3) mod n, (16.2)

where p1, p2, and p3 are large prime numbers, e.g., 73856093, 19349663, and 83492791, as used in
[Teschner et al., 2003]. The value n is the hash table size, ideally also a prime number. Although in
[Teschner et al., 2003], the hash table size varies according to 99, 199, 299, etc. There is no guarantee that
discretized points mapped to two different grid cells will not map to the same hash cell. Traditionally, this
is called a collision.

The algorithm makes two passes; a first pass discretizes the position of each vertex of the tetrahedra
using (16.1). The vertices are then stored into the hash cells using (16.2). In the second pass, the minimum
enclosing AABB is found for each tetrahedron. This AABB is defined by two points in space, a minimum
and maximum coordinate point. Using (16.1), a span of discretized points covered by the enclosing
AABB is calculated. For each discretized point in this span the hash function is used to find the hash cell,
containing vertices mapped into the same grid cell as the discretized point currently being treated.

All nodes in the found hash cell are then tested for inclusion in the tetrahedron currently being treated.
If a node is part of the tetrahedron, it is trivially rejected. However, if the node is not part of the tetrahedron
currently being treated, and the position of the node is inside the tetrahedron, a contact point is reported.

“book” — 2005/9/30 — 15:44 — page 531 — #543✐
✐

✐
✐

✐
✐

✐
✐

16.2 PHYSICS-BASED ANIMATION 531

class HashCell
Timestamp T
list<Node> nodes

class HashMap
Timestamp T
vector<HashCell> cell

Figure 16.4: Hash map data structure.

To avoid clearing the entire hash table before each collision query, a clever time-stamping strategy can
be applied instead. Each query is given a unique time-stamp; similarly, each hash cell has a time-stamp.
When a vertex is mapped to a hash cell, it is first tested if the time-stamp is different from the current
time-stamp of the query. If so, the hash cell is cleared before adding the vertex to the hash cell and the
time-stamp of the hash cell is updated to that of the current query. In the second pass, one must make sure
to only test against hash cells spanned by the AABB, which have a time-stamp equal to the current query.

The point in the tetrahedron inclusion test is done by computing the barycentric coordinates of the
point also used in Section 15.8. The barycentric coordinates, w1, w2, w3, and w4 of the point r w.r.t. to
the tetrahedron defined by the vertex positions p1, p2, p3,and p4 is given by

r = w1p1 + w2p2 + w3p3 + w4p4, (16.3)

where
w1 + w2 + w3 + w4 = 1, (16.4)

which is trivially solved. Observe that one only needs to store three of the barycentric coordinates. The
other is implicitly given by the last constraint. Having found the barycentric coordinates, the given point
lies inside the tetrahedron if

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0 and w1 + w2 + w3 ≤ 1. (16.5)

Here we assumed that w4 was given implicitly by the other coordinates. Figure 16.4 illustrates the data
structures in pseudocode. The first pass is shown in pseudocode in Figure 16.5. The second pass is given
in pseudocode in Figure 16.6. The overlap algorithm is shown in Figure 16.7.

The edge tetrahedron intersection case is ignored in the Optimized Spatial Hashing algorithm. At first
hand, this might seem flawed. However, according to [Teschner et al., 2003], there are two reasons for not
considering edge intersections. First, the performance of the algorithm would decrease substantially, while
the relevance of the edge test is unclear in the case of densely sampled objects. Second, the algorithm was
developed to be integrated into physically based environments, where penetrating vertices are easily dealt
with, whereas edge intersections are uncommon and costly.

Obviously, the first pass of the algorithm is linear in the number of vertices, n, since both the dis-
cretization and the hash function takes O(1) time, The second pass is more difficult to analyze. Clearly
the number of tetrahedra is not going to be larger than the number of vertices, since four vertices are used

“book” — 2005/9/30 — 15:44 — page 532 — #544✐
✐

✐
✐

✐
✐

✐
✐

532 CHAPTER 16. FEATURE-BASED ALGORITHMS

algorithm first-pass(H:HashMap,V:Vertices)
for each v in V do

p = discretized(v.pos)
h = hash-func(p)
if H.cell[h].T not equal H.T then

H.cell[h].nodes.clear()
H.cell[h].T = H.T

end if
H.cell[h].nodes.add(v)

next v
end algorithm

Figure 16.5: Pseudocode for the first pass.

algorithm second-pass(H:Hashmap,T:Tetrahedra)
for each t in T do

A = AABB(t)
m = discretized(A.min)
M = discretized(A.max)
for each p, m <= p <= M do

h = hash-func(p)
if H.cell[h].T equal H.T then

for each n H.cell[h].nodes do
if n not part of t and n inside t then

create contact(n,t)
end if

next n
end if

next p
next t

end algorithm

Figure 16.6: Pseudocode for the second pass.

algorithm spatial-hashing(H:Hashmap,T:Tetrahedra,V:Vertices)
inc H.T
first-pass(H,V)
second-pass(H,T)

end algorithm

Figure 16.7: Pseudocode for the spatial hashing algorithm.

“book” — 2005/9/30 — 15:44 — page 533 — #545✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 533

to define each tetrahedra. If p is the average number of cells intersected by a tetrahedron, and q is the
average number of vertices per cell, then the complexity is of order O(npq). If the cell size is chosen to
be proportional to the average tetrahedron size, then p is constant under that assumption that the aspect
ratio of the tetrahedra does not vary too much. If there are no hash collisions, then the average number of
tetrahedra per cell is constant and so is q, since there are at most four times as many vertices as tetrahedra
in a cell. Since p and q can be regarded as constants, the complexity of the algorithm is linear in the
number of primitives, that is, O(n).

In [Teschner et al., 2003] numerical results are given supporting the following statements:

• The method is linear in the number of primitives and not objects.

• Hash table size influences performance; it should be large enough to avoid too many colliding
entries in the hash map.

• Grid cell size should be set to the average tetrahedra edge length to achieve the best performance.

The problem of varying aspect ratio is not mentioned in [Teschner et al., 2003]. Most likely because it
is not encountered in the test cases, where all tetrahedra appears to be of uniform size implying that the
enclosing AABBs are cubes of the same size, ideally suited for hashing in a uniform grid as pointed out
by [Mirtich, 1996]. In [Mirtich, 1996], hierarchical hashing is used to circumvent the problem of large
variance in aspect ratio.

16.3 The Voronoi-Clip Algorithm

To avoid the all triangle-pair exhaustive search comparison feature, tracking algorithms have been pro-
posed, such as Lin-Canny [Lin et al., 1994, Lin et al., 1998], Voronoi-Clip [Mirtich, 1998b], and SWIFT
[Ehmann et al., 2000a, Ehmann et al., 2000b]. In the following we will present the Voronoi-Clip (V-Clip)
algorithm as an example of a feature tracking algorithm.

The main idea of V-Clip is to iteratively optimize either the minimum distance between two convex
polyhedra or improve upon the localization of the closest point between the two polyhedra.

The minimum distance and closest points between the two convex polyhedra are given implicitly by
two features: a vertex, an edge, or a face, one from each polyhedra. V-Clip estimates the minimum
distance and closest points by a feature pair. In each iteration of the algorithm, V-Clip updates the features
of the feature pair with their neighbors to minimize the minimum known distance or localization of the
closest points. The algorithm iteratively continues to update these features until the closest point or an
interpenetration is found.

Before we can go into details of the V-Clip algorithm, we will need to work out some geometric
definitions that allow us to more clearly describe features and regions of space around a convex object.
We will do this in Section 16.3.1. If the reader is familiar with Voronoi regions and the closest feature pair
theorem, it should be safe to skip directly to Section 16.3.2, where the V-Clip algorithm is explained in
detail.

“book” — 2005/9/30 — 15:44 — page 534 — #546✐
✐

✐
✐

✐
✐

✐
✐

534 CHAPTER 16. FEATURE-BASED ALGORITHMS

16.3.1 Definitions and Notation
The V-Clip algorithm is concerned with features of a polygonal object that are either a vertex (V), an
edge (E), or a face (F). We consider each feature type to be a closed set, i.e., an edge will include its
end-points and a face will include its boundary edges. Mathematically, we describe each of the feature
types as follows:

• A vertex V is a point v ∈ R3.

• An edge, E, is a line running from vertex O to vertex D, and we can parameterize it as follows:

e(t) = (d− o) t + o for 0 ≤ t ≤ 1 (16.6)

• A face, F , is represented by its boundary edges and a face plane, P (F), which we can describe by

p · n− w = 0. (16.7)

Here p is any point in the face plane, n is the outward pointing face normal, and w is the orthogonal
distance from the origin to the face plane.

Note that we will be working with convex polyhedra and the boundary edges of a face will therefore form
a planar convex polygon without any holes. Furthermore, no coplanar faces are present in the polyhedra.
If a mesh contains coplanar faces, then these must be merged into a single convex face.

Definition 16.1 (Signed Distance Map for a Plane)
We define the signed distance function from a point p to a plane Q to be

DQ(p) = p · n− w, (16.8)

where the plane unit normal is n and distance to the origin is w.

Any given point p may be classified with respect to a plane Q using DQ as:

DQ(p) < 0 p is in back of Q
DQ(p) = 0 p is on Q
DQ(p) > 0 p is in front of Q

The signed distance map can also be used to find the intersection between an edge, E, and a plane,
Q. By substituting the edge parameterization into the definition of the signed distance map, an analytical
expression for the signed distance map of any point along the edge may be derived using (16.6) as follows:

DQ(e(t)) = DQ((d− o)t + o) (16.9a)
= n · dt− n · ot + n · o− w (16.9b)
= n · dt− wt−n · ot + wt + n · o− w (16.9c)
= (n · d−w)t− (n · o− w)t + (n · o− w) (16.9d)
= (DQ(d)−DQ(o)) t + DQ(o). (16.9e)

“book” — 2005/9/30 — 15:44 — page 535 — #547✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 535

At the intersection point between the edge and the plane, DQ(e(t)) = 0, which means that

0 = (DQ(d)−DQ(o)) t + DQ(o), (16.10a)

t =
DQ(o)

DQ(o)−DQ(d)
. (16.10b)

Hence, we only need to compute the t-value corresponding to the intersection point with the plane as long
as the edge is not parallel to the plane. For a given t-value, we know:

t ≤ 0 The staring point o is the closest point on the edge to the plane Q.
0 ≤ t ≤ 1 Point of intersection is e(t).

t ≥ 1 The end-point d is closest point to the plane Q.

Definition 16.2 (Edge-Plane Intersection)
Given a plane Q and a noncoplanar parameterized edge

e(t) = (d− o) t + o, (16.11)

where 0 ≤ t ≤ 1, then the intersection point between the edge and plane is given by the parameter t,

t =
DQ(o)

DQ(o)−DQ(d)
, (16.12)

as long as 0 ≤ t ≤ 1.

It is common practice to define a topological neighborhood relation between features such that only
features in touching contact are neighbors. We will, however, require a more strict definition of neighbor-
hood.

Definition 16.3 (Feature Neighborhood)
The neighbors of a feature are defined to be

Vertex all incident edges

Edge the two incident faces and the two end-points

Face all boundary edges

In our definition of neighborhood relationship we have implicitly assumed that all polyhedra are closed
twofolds; that is, we have a watertight object surface, where each edge is shared by exactly two faces.
Notice that the neighborhood relation definition is a symmetric definition, meaning that if feature A by
definition is a neighbor of feature B, then feature B is also by definition a neighbor of feature A. As
implied, our neighborhood relation definition is a strong definition. A weaker definition could be made
where faces and vertices are also allowed to be neighbors.

Our neighborhood relation definition is not more prohibitive than the weaker definition, in the sense
that given two arbitrary features on the polyhedra surface, it is possible to walk from one feature to the

“book” — 2005/9/30 — 15:44 — page 536 — #548✐
✐

✐
✐

✐
✐

✐
✐

536 CHAPTER 16. FEATURE-BASED ALGORITHMS

other, by going from neighbor to neighbor. The difference is that the path using the weak definition will
be shorter in some cases.

The concept of a Voronoi diagram can be extended to a polyhedral object: in a Voronoi diagram a cell
(or region) of a site point delimits a subspace, where all points are known to lie closer to the site than any
other site. This kind of information is useful for locating sites closest to a given point. Polyhedral objects
do not pose point sites, but features; the definition below therefore extends the Voronoi concept to include
polygonal features.

Definition 16.4 (External Voronoi Region)
An external Voronoi region VR(X) of a feature, X, from a polyhedron, O, is defined as:

The set of points outside O lying closer or just as close to X than to any other feature.

It is important to notice that we only consider the space lying outside an object. Although it is possible
to define internal Voronoi regions as well [Lin et al., 1998], we will not need those for our treatment of
V-Clip.

Introducing a distance function D(p,X), which gives the minimum distance between a point p and a
feature X, allows us to express the definition of an external Voronoi region in more mathematical terms
as

VR(X) =

{
p where D(p,X) = min

i
{D(p,Xi)} and p /∈ O.

}
(16.13)

We will now define the concept of Voronoi planes, which will turn out to be very useful for describing the
boundary of the external Voronoi regions.

Definition 16.5 (Voronoi Plane)
A Voronoi plane separates the Voronoi regions between two neighboring features, X and Y . We define it
to be

VP(X,Y) = VR(X) ∩ VR(Y) (16.14)

.

Notice that any point p, which belongs to VP(X,Y), has the same minimum distance to both X and Y .
It is easily seen from our definition of neighborhood relation and the fact that features are closed sets,

that a convex polyhedron has two types of Voronoi planes: edge-vertex Voronoi planes and edge-face
Voronoi planes.

Definition 16.6 (Edge-Vertex Voronoi Plane)
The edge-vertex Voronoi plane, VP(E,V) is the plane with normal parallel to u = o− d and with point
v on it.

Definition 16.6 is demonstrated in Figure 16.8.

Definition 16.7 (Edge-Face Voronoi Plane)
The edge-face Voronoi plane, VP(E,F), is the plane with normal orthogonal to the normal of F and with
all points of E on it.

“book” — 2005/9/30 — 15:44 — page 537 — #549✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 537

Figure 16.8: Edge-vertex Voronoi plane.

Figure 16.9: Edge-face Voronoi plane.

Definition 16.7 is demonstrated in Figure 16.9. There are some properties of the two kinds of Voronoi-
planes that are worth more investigation, since they will have an impact on the details of the V-Clip
algorithm.

An edge-vertex Voronoi plane, VP(E,V), divides space into two point sets: a set where all points
definitely lie closer to E than to V , and another set where the points lie just as close to E as to V . This
is shown in Figure 16.8. An edge-face Voronoi plane, VP(E,F), also divides space into two point sets: a
set where we will certainty know that all points lie closer to F than to E, and another set where we just
do not know whether F or E is the closest feature. This is illustrated in Figure 16.9. By our definition
of features, we have three different kinds of Voronoi regions: a vertex Voronoi region (VR(V)), an edge
Voronoi region (VR(E)), and a face Voronoi region (VR(F)). We will now give precise definitions of
how these three kinds of Voronoi regions are represented by Voronoi planes.

Definition 16.8 (Vertex Voronoi Region)
The boundary of the vertex Voronoi region, VR(V), is given by the edge-vertex Voronoi planes, VP(E i, V),
between the vertex, V , and all incident edges, Ei, to V . We choose the convention that normals are
pointing into the vertex Voronoi region.

Definition 16.8 is demonstrated in Figure 16.10.

“book” — 2005/9/30 — 15:44 — page 538 — #550✐
✐

✐
✐

✐
✐

✐
✐

538 CHAPTER 16. FEATURE-BASED ALGORITHMS

Figure 16.10: A vertex Voronoi region and the edge-vertex Voronoi planes defining its boundary.

Definition 16.9 (Edge Voronoi Region)
The boundary of the edge Voronoi region, VR(E), is represented by two edge-vertex Voronoi planes,
VP(E,O) and VP(E,D), and two edge-face Voronoi planes, VP(E,Fi)s. We choose the convention that
normals are pointing out of the Voronoi region. See Figure 16.11.

Definition 16.10 (Face Voronoi Region)
The boundary of the face Voronoi region, VR(F), is given by the edge-face Voronoi planes, VP(Ei, F),
where the Eis are the boundary edges of F , and the face plane of F . We choose the convention that
normals are pointing into the Voronoi region. See Figure 16.12.

In our precise representation of the three Voronoi regions, we have carefully stated the orientation of the
Voronoi planes making up the boundaries between the Voronoi regions. This was done in such a manner
that the normal direction of one region is not conflicting with the normal direction of neighboring Voronoi
regions.

We now have all the necessary geometric background to state the main theorem, which the V-Clip
algorithm relies on.

Theorem 16.3 (Closest Feature Pair)
Let A and B be two convex polyhedra and let P be a feature from A and Q a feature from B. Now let the
points p ∈ P and q ∈ Q be the closest points between P and Q. If

p ∈ VR(Q) and q ∈ VR(P), (16.15)

“book” — 2005/9/30 — 15:44 — page 539 — #551✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 539

Figure 16.11: An edge Voronoi region and the Voronoi planes defining its boundary.

then no other points from A and B lie closer to each other than p and q. In which case we say that P and
Q are the closest features between A and B.

The proof of this theorem follows trivially from contradiction and the properties of the Voronoi regions
(see [Mirtich, 1998b] for details). Figure 16.13 shows some examples illustrating the theorem.

16.3.2 Overview of V-Clip

V-Clip performs a greedy search for two features (X,Y) that fulfill the Closest feature pair theorem,
Theorem 16.3. Throughout the algorithm, V-Clip keeps track of a current feature pair (X,Y). The
current feature pair is an estimate for the closest proximity between the two polyhedra, especially the
closest distance between the two features D(X,Y) is an estimate for the closest distance between the
two polyhedra. In each iteration, V-Clip incrementally replaces either X or Y with one of their respective
neighbors. The replacement is only done if the neighboring feature either decreases the currently estimated
minimum distance or improves upon the localization of the closest points.

If we have a feature pair (X,Y), and we are about to update X with Z, then

(X,Y) ,→ (Z, Y)⇒
{

D(Z, Y) < D(X,Y) If dim(Z) > dim(X),

D(Z, Y) = D(X,Y) If dim(Z) < dim(X),
(16.16)

“book” — 2005/9/30 — 15:44 — page 540 — #552✐
✐

✐
✐

✐
✐

✐
✐

540 CHAPTER 16. FEATURE-BASED ALGORITHMS

Figure 16.12: A face Voronoi region and the Voronoi planes defining its boundary.

where dim(·) denotes the dimension of a feature. In other words, if dim(Z) is greater than dim(X), the
minimum distance will decrease, if dim(Z) is less than dim(x) the minimum distance is unchanged, but
the localization of the closest points between the polyhedra is improved. Figure 16.14 shows examples
clarifying these statements. In Figure (a), a face F is updated with one of its boundary edges, E ′, i.e., a
lower dimensional feature; the minimum distance between the feature pairs remains unchanged, but we
now have a better idea of where we should look for the closest point. In Figure (b) we have a vertex,
V , making up the initial feature pair with E. By our neighborhood relation definition, the only possible
updates would be to replace the vertex with one of its incident edges, E ′ or E′′. Hence, regardless of
which edge is used to update the vertex, the minimum distance between the feature pair becomes smaller.

Our definition of neighborhood relation guarantees that we never have a face-face feature pair, (F,F).
Thus, we have only five possible states that the algorithm can be in as depicted in Figure 16.15. In the
figure, the possible feature updates that can occur are shown. A dotted arrow indicates a lower dimensional
update, and a solid arrow indicates a higher dimensional update. From the figure, it is intuitively clear
that V-Clip will terminate, since each update aggressively improves the answer, and since there are only a
finite number of features, so there can only be a finite number of updates.

“book” — 2005/9/30 — 15:44 — page 541 — #553✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 541

p�

q�

VR(P)�

VR(Q)�

(a)

p�

q�

VR(P)�

VR(Q)�

(b)

Figure 16.13: Examples of the Closest feature pair theorem. In Figure (a) the closest points from edge P
and vertex Q lie inside each of the other Voronoi regions, implying that P and Q are closest features. In
Figure (b) this is no longer true.

16.3.3 Edge Clipping

The core of the algorithm is based on the use of edge clipping to determine a neighboring feature with
which to perform an update. An edge E is clipped against the Voronoi planes of a Voronoi region VR(X).
Since E runs from origin O to destination D, it is possible to determine whether an intersection point with
a Voronoi plane of VR(X) indicates that the edge is entering or leaving the Voronoi region. We will also
remember the neighboring features causing the Voronoi planes that the edge intersect, when it enters and
leaves the Voronoi region, VR(X).

If any intersection points are found, these indicate possible updates. In Figure 16.16 a simplified
conceptual drawing is shown clarifying the idea behind the edge clipping. As can be seen in the figure,
the Voronoi plane intersection indicates that feature X should be updated with its neighboring feature Z
and not W . Of course the update should only be performed if the intersecting feature either decreases
the minimum distance or improves upon the localization. Later we will present methods for testing these
requirements. The edge clipping can thus be seen as a heuristic that guides the greedy search of possible
neighboring features with which to update the current feature pair.

“book” — 2005/9/30 — 15:44 — page 542 — #554✐
✐

✐
✐

✐
✐

✐
✐

542 CHAPTER 16. FEATURE-BASED ALGORITHMS

F�

E�

E'�

E�

E'�

V�
E''�

(a) (b)

Figure 16.14: Examples showing feature updates. In (a) a lower dimensional update, (F,E) → (E ′, E),
improving localization of closest points. In (b) a higher dimensional update (V,E)→ (E ′, E) or (E′′, E),
improving minimum distance.

(V,V)�

(V,E)�

(V,F)�

(E,F)�

(E,E)�

Figure 16.15: State diagram of the V-Clip algorithm. Dotted arrows are lower dimensional updates and
solid arrows are higher dimensional updates.

“book” — 2005/9/30 — 15:44 — page 543 — #555✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 543

Z�

X�

Y�

W�

VP(X,W)�

VP(X,Z)�

Figure 16.16: Edge Y is clipped against Voronoi planes of X: VP(X,W) and VP(X,Z), edge Y is
intersecting Voronoi plane defined by feature Z, thus Z is a possible feature with which to update X.

The actual edge clipping is nothing more than a simple Cyrus-Beck clipping [Foley et al., 1996]. Fig-
ure 16.17 shows the edge-clipping algorithm in pseudocode. Notice that the sign of the distance on the
end-points are used to determine whether the intersection point is an entering point or a leaving point.
Observe further that the algorithm iteratively updates the best known entering and/or leaving point by
keeping track of the parameter t-value for the intersection point.

When an edge is tested against a Voronoi region, there can be four different cases:

• Either the edge is fully enclosed inside all the Voronoi planes of the Voronoi region or the edge is
partially enclosed, meaning that it is sticking out through at least one of the Voronoi planes.

• It might also be the case that the edge is excluded due to lying entirely on the outside of a Voronoi
plane. We call this simple exclusion.

• The last possibility is that the edge lies outside the Voronoi region, but in such a way that it is not
simply excluded. We call this compound exclusion.

The four cases are shown in Figure 16.18. The results from the edge-clip algorithm shown in Figure 16.17
can be used to determine which of the four cases we are dealing with.

clip-edge ⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tin = 0, tout = 1,Nin = Nout = null If enclosed
0 < tin < tout < 1,Nin ̸= Nout ̸= null If partial enclosed
tin = 0, tout = 1,Nin = Nout ̸= null If simple exclusion
tin > tout If compound exclusion

(16.17)

“book” — 2005/9/30 — 15:44 — page 544 — #556✐
✐

✐
✐

✐
✐

✐
✐

544 CHAPTER 16. FEATURE-BASED ALGORITHMS

algorithm clip-edge(E,X, S, tin = 0, tout = 1, Nin = Nout = ε)
for all P ∈ S do

N = neighbor feature of X that causes P
dO = signX ̸=E′ ∗ D(P, E.O), dD = signX ̸=E′ ∗ D(P, E.D)
if dO < 0 and dD < 0 then

Nin = Nout = N
return false

else if dO < 0 then
t = dO/(dO − dD)
if t > tin then

tin = t, Nin = N
if tin > tout then return false

end if
else if dD < 0 then

t = dO/(dO − dD)
if t < tout then

tout = t, Nout = N
if tin > tout then return false

end if
next P

return true
end algorithm

Figure 16.17: Edge-clipping pseudocode.

Depending on the case, it is possible to devise a feature update strategy. In the case of a partial
enclosed edge, we have two t-values, tin and tout, indicating points on the edge, where a feature other
than X might be closer to E. The possibilities are as follows: either there is no intersection with a Voronoi
plane, in which case the t-value corresponds to an end vertex of the edge itself, and which suggests that
the edge itself should be updated with the vertex, or a t-value might correspond to an intersection between
E and some VP(N,X), which may indicate that X should be updated with its neighbor, N , constituting
the intersecting Voronoi plane.

16.3.4 The Derivative Test

Given a pair of t-values from the edge-clipping algorithm described previously, we will now present
a simple test to determine whether the corresponding features will decrease the minimum distance or
improve upon localization.

Looking at the sign of the derivative of the distance function between E and X, D ′(X,e(t)), the best
feature to update X with can be determined as summarized in Table 16.1. The idea is that if the derivative
of the distance function is negative, then the distance is decreasing, if the sign is positive, then the signed
distance is increasing. Hence, to minimize the minimum distance we want to pick features where the sign
of the derivative of the distance function is negative. In the case of full enclosement, there is no need to
update X, but perhaps we need to update E. This is done by picking the end vertex of E with the smallest
distance to X. The entire strategy of determining what feature to update based on the derivative of the

“book” — 2005/9/30 — 15:44 — page 545 — #557✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 545

VR(X)�

N�1�

N�4�

N�2�

N�3�

VP(X,N�4�)�

VR(X)�

N�1�

N�4�

N�2�

N�3�

VP(X,N�4�)�

Enclosed Partially Enclosed

VR(X)�

N�1�

N�4�

N�2�

N�3�

VP(X,N�4�)�

VR(X)�

N�1�

N�4�

N�2�

N�3�

VP(X,N�4�)�

Simple Exclusion Compound Exclusion

Figure 16.18: Four different cases for edge intersection with a Voronoi region VR(X) bounded by Voronoi
planes: VP(X,N1), . . . , VP(X,N4).

“book” — 2005/9/30 — 15:44 — page 546 — #558✐
✐

✐
✐

✐
✐

✐
✐

546 CHAPTER 16. FEATURE-BASED ALGORITHMS

Sign Best Interval Update
D′(X,e(tin)) > 0 [0, tin[(X,E) ,→ (Nin, E)
D′(X,e(tout)) < 0]tout, 1] (X,E) ,→ (Nout, E)

D′(X,e(tin)) < 0 and D′(X,e(tout)) > 0 [tin, tout] (X,E) ,→ (X,E)

Table 16.1: Signed derivative tests and corresponding feature updates.

algorithm derivative-test(E,X, tin, tout, Nin, Nout)
if X not an edge

δin = sign[D′(X, e(tin]))]
δout = sign[D′(X, e(tout]))]

else
δin = sign[D′(Nin, e(tin))]
δout = sign[D′(Nout, e(tout))]

end if
if Nin ̸= null and δin > 0

returnNin

else if Nout ̸= null and δout < 0
returnNout

end if
return X

end algorithm

Figure 16.19: Pseudocode showing how to determine what feature X should be updated with. Before this
test, E has been clipped against VR(X) or a subset hereof.

signed distance map is called the derivative test.
If X is a vertex, then an analytical expression of the sign of the derivative of the distance function

D′(X,e(t)) can be derived

sign[D′(V,e(t))] = sign[u · (e(t)− v)] (16.18)

If X is a face then

sign[D′(F,e(t))] =

{
+sign[u · n] If D(F,e(t)) > 0

−sign[u · n] If D(F,e(t)) < 0
(16.19)

Fortunately, it turns out that the case where X is an edge is not needed. The derivative test is used to handle
full enclosement and partial enclosement; the remaining two cases are simple exclusion and compound
exclusion. In the case of simple exclusion, we can update with the feature causing the exclusion, except
in the case of an (E,F) state, due to the edge-face Voronoi plane property, as shown in Figure 16.9. This
property makes it difficult to determine whether the violating feature is in fact also the closest feature to
the edge. Figure 16.20 shows the case of simple exclusion. The solution to the problem is to search the
perimeter of the face in order to find the closest feature to the edge. In most cases of compound exclusion,
we can reuse the derivative test for doing the update. The pseudocode in Figure 16.19 shows the details
of the derivative test.

“book” — 2005/9/30 — 15:44 — page 547 — #559✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 547

F�

S�2�

S�1�

S�3�S�4�

S�5�

E�

Figure 16.20: Face exclusion. Edge E is simply excluded by S1, S2, S3, S4, and S5. A search must be
done to find the closest feature S3.

16.3.5 Dealing with Penetrations

Penetration can only be detected in the (V,F) and (E,F) states of the V-Clip algorithm. In the (E,F)
case a penetration is detected if the edge intersects the face plane and the intersection point lies inside the
edge-face Voronoi planes of the face Voronoi Region. The (V,F) state is not obviously dealt with, since
a local minimum can cause confusion, as shown in Figure 16.21. From the figure it is clear that it is not
enough to test whether the vertex lies beneath the face plane. If this was the case, then all face planes of
the object must be searched. If a single face plane is found where the vertex lies in front as depicted in the
right picture of Figure 16.21, then the current face is replaced with another face of the object where the
signed distance to the vertex is positive and greater than the signed distance to any other face plane.

16.3.6 The Internal States of V-Clip

In the previous sections we have presented the reader with all the technicalities of the V-Clip algorithm.
We have finally reached the point where the internal workings of the five states in Figure 16.15 can be
described.

16.3.6.1 The Vertex-Vertex State

The vertex-vertex case is dealt with simply by applying a brute-force test using the Closest feature pair
theorem, Theorem 16.3. That is, one vertex is tested for inclusion by the edge-Voronoi planes of the other
vertex and vice versa. If a Voronoi plane is found violating the Closest feature pair theorem, the vertex
is updated to the corresponding edge defining the violating Voronoi plane. The pseudocode is shown in
Figure 16.22.

“book” — 2005/9/30 — 15:44 — page 548 — #560✐
✐

✐
✐

✐
✐

✐
✐

548 CHAPTER 16. FEATURE-BASED ALGORITHMS

F�

V�

F�

V�

Figure 16.21: Local minimum problem of the (V,F) case; in the left and in the right picture V lies inside
the Voronoi planes of F ; in the left image V is also clearly beneath the face plane, and it is sensible to
conclude that a penetration has occurred. However, the same arguments apply to the right picture, but no
penetration occurs here.

algorithm vertex-vertex-state(V1, V2)
for all P = VP(V1, E) ∈ VR(V1) do

if D(P, V2) < 0 then
V1 .→ E
return continue

repeat all of the above with V1 and V2 interchanged
return done

end algorithm

Figure 16.22: Pseudocode for the vertex-vertex state of V-Clip.

16.3.6.2 The Vertex-Edge State

In the vertex-edge state, the vertex is tested for inclusion of the Voronoi planes making up the edge-
Voronoi region. If a violating plane is found, then the edge is updated to the neighboring feature defining
the violating Voronoi plane. If the vertex is determined to lie inside the edge Voronoi region, then the
edge is clipped against the Voronoi region of the vertex. Afterward, it is determined which one of the four
edge intersection cases is being dealt with, and an appropriate action is taken as explained previously in
Section 16.3.3 and Section 16.3.4. Figure 16.23 illustrates a pseudocode version of the vertex-edge state.

16.3.6.3 The Vertex-Face State

In the vertex-face state, it is first tested if the vertex lies inside the Voronoi places of the face Voronoi
region. If the vertex is found to lie outside a Voronoi plane, a simple exclusion must have been found,
and the face can be updated to the edge defining the violated Voronoi plane. If the vertex is found to lie
inside all the Voronoi planes of the face Voronoi region, it is tested whether any of the incident edges of
the vertex is pointing toward the face. If such an edge exists, going along it will decrease the minimum

“book” — 2005/9/30 — 15:44 — page 549 — #561✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 549

algorithm vertex-edge-state(V,E)
for all P = VP(E, N) ∈ VR(E) do

if D(P, V) > 0 then
E .→ N
return continue

end if
clip-edge(E,V, VR(V), tin, tout, Nin, Nout)
if E simply excluded then

V .→ Nin

else
derivative-test(E,V, tin, tout, Nin, Nout)

if V is updated then
return continue

else
return done

end if
end algorithm

Figure 16.23: Pseudocode for the vertex edge state of V-Clip.

distance to the face. Thus the vertex is updated to the edge pointing toward the face.
If all of the above tests pass, we know that neither the vertex nor the face can be updated, and a last

test is performed where the signed distance of the vertex w.r.t. the face plane is computed in order to
figure out if a separation has occurred, in which case a final state of the algorithm has been found. If the
vertex is found to lie beneath the face plane, we can either have a penetration or a local minimum (see
Figure 16.21). If we have penetration, we have reached a final state and the algorithm terminates. If a local
minimum is detected, the face is updated with another face and V-Clip iterates once again. A pseudocode
version of the vertex-face state is given in Figure 16.24.

16.3.6.4 The Edge-Edge State

The edge-edge state is specially compared with the other states. Here each edge is clipped against the
other Voronoi region of the other edge, but the clipping is done in a two-pass manner.

First an edge is clipped against the edge-vertex Voronoi planes of the other edge. These are known to
be parallel, thus only a simple exclusion is done or a derivative test must be performed. This is illustrated
in Figure 16.25. Notice that if E3 were fully enclosed, the derivative test would not perform any update. If
no update occurs in the first pass, then the edge is clipped against the edge-face Voronoi planes of the other
edge in the second pass. Again, either a simple exclusion is found or a derivative test must be performed.
Figure 16.26 illustrates the idea in pseudocode.

16.3.6.5 The Edge-Face State

The last remaining state in the V-Clip algorithm is the edge-face state. Here the edge is first clipped against
the Voronoi planes of the face. If either a simple or compound exclusion is found, a search along the face

“book” — 2005/9/30 — 15:44 — page 550 — #562✐
✐

✐
✐

✐
✐

✐
✐

550 CHAPTER 16. FEATURE-BASED ALGORITHMS

algorithm vertex-face-state(V,F)
for all P = VP(F, E) ∈ VR(F) do

if D(P, V) < 0 then
F .→ E
return continue

end if
P = plane(F)
for all neighbors E to V do

V ′ = endpoint of E not equal to V
if D(P, V)sign[D(P, V) − D(P, V ′)] > 0 then
return continue

if D(P, V) > 0 then
return done

return localmin(V,F)
end algorithm

Figure 16.24: Pseudocode for the vertex face state of V-Clip.

E�1�

A�

B�
VP(E�1�,B)�

VP(E�1�,A)�

E�2�

E�3�

Figure 16.25: Figure showing that edge-vertex Voronoi planes of edge E1 are parallel.Two things might
happen when clipping another edge against these planes: either it is simply excluded as E2 or it is not as
E3, in which case a derivative test is needed.

“book” — 2005/9/30 — 15:44 — page 551 — #563✐
✐

✐
✐

✐
✐

✐
✐

16.3 PHYSICS-BASED ANIMATION 551

algorithm edge-edge-state(E1, E2)
S = edge-vertex Voronoi planes of E1

clip-edge(E2, E1, S, tin, tout, Nin, Nout)
if E2 simply excluded by VP(E1, V) then

E1 .→ V
else

derivative-test(E2, E1, tin, tout, Nin, Nout)
if E1 was updated then

return continue
S = edge-face Voronoi planes of E1

//Very important do not reset t-values and N-values
clip-edge(E2, E1, S, tin, tout, Nin, Nout)
if E2 simply excluded by VP(E1, F) then

E1 .→ F
else

derivative-test(E2, E1, tin, tout, Nin, Nout)
if E1 was updated then

return continue
repeat all of the above with E1 and E2 interchanged
return done

end algorithm

Figure 16.26: Pseudocode for the edge-edge state of V-Clip.

perimeter is initiated to determine the closest feature to the edge, and the face is updated to that feature.
In the case that the edge is fully or partially enclosed, it is tested if the edge intersects the face plane, in
which case the algorithm terminates in a penetrating state.

If the edge does not intersect the face plane, then the sign of the derivative of the signed distance map
is used to determine the course of action. This is done by testing whether the sign of the derivative of the
signed distance indicates that the minimum distance decreases when one moves along the edge toward the
face. If so, the edge is updated with the end-point that one is moving toward. Notice that if the minimum
distance does not decrease, it means that the edge is partially enclosed and it intersects a Voronoi plane
defined by a boundary edge of the face. The face is thus updated to the boundary edge. The pseudocode
version of the edge-face state is shown in Figure 16.27.

16.3.7 V-Clip in Perspective

V-Clip is an improvement of the Lin-Canny algorithm [Lin et al., 1994]. Given the current feature pair,
the Lin-Canny algorithm works by computing the actual closest points between one of the features and
the neighboring features of the other feature. The other feature is then updated to the neighboring feature
having a smaller distance to the closest point. V-Clip has three advantages over the Lin-Canny algorithm.
V-Clip never computes the actual closest points between feature pairs or the distance between them. This
makes V-Clip more robust and stable toward numerical precision and round-off errors. Furthermore,
numerical experiments indicate that V-Clip is faster than Lin-Canny. The final benefit comes from V-Clip
being able to handle intersecting objects. The original Lin-Cannny would enter an infinite loop if objects

“book” — 2005/9/30 — 15:44 — page 552 — #564✐
✐

✐
✐

✐
✐

✐
✐

552 CHAPTER 16. FEATURE-BASED ALGORITHMS

function edge-face-state(E,F)
clip-edge(E,F, VR(F) − plane(F), tin, tout, Nin, Nout)
if E excluded then

F .→ closest edge or vertex on F to E
return continue

din = D(F, e(tin))
dout = D(F, e(tout))
if dindout ≤ 0 then

return penetration
if D′(F, e(tin)) ≥ 0 then

if Nin ̸= null then
F .→ Nin

else
E .→ E.O

else
if Nout ̸= null then

F .→ Nout

else
E .→ E.D

return done
end algorithm

Figure 16.27: Pseudocode for the edge-face state of V-Clip.

were intersecting, however, Lin-Canny were later extended with so-called internal pseudo Voronoi regions
[Lin et al., 1998], allowing it to handle intersecting objects. A drawback of both algorithms is that they
only work on convex polygonal objects.

16.4 Recursive Search Algorithms

The last feature-based algorithms, we will present are recursive search algorithms [Joukhadar et al., 1996,
Joukhadar et al., 1998, Joukhadar et al., 1999, Sundaraj et al., 2000]. Recursive search algorithms search
over the surface mesh to localize contacts between two objects. These algorithms typically exploit the
topology of the faces in a mesh in order to perform a fast search for contacting faces given an initial
colliding pair of faces.

We will describe the algorithm presented in [Sundaraj et al., 2000]. The algorithm needs a pre-
processing step, where another algorithm such as V-Clip, BVH, etc. determines an initial pair of colliding
faces, these are passed along as input arguments to the algorithm. The algorithm then proceeds in three
stages. First a contour of collision is found, then inner and outer boundaries are determined, and finally
the contact elements are determined.

The initial pair of colliding faces are used to seed the first stage of the algorithm. A recursive search is
initiated where all neighboring triangle pairs that are colliding are traversed in an iterative manner. When
a colliding triangle pair is encountered during the search, it is added to a set called the contour of collision.
The pseudocode in Figure 16.28 illustrates an iterative version of the recursive search. Observe that the

“book” — 2005/9/30 — 15:44 — page 553 — #565✐
✐

✐
✐

✐
✐

✐
✐

16.4 PHYSICS-BASED ANIMATION 553

algorithm contour-of-collision(FA,FB:faces)
list contour
Queue Q
Q.push (FA,FB)
while Q not empty

(FA,FB) = Q.pop
contour.add (FA,FB)
mark FA and FB as contour faces
for all non-contour neighbors NA of FA

for all non-contour neighbors NB of FB

if NA collides with NB then
Q.push(NA,NB)

end if
next NB

next NA

end while
return contour

end algorithm

Figure 16.28: Recursive search method to find contour of collision.

topology of the surface mesh is used to recursively trace a contour of colliding faces. Thus, only the exact
intersecting boundaries of the two objects are traversed.

Hereafter, the second stage is initiated. In this state, neighboring faces of the contour of collision are
recursively visited and added to a set containing the inner boundary or another set containing the outer
boundary. To test whether a neighboring face N , of a face A is part of the inner or outer boundary, the
face plane of the colliding face B of A is used. If N lies in front of the face plane of B, then N belongs
to the outer boundary, if N lies behind the face plane of B, then it belongs to the inner boundary. The
idea is illustrated in Figure 16.29. Here two faces A and B lying on the contour of collision are shown.
The two neighboring faces N1 and N2 of face A are tested against the face plane of face B. N1 is lying
above the face plane of B and is thus added to the outer boundary, N2 lies below the plane and is therefore
added to the inner boundary. Care must be taken that neighboring faces are not visited more than once,
since two faces lying on the contour of collision could share the same neighboring face. This is, however,
easily avoided by flagging faces; also, faces already added to the contour of collision should be ignored.
A pseudocode version of the second stage is given in Figure 16.30.

In the last stage of the algorithm, contact elements are recursively searched. Initially we visit all the
neighboring faces of the inner boundary. If these are not part of the contour or the outer boundary, then
they are added as contact elements. Afterward, their neighbors are recursively searched and so on, until
all contact elements are found. Thus, the contact elements are those faces entirely embedded inside the
surface of the other object. Figure 16.31 illustrates the idea in pseudocode.

Looking at the complexity of the algorithm, we see that the first and second stages are linear in the
number of intersecting faces, whereas the last stage is linear in the number of contact elements. Thus, the
overall complexity is output sensitive.

As explained, the algorithm is not addressing the problem of self-intersecting nor is the problem

“book” — 2005/9/30 — 15:44 — page 554 — #566✐
✐

✐
✐

✐
✐

✐
✐

554 CHAPTER 16. FEATURE-BASED ALGORITHMS

B�

A�

N�1�

N�2�

Figure 16.29: Inner and outer boundary test. Neighboring faces of face A are tested against face plane of
face B.

algorithm inner-outer-boundary(contour)
list inner
list outer
for each pair of faces FA,FB in contour

for all non-marked neighbors NA of FA

if NA in front of FB then
outer.add(NA)
mark NA as outer boundary

else
inner.add(NA)
mark NA as inner boundary

end if
next NA

for all non-contour neighbors NB of FB

... same as above with A and B interchanged
next NB

next FA,FB

return inner and outer
end algorithm

Figure 16.30: Search method to find inner and outer boundary of the contour of collision.

“book” — 2005/9/30 — 15:44 — page 555 — #567✐
✐

✐
✐

✐
✐

✐
✐

16.4 PHYSICS-BASED ANIMATION 555

algorithm contact-elements(inner)
list contact
Queue Q
Q.push(inner)
while Q not empty do

F = Q.pop()
for all neighbors N of F
if N is not contact, outer, inner or contour then

mark N as contact
contact.add(N)
Q.push(N)

end if
next N

end while
return contact

end algorithm

Figure 16.31: Recursive search method to traverse contact elements.

addressed in [Sundaraj et al., 2000], however the extension seems trivial. As noted earlier, the algorithm
needs a preprocessing step feeding an initial pair of colliding faces. In [Sundaraj et al., 2000] this was
done by using GJK on a convex decomposition of the objects. The result of the algorithm is a set of
intersecting faces (the contour of collision) and a set containing faces fully embedded inside the surface
of the other object. Thus the algorithm returns an explicit representation of the entire intersection volume
between the two objects. It is not obvious how the algorithm can be extended in a general context to work
with multiple contact areas. In [Sundaraj et al., 2000] every convex component of the decomposition was
tested against each other to overcome this problem.

Aside from the problem of seeding the algorithm with pairs of colliding faces from all contact areas,
the algorithm has the advantage of being applicable to both static and deformable objects.

“book” — 2005/9/30 — 15:44 — page 556 — #568✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 557 — #569✐
✐

✐
✐

✐
✐

✐
✐

17

Volume-Based Algorithms

Volumetric representations of objects may be used for doing collision detection. Many algorithms, which
we have chosen to classify as volume-based, combine the classical geometric algorithms treated in pre-
vious chapters with the so-called image-based techniques or object space algorithms. As indicated, the
image-based algorithms see objects as 3D images. Often signed distance maps are used as these 3D im-
ages. However, there are also volume-based methods, which work on tessellated manifolds. The phrase
“image-space techniques” refers to objects being rendered into an image (see [Govindaraju et al., 2003]).
We have therefore classified volume-based methods as methods which are not limited to the boundary
representation of objects.

There is a large number of algorithms for volume-based methods, and we will therefore limit ourselves
to present two different algorithms, which illustrates the idea of using a volume-based representation well.
Most of the volume-based algorithms are conceptually based on the same idea, but use different techniques
for computing distance fields, layered depth images, etc. We do not see much point in delving into whether
stencil buffers, GPUs, or OpenGL extensions are used for producing the volume-based representations due
to the rapid development in graphics hardware.

17.1 Distance Maps

Implicit functions are useful for describing the shape of an object; consider the implicit function describing
the surface of the unit sphere

funit sphere(p) = x2 + y2 + z2 − 1

This function has the property that given a point p = [x, y, z]T :

funit sphere(p) < 0 p is inside the unit sphere
funit sphere(p) > 0 p is outside the unit sphere
funit sphere(p) = 0 p is on the surface of the unit sphere

This is beneficial since we have a way to determine in constant time whether an arbitrary point collides
with the unit sphere.

A signed distance map is a special case of an implicit function. The signed distance map, φ(·), is
defined such that given an arbitrary point in space, p, the value φ(p) gives the signed Euclidean distance
to the closest point on the surface of the object. If the point p is outside the object the sign is positive. If
the point is inside the object the sign is negative. In particular, if the signed distance is zero the point lies
on the surface of the object. A signed distance map has the property that the magnitude of the gradient is
one, and the gradient is normal to the object surface. Therefore, a contact normal can be found by using
the gradient at the given point.

557

“book” — 2005/9/30 — 15:44 — page 558 — #570✐
✐

✐
✐

✐
✐

✐
✐

558 CHAPTER 17. VOLUME-BASED ALGORITHMS

It is rare that one can find an analytical expression for the signed distance map for arbitrary convex
objects. Even in those few cases where this might be possible, such an analytical expression will be far
too expensive to evaluate. Instead, the signed distance map is represented by sampling it. A popular and
widespread data structure for doing this is a rectilinear grid. The object is embedded in this grid, and each
node in the grid keeps the signed distance to the closest point on the object surface. The sampled signed
distance function is called a signed distance field or signed distance map.

Signed distance fields can be computed in many ways, e.g., the fast marching method [Sethian, 1999,
Osher et al., 2003], characteristic scan conversion [Mauch, 2000], prism scan [Sigg et al., 2003], and dis-
tance meshes [III et al., 2002, Sud et al., 2004] can compute signed distance maps on regular grids. How-
ever, adaptive representations also exist [Frisken et al., 2000], where the signed distance map is stored
in an octree representation in order to save memory at the price of the lookup cost in octree. In our
description of the algorithm, for simplicity, we will assume that uniform grids are used.

Given two objects A and B, the method in [Guendelman et al., 2003] works by taking the vertices
of A and looking them up in the signed distance function of B. If a negative distance is found, then a
contact point is generated. Afterward, the vertices of B are looked up in the signed distance map of A.
In [Guendelman et al., 2003] a double representation of each object is stored and used to handle collision
detection and contact generation. Each object is represented by a triangular mesh and a signed distance
map. The method in [Guendelman et al., 2003] is tailored for rigid bodies, and thus a convenient object-
space frame is set up where the center of mass is at the origin, and the axes aligned with the principal axes
of inertia. Both the triangular mesh and the signed distance grid φ are stored in this object-space. This
means that when vertices of A are looked up in B, then they must be transformed from object space of A
into object space of B, and vice versa.

When a given point is looked up in the signed distance grid, it is very unlikely that the point will be
perfectly aligned with a grid node, and in order to obtain a signed distance value at non-grid node positions
an interpolation is therefore needed. We use a trilinear interpolation of the eight neighboring grid nodes.

The algorithm as described is fairly easy to understand and straightforward to implement. One major
drawback is that it ignores edge-edge intersections: if a coarse tessellation is given, such as 12 triangular
faces for a cube, only the eight corners will be used to find contact points. This implies that no con-
tact points will be found for the case of two cubes, one resting slightly rotated on top of the other. In
[Guendelman et al., 2003] it is suggested to handle the problem by intersecting the edges with the zero-
level set contour and flag the deepest penetrating point on the edge as a sample point. Furthermore, an
edge-length threshold test can be used to determine which edges should be subjected to this more thorough
test.

Several acceleration methods can be applied to speed up a collision query. If more storage is allowed,
one can store min-max-values and in-outside markers for the signed distance map grid. Thus, one will
have a quick rejection test to avoid having to do the more expensive trilinear interpolation. This sort of
extra information has an even more dramatic impact on octree-based grids, allowing a lookup to terminate
at an early level in the hierarchy.

The simplicity of the method implies that it is very cheap to test a single vertex for penetration,
however, since a fine tessellation is needed a large number of vertices is expected, and looking up each
vertex can degrade performance. To remedy this, vertices can be stored in a bounding volume hierarchy
(see Chapter 15), where the BVH is tested for overlap with the box enclosing the distance grid. Only those

“book” — 2005/9/30 — 15:44 — page 559 — #571✐
✐

✐
✐

✐
✐

✐
✐

17.2 PHYSICS-BASED ANIMATION 559

points found to be inside the distance grid box are actually tested against the distance map.
Another possible avenue for improving performance is through parallelism, where a single vertex test

is completely independent of all other vertex tests, and they can thus be performed in parallel.
A problem encountered in practice with highly tessellated objects is that they generate large contact

point sets. Often we only want to use contact points at the corners of the convex polygon of a contact area
between two rigid bodies. The method just described will in most cases generate contact points sampled
uniformly over the entire contact area. A postprocessing or filtering step must thus be performed to prune
unneeded contacts. Otherwise the performance of a typical constraint-based rigid body simulation will
degrade horribly.

One approach to contact filtering would be to divide contacts into disjoint sets based on their pene-
tration distance and contact normals. That is, only contacts with the same penetration and contact normal
direction within numerical threshold can be found in the same contact set. After having divided the con-
tacts into disjoint sets, the convex polygon of the contacts in each set is found in a plane orthogonal to the
common contact normal. All contacts not lying on the vertices of the convex polygon can now be pruned.
It is possible to prune the contact sets further if a minimum size is wanted, see [Bouma et al., 1993] for
more details.

The method we have just described has another benefit from a contact generation viewpoint. Each
contact is uniquely determined by the triangle mesh vertex that generated it. It is thus easy to uniquely
identify the same contact point in two subsequent iterations of a simulation, which can be exploited to
cache temporal information about contacts. For instance, to obtain smooth transitions when objects move
over discontinuities, see Section 14.1.

17.2 Layered Depth Image
A graphics hardware accelerated approach is presented in [Heidelberger et al., 2003] based on computing
a layered depth image (LDI) for the volume of intersection s(VoI) between two objects.

An LDI of an object is very similar to a scan conversion of a polygon, see [Foley et al., 1996]. A
scan conversion algorithm scans lines through a polygon, keeping track of when a line enters and when it
leaves the polygon. These entry and exit points are used to determine spans across the scan line, where
pixels should be rasterized. An LDI is very similar, and parallel scan lines are shot orthogonally along
an image plane, and the depth of exit and entry points are recorded in the LDI data structure. A volume
representation of the VoI is thus created consisting of spans lying inside and outside the object. Figure
17.1 illustrates the basic idea of an LDI. The algorithm proceeds in three stages: first, the intersection
volume of the enclosing object AABBs is found. This intersection is itself an AABB if it exists; if it does
not exist, there is no chance that the two objects collide. The intersecting AABB is called the volume of
interest (VoI). The first stage is illustrated in Figure 17.2. Second, two LDIs are computed, one for each
object in the VoI. The LDIs can be computed efficiently using graphics hardware, to be elaborated on
below. The LDI computation to a specific representation such as triangular meshes, patches, quads, etc.,
requires watertight object surfaces. Figure 17.3 shows the second stage. Third, the two computed LDIs
are used to determine whether a collision has taken place. This can be done in one of two ways. The two
LDIs can be combined into one LDI representing the intersecting volume of the two objects. If no volume
is found, it is known that the two objects are not colliding. On the other hand, if a intersecting volume

“book” — 2005/9/30 — 15:44 — page 560 — #572✐
✐

✐
✐

✐
✐

✐
✐

560 CHAPTER 17. VOLUME-BASED ALGORITHMS

1�

1� 2�

2�

3�

3� 4�

4�

5� 6�

1� 2� 3� 4� 5� 6�

1� 2� 3� 4�

Depth Values�

VoI�

LDI�

Figure 17.1: Two-pixel LDI of Volume of Intersection (VoI).

A�

B� B�

A�

Outside faces A�

A�

B�

Outside faces B�

Figure 17.2: First stage of the LDI algorithm, AABBs are used to find VoI.

“book” — 2005/9/30 — 15:44 — page 561 — #573✐
✐

✐
✐

✐
✐

✐
✐

17.2 PHYSICS-BASED ANIMATION 561

Entry Point�

Exit Point�

Inside Region�

Outside Region�

Outside Face�

Figure 17.3: Second stage of the LDI algorithm, LDIs of objects are computed in VoI.

is found, the objects are colliding and an exact representation of the overlapping parts of the objects is
found. The overlap is found in a similar manner as the approach used in the previous section: first, the
vertices of one object lying inside the VoI is looked up in the LDI of the other object. If the vertex lies in
an inside span, then a collision has taken place. Second, the vertices of the other object is processed in a
similar fashion. If a colliding vertex is found, it can be used to generate a contact point at the position of
the vertex. In Figure 17.4 it is shown, how the LDIs in Figure 17.3 are combined into an LDI representing
the intersection volume. To guarantee proper boundary conditions, the LDI is rendered for each object
from the outside. As shown in Figure 17.2, outside faces of object A are opposite to outside faces of B,
and we choose to render the LDI for each object from opposite outside faces, as shown in Figure 17.3.
This guarantees that the LDI will start from an outside region. In particular, the first layer of points in the
LDI will be entry points, the next exit points, and so on.

If one of the objects is fully contained within the other object, the VoI will be equal to the AABB
of the contained object, and it is thus impossible to find an outside face for the object with the enclosing
AABB. The solution to the problem is to extend the VoI by picking one of the faces and extruding it until it
touches the side of the enclosing AABB. This is illustrated in Figure 17.5. In [Heidelberger et al., 2003] it
is suggested to pick the opposite faces with minimum distance in between, which works as a fast heuristic
since the depth complexity, total maximum number of entry, and exit points along any scan line of the
LDIs is minimized.

17.2.1 Computing LDI Using OpenGL

To generate the LDIs, we set up an orthographic projection. We use the selected outside face as the near
plane and the opposite face as the far plane. The remaining faces define the top, bottom, left, and right
planes of the view volume. The LDI is rendered using a multipass approach, where each object is rendered

“book” — 2005/9/30 — 15:44 — page 562 — #574✐
✐

✐
✐

✐
✐

✐
✐

562 CHAPTER 17. VOLUME-BASED ALGORITHMS

Figure 17.4: Third stage of the LDI algorithm; the two object LDIs are combined.

nmax times, and where nmax denotes the maximum depth complexity of the objects inside the VoI. This
gives an O(nmax) complexity. Depth testing, face culling, and color buffer are disabled; only the stencil
test are used.

In the first render pass, only the first fragment is allowed to pass the stencil test, and thus write its depth
value to the z-buffer. The subsequent stencil tests is set to fail, but still the stencil buffer is incremented.
After the first render pass, the depth buffer contains an object layer in the LDI and the stencil buffer
contains a map of the depth complexity. We can therefore find nmax by reading back the stencil buffer and
searching for the maximum value. The values stored in the depth buffer are copied to the first layer in the
LDI.

Additional rendering passes are then performed from 2 to nmax. This time the stencil test is changed.
The idea is that in the n’th pass, the first n − 1 fragments fail the stencil test, while the stencil buffer is
incremented, and only the n’th rasterized fragment is allowed to pass the stencil test, writing to the depth
buffer. Thus after the n’th render pass the n’th LDI object layer can thus be read back from the depth
buffer.

A pseudocode version of the LDI generation for a single object is shown in Figure 17.6. As can be
seen from the pseudocode, the fragments generated in the LDI are in arbitrary order, which means that
the LDI must be sorted before it can be used. For each pixel, only the np layers are sorted, where np is
the depth complexity of that particular pixel. If np < nmax then the remaining layers np + 1 to nmax are
ignored.

Two simple optimizations are possible: the depth buffer can be tiled, such that each layer has its own
tile, and such that only a single read-back is necessary for the additional passes. In the first pass the
stencil and depth buffers are packed into a single buffer using the GL_NV_packed_depth_stencil
extension such that only a single read-back is necessary in the first render pass.

Compared to algorithms that compute a signed distance map of the intersecting volume such as
[III et al., 2002], the LDI based method has a lower bandwidth, since the LDI representation requires
much less storage than a signed distance map. This is an advantage, since high bandwidth is an Achilles’

“book” — 2005/9/30 — 15:44 — page 563 — #575✐
✐

✐
✐

✐
✐

✐
✐

17.2 PHYSICS-BASED ANIMATION 563

A�

B�

A�

B�

Outside faces B�

Outside faces A�

Figure 17.5: Extending VoI to get outside faces of object A.

Algorithm LDI(...)
//First render pass
glClear(GL_DEPTH_BUFFER_BIT or GL_STENCIL_BUFFER_BIT)
glStencilFunc(GL_GREATER,1,0xFF)
glStencilOp(GL_INCR,GL_INCR,GL_INCR)
render object
depth complexity = glReadBack(stencil buffer)
nmax = max(depthcomplexity)
layer[1] = glReadBack(depth buffer)
// Passes from 2 to nmax
n = 2
while n <= nmax do

glClear(GL_DEPTH_BUFFER_BIT or GL_STENCIL_BUFFER_BIT)
glStencilFunc(GL_GREATER,n,0xFF)
glStencilOp(GL_KEEP,GL_INCR,GL_INCR)
render object
layer[n] = glReadBack(depth buffer)
n = n + 1

end while
End algorithm

Figure 17.6: Pseudocode of LDI generation of an object.

“book” — 2005/9/30 — 15:44 — page 564 — #576✐
✐

✐
✐

✐
✐

✐
✐

564 CHAPTER 17. VOLUME-BASED ALGORITHMS

heel in today’s commodity graphics hardware due to high read-back latencies.
As described, the algorithm is capable of computing the intersection volume. However, if the vertex

in LDI approach is used instead during the third stage of the algorithm, then the algorithm will suffer from
missing edge-edge intersection, and highly tessellated objects are then required to get realistic collision
handling in simulation.

In [Heidelberger et al., 2003, Heidelberger et al., 2004] it is explained how the algorithm can be ex-
tended to handle self-intersections by keeping track of whether rasterized fragments stems from front-
facing or back-facing faces.

Compared to the signed distance map approach explained in the previous section, this algorithm is not
as well suited for contact generation. The signed distance map inherently provides separation/penetration
distances and contact normals, while with the LDI approach a postprocessing step must be performed to
determine this information.

17.3 Previous Work

In [Hoff III et al., 2001] a hybrid geometric method and image-based method is presented for doing 2D
geometric proximity queries using graphics hardware. Here a geometric approach based on bounding
volume hierarchies is used to quickly reject intersecting objects or to home in on overlapping regions.
Signed distance maps are then computed for the overlapping regions and intersecting pixels of two objects
are found by a multipass rendering scheme. Separation and penetration distances are found simply by
looking up distance measures in the signed distance maps. Gradients provide contact normals, penetration
directions, and separation distances. The technique for computing the generalized Voronoi diagrams in
[Hoff, III et al., 1999] is used for computing the signed distance maps. However, the method is only for
2D objects and the problem of self-intersecting deforming objects is not addressed.

The work in [Hoff III et al., 2001] was extended into 3D in [III et al., 2002]. The method was also
extended to handle self-intersections by applying the classical parity test used in the shadow volume
algorithm.

In [Hirota et al., 2000] elastic bodies are simulated using distance fields, a FEM is used where an
initial precomputed signed distance field on an undeformed tetrahedral mesh is deformed as the simulation
progresses. The idea is to find the tetrahedron enclosing a point p, given the barycentric coordinates, u1,
u2, u3, and u4; of the point p the deformed distance is found by a linear interpolation of the undeformed
distance values, d1, d2, d3, and d4 at the nodes of the enclosing tetrahedron, that is,

d = u1d1 + u2d2 + u3d3 + u4d4

The barycentric coordinates are found easily by solving

p = u1p1 + u2p2 + u3p3 + u4p4

subject to u1 + u2 + u3 + u4 = 1. The method is applicable to both static and deformable objects.
Furthermore, it handles self-intersection and interpenetration in a unified manner. However, several details
are not explained, such as how one determines which points should be looked up in which tetrahedra.

“book” — 2005/9/30 — 15:44 — page 565 — #577✐
✐

✐
✐

✐
✐

✐
✐

IV.0 PHYSICS-BASED ANIMATION 565

In addition, it is not discussed what to do about handling edge-face intersections (where there are no
penetrating points).

The work is extended in [Fisher et al., 2001] where a lazy evaluation of AABB BVHs is used to
quickly locate regions of interest (overlapping tetrahedra) before doing linear interpolation of the penetra-
tion depth at the tetrahedra nodes as we described above. The deformed distance field is partially updated
in the region indicated by the overlapping AABBs.

In [Bridson et al., 2003] the work from [Bridson et al., 2002] is extended. Cloth environment colli-
sions are detected by looking up cloth mesh vertices in a signed distance map and the signed distance
maps are used for generating contacts between cloth and environment interactions. Signed distance maps
of the static objects are precomputed on regular grids. During simulation of the cloth, vertices in the cloth
mesh are looked up in the regular grids by trilinear interpolation. Gradients of the signed distance field
provide contact normals. The cloth meshes are highly tessellated and edge intersections (i.e., where end
vertices do not intersect the static object) are ignored. Furthermore, a fold-and-wrinkle preserving tech-
nique is presented, which exploits the signed distance map to project interpenetrating cloth out of objects
in the scene.

In [Guendelman et al., 2003], a double representation of rigid objects is proposed for each object
a mesh and a signed distance field is stored in the objects local coordinate system; during simulation,
contacts are generated by looking up mesh vertices from one object in the signed distance field of another
object and vice versa. BVHs are suggested for storing vertices and speeding up the collision queries. As
with many other methods edge-intersections are ignored and the method relies on having a fine tessellation
of the rigid objects.

In [Baciu et al., 2002] a hardware-assisted method for self-collision of deformable surfaces is de-
scribed based on image-based intersections; triangle surfaces are divided into so-called (π,β) surfaces,
where π is a unit vector, such that for any surface normal n, we have π ·n ≥ cos β, where 0 ≤ β ≤ π/2.
The idea is now simply to render the surfaces along their π direction and test for intersection (compare
this with Definition 15.3).

In [Fuhrmann et al., 2003], a method is suggested for computing signed distance fields of deformable
objects. A new sign function definition is introduced and used for open surfaces (such as cloth which does
not have an inside-outside), collisions detection is performed by looking vertices up in the signed distance
fields, edge intersections are handled by introducing an offset (making vertices hover over the surface),
and the edge midpoints are used for proximity tests to avoid particles getting trapped in surface gaps. In
our opinion, these methods are ad hoc methods, which reduce the chance for getting in trouble, but they
do not solve the problem of not handling the edge intersection case.

In [Heidelberger et al., 2004] an image space technique is presented; it is based on layered depth
images combined with face orientation information. The method handles both collision and self-collision.
However, the paper never goes into detail about how to generate contacts (separation/penetration distance
and normals) based on layered depth images.

In [Hirota et al., 2001, Hirota, 2002], the undeformed distance field of a deforming object is used to
define a continuous gap function. The distance field is referred to as material depth and is stored in the
nodes of a tetrahedral mesh, which is used for FEM simulation of soft tissue.

“book” — 2005/9/30 — 15:44 — page 566 — #578✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 567 — #579✐
✐

✐
✐

✐
✐

✐
✐

Part V

Mathematics and Physics for Animation

567

“book” — 2005/9/30 — 15:44 — page 568 — #580✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 569 — #581✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 569

Physics-based animation in computer graphics relies heavily on standard methods from mathematics,
physics, and engineering. In Part V we give thorough introductions to the main topics used from these
fields in relation to physics-based animation in computer graphics. These chapters were actually our
starting point for writing this book, and even though many of the topics are expected to be standard
knowledge for the intended reader, we have chosen to include this part for the sake of completeness. For
further reading, we recommend:

Algebra, Calculus, Analysis, and Geometry:

• [Adams, 1995]
• [Bronshtein et al., 1997]
• [Hansen, 1988]
• [Koenderink, 1990]
• [Kreyszig, 1993]
• [Magnus et al., 1988]
• [Messer, 1994]

Numerical Analysis:

• [Ames, 1969]
• [Boor, 1978]
• [Burden et al., 1997]
• [Eriksson et al., 1996]
• [Golub et al., 1996]
• [Morton et al., 1994]
• [Press et al., 1999a]

Linear Complementarity Problems:

• [Cottle et al., 1992]
• [Murty, 1988]

Classical Mechanics:

• [Arnold, 1989]
• [Boas, 1983]
• [Goldsmith et al., 1987]
• [Kleppner et al., 1978]

Continuum Mechanics and Fluid Dynamics:

• [Lautrup, 2005]
• [Tritton, 1988]

“book” — 2005/9/30 — 15:44 — page 570 — #582✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 571 — #583✐
✐

✐
✐

✐
✐

✐
✐

18

Vectors, Matrices, and Quaternions

This chapter will give a brief introduction to the notation we use for vectors, matrices, and quaternions.
The notation is greatly inspired by [Weisstein, 2005b, Elbek, 1994]. We will assume that a Cartesian
coordinate system is used unless otherwise and explicitly stated.

18.1 Vectors
A vector is a geometric tool with a head and a tail for the representation of length and direction, but not
position. All parallel vectors with identical length are thus geometrically identical. Vectors may be used to
represent position by placing the tail at the origin of our coordinate system, but care should be taken since
position and vectors translate differently: a position changes during a translation, while a vector remains
unchanged.

A vector representation is an ordered list of scalars, and an example of a vector is

v =

⎡

⎢⎢⎢⎣

v1

v2
...

vn

⎤

⎥⎥⎥⎦
, (18.1)

where the scalars vi are called the elements or components of the vector. We write that v is an n-
dimensional vector as v ∈ Rn. A basic property of a vector is its length.

Definition 18.1 (Vector Length)
The (Euclidean) length of the vector v ∈ Rn is

∥v∥
2

=
√

v2
1 + v2

2 + · · · + v2
n. (18.2)

A unit vector is a vector with length 1, and the zero vector, 0, has length zero.

Vectors are additive and have three different products: scalar-vector, dot, and cross products.

Definition 18.2 (Vector Addition)
The addition of two vectors a, b ∈ Rn is

a + b =

⎡

⎢⎢⎢⎣

a1 + b1

a2 + b2
...

an + an

⎤

⎥⎥⎥⎦
. (18.3)

571

“book” — 2005/9/30 — 15:44 — page 572 — #584✐
✐

✐
✐

✐
✐

✐
✐

572 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Definition 18.3 (Scalar-Vector Product)
The product between a scalar k ∈ R and a vector v ∈ Rn is

kv =

⎡

⎢⎢⎢⎣

kv1

kv2
...

kvn

⎤

⎥⎥⎥⎦
. (18.4)

Definition 18.4 (Dot Product)
The dot product between two vectors a, b ∈ Rn,

a · b =
n∑

i=1

aibi. (18.5)

Definition 18.5 (Cross Product)
The cross product of two vectors a, b ∈ R3 is

a× b =

⎡

⎣
a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤

⎦ . (18.6)

Two vectors are perpendicular, denoted a ⊥ b, when a · b = 0, and they are parallel, a ∥ b, when
a× b = 0. The dot product is proportional to the lengths of the vectors and the angle between them as

a · b = ∥a∥
2
∥b∥

2
cos θ, (18.7)

where θ is the angle between them and the dot product of a vector with itself is naturally the squared
length of the vector, v · v = ∥v∥2

2
. The length of a cross product is

∥a× b∥
2

= ∥a∥
2
∥b∥

2
sin θ. (18.8)

The dot product is commutative,
a · b = b · a, (18.9)

associative with scalars
(ka) · b = k (a · b) , (18.10)

and distributive with addition
a · (b + c) = a · b + a · c. (18.11)

The cross product is neither commutative,

a× b = −b× a, (18.12)

nor associative with cross product,

a× (b× c) = b(a · c)− c(a · b). (18.13)

“book” — 2005/9/30 — 15:44 — page 573 — #585✐
✐

✐
✐

✐
✐

✐
✐

18.1 PHYSICS-BASED ANIMATION 573

However, it is distributive with addition as

a× (b + c) = a× b + a× c, (18.14)

and associative with scalar products as

(ka)× b = k (a× b) . (18.15)

The cross product of a and b is perpendicular to both a and b.
Definition 18.6 (Coordinate Systems)
An n-dimensional coordinate system is a set of n vectors, ei ∈ Rn, i = 1 . . . n, called the basis, and
a zero point, called the origin. For a 3D space, the coordinates are commonly called i = x, y, z. The
vectors must span the n-dimensional space, that is, all positions of the space must be reachable as a
linear combination of the basis,

x = a1e1 + a2e2 + · · · + anen. (18.16)

The coefficients ai are the representation of the vector a in the basis ei. When

ei · ej =

{
1, if i = j,

0, otherwise,
(18.17)

then the vectors constitute an orthonormal basis, and the coordinate system is called orthogonal.

Two nonparallel vectors and their cross product (a, b,a × b) make up a right-handed coordinate system.
Right-handed coordinate systems are related to determinants discussed in Definition 18.23. An often-used
coordinate systems is the body frame coordinate system, which is placed and aligned conveniently with
respect to an object. We denote a vector in coordinates in a body frame as a BF. In parallel, a single global
coordinate system is almost always needed, and this is sometimes called the world coordinate system
(WCS), a WCS.

A construction often appearing in vector equations is the space product.
Definition 18.7 (Space Product)
For a, b, c ∈ R3 the space product is given as

a× b · c =

⎡

⎣
a1(b2c3 − b3c2)
a2(b3c1 − b1c3)
a3(b1c2 − b2c1)

⎤

⎦ (18.18a)

= det([a|b|c]) (18.18b)

where det() is the determinant discussed in Definition 18.23

The space product measures the volume of the parallelepiped spanned by the vectors a, b, and c, as
shown in Figure 18.1. It is invariant under interchanging of the cross product and the dot product, and
cyclic permutations of the vectors.

In animation we often use vectors to express dynamic quantities, where we consider vectors as func-
tions of time, a(t) : R→ Rn and analyze their change with time.

“book” — 2005/9/30 — 15:44 — page 574 — #586✐
✐

✐
✐

✐
✐

✐
✐

574 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

a
b

c

Figure 18.1: Three vectors defining a parallelepiped.

Definition 18.8 (Time Derivative of a Vector)
For a time varying vector, v(t) : R→ Rn, the derivative w.r.t. time is given as

dv

dt
=

⎡

⎢⎢⎢⎣

dv1
dt
dv2
dt
...

dvn
dt

⎤

⎥⎥⎥⎦ . (18.19)

Definition 18.9 (Derivative of a Dot Product)
The time derivative a dot product between two vectors a, b : R→ Rn is

d

dt
(a · b) =

da

dt
· b + a · db

dt
, (18.20)

.

Definition 18.10 (Derivative of a Cross Product)
Assuming that two vectors a and b vary with a variable t, then the derivative of their cross product is

d

dt
(a× b) =

da

dt
× b + a× db

dt
. (18.21)

Derivatives of vector fields are treated in Section 18.3.

Definition 18.11 (Vector Norm)
A vector norm on Rn is a function ∥·∥, from Rn into R with the following properties:

(i) ∥r∥ > 0 for r ̸= 0, and ∥r∥ = 0 if, and only if, r = 0,

(ii) ∥αr∥ = |α| ∥r∥ for all r ∈ Rn and α ∈ R,

(iii) ∥r + y∥ ≤ ∥r∥+ ∥y∥ for all r,y ∈ Rn.

Many norms are possible, two such are the l2 and the l∞ norms.

“book” — 2005/9/30 — 15:44 — page 575 — #587✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 575

Definition 18.12 (The l2 and l∞ norms)
The l2 and l∞ norms for the vector r = [r0, r1, . . . , rn−1]

T are defined by

∥r∥
2

=

√√√√
(

n−1∑

i=0

r2
i

)
and ∥r∥

∞
= max

0≤i≤n−1
|ri| (18.22)

The l2 norm is called the Euclidean norm of the vector r. For a vector r ∈ Rn the norms are related by

∥r∥
∞
≤ ∥r∥

2
≤
√

n ∥r∥
∞

. (18.23)

18.2 Matrices
A set of m linear equations in n variables may be written on the following form

u1 = a11v1 + a12v2 + · · · + a1nvn (18.24a)
u2 = a21v1 + a22v2 + · · · + a2nvn (18.24b)

...
um = am1v1 + am2v2 + · · · + amnvn, (18.24c)

where aij are the coefficients. This is written on matrix form as

u = Av, (18.25)

where A is the table of scalars aij ,

A =

⎡

⎢⎣
a11 a12 . . . a1n

a21 a22
. . .

...
am1 am2 . . . amn

⎤

⎥⎦ . (18.26)

The scalars aij are also called the matrix elements, and the matrix is said to have m rows and n columns,
and we write A ∈ Rm×n. A square matrix has m = n. A matrix with either m = 1 or n = 1 is called a
row or column vector respectively.

Definition 18.13 (Diagonal Matrix)
A square matrix, D, is called diagonal if, and only if,:

dij = 0 when i ̸= j. (18.27)

That is, only the entries dii, may be different from zero in a diagonal matrix.

Definition 18.14 (Lower Triangular Matrix)
A matrix, L, is lower triangular if, and only if,:

lij = 0 when i < j. (18.28)

That is, there are only values below the diagonal.

“book” — 2005/9/30 — 15:44 — page 576 — #588✐
✐

✐
✐

✐
✐

✐
✐

576 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Definition 18.15 (Upper Triangular Matrix)
A matrix, U , is upper triangular if, and only if,:

uij = 0 when i > j. (18.29)

That is, there are only values above the diagonal.

A strictly lower or upper triangular matrix is a lower or upper triangular matrix, which has zero diagonal
as well.
Definition 18.16 (Identity Matrix)
The diagonal matrix:

1 =

⎛

⎜⎜⎜⎝

1 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1

⎞

⎟⎟⎟⎠ , (18.30)

is called the identity matrix. Often in the literature, the identity matrix is denoted I . Unfortunately, in
classical mechanics the I-notation is often used to mean an inertia tensor, which is why we use 1 for the
identity matrix.

Matrices are additive and have two matrix products defined.
Definition 18.17 (Matrix-Matrix Addition)
The addition of two equal sized matrices, A,B ∈ Rm×n, is

C = A + B, (18.31)

where cij = aij + bij .

Definition 18.18 (Matrix-Scalar Multiplication)
Given a scalar k ∈ R and a matrix A ∈ Rm×n, the product,

B = kA, (18.32)

is given as
bij = kaij. (18.33)

Definition 18.19 (Matrix-Matrix Multiplication)
Given two matrices A ∈ Rm×n and B ∈ Ro×m, then the product

C = BA, (18.34)

is defined as,

cij =
n∑

p=1

bipapj. (18.35)

The result is the matrix C, where C ∈ Ro×n. Its product is undefined, when the number of columns in B
differs from the number of rows in A. The identity matrix 1 is the neutral element for matrix multiplication.

“book” — 2005/9/30 — 15:44 — page 577 — #589✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 577

Definition 18.20 (Transpose Matrix)
The transpose of A is written as AT , and is found as

B = AT (18.36a)
⇓

bij = aji. (18.36b)

Naturally, transpose is its own inverse, (
AT
)T

= A, (18.37)

But further,
(A + B)T = AT + BT , (18.38)

and
(AB)T = BT AT . (18.39)

for matrices A and B.

Definition 18.21 (Inverse Matrix)
The inverse matrix of A ∈ Rn×n is written as A−1, and the following property must hold for the inverse
matrix

A−1A = AA−1 = 1. (18.40)

The inverse of a matrix product is,
(AB)−1 = B−1A−1, (18.41)

and further (
A−1

)−1
= A. (18.42)

Finally, (
AT
)−1

=
(
A−1

)T (18.43)

A square matrix, A, has an inverse if, and only if, det(A) ̸= 0. Common methods for calculating the
inverse of a square matrix are: Gauss-Jordan elimination, Gaussian elimination, and LU decomposition,
which can be found described in [Press et al., 1999a]. The reader may also consult Chapter 19, where
iterative methods for solving systems of linear equations are described.

Definition 18.22 (Trace of a Matrix)
The trace of a square matrix A ∈ Rn×n is given as

Tr(A) =
n∑

i=1

aii. (18.44)

The trace is invariant under the transpose operator,

Tr(A) = Tr
(
AT
)
, (18.45)

“book” — 2005/9/30 — 15:44 — page 578 — #590✐
✐

✐
✐

✐
✐

✐
✐

578 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

it is associative with scalars,
Tr(kA) = k Tr(A), (18.46)

for any scalar k ∈ R. The trace is further distributive w.r.t. addition,

Tr(A + B) = Tr(A) + Tr(B), (18.47)

and invariant under multiplication,
Tr(AB) = Tr(BA). (18.48)

Definition 18.23 (Determinant of a Matrix)
The determinant is only defined for square matrices. The determinant of A ∈ R2×2 is,

|A| = det(A) (18.49a)

= det

([
a11 a12

a21 a22

])
(18.49b)

=

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ (18.49c)

= a11a22 − a21a12. (18.49d)

The determinant for A ∈ Rn×n is defined recursively as
∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

= a11

∣∣∣∣∣∣∣∣∣

a22 a23 . . . a2n

a32 a33 . . . a3n
...

...
. . .

...
an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣

− a12

∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2n

a31 a32 . . . a3n
...

...
. . .

...
an1 an3 . . . ann

∣∣∣∣∣∣∣∣∣

+

· · · ±

∣∣∣∣∣∣∣∣∣

a21 a22 . . . a2(n−1)

a31 a32 . . . a3(n−1)
...

...
. . .

...
an1 an2 . . . an(n−1)

∣∣∣∣∣∣∣∣∣

(18.50a)

=
n∑

i=1

(−1)i+jaijM ij, (18.50b)

where M ij is the minor of matrix A produced by removing row i and column j in A.
The determinant is commutative with inversion,

detA−1 = (det(A))−1 , (18.51)

and it is distributive w.r.t. matrix multiplication,

det(AB) = det(A) det(B), (18.52)

when matrices A and B are invertible.

“book” — 2005/9/30 — 15:44 — page 579 — #591✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 579

The determinant is a tool often used when solving linear systems of equations, and it has geometrical
importance, since it is related to the area of parallelepipeds formed by two vectors u,v ∈ R2 is given as
det([u|v]). In n dimensions, the volume of the parallelepiped spanned by the vectors v1, . . . ,vn is given
as det([v1| . . . |vn]), and the sign is the orientation of the parallelepiped. That is, in the usual three-space,
the unit vectors ex, ey, and ez have a positive determinant in a right-handed coordinate system, that is,
det([ex|ey|ez]) = 1, while a left-handed coordinate system has a negative determinant. These coordinate
systems are in mirror relation like the right and left hand as indicated by the difference in sign of the
determinant.
Definition 18.24 (Orthogonal Matrix)
A matrix, R, is said to be orthogonal, if, and only if,

RT = R−1. (18.53)

As a consequence,
RT R = 1 (18.54)

As a consequence of Definition 18.24, the row or its column vectors form an orthonormal basis.

theorem 18.1 (Rotation Matrix)
An orthogonal matrix is a rotation (and possibly a mirroring) transformation.

theorem 18.2 (Coordinate Transformation)
Assume that we have two orthogonal coordinate systems labeled BF and WCS, and three unit vectors:
r1, r2, r3 ∈ Rn, given with respect to WCS, and such that they are parallel with the axes of BF. That is,
r1 ⊥ r2 ⊥ r3. We now construct a matrix R ∈ Rn×3, such that its columns are equal to r1, r2, and r3.
The R will transform a vector x given with respect to BF into the corresponding vector given with respect
to WCS, that is,

R =
[
r1 | r2 | r3

]
(18.55)

⇓
RxBF = xWCS, (18.56)

where
[
r1 | r2 | r3

]
is the matrix produced by concatenating the three column vectors. The inverse,

R−1 = RT , will have rT
1 , rT

2 , and rT
3 as rows, and RT will transform x given in WCS into the corre-

sponding vector in BF, that is,

RT =

⎡

⎣
rT

1
rT

2
rT

3

⎤

⎦ (18.57)

⇓
RT xWCS = xBF, (18.58)

where RT is produced by concatenating the three row vectors.

“book” — 2005/9/30 — 15:44 — page 580 — #592✐
✐

✐
✐

✐
✐

✐
✐

580 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Proof of Proposition 18.2:
Let’s start by examining R, where the columns are given by r1, r2, and r3. Since R is a linear transfor-
mation, it is enough to show that the axes of BF transforms into the axes of WCS. Let’s begin with the
first axis of BF.

RrBF
1 = R

⎡

⎣
1
0
0

⎤

⎦ (18.59a)

=
[
r1 | r2 | r3

]
⎡

⎣
1
0
0

⎤

⎦ (18.59b)

= r1 (18.59c)

= rWCS
1 (18.59d)

Similarly, we find for the second and third axes, RrBF
2 = rWCS

2 and RrBF
3 = rWCS

3 . We have now proven
the first half of our proposition. The column version of R is a rotation matrix, and the row version is its
transpose, implying that it is the inverse rotation. This completes our proof. !

Definition 18.25 (Symmetric Matrix)
A matrix A is a symmetric matrix, if it is equal to its transpose matrix, that is,

A = AT . (18.60)

For every matrix B, both BT B and BBT are symmetric.

theorem 18.3 (Properties of a Symmetric Matrix)
A symmetric matrix A has the property that it can be written as

A = RDRT , (18.61)

where R is an orthogonal matrix and D is a diagonal matrix.

Proof of Proposition 18.3:
We evaluate the transpose of (18.61)

AT = (RDRT)T (18.62a)

= (DRT)T RT (18.62b)

= (RT)T DT RT (18.62c)

= RDRT , (18.62d)

where we repeatedly used (18.39), and the fact that both the double transpose and the transpose of a
diagonal matrix are the identity operation. Since (18.61) and (18.62d) are identical, we have proven the
proposition. !

“book” — 2005/9/30 — 15:44 — page 581 — #593✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 581

Definition 18.26 (Skew Symmetric Matrix)
A matrix A is said to be skew symmetric if its transpose is equal to its negation,

AT = −A, (18.63)

implying that the diagonal is zero. Every square matrix B can be decomposed into a sum of a symmetric
and skew-symmetric matrix,

B =
1

2

(
B + BT

)
+
(
B −BT

)
. (18.64)

theorem 18.4 (Cross Product Matrix)
The cross product between two three-dimensional vectors a and b can be written as a matrix product
using the cross product matrix. The cross product matrix is defined as follows:

a× =

⎛

⎝
0 −az ay

az 0 −ax

−ay ax 0

⎞

⎠ , (18.65)

where we have
a× b = a×b. (18.66)

Proof of Proposition 18.4:
By straightforward computation of the cross product between the two vectors a and b we get

a× b =

⎛

⎝
aybz − byaz

bxaz − axbz

axby − bxay

⎞

⎠ = a×b. (18.67)
!

theorem 18.5 (Properties of the Cross Product Matrix)
The cross product matrix is skew symmetrical.

Proof of Proposition 18.5:
If we transpose the cross product matrix from Proposition 18.4, then we get

a×T
=

⎛

⎝
0 az −ay

−az 0 ax

ay −ax 0

⎞

⎠ = −a×, (18.68)

and we have shown what we wanted. !

There are several useful rules for the cross product matrix. We have listed some of them below:

a×b = aT b× (18.69)
a×b = −bT a× (18.70)
a×b = b×a (18.71)

It is not difficult to prove these rules by using Proposition 18.4 and Proposition 18.5. We will leave this as
an exercise for the reader.

“book” — 2005/9/30 — 15:44 — page 582 — #594✐
✐

✐
✐

✐
✐

✐
✐

582 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Definition 18.27 (Eigenvalues and Eigenvectors)
Given a matrix A, a scalar λ, and a vector v, such that

Av = λv. (18.72)

The scalar λ is called the eigenvalue of A and v is called the corresponding right eigenvector of A. The
similar equation

uT A = λuT , (18.73)

define the left eigenvector. Left and right eigenvalues are equivalent, but this does not hold in general for
left and right eigenvectors. Nevertheless, it is often sufficient to consider the right eigenvector, and it is
thus referred to as the eigenvector.

Letting V = [v1|v2| . . . |vn] be the matrix formed by all the right eigenvectors of a matrix A ∈ Rn×n

and D = diag(λ1,λ2, . . . ,λn) be a diagonal matrix of corresponding eigenvalues, then we can write the
full system of eigenvalues and vectors as

AV = V D, (18.74)

and equivalently for the left eigenvectors.

UT A = DUT . (18.75)

The left eigenvector is the right eigenvector of the transpose matrix AT , since

uT A = λuT , (18.76a)
⇓

(
uT A

)T
=
(
λuT

)T
, (18.76b)

⇓
AT u = λu. (18.76c)

theorem 18.6 (Left and Right Eigenvectors of a Symmetrical Matrix)
The left and right eigenvectors of a symmetric matrix are identical.

Proof of Proposition 18.6:
For a symmetric matrix, A = AT , hence by (18.76c) we realize that a left eigenvector is also a right
eigenvector. Since the eigen system only has n eigenvalues and vectors, where A ∈ Rn×n, then we
conclude that the left and right eigenvectors are identical. !

theorem 18.7 (Orthogonality of Eigenvectors)
Right and left eigenvectors are orthogonal on each other, that is if v i and uj are right and left eigenvectors
for a matrix A corresponding to eigenvalue λi and λj , then

vi · uj = 0, when i ̸= j. (18.77)

“book” — 2005/9/30 — 15:44 — page 583 — #595✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 583

Proof of Proposition 18.7:
Starting with (18.74) and (18.75) and applying the matrices of left and right eigenvectors we find that

UT AV = UT V D, (18.78a)

UT AV = DUT V , (18.78b)

and we conclude that (U T V)D = D(UT V). Since D is a diagonal vector, then so must U T V be. This
completes our proof. !

Eigenvalues and eigenvectors are related up to a scaling constant, i.e., if λ and u are corresponding eigen-
values and eigenvectors solving (18.72), then cλ and 1

cu is also a solution to (18.72) for any constant
c ̸= 0.

theorem 18.8 (Eigenvalues and Eigenvectors of a Symmetrical Matrix)
For a symmetrical matrix A we have:

A = RDRT , (18.79)

where R is an orthogonal matrix. Choosing eigenvectors of A to be unit vectors, then the columns of R
will be the eigenvalues of A and the diagonal of D will hold the corresponding eigenvalues.

Proof of Proposition 18.8:
Assuming that U and V are the system of unit right and left eigenvectors of matrix A. Multiplying
(18.74) with the left eigenvectors we find that

AV UT = V DUT . (18.80)

Since A is symmetric we know that the left and right eigenvectors are identical. Writing R = U = V we
find,

ARRT = RDRT , (18.81a)
⇓

A = RDRT , (18.81b)

since RRT = 1. !
Definition 18.28 (Positive Definite)
A symmetrical matrix A is positive definite, if and only if

vT Av > 0 for all v ̸= 0 (18.82)

theorem 18.9 (Properties of a Positive Definite Matrix)
A positive definite matrix, A, can be written as

A = RDRT , (18.83)

where R is an orthogonal matrix, and D is a diagonal matrix. Furthermore, all the diagonal elements of
D are strictly positive, dii > 0,∀i ∈ [0 . . . n].

“book” — 2005/9/30 — 15:44 — page 584 — #596✐
✐

✐
✐

✐
✐

✐
✐

584 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

-10
-5

0
5

10-10

-5

0
5
10

0
50

100
150
200

-10
-5

0
5

10

(a)

-10
-5

0
5

10-10

-5
0
5
10

-200
-150
-100
-50
0

-10
-5

0
5

10

(b)

-10
-5

0
5

10-10

-5

0
5
10

-100
-50
0

50
100

-10
-5

0
5

10

(c)

Figure 18.2: Visualizing positive-definite, negative-definite, and indefinite matrices.

When discussing the definiteness of matrices, it is useful to have the pictures in Figure 18.2 in mind. In
the figure is shown the visualization of the function,

f(r) = rT Ar, (18.84)

for the following three matrices,

Positive-definite A =

[
1 0
0 1

]
, (18.85a)

Negative-definite A =

[
−1 0
0 −1

]
, (18.85b)

indefinite A =

[
1 0
0 −1

]
. (18.85c)

For the positive-definite, negative-definite, and indefinite matrices, there is a single minimum, maximum,
and saddle point respectively at [0, 0]T .

Proof of Proposition 18.9:
The form of A follows directly from Proposition 18.3. In order to show the positivity of D, we will use
Definition 18.28 and write

vT Av > 0. (18.86)

Using Proposition 18.3, we get
vT RDRT v > 0. (18.87)

Finally, with a little rewriting we have

(
RT v

)T
D
(
RT v

)
> 0. (18.88)

“book” — 2005/9/30 — 15:44 — page 585 — #597✐
✐

✐
✐

✐
✐

✐
✐

18.2 PHYSICS-BASED ANIMATION 585

The expression RT v corresponds to a rotation of the vector v, so using w = RT v, we can rewrite our
equation into

wT Dw > 0. (18.89)

We know that D is a diagonal matrix, and the equation can therefore be rewritten into

d11w
2
1 + · · · + dnnw2

n > 0. (18.90)

Since w is a rotation of the vector v with the property,

v ̸= 0, (18.91)

then it must also hold that
w ̸= 0. (18.92)

That is, there always exist one or more nonzero elements of w, wi ̸= 0. Therefore, we must have

w2
i ≥ 0 for all i ∈ [1 . . . n]. (18.93)

The equation in (18.90) holds for an arbitrary vector w ̸= 0. Hence, choose w such that wj = 0 for all
j ∈ [1 . . . (k − 1), (k + 1) . . . n], then by (18.90) we conclude that dkk > 0, and this must hold for all
dkk, k ∈ [1 . . . n]. This completes our proof. !

Definition 18.29 (Positive Semidefinite)
A symmetrical matrix A is called positive semidefinite if, and only if,

vT Av ≥ 0 for all v ̸= 0. (18.94)

theorem 18.10 (Properties of a Positive Semidefinite Matrix)
A positive semidefinite matrix A can be written as

A = RDRT , (18.95)

where R is an orthogonal matrix, D is a diagonal matrix, and all the diagonal elements of D are non-
negative, dii ≥ 0, i ∈ [1 . . . n].

Proof of Proposition 18.8:
The proof of this is almost identical to the proof of Proposition 18.9, and will be left to the reader as an
exercise. !
theorem 18.11 (Elliptical Level Sets of a Positive Definite Matrix)
Given a positive definite matrix M and a constant scalar c, then all vectors v that satisfy

c = vT Mv, (18.96)

will lie on an ellipse.

“book” — 2005/9/30 — 15:44 — page 586 — #598✐
✐

✐
✐

✐
✐

✐
✐

586 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Proof of Proposition 18.11:
Since M is symmetrical, there exists an orthogonal matrix R and a diagonal matrix D, such that

c = vT Mv (18.97a)

= vT RDRT v (18.97b)

=
(
RT v

)T
D
(
RT v

)
. (18.97c)

The term RT v corresponds to a rotation of the vector v. Writing w = RT v, we get

c = wT Dw. (18.98)

Since D is a diagonal matrix, we may rewrite the equation as

c = d11w
2
1 + · · · + dnnw2

n. (18.99)

Finally, since all dii > 0, we realize that the equation represents an ellipse. !

theorem 18.12 (Ellipses as a Representation of Eigen Structure)
Referring to the proof of Proposition 18.11, the elliptical structure,

c = d1w
2
1 + · · · + dnw2

n, (18.100)

corresponds to the ellipse given by
c = d1v

2
1 + · · · + dnv2

n, (18.101)

rotated by RT , and the axes are related as

RT =
[
w1|w2| . . . |wn

]
(18.102)

From this we note that the first axis corresponds to the first column of R, and it follows that the i’th non-
rotated axis corresponds to the i’th column of the matrix R. Recalling that R consists of the eigenvectors
of M , then we can conclude that the i’th axis of the ellipse,

c = vT Mv, (18.103)

is the i’th eigenvector of M , and the eigenvalues are the scaling of the axes.

Definition 18.30 (Matrix Norm)
A matrix norm is defined for square matrices, A ∈ Rn×n and is a function ∥·∥, from Rn×n into R with the
following properties,

(i) ∥A∥ > 0 for A ∈ Rn×n, A ̸= 0, and ∥A∥ = 0 if, and only if, A = 0.

(ii) ∥αA∥ = |α| ∥A∥ for all A ∈ Rn×n and α ∈ R,

(iii) ∥A + B∥ ≤ ∥A∥+ ∥B∥ for all A,B ∈ Rn×n.

“book” — 2005/9/30 — 15:44 — page 587 — #599✐
✐

✐
✐

✐
✐

✐
✐

18.3 PHYSICS-BASED ANIMATION 587

(iv) ∥AB∥ ≤ ∥A∥ ∥B∥ for all A,B ∈ Rn×n.

Several useful norms exists such as the matrix p-norm, Frobenius norm, and the spectral norm,

Definition 18.31 (Matrix p-norm)
The matrix p-norm is defined as,

∥A∥
p

= max
∥r∥

p
=1
∥Ar∥

p
(18.104)

for any scalar 1 ≤ p ≤ ∞.

Definition 18.32 (Frobenius Norm)
The Frobenius norm of a matrix A ∈ Rm×n is defined as,

∥A∥
F

=
√

Tr
(
AAT

)
=

√√√√
m∑

i=1

m∑

j=1

a2
ij. (18.105)

Definition 18.33 (Spectral Norm)
The spectral norm of a matrix A is given as the square root of the maximum eigenvalue of AT A, or
equivalently,

∥A∥
2

= max
∥r∥

2
̸=0

∥Ar∥
2

∥r∥
2

. (18.106)

18.3 Scalar and Vector Fields

A scalar field is a function defined in every point of space, f : Rn → R, e.g. f(x, y, z) in 3D space. It is
useful to think of a scalar field as a gray-valued image, where each position has a scalar value, the image in-
tensity. A vector field and a matrix field is equivalently a vector and a matrix function defined in every point
of space, e.g., the gradient vector of a scalar field, φ : Rn → Rm, e.g. [∂f(x,y,z)

∂x , ∂f(x,y,z)
∂y , ∂f(x,y,z)

∂z]T .
Fields often vary with time.

18.3.1 Differential Forms
Following [Magnus et al., 1988] we will calculate the derivatives of matrix equations using differentials
also know as differential forms. The differential or total derivative of a function f(x, y, z) is given as,

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz (18.107)

where ∂f
∂x etc., are the partial derivatives and dx etc., are the unit differentials. The differential may be

thought of as a mapping from vectors into numbers. Pictorially, the differential is tangent where the
partial derivatives ∂f

∂x etc. are the tangent vectors, and the differentials dx etc., are the coordinates. This is
illustrated in Figure 18.3.

“book” — 2005/9/30 — 15:44 — page 588 — #600✐
✐

✐
✐

✐
✐

✐
✐

588 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

x0 x0 + ∆x

y

x

df(x0)

y = f(x)

f(x0 + ∆x)

df(x0, ∆x)

f(x0)

Figure 18.3: A function f , its tangent at x0, and the corresponding differential.

Consider the simplest matrix function,

F (x) = Ax, (18.108)

where the vector x ∈ Rn is the vector field of Cartesian coordinates, and assume that A ∈ Rm×n is a
constant matrix independent of position. Then for every point x we conclude that the matrix function
F : Rn → Rm. Expanding the terms we find,

f1(x) = a11x1 + a12x2 + · · · + a1nxn (18.109a)
f2(x) = a21x1 + a22x2 + · · · + a2nxn (18.109b)

...
fm(x) = am1x1 + am2x2 + · · · + amnxn, (18.109c)

where xi is the i’th coordinate for the position x in space. For each equation we now calculate the
differential, and since xi is the coordinate function, then it only depends on the i coordinate, that is

∂xi

∂xj
=

{
1 if i = j,

0 otherwise.
(18.110)

Therefore, the differentials of each equation are simply,

df1 = a11dx1 + a12dx2 + · · · + a1ndxn (18.111a)
df2 = a21dx1 + a22dx2 + · · · + a2ndxn (18.111b)

...
dfm = am1dx1 + am2dx2 + · · · + amndxn, (18.111c)

“book” — 2005/9/30 — 15:44 — page 589 — #601✐
✐

✐
✐

✐
✐

✐
✐

18.3 PHYSICS-BASED ANIMATION 589

which we may summarize as,
dF = Adx, (18.112)

and in analogue to scalar derivatives we say that A is the derivative of F w.r.t. x.
To find the partial derivatives of a matrix expression, we may thus calculate the differential of the

expression and identify the leading term of the corresponding unit differentials. However, since the partial
derivatives of matrix equations are closely linked to the Taylor series, it is often simpler to calculate the
derivatives as the linear part of F (X + dX)− F (X), (see Chapter 20 for a discussion of Taylor series).
The Taylor series to first order is given as,

F (X + ∆X) = F (X) +
∂F

∂X
∆X + O(∥∆X∥2), (18.113)

and taking ∆X → 0 we identify the matrix ∂F
∂X as the derivative of F w.r.t. X. Again, for every position

or matrix X this is simply the process of approximating the matrix function F with a linear function dF .
The matrix coefficient ∂F

∂X is often called the Jacobian and is intimately related to the gradient operator to
be discussed in the next section. The Taylor series gives us an interpretation of the total derivative as the
change of F when we move in some specific direction ∆X.

theorem 18.13 (Differential of a Constant Matrix)
The differential of a constant matrix A is zero,

dA = 0. (18.114)

The proof follows immediately, since the Jacobian is zero.

theorem 18.14 (Differential of a Scalar-Matrix Product)
Given k ∈ R and a matrix X, then

d(kX) = k dX , (18.115)

and hence d(kX)
dX = k.

Proof of Proposition 18.14:
We evaluate F (X + dX)− F (X) for F (X) = kX:

k(X + dX)− kX = k dX, (18.116)

and the linear term is trivially identified to be k. !

theorem 18.15 (Differential of a Matrix Sum)
Given two matrices X and Y then

d(X + Y) = dX + dY , (18.117)

and hence d(X+Y)
dX = d(X+Y)

dY = 1.

“book” — 2005/9/30 — 15:44 — page 590 — #602✐
✐

✐
✐

✐
✐

✐
✐

590 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Proof of Proposition 18.15:
We evaluate F (X + dX ,Y + dY)− F (X ,Y) for F (X,Y) = X + Y :

(X + dX) + (Y + dY)− (X + Y) = dX + dY , (18.118)

and the linear terms are both trivially identified to be 1. !
theorem 18.16 (Differential of a Matrix-Matrix Product)
Given two matrices X ∈ Rm×o and Y ∈ Ro×n, then

d(Y X) = (dY)X + Y dX , (18.119)

and hence d(Y X)
dX = Y .

Proof of Proposition 18.16:
We evaluate F (X + dX ,Y + dY)− F (X ,Y) for F (X,Y) = Y X :

(Y + dY)(X + dX)− (Y X) = (dY)X + Y dX + dY dX , (18.120)

and the linear term for dX is identified to be Y , while the linear term for dY is more complicated,
since matrix multiplication does not commute. There exists an extended set of operations to write such
equations on a simpler form called the vec operator and the Kronecker product, but their definition and
usage is outside the scope of this book. The interested reader is urged to consult [Magnus et al., 1988]. !
Lemma 18.1 (Differential of a Linear Transformation of Vectors)
A simpler result than Proposition 18.16 is obtained for the product between a constant matrix A ∈ Rm×n

and a vector x ∈ Rn×1:
d(Ax) = A dx, (18.121)

since dA = 0, and the linear term is thus A.

Lemma 18.2 (Differential of a Quadratic Form)
From Proposition 18.16 we also easily derive the partial derivatives of a common quadratic involving
matrices Y ∈ Rn×n and x,Z ∈ Rn×1:

d(xT Y z) = (dxT)Y z + xT (dY)z + xT Y dz. (18.122)

The linear term w.r.t. dz is xT Y . Furthermore, (dxT)Y x is a scalar, and it is therefore invariant under
the transpose operator. Hence, we may rearrange the first term to be xT Y T dx, and we identify the linear
term w.r.t. dx to be xT Y T . Again we find that the linear term w.r.t. dY is difficult to write on a simple
form, since matrix multiplication does not commute. Finally, in the specific case of x = z, then the above
simplifies to

d(xT Y x) = xT (Y T + Y) dx + xT (dY)x. (18.123)

theorem 18.17 (Differential of an Inverse)
Given an invertible matrix X ∈ Rn×n, then

dX−1 = −X−1(dX)X−1. (18.124)

“book” — 2005/9/30 — 15:44 — page 591 — #603✐
✐

✐
✐

✐
✐

✐
✐

18.3 PHYSICS-BASED ANIMATION 591

Proof of Proposition 18.17:
Since 1 = XX−1 = X−1X we have,

0 = d1 = d(XX−1) = (dX)X−1 + X dX−1, (18.125)

Isolating dX−1 we find
dX−1 = −X−1(dX)X−1. (18.126)

!

theorem 18.18 (Differential of a Trace)
Given a matrix X ∈ Rn×n, then

dTr(X) = Tr(dX). (18.127)

Proof of Proposition 18.18:
We evaluate F (X + dX)− F (X) for F (X) = Tr(X):

Tr(X + dX)− Tr(X) = Tr(dX). (18.128)
!

18.3.2 The Gradient Operator
The gradient operator is an essential operator for fields, and it is used in computational fluid dynamics just
as commonly as the derivative operator. We have therefore reserved a full section for it and its relatives.
The symbol for the gradient is most often the Greek letter Nabla.
Definition 18.34 (Nabla Operator)
The nabla or “del” differential operator in three-dimensional space is defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (18.129)

where ex, ey, and ez are the coordinate axes using Einstein’s summation convention, we can write the
nabla operator as

∇ = ei
∂

∂i
(18.130)

where it is understood that the right-hand side is a sum over i, where i iterates over the names of the
coordinate axes in the space the operator is used, i =′ x′,′ y′,′ z′. A final notation in 3D is

∂x =
∂

∂x
= ∇, (18.131)

where x represents the complete domain, e.g., for a 3D function x = [ex,ey,ez]T or more commonly
simplified to x = [x, y, z]T . If only parts of the domain are specified, e.g.,∇[x,z]T , then the nabla operator
is restricted to the corresponding subspace, that is,

∇[x,z]T =

[
∂
∂x
∂
∂z

]
. (18.132)

This is not to be confused with a directional derivative discussed in Propositions 18.19 and 18.39.

“book” — 2005/9/30 — 15:44 — page 592 — #604✐
✐

✐
✐

✐
✐

✐
✐

592 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Definition 18.35 (Gradient of a Scalar Field)
Applying the Nabla operator on a gradient field f gives the gradient vector field:

∇f = ∇ f, (18.133)

which for f : R3 → R gives,

∇f =

⎡

⎢⎣

∂f(x,y,z)
∂x

∂f(x,y,z)
∂y

∂f(x,y,z)
∂z

⎤

⎥⎦ . (18.134)

The gradient denotes the direction in which the scalar field increases, and its length is equal to the deriva-
tive of the scalar field in the gradient direction. Furthermore,

∮

C
∇f · dr =

∮

C
∇f · t dr = 0, (18.135)

which states that the circular integral of the gradient operator on a closed curve, r ∈ C , is zero, where t
is the tangent to the curve.

Definition 18.36 (Gradient of a Vector Field)
The gradient of a vector field, φ : Rn → Rm is

∇φ =

⎡

⎢⎢⎢⎣

∇φT
1

∇φT
2

...
∇φT

m

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

∂φ1
∂x1

∂φ1
∂x2

. . . ∂φ1
∂xn

∂φ2
∂x1

∂φ2
∂x2

. . . ∂φ2
∂xn

...
...

. . .
...

∂φm
∂x1

∂φm
∂x2

. . . ∂φm
∂xn

⎤

⎥⎥⎥⎥⎦
, (18.136)

which is also known as the Jacobian matrix. Notice that there is an inconsistency in the use of the gradient
operator between the scalar and vector fields, where the former writes the gradient as a column vector
and the latter as row vectors. This convention, used in most literature to reduce the number of transpose
operations in equations involving the Jacobian [Cottle et al., 1992, Section 2.1.19]. When m = n = 3,
we get

∇φ =

⎡

⎢⎣

∂φ1
∂x

∂φ1
∂y

∂φ1
∂z

∂φ2
∂x

∂φ2
∂y

∂φ2
∂z

∂φ3
∂x

∂φ3
∂y

∂φ3
∂z

⎤

⎥⎦ . (18.137)

Sometimes only parts of the Jacobian are used, and a common notation is ∇r, where r is a vector of
parameters to φ, e.g. r = [xi, xj , xk] meaning

∇rφ =

⎡

⎢⎢⎢⎢⎣

∂φ1
∂xi

∂φ1
∂xj

∂φ1
∂xk

∂φ2
∂xi

∂φ2
∂xj

∂φ2
∂xk

...
...

...
∂φm
∂xi

∂φm
∂xj

∂φm
∂xk

⎤

⎥⎥⎥⎥⎦
. (18.138)

“book” — 2005/9/30 — 15:44 — page 593 — #605✐
✐

✐
✐

✐
✐

✐
✐

18.3 PHYSICS-BASED ANIMATION 593

Definition 18.37 (Divergence of a Vector Field)
Applying the Nabla operator on a vector field φ using the dot product gives the divergence scalar field:

∇ · φ = divφ, (18.139)

which for φ : R3 → R3 is given as,

∇ · φ =
∂φ1

∂x
+
∂φ2

∂y
+
∂φ3

∂z
. (18.140)

where φ1, φ2, and φ3 are the x, y, and z components of the vector fields, hence a scalar field.
The divergence theorem or Gauss’ theorem is expressed using the divergence operator,

∫

V
∇ · φ dv =

∮

S
φ · da =

∮

S
φ · n da, (18.141)

which states that the integral of the divergence of a vector field φ over a closed volume v ∈ V is equivalent
to the integral of flow through the surface a ∈ S, where n is the normal to the surface. In the limit of an
infinitesimal volume,

∇ · φ = lim
V →0

1

V

∮

S
φ · n da, (18.142)

and thus it is seen, that the divergence is the point-wise flow through the surface of the point.

Definition 18.38 (Rotation of a Vector Field)
Applying the Nabla operator on a vector field φ using the cross product gives the rotation vector field:

∇× φ = curlφ, (18.143)

which is also sometimes called rot. For φ : R3 → R3 is given as

∇× φ =

⎡

⎢⎣

∂φ3
∂y −

∂φ2
∂z

∂φ1
∂z −

∂φ3
∂x

∂φ2
∂x −

∂φ1
∂y

⎤

⎥⎦ . (18.144)

If the rotation of a vector field is zero, ∇ × φ, then φ is a gradient field, i.e., there exists a scalar field g
such that φ = ∇g.

The rotation theorem or Stokes’ theorem is expressed using the rotation operator:
∫

S
∇× φ · da =

∫

S
∇× φ · n da =

∮

C
φ · dl =

∮

C
φ · t dl, (18.145)

which states that rotation of a vector field along a closed curve l ∈ C is equal to the integral of the field
over any surface a ∈ S, which has C as its border. The vectors n and t are the normal to the surface S
and tangent to the curve C respectively. In the limit,

n · (∇× φ) = lim
S→0

1

S

∮

C
φ · t dl, (18.146)

and we may interpret the normal part of the rotation of a vector field as rotation of the point.

“book” — 2005/9/30 — 15:44 — page 594 — #606✐
✐

✐
✐

✐
✐

✐
✐

594 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

theorem 18.19 (Directional Derivative of a Scalar Field)
The change of a scalar field in the direction φ may be written as

df

dφ
= (φ ·∇)f. (18.147)

When |φ| = 1, then d
dφ is called the directional derivative or ‘φ gradient f ’. Assuming f(x, y, z) : R3 →

R and φ = [φ1,φ2,φ3]T ∈ R3 then

df

dφ
= φ1

∂f

∂x
+ φ2

∂f

∂y
+ φ3

∂f

∂z
. (18.148)

Definition 18.39 (Directional Derivative of a Vector Field)
The change in a vector field ψ, when moving along the vector field φ, is another vector field (φ · ∇)ψ,
which is called ‘φ gradient ψ’.

dψ

dφ
= (φ ·∇)ψ = (∇ψ)φ (18.149)

When |φ| = 1, then d
dφ is called the directional derivative. For φ,ψ : R3 → R3 it is found that

dψ

dφ
=

⎡

⎢⎣
φ1

∂ψ1
∂x + φ2

∂ψ1
∂y + φ3

∂ψ1
∂z

φ1
∂ψ2
∂x + φ2

∂ψ2
∂y + φ3

∂ψ2
∂z

φ1
∂ψ3
∂x + φ2

∂ψ3
∂y + φ3

∂ψ3
∂z

⎤

⎥⎦ . (18.150)

In this case, the φ ·∇ is applied component-wise on the elements of ψ.

theorem 18.20 (Gradient of a Scalar-Scalar Product)
The gradient of a (point-wise) product of two scalar fields, f and g, is a vector field given as

∇(fg) = g∇f + f∇g. (18.151)

theorem 18.21 (Gradient of a Scalar-Vector Product)
The gradient of a the (point-wise) product of a scalar field, f , and a vector field φ is

∇ (fφ) = f∇φ+ φ (∇f)T (18.152)

theorem 18.22 (Divergence of a Scalar-Vector Product)
The divergence of the (point-wise) product of a scalar field f and a vector field φ is a scalar given as

∇ · (fφ) = φ · (∇f) + f(∇ · φ). (18.153)

theorem 18.23 (Rotation of a Scalar-Vector Product)
The rotation of the (point-wise) product of a scalar field f and a vector field φ is a vector given as

∇× (fφ) = f (∇× φ) + (∇f)× φ. (18.154)

“book” — 2005/9/30 — 15:44 — page 595 — #607✐
✐

✐
✐

✐
✐

✐
✐

18.3 PHYSICS-BASED ANIMATION 595

theorem 18.24 (Gradient of a Dot Product)
The gradient of a (point-wise) dot product between two vector fields φ and ψ is

∇(φ ·ψ) = (∇φ)Tψ + (∇ψ)Tφ = (φ ·∇)ψ +φ× (∇×ψ) + (ψ ·∇)φ+ψ × (∇× a). (18.155)

theorem 18.25 (The Divergence of a Cross Product)
The divergence of a (point-wise) cross product between two vector fields φ and ψ is,

∇ · (φ×ψ) = (∇× φ) ·ψ −φ · (∇×ψ) . (18.156)

theorem 18.26 (The Rotation of a Cross Product)
The rotation of a (point-wise) cross product between two vector fields φ and ψ is,

∇× (φ×ψ) = (∇ ·ψ)φ− (∇ · φ)ψ + (ψ ·∇)φ− (φ ·∇)ψ. (18.157)

theorem 18.27 (The Divergence of a Gradient Field: The Laplace Operator)
The Laplace operator,

∇ ·∇ = ∇2, (18.158)

on a scalar field yields a scalar field, which for f : R3 → R gives

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. (18.159)

theorem 18.28 (The Rotation of a Gradient Field Vanishes)
The rotation of a gradient of a scalar field is zero,

∇× (∇f) = 0. (18.160)

theorem 18.29 (The Divergence of a Rotation Vanishes)
The divergence of a rotation of a vector field is zero,

∇ · (∇× φ) = 0. (18.161)

theorem 18.30 (The Rotation of a Rotation)
The Rotation of a Rotation is given as

∇×∇× φ = ∇ (∇ · φ)−∇2φ, (18.162)

where∇2φ = [∇2φ1,∇2φ2,∇2φ3]T is used for shorthand.

theorem 18.31 (Gradient of a Constant Linear Transformation of a Vector Field)
The gradient of a vector field φ : R3 → R3 under constant transformation A ∈ R3×3 is,

∇(Aφ) = A∇φ (18.163)

“book” — 2005/9/30 — 15:44 — page 596 — #608✐
✐

✐
✐

✐
✐

✐
✐

596 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Proof of Proposition 18.31:
To prove we first expand the equation as

∇(Aφ) = ∇

⎡

⎣
a11φ1 + a12φ2 + a13φ3

a21φ1 + a22φ2 + a23φ3

a31φ1 + a32φ2 + a33φ3

⎤

⎦ (18.164a)

=

⎡

⎢⎣

∂(a11φ1+a12φ2+a13φ3)
∂x

∂(a11φ1+a12φ2+a13φ3)
∂y

∂(a11φ1+a12φ2+a13φ3)
∂z

∂(a21φ1+a22φ2+a23φ3)
∂x

∂(a21φ1+a22φ2+a23φ3)
∂y

∂(a21φ1+a22φ2+a23φ3)
∂z

∂(a31φ1+a32φ2+a33φ3)
∂x

∂(a31φ1+a32φ2+a33φ3)
∂y

∂(a31φ1+a32φ2+a33φ3)
∂z

⎤

⎥⎦ . (18.164b)

Considering the first element we find,

∂(a11φ1 + a12φ2 + a13φ3)

∂x
= a11

∂φ1

∂x
+ a12

∂φ2

∂x
+ a13

∂φ3

∂x
, (18.165)

since the elements of A are constant. Extending the calculation on the first element to the full matrix and
separating the terms gives,

∇(Aφ) =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎡

⎢⎣

∂φ1
∂x

∂φ1
∂y

∂φ1
∂z

∂φ2
∂x

∂φ2
∂y

∂φ2
∂z

∂φ3
∂x

∂φ3
∂y

∂φ3
∂z

⎤

⎥⎦ (18.166a)

= A∇φ. (18.166b)

This completes our proof. !
theorem 18.32 (Directional Derivative of a Constant Linear Transformation of a Vector Field)
The change in direction φ : R3 → R3 of a vector ψ : R3 → R3 under constant transformation A ∈ R3×3

is,
dAψ

dφ
= (φ ·∇)Aψ = A ((φ ·∇)ψ) = A

dψ

dφ
. (18.167)

Proof of Proposition 18.32:
To prove, we write

(φ ·∇)Aψ = (∇ (Aψ))φ (18.168a)
= (A∇ψ)φ (18.168b)
= A ((∇ψ)φ) (18.168c)
= A (φ ·∇)ψ (18.168d)

which completes our proof. !
theorem 18.33 (Gradient of a Constant Quadratic Form of Vector Fields)
For φ,ψ : R3 → R3 and a constant transformation A ∈ R3×3 the gradient of the quadratic form φT Aψ
is given by,

∇(φT Aψ) = (∇φ)T (Aψ) + (∇ψ)T ATφ. (18.169)

“book” — 2005/9/30 — 15:44 — page 597 — #609✐
✐

✐
✐

✐
✐

✐
✐

18.4 PHYSICS-BASED ANIMATION 597

Proof of Proposition 18.33:
Expanding the equation we find,

∇(φT Aψ) = ∇(φ · Aψ) (18.170a)

= (∇φ)T (Aψ) + (∇(Aψ))Tφ (18.170b)

= (∇φ)T Aψ + (A∇ψ)Tφ (18.170c)

= (∇φ)T Aψ + (∇ψ)T ATφ. (18.170d)
!

In the special case where φ = ψ, we find that ∇(φT Aφ) = (∇φ)T (A + AT)φ.

18.4 Functional Derivatives
Functional derivatives are a generalization of the derivative operator that occurs in calculus of variation.
Instead of differentiation, a function w.r.t. a variable, a functional is differentiated w.r.t. a function. See
Chapter 21 for details on the sense of functional derivatives. The essence is that in functional derivatives,
it is allowed take derivatives w.r.t. function names.
theorem 18.34 (Functional Derivative of a Scalar Field)
Given a scalar field, f(x,u), where x is the independent variable and u is the dependent variable, i.e.,
u(x). The functional derivative w.r.t. u is ∂f

∂u. The functional derivative treats dependent variables as
independent w.r.t. to differentiation.

The above proposition is best understood with an example.

theorem 18.35 (Functional Derivative of a Scalar-Scalar Product)
Given two scalar fields, f, g, the functional derivative of their product w.r.t. a dependent vector field u is

∂u(fg) = g∂uf + f∂ug (18.171)

Proof of Proposition 18.35:
Write the functional derivative using the specialized gradient operator as

∂u(fg) = ∇u(fg) (18.172a)

=

⎡

⎢⎣

∂(fg)
∂u1
∂(fg)
∂u2
∂(fg)
∂u3

⎤

⎥⎦ (18.172b)

=

⎡

⎢⎣
g ∂(f)
∂u1

+ f ∂(g)
∂u1

g ∂(f)
∂u2

+ f ∂(g)
∂u2

g ∂(f)
∂u3

+ f ∂(g)
∂u3

⎤

⎥⎦ (18.172c)

= g∂uf + f∂ug (18.172d)
!

“book” — 2005/9/30 — 15:44 — page 598 — #610✐
✐

✐
✐

✐
✐

✐
✐

598 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

theorem 18.36 (Functional Derivative of a Dot Product)
Given two vector fields φ,ψ, the functional derivative of their dot product w.r.t. a dependent vector field
u is

∂u (φ ·ψ) = (∂uφ)Tψ + (∂uψ)Tφ (18.173)

Proof of Proposition 18.36:
Assume that φ,ψ ∈ R3, and that they are depending on u, then we expand the dot product as

∂u (φ ·ψ) = ∂u(φ1ψ1 + φ2ψ2 + φ3ψ3) (18.174a)
= ∂u(φ1ψ1) + ∂u(φ2ψ2) + ∂u(φ3ψ3) (18.174b)
= ψ1∂u(φ1) + φ1∂u(ψ1) + ψ2∂u(φ2) + φ2∂u(ψ2) + ψ3∂u(φ3) + φ3∂u(ψ3) (18.174c)

= (∂uφ)Tψ + (∂uψ)Tφ. (18.174d)

This completes our proof. !

A special case is the functional derivative of a squared length,

∂u
(
φTφ

)
= 2(∂uφ)Tφ. (18.175)

theorem 18.37 (Functional Derivative of an Independent Linear Transformation)
The functional derivative of an independent transformation of a vector field φ w.r.t. the vector field u is,

∂u (Aφ) = A∂uφ (18.176)

Proof of Proposition 18.37:
Assume that φ : R3 → R3 and A ∈ R3×3, then

∂u (Aφ) = ∂u

⎡

⎣
a11φ1 + a12φ2 + a13φ3

a21φ1 + a22φ2 + a23φ3

a31φ1 + a32φ2 + a33φ3

⎤

⎦ (18.177a)

=

⎡

⎣
∂u(a11φ1 + a12φ2 + a13φ3)
∂u(a21φ1 + a22φ2 + a23φ3)
∂u(a31φ1 + a32φ2 + a33φ3)

⎤

⎦ (18.177b)

=

⎡

⎣
a11∂uφ1 + a12∂uφ2 + a13∂uφ3

a21∂uφ1 + a22∂uφ2 + a23∂uφ3

a31∂uφ1 + a32∂uφ2 + a33∂uφ3

⎤

⎦ (18.177c)

= A∂uφ. (18.177d)

This completes our proof. !
theorem 18.38 (Functional Derivatives of a constant Quadratic Form)
Given two vector fields φ and ψ and an independent linear transformation A, the functional derivative
w.r.t. the vector field u is

∂u(φT Aψ) = (∂uφ)T Aψ + (∂uψ)T ATφ (18.178)

“book” — 2005/9/30 — 15:44 — page 599 — #611✐
✐

✐
✐

✐
✐

✐
✐

18.4 PHYSICS-BASED ANIMATION 599

Proof of Proposition 18.38:

∂u(φT Aψ) = ∂u(φ · (Aψ)) (18.179a)

= (∂uφ)T (Aψ) + (∂u(Aψ))Tφ (18.179b)

= (∂uφ)T Aψ + (A∂uψ)Tφ (18.179c)

= (∂uφ)T Aψ + (∂uψ)T ATφ (18.179d)
!

In the special case, where φ = ψ, then ∂u(φT Aφ) = (∂uφ)T
(
A + AT

)
φ.

theorem 18.39 (Functional Derivative of a Normal Vector)
Consider two vector fields φ and ψ. If φ is independent of ψ then the functional derivative of their cross
product w.r.t. ψ is

∂ψ (ψ × φ) = −∂ψ (φ×ψ) (18.180a)
= −∂ψ

(
f×ψ

)
(18.180b)

= −f×∂ψψ (18.180c)

= −f×. (18.180d)

Likewise, if ψ is independent of φ then the functional derivative of their cross product w.r.t. φ is

∂φ (ψ × φ) = g×. (18.181)

Now consider a normal vector field given by

n =
ψ × φ
|ψ × φ| . (18.182)

Its derivative w.r.t. ψ is

∂ψn = ∂ψ

(
ψ × φ
∥ψ × φ∥

2

)
(18.183a)

= ∂ψ

(
ψ × φ

(ψ × φ ·ψ × φ)1/2

)
(18.183b)

= ∂ψ

(
(ψ × φ)

(
(ψ × φ)T (ψ × φ)

)− 1
2

)
. (18.183c)

Using (18.152) we find

∂ψn = (∂ψ (ψ × φ))
(
(ψ × φ)T (ψ × φ)

)− 1
2

+ (ψ × φ)

[
∂ψ

((
(ψ × φ)T (ψ × φ)

)− 1
2

)]T

,

(18.184)

“book” — 2005/9/30 — 15:44 — page 600 — #612✐
✐

✐
✐

✐
✐

✐
✐

600 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

and using (18.180d) and (18.173) on the square brackets term, we get

nψ = −f×
(
(ψ × φ)T (ψ × φ)

)− 1
2 − 1

2
(ψ × φ)

(
(ψ × φ)T (ψ ×φ)

)− 3
2
[
2
(
f×f×)T (ψ × φ)

]T

(18.185)
Simplifying by using Proposition 18.5 get

∂ψn = −f×
((

f×T
ψ
)T

f×T
ψ

)− 1
2

−
((

f×T
ψ
)T

f×T
ψ

)− 3
2 (
−f×ψ

) [
f×T

f×T (−f×ψ
)]T

(18.186a)

= −f×
(
ψT f×f×T

ψ
)− 1

2 −
(
ψT f×f×T

ψ
)− 3

2
f×ψψT f×T

f×f× (18.186b)

18.5 Quaternions

A quaternion is a 4D complex number, which may be used to represent rotations in 3D space. A thorough
treatment of quaternions is given in [Dam et al., 1998].

Definition 18.40 (Quaternion)
A quaternion is defined to be a real number and three imaginary numbers. Typically a quaternion q is
written as:

q = s + xĩ + yj̃ + zk̃, (18.187)

where ĩ, j̃, and k̃ are the imaginary axes. Alternatively, the quaternion q may be written as

q = [s,v] = [s, (x, y, z)] = [s, x, y, z] . (18.188)

Definition 18.41 (Quaternion Product)
Two quaternions q = [s,v] and q′ = [s′,v′] are multiplied with each other as follows:

qq′ =
[
ss′ − v · v′, sv′ + s′v + v × v′] . (18.189)

Definition 18.42 (Conjugated Quaternion)
The conjugated quaternion of q = [s,v] is defined to be

q∗ = [s,−v]. (18.190)

theorem 18.40 (Conjugate of a Product of Quaternions)
For the conjugated of the product of two quaternions: q = [s, (x, y, z)] and q ′ = [s′, (x′, y′, z′)] we have

(qq′)∗ = q′∗q∗. (18.191)

“book” — 2005/9/30 — 15:44 — page 601 — #613✐
✐

✐
✐

✐
✐

✐
✐

18.5 PHYSICS-BASED ANIMATION 601

Proof of Proposition 18.40:
We will prove the equality by straightforward computation of the left-hand side and the right-hand side.
From the left-hand side we have

(qq′)∗ =
[
ss′ − v · v′, sv′ + s′v + v × v′]∗ (18.192a)

=
[
ss′ − v · v′,−sv′ − s′v − v × v′] , (18.192b)

and from the right-hand side we get

q′∗q∗ = [s′,−v′][s,−v] (18.193a)
= [ss′ − v · v′,−s′v − sv′ + v′ × v] (18.193b)
= [ss′ − v · v′,−s′v − sv′ − v × v′]. (18.193c)

By comparison, we discover that the left-hand side is equal to the right-hand side. This completes our
proof. !

Definition 18.43 (Inner Product of Quaternions)
The inner product between two quaternions q = [s, (x, y, z)] and q ′ = [s′, (x′, y′, z′)] is defined as follows

q · q′ = ss′ + v · v′. (18.194)

Definition 18.44 (The Norm of a Quaternion)
The norm (or length) of a quaternion is defined by

∥q∥ =
√

q · q =
√

qq∗. (18.195)

theorem 18.41 (An Unit Quaternion is a Rotation)
A quaternion, with norm equal to 1, is called a unit quaternion. If we have the unit quaternion,

q = [cos θ,n sin θ], (18.196)

then it represents a rotation of 2θ radians around the normalized axis n.

theorem 18.42 (Quaternion Rotation)
Given p = [0, r] and a unit quaternion q = [cos θ,n sin θ], then the rotation of p is given by,

p′ = qpq∗ (18.197)

where p′ is p rotated by 2θ radians around the axis n.

theorem 18.43 (Compound Rotations)
Given p = [0, r] and two unit quaternions q and q ′, then the rotation of p first by q and then with q ′ is
given by the quaternion

r = q′q (18.198)

The proposition states that composition of rotations is equivalent to product of quaternions.

“book” — 2005/9/30 — 15:44 — page 602 — #614✐
✐

✐
✐

✐
✐

✐
✐

602 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

Proof of Proposition 18.43:
From Proposition 18.42 we have:

p′ = qpq∗ (18.199)
now p′ must be rotated by q′, using the same proposition yields:

p′′ = q′p′q′∗ (18.200a)
= q′(qpq∗)q′∗ (18.200b)
= (q′q)p(q′q)∗ (18.200c)
= rpr∗ (18.200d)

which is what we wanted to prove. !
theorem 18.44 (Conversion from Rotation Matrix to Quaternion)
Given a rotation matrix, M , then the corresponding quaternion q = [s, (x, y, z)] is given by:

s =
1

2

√
M11 + M 22 + M 33 + 1 (18.201a)

x =
M32 + M23

4s
(18.201b)

y =
M13 + M31

4s
(18.201c)

z =
M21 + M12

4s
(18.201d)

If the rotation angle is π radians (180 degrees) then the value of the trace of the rotation matrix is −1.
This means that the value of s will be zero, and it will become impossible to compute the x, y, and z
values.

If the conversion is done on a computer then one would also have to consider the numerical inaccu-
racies as the trace of the rotation matrix gets close to −1.

theorem 18.45 (Conversion from Quaternion to Rotation Matrix)
Given a unit quaternion q = [s, (x, y, z)], the corresponding rotation matrix is:

M =

⎛

⎝
1− 2(y2 + z2) 2xy − 2sz 2sy + 2xz

2xy + 2sz 1− 2(x2 + z2) −2sx + 2yz
−2sy + 2xz 2sx + 2yz 1− 2(x2 + y2)

⎞

⎠ (18.202)

theorem 18.46 (The Time Derivative of the Quaternion)
Given a body with an orientation represented by the rotation q(t0), and an angular velocity of ω(t), then
the time derivative of the orientation is given by:

q̇(t0) =
1

2
[0,ω(t0)]q(t0) (18.203)

Using ω = [0,ω(t0)], this can be written as:

q̇ =
1

2
ωq (18.204)

“book” — 2005/9/30 — 15:44 — page 603 — #615✐
✐

✐
✐

✐
✐

✐
✐

18.5 PHYSICS-BASED ANIMATION 603

Proof of Proposition 18.46:
The angular velocity ω(t) means that the body rotates ∥ω(t)∥

2
radians per second around the axis given

by ω(t)
∥ω(t)∥

2

. After ∆t seconds the body must be rotated by:

r(t) = [cos
∥ω(t)∥

2
∆t

2
,
ω(t)

∥ω(t)∥
2

sin
∥ω(t)∥

2
∆t

2
] (18.205)

Where ∆t is some infinitely small value, such that we can assume that the angular acceleration is effec-
tively constant. The orientation of the body after ∆t seconds must then be:

q(t0 + ∆t) = r(t0)q(t0) (18.206)

If we substitute t = t0 + ∆t and the expression for r(t0), then we have the following equation for the
orientation of the body:

q(t) = [cos
∥ω(t0)∥2 (t− t0)

2
,
ω(t0)

∥ω(t0)∥2
sin
∥ω(t0)∥2 (t− t0)

2
]q(t0) (18.207)

Now all we need to do is to differentiate this equation with respect to time and remember to evaluate the
final expression at time t = t0 (this is essentially the same as taking the limit of q(t0 + ∆t)− q(t0) as ∆t
goes to zero). Doing so yields:

q̇(t) =
d

dt

(

[cos
∥ω(t0)∥2 (t− t0)

2
, sin
∥ω(t0)∥2 (t− t0)

2

ω(t0)

∥ω(t0)∥2
]q(t0)

)

(18.208a)

=
d

dt

(

[cos
∥ω(t0)∥2 (t− t0)

2
, sin
∥ω(t0)∥2 (t− t0)

2

ω(t0)

∥ω(t0)∥2
]

)

q(t0) (18.208b)

=

[
d

dt

(
cos
∥ω(t0)∥2 (t− t0)

2

)
,

d

dt

(
sin
∥ω(t0)∥2 (t− t0)

2

ω(t0)

∥ω(t0)∥2

)]
q(t0) (18.208c)

=

[
−
∥ω(t0)∥2

2
sin
∥ω(t0)∥2 (t− t0)

2
,
∥ω(t0)∥2

2
cos
∥ω(t0)∥2 (t− t0)

2

ω(t0)

∥ω(t0)∥2

]
q(t0)

(18.208d)

=

[

−
∥ω(t0)∥2

2
sin 0,

∥ω(t0)∥2
2

cos 0
ω(t0)

∥ω(t0)∥2

]

q(t0) (18.208e)

=

[
0,
∥ω(t0)∥2

2

ω(t0)

∥ω(t0)∥2

]
q(t0) (18.208f)

=
1

2
[0,ω(t0)] q(t0) (18.208g)

This completes the proof. !

“book” — 2005/9/30 — 15:44 — page 604 — #616✐
✐

✐
✐

✐
✐

✐
✐

604 CHAPTER 18. VECTORS, MATRICES, AND QUATERNIONS

theorem 18.47 (Quaternion Matrix)

1

2
ωiqi = Qiωi, (18.209)

where

Qi =
1

2

⎡

⎢⎢⎣

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

⎤

⎥⎥⎦ . (18.210)

Proof of Proposition 18.47:
Let us start by writing the quaternion product rule, for two quaternions q = [s,v] and q ′ = [s′,v′],

qq′ =
[
ss′ − v · v′, sv′ + s′v + v × v′] . (18.211)

We will now use this product rule on the left side of (18.209), and we get

1

2
ωiqi =

1

2
[0,ωi] [si,vi] (18.212a)

=
1

2
[0si − ωi · vi, 0vi + siωi + ωi × vi] (18.212b)

=
1

2
[−vi · ωi, siωi − vi × ωi] (18.212c)

=
1

2

⎡

⎣−vT
i ωi,

⎡

⎣
si 0 0
0 si 0
0 0 si

⎤

⎦ωi − vi
×ωi

⎤

⎦ (18.212d)

We are now almost finished. We only have to remember that v i = [xi, yi, zi]
T and use the definition of

the cross product matrix (18.65), this yields

1

2
ωiqi =

1

2

⎡

⎣[−xi −yi −zi
]
,

⎛

⎝

⎡

⎣
si 0 0
0 si 0
0 0 si

⎤

⎦−

⎡

⎣
0 −zi yi

zi 0 −xi

−yi xi 0

⎤

⎦

⎞

⎠

⎤

⎦ωi (18.213a)

=
1

2

⎡

⎢⎢⎣

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

⎤

⎥⎥⎦ωi (18.213b)

Comparing this with the (18.210) for Qi we conclude that

1

2
ωiqi = Qiωi. (18.214)

We have proved what we wanted. !

“book” — 2005/9/30 — 15:44 — page 605 — #617✐
✐

✐
✐

✐
✐

✐
✐

19

Solving Linear Systems of Equations

Often in physics-based animation, we have to solve sets of linear equations. Popular sources for algorithms
are [Press et al., 1999a, Golub et al., 1996], which we follow in this chapter.

A linear set of equations may be written as

a11r1 + a12r2 + · · · + a1NrN = b1, (19.1a)
a21r1 + a22r2 + · · · + a2NrN = b2, (19.1b)

...
aM1r1 + aM2r2 + · · · + aMNrN = bM , (19.1c)

or in matrix form as
Ar = b, (19.2)

where A = {aij} ∈ RN×M , r = [r1, r2, . . . , rN]T , and b = [b1, b2, . . . , bN]T . The typical situation is
that A and b are given, and that we wish to solve for r. As an example, consider the equations

2r1 + 4r2 = 4, (19.3a)
−3r1 + r2 = 2, (19.3b)

which are shown in Figure 19.1. The solution is the point where the lines cross at [−2/7, 8/7]T .
When M < N there are fewer equations than unknowns, and the system cannot be solved without ex-

tra constraints. In the case that M = N , there exists a solution as long as det A ̸= 0 (see Definition 18.23
for a definition of the determinant). If detA = 0, then the system is degenerated and can be reduced to
yield a system of equations with fewer than M equations. Numerically speaking, the determinant may
be near the round-off error, and is thus considered as a degenerated system of equations. In the case that
M > N , then the system is over constrained and there is typically not an exact solution, in which case
only an approximation may be found, which minimizes E(r) = ∥Ar − b∥.

In the following, we will assume that M = N and that det A ̸= 0. The conceptually simplest method
for solving for r in (19.2) is to invert A and apply it on both sides of the equation

r = A−1b. (19.4)

19.1 Gauss Elimination
Gauss elimination is a method for inverting the matrix, in which case it is also referred to as Gauss-Jordan
elimination, and when followed by back substitution may be used to solve a system of linear equations

605

“book” — 2005/9/30 — 15:44 — page 606 — #618✐
✐

✐
✐

✐
✐

✐
✐

606 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

-10 -5 5 10

-10

-5

5

10

Figure 19.1: Two lines given by the implicit equations in (19.3a)—solid and (19.3b)—dashed.

directly. It is often used as an introductory method, although it neither is the most memory conserving nor
the fastest method.

For Gauss elimination we just consider a system of equations, Ar = b, while for Gauss-Jordan
elimination, the system (19.2) is augmented with the inverse matrix C = A−1, such that AC = AA−1 =
1, where 1 is the identity matrix. We write as follows:

A
[
r | C

]
=
[
b | 1

]
(19.5a)

⎡

⎢⎢⎢⎣

a11 a12 . . . a1N

a21 a22 . . . a2N
...

. . .
aN1 aN2 . . . aNN

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

r1 c11 c12 . . . c1N

r2 c21 c22 . . . c2N
...

. . .
rN cN1 cN2 . . . cNN

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

b1 1 0 . . . 0
b2 0 1 . . . 0
...

. . .
bN 0 0 . . . 1

⎤

⎥⎥⎥⎦ (19.5b)

Gauss elimination and Gauss-Jordan elimination rely on the same process of reordering information in
the above equation without destroying its solution, such that the coefficients in A are replaced with an
identity matrix, in which case C will be replaced with A−1 and r will contain the solution to the system.
The system on form (19.5) may be rearranged in three different ways without destroying the solution to
(19.2):

Interchange two rows in A:
Since Ar = b and AC = 1 are decoupled in (19.5), we realize that interchanging two rows in A
requires that the corresponding rows in both b and 1 are interchanged, and amounts to writing the

“book” — 2005/9/30 — 15:44 — page 607 — #619✐
✐

✐
✐

✐
✐

✐
✐

19.1 PHYSICS-BASED ANIMATION 607

original equations in a different order. As an example, interchanging rows one and two is equivalent
to writing the system of equations as

a21r1 + a22r2 + · · · + a2NrN = b2, (19.6a)
a11r1 + a12r2 + · · · + a1NrN = b1, (19.6b)

...
aN1r1 + aN2r2 + · · · + aNNrN = bN , (19.6c)

which clearly does not change its solution. The same argument holds for AC = 1.

Interchange two columns in A:
Interchanging two columns in A implies that the corresponding rows in r and C must be inter-
changed. As an example, interchanging columns one and two is equivalent to writing the system of
equations as

a12r2 + a11r1 + · · · + a1NrN = b1, (19.7a)
a22r2 + a21r1 + · · · + a2NrN = b2, (19.7b)

...
aN2r2 + aN1r1 + · · · + aNNrN = bN , (19.7c)

which clearly does not change its solution. The same argument holds for AC = 1. However, in
contrast to the interchanging of rows, the first element of the solution in r is now to be found on
position two, hence, we need to track the interchanging of columns in order to unscramble the final
solution to the original ordering.

Replace a row in A with the linear combination of itself with any other row in A:
Replacing a row in A with the linear combination of itself with any other row in A will not destroy
the solution as long as the same linear combination is performed on the same rows in b and 1. When
using Ai∗ to denote the i’th row in A, we may, as an example, replace row two with A2∗− a21

a11
A1∗,

which is equivalent to replacing the second equation in (19.1) with

(a21r1 + a22r2 + · · · + (a2N)rN)− a21

a11
(a11r1 + a12r2 + · · · + a1NrN) = b1 −

a21

a11
b2,

(19.8a)
⇓

(
a21 −

a21

a11
a11

)
r1 +

(
a22 −

a21

a11
a12

)
r2 + · · · +

(
a2N −

a21

a11
a1N

)
rN = b1 −

a21

a11
b2,

(19.8b)
⇓

(
a22 −

a21

a11
a12

)
r2 + · · · +

(
a2N −

a21

a11
a1N

)
rN = b1 −

a21

a11
b2.

(19.8c)

“book” — 2005/9/30 — 15:44 — page 608 — #620✐
✐

✐
✐

✐
✐

✐
✐

608 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

The same argument holds for AC = 1.

In (19.8), we see that the dependency on the first equation in the second equation may be factored out.
This is the essence of elimination; that is, if we first eliminate the dependency on the first equation in
equations 2 . . . N , then we may eliminate the dependency on the resulting second equation in resulting
3 . . . N equations and recurse until we have obtained an equation of the form

Ur = b′, (19.9)

where U = {uij} is an upper triangular matrix, that is,

u11r1 + u12r2 + · · · + u1NrN = b′1, (19.10a)
u22r2 + · · · + u2NrN = b′2, (19.10b)

...
uNNrN = b′N , (19.10c)

for Gauss elimination or with the added and reordered matrices C ′ and 1′ for Gauss-Jordan.
For Gauss-Jordan elimination, the reordered matrix C is now equal to the inverse of A, and we may

thus use this to compute the solution for r. In the case of Gauss elimination, we may perform back
substitution, as follows: the last equation in (19.10) is to solve for rN =

b′N
uNN

, which in turn may be use

to solve for rN−1 =
b′N−1−uNN rN

u(N−1)N
, and recursively for the rest of r.

Both the Gauss-elimination and the Gauss-Jordan elimination are numerically unstable, since if the
leading coefficient of the term to be eliminated is zero, then elimination is impossible; that is, elimination
will fail in (19.8) if a11 = 0 or close to the round-off error. The solution is to perform a pivot; that is,
interchange rows and/or columns to avoid such a situation. Although not completely safe, it is usually
enough to interchange rows such that the equation with the largest leading coefficient is to be eliminated
in the remaining equations.

19.2 LU Decomposition

Any matrix A may be factorized into two triangular matrices,

LU = A (19.11)

“book” — 2005/9/30 — 15:44 — page 609 — #621✐
✐

✐
✐

✐
✐

✐
✐

19.2 PHYSICS-BASED ANIMATION 609

such that L and U are lower and upper triangular matrices,

L =

⎡

⎢⎢⎢⎣

l11 0 0 . . . 0
l21 l22 0 . . . 0
...

. . .
lN1 lN2 lN3 . . . lNN

⎤

⎥⎥⎥⎦
, (19.12a)

U =

⎡

⎢⎢⎢⎣

u11 u12 u13 . . . uNN

0 u22 u23 . . . u2N
...

. . .
0 0 0 . . . uNN

⎤

⎥⎥⎥⎦
. (19.12b)

This is known as LU decomposition. Using LU decomposition, we may solve (19.2) by back substitution
in two steps. That is, write (19.2) as

LUr = b, (19.13a)
⇓

Lp = b (19.13b)

where

p = Ur. (19.14)

That is, using forward substitution, which is equivalent to back substitution, may be used first to solve for
p in (19.13b) and then back substitution may be used to solve for r in (19.14).

The triangular matrices L and U contain N 2 + N unknowns, while A only has N 2 coefficients, since
the diagonal is nonzero in both L and U . As a consequence, we must find further N equations to solve
for L and U in (19.11). In Crout’s algorithm

[Press et al., 1999a, p. 44] lii = 1 is used, in which case the coefficient aij may be written as

aij = li∗u∗j . (19.15)

“book” — 2005/9/30 — 15:44 — page 610 — #622✐
✐

✐
✐

✐
✐

✐
✐

610 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

algorithm Crout(A)
N = size(A)
L = zeros(N,N)
U = zeros(N,N)
for i=1:N

L(i,i) = 1;
for j=1:N

for i=1:j
U(i,j) = A(i,j) - L(i,1:i-1)*U(1:i-1,j)

for i=j+1:N
L(i,j) = (A(i,j) - L(i,1:j-1)*U(1:j-1,j))

end
end

Figure 19.2: Pseudocode for Crout’s algorithm for LU decomposition without pivot.

Examining the first few coefficients, we find that

a11 = l11u11 = u11, (19.16a)
a12 = l11u12 = u12, (19.16b)

...
a21 = l21u11, (19.16c)
a22 = l21u12 + l22u22 = l21u12 + u22, (19.16d)
a23 = l21u13 + l22u23 = l21u13 + u23, (19.16e)

...
a31 = l31u11, (19.16f)
a32 = l31u12 + l32u22, (19.16g)
a33 = l31u13 + l32u23 + l33u33 = l31u13 + l32u23 + u33, (19.16h)
a34 = l31u14 + l32u24 + l33u34 = l31u14 + l32u24 + u34, (19.16i)

...

Thus, we may use a1∗ to solve for u1∗ in (19.16a), (19.16b), etc., and using this knowledge we may solve
for l∗1 in (19.16c), (19.16f), etc. We now only need to determine the coefficients of L and U in the
(2 . . . N)× (2 . . . N) submatrices. In (19.16d) we realize that the coefficients l21 and u12 are now known.
Hence, we may solve for u22, and likewise we may solve for u23 in (19.16e) and the remaining coefficients
in u2∗. Having u1∗, l∗1, and u2∗ we may solve for l∗2 in (19.16g) etc., and we thus only need to determine
the coefficients of L and U in the (3 . . . N)×(3 . . . N) submatrices, and the remaining coefficients follow
by induction. This is the basis of Crout’s algorithm, which is shown in Figure 19.2. Pivoting is also part
of Crout’s algorithm and is discussed, for example, in [Press et al., 1999a, p. 46]; however, we will omit
this for clarity.

“book” — 2005/9/30 — 15:44 — page 611 — #623✐
✐

✐
✐

✐
✐

✐
✐

19.4 PHYSICS-BASED ANIMATION 611

In the special case when A is symmetric and positive-definite, (see Section 18.2 for a definition), then
we may write

LLT = A (19.17)

and the LU-decomposition becomes particularly simple, since the last loop in Figure 19.2 is not needed
because of the symmetry. This is known as Choleski decomposition, and it can be shown that Cholesky
decomposition is very stable and needs no pivoting.

19.3 Singular Value Decomposition

Singular value decomposition (SVD) is a method for solving for r in

Ar = b, (19.18)

when r ∈ Rn, b ∈ Rm, and A ∈ Rm×n,m ≥ n is singular or close to singular. The fact that m ≥
n implies that there are more equations than unknown, in which case the system is called and over-
constrained system.

Any matrix A ∈ Rm×n,m ≥ n can be written on the following form:

A = UDV T , (19.19)

where D ∈ Rn×n is a diagonal matrix, and where U ∈ Rm×n and V ∈ Rn×n are both orthogonal, i.e.,
their column vectors form an orthonormal basis. For these reasons, the inverse of A is immediately found
to be

A−1 = V D−1UT , (19.20)

where
(
D−1

)
ii

= 1
dii

. However, when A is singular or close to singular, then there will be diagonal
elements dii, which are close to zero, and D−1 will have diagonal values that are near infinity. Singularity
of A means that there are areas in Ω ⊆ Rn, where Ar̃ = 0, r̃ ∈ Ω. The set Ω is called the nullspace. A
consequence is that r̃ may be added to any given solution r /∈ Ω, while still fulfilling the equation,

A (r + r̃) = Ar = b, (19.21)

The implication is that the solution is undetermined, and we must choose a value. There are two cases to
consider: either b is reachable for some r, in which case b is said to be in the range of A, or otherwise
there is no r which solves the system. In both cases, the choice by singular value decomposition is to set
1

dii
= 0 in (19.20), when dii ≃ 0. When b is in the range of A, this is equivalent to picking the value of r,

which minimizes ∥r∥
2
. When b is not in the range of A, this is equivalent to picking r which minimizes

∥Ar − b∥
2
. See [Press et al., 1999a, p. 62] for a simple proof. An algorithm for computing the singular

value decomposition is given in [Golub et al., 1996, Section 8.6].

“book” — 2005/9/30 — 15:44 — page 612 — #624✐
✐

✐
✐

✐
✐

✐
✐

612 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

19.4 Linear Least Squares

A method related to singular value decomposition is the method of linear least squares, which as singular
value decomposition seeks the minimum of

r∗ = arg min
r
∥Ar − b∥2

2
. (19.22)

The origin of the linear least square problem is fitting: given a set of data-values {xj , yj}, j = 1 . . . m,
we wish to find the parameters a ∈ Rm of a function f such as the coefficients of the polynomial

f(a, x) =
m∑

i=1

aix
i−1, (19.23)

which minimizes the quadratic distance

a∗ = arg min
a

n∑

j=1

(
f(a, xj)− yj

σj

)2

. (19.24)

The coefficients σj are a measure of error on the j’th data-value, and if nothing is known or presupposed,
then σj = 1. We will assume in the following that σj = 1. In general, yj,f ,x ∈ Rn are vector functions,
in which case we write

f(x) =
m∑

i=1

aixi(x) = Xxa, (19.25)

where xi(x) are any functions but often form an orthonormal basis. Since we give m data values, we can
at most determine m parameters, hence, a ∈ Rm and we may fix X = xi(xj),X ∈ Rn×m, which is
called design matrix. Thus, our minimization problem is reduced to

a∗ = arg min
a
∥Xa− y∥2

2
, (19.26)

and we find complete resemblance with the singular value decomposition method. Minimum is obtained
when

∂ ∥Xa− y∥2
2

∂a
= 0. (19.27)

To obtain the partial derivative we first rewrite the squared Euclidean norm

∥Xa− y∥2
2

= (Xa− y)T (Xa− y) (19.28a)

= aT XT Xa− aT XT y − yT Xa− yT y (19.28b)

= aT XT Xa− 2yT Xa− yT y, (19.28c)

“book” — 2005/9/30 — 15:44 — page 613 — #625✐
✐

✐
✐

✐
✐

✐
✐

19.5 PHYSICS-BASED ANIMATION 613

using aT XT y = yT Xa, since scalars are invariant to the transpose operator. Following Chapter 18.3.1,
we perform the mechanical exercise of calculating the differential in order to evaluate (19.27):

d ∥Xa− y∥2
2

= d
(
aT XT Xa− 2yT Xa− yT y

)
(19.29a)

=
(
daT

)
XT Xa + aT

(
dXT

)
Xa + aT XT (dX) a + aT XT X da

− 2
((

dyT
)
Xa + yT (dX) a + yT X da

)

−
((

dyT
)
y + yT dy

)
. (19.29b)

We are only interested in the linear terms involving da, and using sloppy notation, we write

∂ ∥Xa− y∥2
2

∂a
=

(
daT

)
XT Xa + aT XT X da− 2yT X da

da
(19.30a)

= 2aT XT X − 2yT X, (19.30b)

where we again made use of the invariance of scalars to the transpose operator. The coefficients a that
optimize (19.26) are found by solving aT XT X − yT X = 0, or equivalently by rearrangement and
application of the transpose operator

XT Xa = XT y. (19.31)

This may be solved using Gauss-elimination. The matrix XT X is positive-definite hence invertible,
and this is often written as a =

(
XT X

)−1
XT y, where the matrix

(
XT X

)−1
XT is known as the

pseudoinverse, and the system may be solved using Cholesky decomposition.

19.5 The Jacobi and Gauss-Seidel Methods
Iterative methods for solving linear systems of equations are often rejected in the classical literature be-
cause they converge very slowly toward an accurate solution. In animation, high precision is most often
not a major concern, and the iterative solutions are favored, since they very quickly produce solutions that
are sufficiently accurate for typical animation problems.

An iterative method can be stated as

r k+1 = f(r k), (19.32)

where the superscript k denotes the iteration. The iteration is continued until a fixed point is reached,

r ∗ = f(r ∗). (19.33)

Here, r ∗ is a solution, and the limit of the sequence
{
r 0, r 1, . . . , r ∗}. Converges will be discussed later

in Section 19.7. Iterative methods are very effective for solving large sparse matrix systems of the form
(19.2). The first step to bring such a system onto the form of (19.32) is to decompose A into a sum of
three matrices: a strictly lower matrix L, a diagonal matrix D, and a strictly upper matrix U , such that

A = L + D + U . (19.34)

“book” — 2005/9/30 — 15:44 — page 614 — #626✐
✐

✐
✐

✐
✐

✐
✐

614 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

This implies that

(L + D + U) r = b, (19.35a)
⇓

Dr = b− (L + U) r. (19.35b)

As long as A and hence D have nonzero diagonal elements, we can invert D and write

r = D−1b−D−1 (L + U) r, (19.36a)
⇓

r = c + Tr, (19.36b)

where c = D−1b, and T = −D−1 (L + U). Thus we have found a linear equation of (19.2) on the form
(19.33). If the vector r is a solution to the system, then (19.36) is on a fixed point. If r is not a solution,
we may use (19.36) as an update rule by imposing an iteration number as

r k+1 = c + Tr k, (19.37)

All iterative methods on this form are called stationary iterative methods, if neither the matrix T nor the
vector c depend upon the iteration count k. In the following, we will treat stationary methods and defer
nonstationary methods until Section 19.9.

Since D is a diagonal matrix, then D−1 is also diagonal, and it is very easy to show that
(
D−1

)
ij

=
1

aij
. Hence, the iterative scheme may be calculated as

r k+1
i =

(
bi −

∑i−1
j=0 li,jr k

j −
∑n−1

j=i+1 ui,jr k
j

)

ai,i
(19.38)

This scheme is the Jacobi method and a pseudocode version is shown in Figure 19.3 From the figure it can
be seen that the algorithm iterates until a convergence test succeeds. Stopping criteria will be discussed in
detail in Section 19.7.

Looking closely at (19.38), we see that when updating r k+1
i , then we have already computed r k+1

j

for all j < i, and we may use the most recent values in the computation of r k+1
i to get a faster solution.

Our update rule now becomes

r k+1
i =

(
bi −

∑i−1
j=0 li,jr

k+1
j −

∑n−1
j=i+1 ui,jr k

j

)

ai,i
, (19.39)

which is known as Gauss-Seidel method. Pseudocode for the Gauss-Seidel method is listed in Figure 19.4.
For a closer examination of the Gauss-Seidel method, we rewrite (19.39) by multiplying both sides by a i,i

and collecting all k + 1’th terms on the left-hand side,

ai,ir
k+1
i +

i−1∑

j=0

li,jr
k+1
j = bi −

n−1∑

j=i+1

ui,jr
k
j . (19.40)

“book” — 2005/9/30 — 15:44 — page 615 — #627✐
✐

✐
✐

✐
✐

✐
✐

19.5 PHYSICS-BASED ANIMATION 615

algorithm Jacobi(A,x,b)
r = initial guess
for k=0,1,2,3,... do

for i=0 to n-1 do
delta = 0
for j=0 to i-1 do

delta += A(i,j)*r(j)
next j
for j=i+1 to n-1 do

delta += A(i,j)*r(j)
next j
rNext(i) = (b(i) - delta)/A(i,i)

next i
r = rNext
check convergence, continue if necessary

next k
end algorithm

Figure 19.3: Pseudocode for the Jacobi method.

algorithm Gauss-Seidel(A,x,b)
r = initial guess
for k=0,1,2,3,... do

for i=0 to n-1 do
delta = 0
for j=0 to i-1 do

delta += A(i,j)*r(j)
next j
for j=i+1 to n-1 do

delta += A(i,j)*r(j)
next j
r(i) = (b(i) - delta)/A(i,i)

next i
check convergence, continue if necessary

next k
end algorithm

Figure 19.4: The Gauss-Seidel method.

“book” — 2005/9/30 — 15:44 — page 616 — #628✐
✐

✐
✐

✐
✐

✐
✐

616 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

It now follows that
(D + L) r k+1 = b−Ur k, (19.41)

and by inverting D + L we find that

r k+1 = (D + L)−1
(
b−Ur k

)
, (19.42a)

⇓
r k+1 = Tr k + c, (19.42b)

where we have used T = − (D + L)−1 U , and c = (D + L)−1 b. The Jacobi and Gauss-Seidel update
equations (19.36) and (19.42) are on the same form, which implies that the same study of convergence
will apply for both. We refer the interested reader to [Burden et al., 1997] for details.

In general, the Gauss-Seidel method is considered superior to the Jacobi method; however, there are
systems where one converges and the other does not and vice versa. From a computational viewpoint, the
major difference between the Jacobi method and the Gauss-Seidel method is that in the Jacobi method all
variables depend only on the solution from the previous iteration and can thus be updated in parallel. In
contrast, the Gauss-Seidel method partly depends on both the previous and the current solution and is thus
sequential in nature. Furthermore, the Gauss-Seidel method depends on the order in which the variables
are updated. This implies that if we compute the solution, r k, and then repeat the computation with a
reordering, π(·), of the variables to obtain the solution, π(r) k, then it is very likely that we find

r k ̸= π(r) k. (19.43)

Thus, reordering can affect the rate of convergence of the Gauss-Seidel method, which may be exploited
to increase convergence rate.

19.6 Successive Over Relaxation

Suppose that r k is an approximation to the linear system Ar = b, then we may calculate the approxima-
tion residual as

ρ k = Ar k − b. (19.44)

Let
{
ρ k

i

}
denote the sequence of residual vectors for the Gauss-Seidel method, corresponding to the

sequence of solutions
{
r k

i

}
. The subscript might appear confusing; it refers to the currently known

solution in the k’th iteration just before updating the i’th variable. Inserting the Gauss-Seidel update rule
(19.39) into (19.44) we find the m’th coordinate of ρ k+1

i to be

ρ k+1
mi = bm −

i−1∑

j=0

am,jr
k+1
j −

n−1∑

j=i+1

am,jr
k
j − am,ir

k
m (19.45)

= bm −
i−1∑

j=0

am,jr
k+1
j −

n−1∑

j=i

am,jr
k
j (19.46)

“book” — 2005/9/30 — 15:44 — page 617 — #629✐
✐

✐
✐

✐
✐

✐
✐

19.6 PHYSICS-BASED ANIMATION 617

If we look at the i’th coordinate, we have

ρ k+1
ii = bi −

i−1∑

j=0

ai,jr
k+1
j −

n−1∑

j=i+1

ai,jr
k
j − ai,ir

k
i (19.47)

ai,ir
k
i + ρ k+1

ii = bi −
i−1∑

j=0

ai,jr
k+1
j −

n−1∑

j=i+1

ai,jr
k
j

Looking at the left-hand side and comparing with (19.39), we see that it is equal to ai,ir
k+1
i , so we have

ai,ir
k
i + ρ k+1

ii = ai,ir
k+1
i (19.48)

Or if we rearrange terms we get

r k+1
i = r k

i +
ρ k+1

ii

ai,i
. (19.49)

Until now we only rewrite the update step in terms of the residual vector. We can gain more insight into
the Gauss-Seidel method by repeating the above steps for the i + 1’th variable update, which is

ρ k+1
i,i+1 = bi −

i∑

j=0

ai,jr
k+1
j −

n−1∑

j=i+1

ai,jr
k
j

= bi −
i−1∑

j=0

ai,jr
k+1
j −

n−1∑

j=i+1

ai,jr
k
j

︸ ︷︷ ︸
ai,ir

k+1
i

−ai,ir
k+1
i

= 0

The last step follows from (19.39). Thus, the Gauss-Seidel method is characterized by choosing r k+1
i

in such a way that the i’th component of ρ k+1
i+1 is zero. Reducing one coordinate of the residual vector

to zero is not generally the most efficient way to reduce the overall size of the vector ρ k+1
i+1 . We need to

choose r k+1
i to make

∥∥∥ρ k+1
i+1

∥∥∥ small. Modifying (19.49) to

r k+1
i = r k

i + ω
ρ k+1

ii

ai,i
(19.50)

where ω > 0. For certain values of ω, the norm of the residual vector is reduced and this leads to faster
convergence. The ω parameter is a relaxation of the Gauss-Seidel method, and the new iterative scheme
is called successive over relaxation (SOR). When 0 < ω < 1 the method is termed under-relaxation,
and when 1 < ω the method is call over relaxation. Notice that when ω = 1 the method is simply the
Gauss-Seidel method.

“book” — 2005/9/30 — 15:44 — page 618 — #630✐
✐

✐
✐

✐
✐

✐
✐

618 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

algorithm SOR(A,x,b)
r = initial guess
for k=0,1,2,3,... do

for i=0 to n-1 do
delta = 0
for j=0 to i-1 do

delta += A(i,j)*r(j)
next j
for j=i+1 to n-1 do

delta += A(i,j)*r(j)
next j
delta = (b(i) - delta)/A(i,i)
r(i) = r(i) + w(delta - r(i))

next i
check convergence, continue if necessary

next k
end algorithm

Figure 19.5: The SOR method.

Insert (19.47) into (19.50) to reformulate the SOR method into a more implementation friendly equa-
tion,

r k+1
i = r k

i + ω
bi −

∑i−1
j=0 ai,jr

k+1
j −

∑n−1
j=i+1 ai,jr k

j − ai,ir k
i

ai,i
(19.51)

= (1− ω) r k
i +

ω

ai,i

⎛

⎝bi −
i−1∑

j=0

ai,jr
k+1
j −

n−1∑

j=i+1

ai,jr
k
j

⎞

⎠ , (19.52)

whose pseudocode is shown in Figure 19.5. To determine the matrix form of the SOR method we rewrite
(19.52) as

ai,ir
k+1
i + ω

i−1∑

j=0

ai,jr
k+1
j = (1− ω) ai,ir

k
i + ωbi − ω

n−1∑

j=i+1

ai,jr
k
j , (19.53)

from which we see that

(D + ωL) r k+1 = ((1− ω)D − ωU) r k + ωb (19.54)

or
r k+1 = (D + ωL)−1 ((1− ω) D − ωU) r k + ω (D + ωL)−1 b (19.55)

If we let T = (D + ωL)−1 ((1− ω)D − ωU), and c = ω (D + ωL)−1 b, then we see that the SOR
method can be written on the form

r k+1 = Tr k + c. (19.56)

“book” — 2005/9/30 — 15:44 — page 619 — #631✐
✐

✐
✐

✐
✐

✐
✐

19.7 PHYSICS-BASED ANIMATION 619

Jacobi Method r k+1 = D−1
(
b− (L + U) r k

)

Gauss-Seidel r k+1 = D−1
(
b−Lr k+1 −Ur k

)

Successive over relaxation r k+1 = r k + ω
(
D−1

(
b−Lr k+1 −Ur k

)
− r k

)

Table 19.1: Matrix forms of the three iterative Matrix solvers for the system (L + D + U)r = b.

In short, the SOR method has the same form as the Jacobi and the Gauss-Seidel methods.
We end this section by listing the matrix forms of the three iterative matrix solver methods in Ta-

ble 19.1.

19.7 Stopping Criteria for Iterative Solvers

A major point of any practical implementation of any iterative solver is to determine when to stop the iter-
ations. A combination of stopping criteria is often used, such as a maximum on the number of iterations,
and convergence tests.

It is often a good idea to specify a maximum limit on the number of iterations that one is willing to
use in an iterative method. There are mainly two good reasons for this. In a time-critical computation one
wants to control how much time is spent on a computation, a maximum limit can help enforce this. In
case the problem is unsolvable (i.e., diverges), an iterative method would loop forever, and the loop must
therefore be stopped by a maximum iteration limit.

This is typically done by some form of stopping test based on the convergence of the method. A
convergence test is a test for how close the vector r r+1 is to a fixed point (see (19.33)).

Definition 19.1 (Convergence)
An infinite sequence

{
r k
}∞

k=0
=
{
r 0,x 1, r 2, . . .

}
of vectors in Rn is said to converge to r ∗ w.r.t. the

vector norm ∥·∥ if, given any ε > 0, there exist an integer N(ε) such that
∥∥∥r k − r ∗

∥∥∥ < ε for all k ≥ N(ε). (19.57)

As is seen from Definition 19.1, the concept of a vector norm is vital to defining convergence. In theory,
any vector norm can be used, but we will only consider the l2 and the l∞ norms, see Definition 18.11 and
Definition 18.12. Often the convergence test will consist of several stopping criteria used in combination.

An absolute estimate for the error can be taken by measuring the difference between the solutions of
two succeeding iterations, r k+1 and r k. The simplest stopping criteria is to allow for a user-specified
threshold, ε, and to consider the sequence to have converged, when

∥∥∥r k+1 − r k
∥∥∥ < ε. (19.58)

By comparison with Definition 19.1 it is evident that the test will succeed in case the iterative method
converges. Nevertheless, if convergence is very slow, then this method will fail. Even worse, there exists
divergent sequences where r k+1 − r k converges to zero, as the following example illustrates:

“book” — 2005/9/30 — 15:44 — page 620 — #632✐
✐

✐
✐

✐
✐

✐
✐

620 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

Example 19.1
Let the sequence

{
x k
}∞

k=1
of real numbers be defined by

x k =
k∑

r=1

1

r
(19.59)

Now the limit of the difference is

lim
k→∞

(
x k − x k−1

)
= lim

k→∞

(
k∑

r=1

1

r
−

k−1∑

r=1

1

r

)
= lim

k→∞

(
1

k

)
= 0 (19.60)

However,

lim
k→∞

x k = lim
k→∞

(
k∑

r=1

1

r

)
=∞ (19.61)

meaning that the sequence is divergent.

As an alternative to the absolute error measure, a measure of relative error is sometimes applied,
∥∥r k+1 − r k

∥∥
∥r k+1∥ < ε. (19.62)

Observe that the k + 1’th solution must be nonzero in order for the relative test to work. Often the l∞
norm is used, since it is cheap to compute and is much more robust toward numerical deficiencies, such
as overflow and underflow, in contrast to the l2 norm.

Using Landau symbols, see (20.11), we may define the rate of convergence as when

x k = α+ O(β k) (19.63)

then we say that x k converges to α with rate of convergence O(β k). In many cases, the sequence
{
β k
}

has the form
β k =

1

kp
(19.64)

for some number p > 0. We consider the largest value of p so that x k = α+O(1/kp) to describe the rate
at which x k converges to α.

We have given this formal presentation of rate of convergence because iterative methods might reorder
the variables such that variables with the slowest rate of convergence are updated before variables with
faster rate of convergence. In practice, the relative convergence test is not used. Instead, the magnitudes
of absolute error of the individual variables are used as an ad hoc measure of rate of convergence, that is,
if

|r k+1
i − r k

i | < |r k+1
j − r k

j | (19.65)

The i’th variable is considered to converge faster than the j’th variable. This ad hoc way of measuring rate
of convergence allows a simple approach in practice, where variables are reordered in decreasing order
w.r.t. the absolute error.

“book” — 2005/9/30 — 15:44 — page 621 — #633✐
✐

✐
✐

✐
✐

✐
✐

19.8 PHYSICS-BASED ANIMATION 621

19.8 The Gradient Descent Method
The gradient descent method [Press et al., 1999a, Golub et al., 1996, Shewchuk, 1994] is a nonstationary
iterative process, meaning that its parameters, T and c, change with time, hence, our model problem has
the following form:

r k+1 = ck + T kr
k. (19.66)

The gradient descent method has its root in minimization. Assuming that we wish to minimize the
quadratic equation,

E(r) =
1

2
rT Ar − rT b + c, (19.67)

then a common approach is to follow the gradient of E,

∇E(r) =
1

2
Ar +

1

2
AT r − b (19.68a)

=
1

2

(
A + AT

)
r − b, (19.68b)

in the negative direction. That is, using a forward Euler scheme we write

r k+1 = r k − α∇E(r k), (19.69)

where α some positive constant. This is known as the gradient descent method, and with sufficiently small
α’s will minimize (19.67). When the gradient is zero, then the Euler scheme will be at a stationary point,
and (19.67) will be at an extremal point. It is readily seen that 1

2

(
A + AT

)
r = b is a stationary point,

and in case A is symmetric then (19.68) will reduce to

∇E(r) = Ar − b, (19.70)

which will be stationary, when Ar = b. Hence, for positive-definite symmetric matrices, minimizing
(19.67) is equivalent to solving (19.2). Geometrically positive-definite matrices have a structure similar to
x2 + y2, and the gradient field is thus radiating from the global minimum as illustrated in Figure 19.6(a)
and 19.6(d). In Figure 19.6 is the graph and gradient field plotted for

f(r) = rT Ar, (19.71)

using the following three matrices,

Positive-definiteA =

[
1 0
0 1

]
, (19.72a)

Negative-definiteA =

[
−1 0
0 −1

]
, (19.72b)

IndefiniteA =

[
1 0
0 −1

]
. (19.72c)

“book” — 2005/9/30 — 15:44 — page 622 — #634✐
✐

✐
✐

✐
✐

✐
✐

622 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

-10
-5

0
5

10-10

-5

0
5
10

0
50

100
150
200

-10
-5

0
5

10

(a)

-10
-5

0
5

10-10

-5
0
5
10

-200
-150
-100
-50
0

-10
-5

0
5

10

(b)

-10
-5

0
5

10-10

-5

0
5
10

-100
-50
0

50
100

-10
-5

0
5

10

(c)

-10 -5 0 5 10

-10

-5

0

5

10

(d)

-10 -5 0 5 10
-10

-5

0

5

10

(e)

-10 -5 0 5 10
-10

-5

0

5

10

(f)

Figure 19.6: Visualizing positive-definite, negative-definite, and indefinite matrices and their correspond-
ing gradient fields.

It is visually clear that for the negative-definite matrix then the gradient descent algorithm will converge
toward a point at infinity. Of course, the maximum could be found by simply modifying the algorithm
to perform a gradient ascent instead. Worse are the indefinite matrices, which should not be expected to
converge to the saddle point.

In the remainder of this chapter we will assume that A is symmetric and positive-definite. Rather
than choosing small values for α, we could instead search for the value of α minimizing (19.67), which is
equivalent to searching for the minimum along the line starting at r k and with direction ∇E(r k). This
is known as a line search. To discuss the line searching procedure, we’ll first introduce the notion of error
and residual. Assuming that the optimum is located at r ∗, and that the current position is r k, then the
error in position is given as

ϵ k = r k − r ∗, (19.73)

“book” — 2005/9/30 — 15:44 — page 623 — #635✐
✐

✐
✐

✐
✐

✐
✐

19.9 PHYSICS-BASED ANIMATION 623

while the residual or error in b is
ρ k = b−Ar k. (19.74)

Using (19.73) and (19.70) we find that

ρ k = −Aϵ k (19.75a)

= −∇E(r k.) (19.75b)

In the line search algorithm, we search for the value of α in (19.69) that minimizes (19.67); hence, we
write the quadratic energy parameterized by α, differentiate and find the zero point

0 =
d

dα
E(r k+1(α)) (19.76a)

= ∇E(r k+1(α))T d

dα
r k+1(α) (19.76b)

= ∇E(r k+1(α))T∇E(r k). (19.76c)

Thus, we should choose α such that the new search direction is orthogonal to the previous. Using (19.75),
(19.74), and (19.69) we may determine α as follows:

0 = ∇E(r k+1(α))T∇E(r k) (19.77a)

= ρ k+1T∇E(r k) (19.77b)

=
(
b−Ar k+1

)T
∇E(r k) (19.77c)

=
(
b−A

(
r k − α∇E(r k)

))T
∇E(r k) (19.77d)

=
(
ρ k + αA∇E(r k)

)T
∇E(r k) (19.77e)

=
(
−∇E(r k) + αA∇E(r k)

)T
∇E(r k), (19.77f)

which implies that

α =
∇E(r k)T∇E(r k)

∇E(r k)T AT∇E(r k)
(19.78a)

=
(ρ k)T∇ρ k

(ρ k)T ATρ k)
, (19.78b)

and where the transpose of A can be ignored since it is a symmetric matrix. The complete algorithm is
shown in pseudocode in Figure 19.10.

“book” — 2005/9/30 — 15:44 — page 624 — #636✐
✐

✐
✐

✐
✐

✐
✐

624 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

Algorithm GradientDescent(A,b,r)
do

residual = b-A*r
alpha = (r’*r)/(r’*A*r)
r = r+alpha*residual

until residual sufficiently small
end algorithm

Figure 19.7: Pseudocode for the gradient descent algorithm on (19.67) for a symmetric, positive-definite
matrix A.

Figure 19.8: Isophotes of an elongated energy function. At each step, the search direction is parallel to
the gradient of the energy function.

19.9 The Conjugate Gradient Method

Gradient descent often is the method of choice where more complicated methods must give up. Neverthe-
less, it is rather slow, since it will tend to take repeated steps in similar directions. This is especially the
case when the energy function is deep and elongated, as shown in Figure 19.8. It would seem better to
avoid searching in directions previously investigated, and hence make a sequence of orthogonal directions,
{d 0,d 1, . . . ,d N}, such that

r k+1 = r k + αkd
k. (19.79)

This is the conjugate gradient descent method. The consequence would be that once a direction had been
investigated, then it would not be used again. Then the stationary point would be found in N iterations,
where N is the dimensionality of r. As a consequence, the error at k + 1 must be perpendicular to the
direction at k, and thus

(d k) T ϵ k+1 = 0, (19.80)

as illustrated in Figure 19.9. Thus, inserting (19.73) and (19.79) we find that

“book” — 2005/9/30 — 15:44 — page 625 — #637✐
✐

✐
✐

✐
✐

✐
✐

19.9 PHYSICS-BASED ANIMATION 625

r ∗

αkd k
ϵ k

r k+1

r k

Figure 19.9: Optimal distance along d k is such that αkd k is perpendicular to ϵk+1.

(d k)T ϵ k+1 = (d k)T
(
r k+1 − r ∗

)
(19.81a)

= (d k)T
(
r k + αkd k − r ∗

)
(19.81b)

= (d k)T
(
ϵ k + αkd k

)
, (19.81c)

and conclude that

αk =
−(d k)T ϵ k

(d k)T d k
(19.82)

Unfortunately, this is not possible without the knowledge of ϵk, and if we knew ϵk, then we would also
know the solution, r ∗.

Fortunately, performing the line search method along d k in order to find the optimal αk for a fixed k
is solvable. Hence, we start by taking the derivative of (19.67) parameterized by αk using (19.79):

0 =
∂

∂αk
E(r k+1(αk)) (19.83a)

= ∇E(r k+1(αk))
T ∂

∂αk
r k+1(αk) (19.83b)

= ∇E(r k+1(αk))
T d k. (19.83c)

Using (19.75) and setting the gradient equal to zero we find

0 = ∇E(r k+1(αk))
T d k (19.84a)

=
(
Aϵ k+1

)T
d k (19.84b)

= (d k)T Aϵ k+1. (19.84c)

This is essentially the same equation as (19.80) except it is now with the metric A instead of the usual
standard Euclidean metric. This is a generalization of orthogonality, and when two vectors fulfill aT Ab =
0, then they are said to be conjugate directions or A-orthogonal.

“book” — 2005/9/30 — 15:44 — page 626 — #638✐
✐

✐
✐

✐
✐

✐
✐

626 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

Continuing from (19.84), we rewrite the equation for conjugate directions by inserting (19.73) and
(19.79), and we find that

(d k)T Aϵ k+1 = (d k)T A(r k+1 − r ∗) (19.85a)

= (d k)T A(r k + αkd k − r ∗) (19.85b)

= (d k)T A(ϵ k + αkd k). (19.85c)

Finally, setting the above equal to zero, isolating αk, and using (19.75) gives

αk =
−(d k)T Aϵ k

(d k)T Ad k
(19.86a)

=
−(d k)Tρ k

(d k)T Ad k
. (19.86b)

Notice that if we choose d k = ρ k, then the method simplifies to gradient descent (19.78).
To find N conjugate directions, d k, we will use the conjugate Gram-Schmidt process: assume that we

have a set of linear independent vectors {δ 0, δ 1, . . . , δ N−1}, for example, the coordinate axes, then we
will iteratively produce vectors d k that are A-orthogonal to the previous {d 0,d 1, . . . ,d k−1} vectors as
follows. Start by setting,

d 0 = δ 0, (19.87)

and then for i = 1..N − 1 iteratively remove dependence on δ k from the previous selected directions d i

by

d k = δ k −
k−1∑

i=0

βkid
i. (19.88)

The constants βki are calculated using A-orthogonality, since for any j < k we enforce

(d k)T Ad j = 0, (19.89)

and when expanding with (19.88) it is found that

0 = (d k)T Ad j (19.90a)

=

(
δ k −

k−1∑

i=0

βkid
i

)T

Ad j (19.90b)

= (δ k)T Ad j −
k−1∑

i=0

βki(d
i)T Ad j (19.90c)

= (δ k)T Ad j − βkj(d
j)T Ad j. (19.90d)

Hence, isolating βji gives,

βkj =
(δ k)T Ad j

(d j)T Ad j . (19.91)

“book” — 2005/9/30 — 15:44 — page 627 — #639✐
✐

✐
✐

✐
✐

✐
✐

19.9 PHYSICS-BASED ANIMATION 627

Using the coordinate axes as the initial set of linear independent vectors {δ 0, δ 1, . . . , δ N−1} is not
optimal. Algorithmically, it’s much faster to use the residual at iteration k as δ k. To see this, let’s first
examine the error. The set {d k} gives an orthogonal basis that leads from the initial point r 0 to the
extremum point r ∗; hence, we may write the initial error ϵ 0 as a linear combination of {d k}, i.e.

ϵ 0 = r 0 − r ∗ =
N−1∑

i=0

γid i (19.92)

Using A-orthogonality, we may determine the k’th constant γk as

(d k)T Aϵ 0 =
N−1∑

i=0

γi(d k)T Ad i (19.93a)

= γk(d k)T Ad k (19.93b)
⇓

γk =
(d k)T Aϵ 0

(d k)T Ad k
(19.93c)

Furthermore, using (19.79) we can write

r k = r 0 +
k−1∑

j=0

αjd
j , (19.94)

and subtracting r ∗ from both sides we get

r k − r ∗ = r 0 − r ∗ +
k−1∑

j=0

αjd
j , (19.95a)

⇓

ϵ k = ϵ 0 +
k−1∑

j=0

αjd
j . (19.95b)

This allows us to isolate ϵ 0 and insert it into (19.93) to get,

γk =
(d k)T A

(
ϵ k −

∑k−1
j=0 αjd

j
)

(d k)T Ad k
(19.96a)

=
(d k)T Aϵ k

(d k)T Ad k
(19.96b)

=
(d k)Tρ k

(d k)T Ad k
(19.96c)

= −αk. (19.96d)

“book” — 2005/9/30 — 15:44 — page 628 — #640✐
✐

✐
✐

✐
✐

✐
✐

628 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

The consequence is that for every iteration, we remove a term in the error; that is, inserting (19.92) into
(19.95b) and using (19.96) we get

ϵ k =
N−1∑

i=0

γid i +
k−1∑

j=0

αjd
j (19.97a)

=
N−1∑

i=0

γid i −
k−1∑

j=0

δjd
j (19.97b)

=
N−1∑

i=k

γid i. (19.97c)

For the final iteration, the method converges, since we have k = N − 1 for which case the error is zero.
It is smart to use the residuals first because the residual is orthogonal to the previous search directions.

Using (19.83) and (19.75) we see that the residual is orthogonal to the previous search direction,

0 = −∇E(r k(αk))T d k−1 = (ρ k)T d k−1. (19.98)

Furthermore, the residual is orthogonal to all the previous search directions, that is,

(ρ k)T d j = 0 for j < k. (19.99)

To prove this, consider the sequential buildup of the error using (19.75), (19.79), (19.73), and (19.86),

(ρ k)T d j = −(ϵ k)T AT d j (19.100a)

= −(ϵ 0 −
k−1∑

i=0

αid i)T AT d j (19.100b)

= −(ϵ 0)T AT d j +
k−1∑

i=0

αi(d i)T AT d j (19.100c)

= −(ϵ 0)T AT d j + αj(d j)T AT d j (19.100d)

= −(ϵ 0)T AT d j − (d j)Tρ j (19.100e)

= −(ϵ 0)T AT d j + (d j)T Aϵ j (19.100f)

= −(ϵ 0)T AT d j + (d j)T A(ϵ 0 −
j−1∑

i=0

αid i) (19.100g)

= −(ϵ 0)T AT d j + (d j)T Aϵ 0 (19.100h)
= 0 (19.100i)

“book” — 2005/9/30 — 15:44 — page 629 — #641✐
✐

✐
✐

✐
✐

✐
✐

19.10 PHYSICS-BASED ANIMATION 629

The final step to reach the algorithm is to consider a simplification for calculating βkj in (19.91). Since

ρ k+1 = −Aϵ k+1 (19.101a)

= −A
(
r k+1 − r ∗

)
(19.101b)

= −A
(
r k + αkd k − r ∗

)
(19.101c)

= −A
(
ϵ k + αkd k

)
(19.101d)

= ρ k − αkAd k. (19.101e)

Multiplying both sides with (ρ j)T with get the numerator from (19.91)

(ρ j)Tρ k+1 = (ρ j)Tρ k − αk(ρ j)T Ad k (19.102a)
⇓

(ρ j)T Ad k =
1

αk

(
(ρ j)Tρ k − (ρ j)Tρ k+1

)
. (19.102b)

However, since all residuals are orthogonal we get

(ρ j)T Ad k =

⎧
⎪⎨

⎪⎩

(ρ j)Tρ j

αj j = k,

− (ρ j)Tρ j

αj−1 j = k + 1,

0 otherwise,

(19.103a)

and since βkj is only calculated for j < k we get

βkj =

{
− (ρ j)T ρ j

αj−1(d j−1)T Ad j−1 j = k + 1,

0 otherwise,
(19.104)

Finally, the complete algorithm is shown in Figure 19.10. The conjugate gradient method converges
in theory to the exact solution in N steps, where N is the dimensionality of r. However, round-off errors
will cause the solution to deviate from A orthogonality, and hence the convergence will not be perfect
after N steps. Furthermore, for large problems it may be desirable to terminate the conjugate gradient
iteration before convergence to reduce the computation time for inexact problems.

19.10 The Linear Complementarity Problem
The Linear Complementarity Problem (LCP) is a well studied mathematical problem (see [Murty, 1988,
Cottle et al., 1992]). The linear complementarity problem is used to solve for a discontinuous relation-
ship between two variables such as contact conditions between rigid bodies (see Chapter 7). Linear and
quadratic programming is often mentioned in connection with the linear complementarity problem. The

“book” — 2005/9/30 — 15:44 — page 630 — #642✐
✐

✐
✐

✐
✐

✐
✐

630 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

Algorithm ConjugateGradient(A,b,r)
direction = b - A*r
residual = direction
for i = 1:length(b)

alpha = (r’*r)/(direction’*A*direction)
New_r = r + alpha*direction
New_residual = residual - alpha*A*direction
beta = (New_residual’*New_residual)/(residual’*residual)
direction = New_residual + beta*direction
r = New_r
residual = New_residual

end
end algorithm

Figure 19.10: Pseudocode for the conjugate gradient algorithm on (19.67) for a symmetric, positive-
definite matrix A.

main reason is that a linear programming (LP) problem can be rephrased as a linear complementarity
problem, and a quadratic programming (QP) problem can be reformulated as a linear complementarity
problem. The linear complementarity problem is a general problem, which unifies linear and quadratic
programs. Finally, linear programming and quadratic programming are special cases of mathematical
programming.

Several methods exist for solving linear complementarity problems, there are four main categories of
methods: Newton methods, interior point methods, direct methods (also known as pivoting methods), and
iterative methods. We refer the interested reader to [Murty, 1988, Cottle et al., 1992] for details.

Implementing a LCP solver can be cumbersome and tricky, fortunately there already exist some
solvers. The following is a brief overview of a few existing solvers. For robust simulations PATH from
CPNET by Michael Ferris et al. [Path, 2005] is highly recommendable. It is, as far as we know, based on a
Newton method. The Lemke algorithm (a pivoting algorithm) is often considered to be a good choice, due
to its wide applicability and robustness. The source code accompanying the game physics book by Eberly
[Eberly, 2003a] contains an implementation of Lemke’s algorithm. Open Dynamics Engine by Russel
Smith [ODE, 2005] contains a Dantzig Pivoting algorithm, an iterative Successive-Over-Relaxation (SOR)
LCP Solver, and a Conjugate Gradient solver. Also OpenTissue [OpenTissue, 2005] contains implemen-
tations of the Dantzig Pivoting algorithm and an iterative SOR/Gauss-Seidel LCP solvers.

The current trend in the Game industry [NovodeX, 2005, ODE, 2005, IO Interactive A/S, 2005] is
to use iterative methods for solving LCPs, since these provide a tradeoff between accuracy and speed.
Furthermore, iterative methods are well-suited for sparse and extremely large problems. The trade-off
property can be exploited in time-critical environments to obtain a solution as accurate as the time permits.
Notice that unlike for instance the pivoting algorithms, the iterative methods provides an approximate
solution within a given threshold.

In the following we will make use of the inequality relation, ≥, for vectors. This is a shorthand
to denote that the inequality holds for each pair of components, that is u = (u1, u2, . . . , uN)T ≥

“book” — 2005/9/30 — 15:44 — page 631 — #643✐
✐

✐
✐

✐
✐

✐
✐

19.10 PHYSICS-BASED ANIMATION 631

(v1, v2, . . . , vN)T = v, if and only if ui ≥ vi for 1 ≤ i ≤ N . Now, let us briefly restate the linear
complementarity problem we want to solve,
Definition 19.2 (The Linear Complementarity Problem)
Given a symmetric matrix A ∈ Rn×n, a vector b ∈ Rn, a vector of lower limits, xlo ≤ 0, and upper limits
xhi ≥ 0, where xlo,xhi ∈ Rn. Find x ∈ Rn and w ∈ Rn such that

w = Ax− b, (19.105a)
xlo ≤ x ≤ xhi, (19.105b)

and for all i = 0, . . . , n− 1, one of the three conditions below holds

xi = xloi , wi ≥ 0, (19.106a)
xi = xhii , wi ≤ 0, (19.106b)

xloi <xi < xhii , wi = 0. (19.106c)

Notice that as long as xi is within its lower and upper limits, wi is forced to zero. Only at the lower and
upper limits is wi non-zero. Usually, the general LCP is formulated with xlo = 0 and xhi = ∞, in which
case the above definition reduces to the single set of conditions

w = Ax− b ≥ 0, (19.107a)
x ≥ 0, (19.107b)

xT w = 0. (19.107c)

In multibody dynamics problems the A-matrix is often symmetric, unless a linearized friction cone is
used, in which case auxiliary variables are used to couple the normal force to the tangential force at a
contact point. The A-matrix is often positive semi-definite (PSD) or sometimes positive definite (PD).
Even if it is PSD, tricks such as damping (adding positive values to the diagonal) can be applied to make
it PD. To make a long story short, the A-matrix can be made numerically more pleasant, however, the
solution will be damped and therefore yield weaker constraint forces.

In this section we will limit ourselves to present iterative methods based on matrix splitting methods.
These iterative methods are called projection methods. The main idea is to combine a matrix splitting
method (described in Section 19.5 and Section 19.6) with a projection/clamping operation.

Splitting methods can be summarized as follows: we want to solve Ax = b, and to do so we introduce
a splitting of A as A = M −N , hence

(M −N)x = b, (19.108)

which gives the iterative scheme,

Mx k+1 = b + Nx k, (19.109)

x k+1 = M−1(b + Nx k). (19.110)

The Jacobi method uses M = D and N = −(L + U), whereas Gauss-Seidel take M = (D + L) and
N = −U . Here M−1 can be understood as a preconditioner to the iterative scheme in (19.110).

The projection operation can be summarized as:

“book” — 2005/9/30 — 15:44 — page 632 — #644✐
✐

✐
✐

✐
✐

✐
✐

632 CHAPTER 19. SOLVING LINEAR SYSTEMS OF EQUATIONS

Definition 19.3 (Projection)
Given a vector x ∈ Rn, a vector of lower limits, xlo ≤ 0, and upper limits xhi ≥ 0, where xlo,xhi ∈ Rn,
the projection operation on x is written (x)+, and means that for each j = 0 to n− 1

x+
j = max

(
min

(
xj ,xhij

)
,xloj

)
. (19.111)

As it can be seen from Definition 19.3 the projection operation works element-wise. If a coordinate
exceeds a lower or upper limit then it is projected back onto the violated limit. We can now present the
iterative LCP solver.
Corollary 19.1 (The iterative LCP solver)
Given a splitting method, an iterative solver to the LCP problem in Definition 19.2, is given by

x k+1 =
(
M−1(b + Nx k)

)+
. (19.112)

According to [Murty, 1988] the only requirement is that A is symmetric. In which case it can be proven
that if the sequence of solutions converges to a limit point, then that point will be a solution of the LCP
(see Theorem 9.9 pp. 369 in [Murty, 1988]). Furthermore, it can be shown that if A is also PD then the
sequence will converge to a solution of the LCP (see Corollary 9.3, pp. 372 in [Murty, 1988]). This is
often enough for our purpose. We refer the interested reader to [Murty, 1988] for detailed proofs regarding
the general iterative scheme.

Convergence rate, p, can be defined as:

limk→∞

∥∥ek
∥∥

∥ek−1∥p
= λ, (19.113)

where ek is the error in the k’th iteration and λ is called the convergence constant. Linear Convergence
means p = 1, so ∥∥∥ek

∥∥∥ = λ
∥∥∥ek−1

∥∥∥ , (19.114)

Whereas quadratic means P = 2, and
∥∥∥ek
∥∥∥ = λ

∥∥∥ek−1
∥∥∥

2
(19.115)

The main problem with the iterative method we have presented is that it only has linear convergence. In
practice this means that after a certain number of iterations, the improvement per iteration is decreasing.
In fact one will always get closer to the solution, but never really hit it. This is unlike direct methods,
which is capable of providing the exact solution to the problem. Besides, the speed of convergence of the
iterative methods is dependent on the order of the variables.

The theoretical convergence rate of Newton methods is quadratic, even though [Lacoursiere, 2003]
only reported linear convergence for multibody dynamics. Interior point methods also have quadratic
convergence. The amount of work per iteration in Newton methods is no worse than O(n3). For direct
methods the amount of work per iteration is no worse than O(n2). Lemke’s method needs n iterations to
converge which yields a total complexity of O(n3).

“book” — 2005/9/30 — 15:44 — page 633 — #645✐
✐

✐
✐

✐
✐

✐
✐

19.10 PHYSICS-BASED ANIMATION 633

In contrast, the amount of work needed in the iterative method per iteration is only O(n), if an up-
per bound on the number of iterations can be set. This effectively mean, that the solver is linear in
time. Of course the solutions may be horrible, and one need other techniques to remedy these artifacts
[Erleben, 2005].

In comparison, Newton methods, direct methods, and interior point methods are more costly per itera-
tion than the iterative methods. On the other hand they often have better convergence properties, implying
they only need very few iterations to reach an acceptable solution. Nevertheless, iterative methods are
very simple to implement, and in combination with shock-propagation they can deliver acceptable solu-
tions within 5-10 iterations [Erleben, 2005].

“book” — 2005/9/30 — 15:44 — page 634 — #646✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 635 — #647✐
✐

✐
✐

✐
✐

✐
✐

20

Taylor Expansion and Derivative Approxi-
mations

Many measurements and representations consist of a discrete set of values sampled on a manifold. For
example, we may consider an image to be a discrete set of values sampled on a regular grid on a plane, and
the surface of a shape may be represented as a discrete set of triangles. To perform differential geometry,
we need to assume that the discrete set of values is sampled from an underlying analytical function.

20.1 Taylor Series
In this section we will briefly review Taylor series, since they yield great insight into the approximation of
smooth functions. This chapter is inspired by the presentation in [Bronshtein et al., 1997].

Assume that we are given a 1D “well-behaved” function, f : R → R, for which all derivatives exist
everywhere. That is, the n’th order derivative f (n) is defined in all points. The value of the function f in
two points x and x + h are related through the Taylor series:

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + . . .

=
∞∑

i=0

hi

i!
f (i)(x). (20.1)

This is also known as the power series; the special case where x = 0 is also called the Maclaurin series.
As an example, consider the exponential function f(x) = exp(x). It is arbitrarily differentiable as

f (n) = f , and exp(0) = 1. Hence,

exp(h) = f(0 + h) =
∞∑

i=0

hi

i!
, (20.2)

and

exp(1) =
∞∑

i=0

1

i!
. (20.3)

Before we give Taylor’s theorem, we will first examine the mean value theorem.
Theorem 20.1 (Mean Value Theorem)
For a function f : R → R, which is continuous in [a, b] and differentiable in (a, b), there exists an
x0 ∈ (a, b), such that

f ′(x0) =
f(b)− f(a)

b− a
. (20.4)

635

“book” — 2005/9/30 — 15:44 — page 636 — #648✐
✐

✐
✐

✐
✐

✐
✐

636 CHAPTER 20. TAYLOR EXPANSION AND DERIVATIVE APPROXIMATIONS

We can rewrite (20.4) as
f(b) = f(a) + (b− a)f ′(x0), (20.5)

and using h = b− a, and θ = x0−a
k , we find

f(a + h) = f(a) + hf ′(a + θh). (20.6)

This form of the equation has the spirit of the Taylor theorem.

Theorem 20.2 (Taylor’s Theorem)
For a function f : R→ R, which is (n + 1) times differential on some open interval x ∈ (a, b), then

f(x + h) =
n∑

i=0

hi

i!
f (i)(x) + Rn(x, h), (20.7)

where the remainder on Lagrange’s form is given by

Rn(x, h) =
hn+1

(n + 1)!
f (n+1)(x + θh), (20.8)

and where θ ∈ (0, 1) is an unknown constant given by Theorem 20.1.

A function f is said to be an analytical function at the point x, if for all |h| < r > 0

f(x + h) =
∞∑

i=0

hi

i!
f (i)(x). (20.9)

The largest h, for which the sum converges, is called the radius of convergence.
An often-used notation in Taylor expansion is the Landau symbol
or “Big-O,” which disregards the exact form of the remainder by

Rn(x, h) = O(hn+1), (20.10)

meaning that given a function g(x) = O(f(x)), then there exists a constant M ∈ R independent of x,
such that

|g(x)| < M |f(x)| (20.11)

for all x possibly limited to some finite interval. Note that the Landau expression g(x) = O(f(x)) is
a statement about a set of functions, and we can be tricked into erroneous conclusions. As an example,
assume that g(x) = O(f(x)). Since the Landau symbol only defines relations up to some unknown
constant M , we can conclude that 3g(x) = O(f(x)). This is valid since the two uses of the Landau
symbol imply two different constants; but beware it does not imply that g(x) = 3g(x). Nevertheless, it is
correct to infer that

O(xm) + O(xn) = O(xn), (20.12)

“book” — 2005/9/30 — 15:44 — page 637 — #649✐
✐

✐
✐

✐
✐

✐
✐

20.2 PHYSICS-BASED ANIMATION 637

when n ≥ m, and it may also be inferred that

xO(xn) = O(xn+1). (20.13)

Using Landau symbols, the Taylor series may be written as

f(x + h) =
n∑

i=0

hi

i!
f (i)(x) + O(hn+1). (20.14)

The extension to higher dimensional functions is straightforward, since differentiation is separable.
For example, assume we have a 2D function f : R2 → R, then the Taylor expansion is given as

f(x + h, y + k) =
n∑

i=0

hi

i!

∂i

∂xi

m∑

j=0

kj

j!

∂j

∂yj
f(x, y) + O(hn+1km+1) (20.15a)

=
n∑

i=0

m∑

j=0

hikj

i!j!

∂i+j

∂xi∂yj
f(x, y) + O(hn+1km+1). (20.15b)

Reordering terms we get

f(x + h, y + k) = f(x, y) + h
∂f(x, y)

∂x
+ k

∂f(x, y)

∂y

+
h2

2

∂2f(x, y)

∂x2
+

k2

2

∂2f(x, y)

∂y2
+ hk

∂2f(x, y)

∂x∂y
. . . .

(20.16)

20.2 Finite Differences by Forward, Backward, and Central Approxima-
tions

In the following, we will discuss approximations of derivatives of a function using its neighboring values.
The theory to be presented in the following has been inspired by [Eberly, 2003a]. Consider the Taylor
expansion of a 1D analytical function around x.

f(x + h) = f(x) + hf ′(x) + O(h2). (20.17)

Using this, we may estimate the derivative in x as

f ′(x) =
f(x + h)− f(x)

h
+ O(h), (20.18)

which is known as the forward difference approximation. Likewise, if we consider

f(x− h) = f(x)− hf ′(x) + O(h2), (20.19)

“book” — 2005/9/30 — 15:44 — page 638 — #650✐
✐

✐
✐

✐
✐

✐
✐

638 CHAPTER 20. TAYLOR EXPANSION AND DERIVATIVE APPROXIMATIONS

then we get the backward difference approximation,

f ′(x) =
f(x)− f(x− h)

h
+ O(h). (20.20)

Finally, subtracting (20.19) from (20.17) and solving for f ′ yields the central difference approximation

f ′(x) =
f(x + h)− f(x− h)

2h
+ O(h2). (20.21)

In contrast to the forward and backward difference approximations, the error term in the central difference
approximation is one order higher, since the second-order terms in the Taylor expansions cancel.

A finite difference is a linear combination of neighboring function values, hence we may view an
approximation as a filter kernel. For example, the kernel for (20.21) would be 1

h [1, 0,−1]. This principle
may be generalized to all linear combinations of neighboring function values.

An approximation of any derivative of an analytical function by a linear combination of neighboring
function values will now be derived. The problem is stated as follows: find the linear set of coefficients,
ci, which approximates a d order derivative to p order accuracy as

f (d)(x) =
d!

hd

imax∑

i=imin

cif(x + ih) + O(hp), (20.22)

using neighboring values of f with imax > imin.
To begin, we rearrange terms for mathematical convenience

hd

d!
f (d)(x) + O(hd+p) =

imax∑

i=imin

cif(x + ih), (20.23)

and insert the infinite Taylor series for f , i.e. f(x + ih) =
∑∞

n=0
inhn

n! f (n)(x), on the right-hand side of
(20.23). This gives

hd

d!
f (d)(x) + O(hd+p) =

imax∑

i=imin

ci

∞∑

n=0

inhn

n!
f (n)(x). (20.24)

Truncating the infinite series to d + p order accuracy gives

hd

d!
f (d)(x) + O(hd+p) =

imax∑

i=imin

ci

d+p−1∑

n=0

inhn

n!
f (n)(x) + O(hd+p), (20.25)

and with a rearrangement of the terms we find that

f (d)(x) + O(hp) =
d+p−1∑

n=0

⎛

⎝
imax∑

i=imin

inci

⎞

⎠ d!hn

n!hd
f (n)(x) + O(hp). (20.26)

“book” — 2005/9/30 — 15:44 — page 639 — #651✐
✐

✐
✐

✐
✐

✐
✐

20.2 PHYSICS-BASED ANIMATION 639

The solution to this system is to choose c = {ci}, such that

imax∑

i=imin

inci =

{
1, if n = d,

0, otherwise,
(20.27)

or expressed as a matrix equation,

Ic =

⎡

⎢⎢⎢⎢⎢⎣

1 1 . . . 1
imin imin+1 . . . imax
i2min i2min+1 . . . i2max

...
...

. . .
...

id+p−1
min id+p−1

min+1 . . . id+p−1
max

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

cimin
cimin+1

cimin+2
...

cimax

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20.28)

where I = {in}. If the extend of the linear approximation is chosen such that imax − imin + 1 = d + p,
then I in (20.27) is a quadratic (d+p)× (d+p) Vandermonde matrix, and the p+d unknown coefficients,
ci, may be shown to have a unique solution. In that case, choosing imin = 0 yields forward difference
approximations, imax = 0 yields backward difference approximations, and choosing imin = −imax results
in the central difference approximations.

To conclude, the d’th order derivative of an analytical function may be approximated to p’th order
accuracy as a linear function of the neighboring values using

f (d)(x) =
d!

hd

imax∑

i=imin

cif(x + ih) + O(hp), (20.29)

where the coefficients ci are solved according to (20.27).

“book” — 2005/9/30 — 15:44 — page 640 — #652✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 641 — #653✐
✐

✐
✐

✐
✐

✐
✐

21

Calculus of Variation

For a one-dimensional function, f(x), we may seek the extremal points, i.e., the points, x, where the
function is either maximal or minimal. If the function is continuous and has a well-defined first-order
derivative, the extremal points may be found as df(x)

dx = 0. Similarly, calculus of variation is concerned
with finding extremal functions of functionals, i.e., problems on the form

L(f) =

∫ b

a
L dx, (21.1a)

f = arg max
f

L(f), (21.1b)

where L is integrable over the domain x ∈ [a, b] and is a function of x, f , and derivatives of f w.r.t. x.
Minimizing problems are also covered by the above formulation since maxf

∫
−L dx is the minimum

of (21.1). In calculus of variation, the extremal points are also called stationary points. On a historic
note, a fundamental result of calculus of variation are the Euler differential equations first described by
Euler (Leonhard Euler 1707–1783) in 1744 [Euler, 1744] and later improved by Lagrange (Joseph-Louis
Lagrange 1736–1813) in 1755–1762 [Lagrange, 1762]. The Euler-Lagrange equations for various func-
tionals will be derived in this chapter. Below we give a short review of [Hansen, 1988].

21.1 Deriving the Euler-Lagrange Equation
In the following we will derive the simplest of the Euler-Lagrange equations for integrals on the form
(21.1), where

L = L
(

x, f(x),
df(x)

dx

)
= L (x, f(x), fx(x)) , (21.2)

and where f(x) and fx(x) = df
dx(x) are functions depending on the independent variable x. The function

f is often referred to as the dependent variable.
To find extremal values of (21.1), we will introduce a Taylor series of functionals as

L(f + ∆f) = L(f) + ∆fδL(f) + . . . , (21.3)

where δL(f) is the first variation of the functional. Unfortunately, in contrast to the Taylor series devel-
oped in Chapter 20, the series in (21.3) depends on f and ∆f , which are functions rather than variables.
An analytical function may be represented as a vector of samples [f1, f2, . . . , fn]T , which in the limit of
infinitely densely sampling is equivalent to the continuous function f . Each sample would in such a case,
be a variable, which would imply that f had infinitely many variables. Luckily, the problem can be solved
essentially as a one-dimensional problem.

641

“book” — 2005/9/30 — 15:44 — page 642 — #654✐
✐

✐
✐

✐
✐

✐
✐

642 CHAPTER 21. CALCULUS OF VARIATION

Assume that we are given a function f(x), which makes the integral extremal; then the first variation
is zero, that is,

δL(f(x)) = 0. (21.4)

Introducing a small arbitrary constant, ε, and an arbitrary function, η(x), for which

η(a) = η(b) = 0, (21.5)

allows us to write the variation of f in the η direction as

f(x) = f(x) + εη(x), (21.6)

and as a consequence
fx(x) = fx(x) + εηx(x). (21.7)

For an arbitrary but fixed η, we have converted the infinite-dimensional problem into a one-dimensional
problem, i.e., we can write (21.4) as [Hansen, 1988, Equation 1.3 in Section 1.7],

δL(f(x)) =

[
d

dε
L(f(x) + εη(x))

]

ε=0

= 0. (21.8)

Assuming that a and b are independent of ε, and using Leibnitz’s rule for differentiation of integrals
[Spiegel, 1968, p. 95 Equation 15.14], the differentiation may be moved inside the integral as

δL(f(x)) =
d

dε

∫ b

a
L (x, f(x), fx(x)) dx (21.9a)

=

∫ b

a

d

dε
L (x, f(x), fx(x)) dx (21.9b)

=

∫ b

a

∂L
∂x

∂x

∂ε
+
∂L
∂f

∂f

∂ε
+
∂L
∂fx

∂fx

∂ε
dx (21.9c)

=

∫ b

a

∂L
∂f

∂f

∂ε
+
∂L
∂fx

∂fx

∂ε
dx, (21.9d)

where the last simplification uses ∂x
∂ε = 0. Recalling the rule for integration by parts
∫ b

a
φ

dχ

dx
dx = [φχ]ba −

∫ b

a

dφ

dx
χdx, (21.10)

we can rewrite the last terms in (21.9d) as
∫ b

a

∂L
∂fx

∂fx

∂ε
dx =

∫ b

a

∂L
∂fx

(
d

dx

∂f

∂ε

)
dx (21.11a)

=

[
∂L
∂fx

∂f

∂ε

]b

a

−
∫ b

a

(
d

dx

∂L
∂fx

)
∂f

∂ε
dx. (21.11b)

“book” — 2005/9/30 — 15:44 — page 643 — #655✐
✐

✐
✐

✐
✐

✐
✐

21.2 PHYSICS-BASED ANIMATION 643

Inserting first (21.6) and then (21.5) into (21.11b) we find that

∫ b

a

∂L
∂fx

∂fx

∂ε
dx =

[
∂L
∂fx

η(x)

]b

a

−
∫ b

a

(
d

dx

∂L
∂fx

)
η(x)dx (21.12a)

= −
∫ b

a

(
d

dx

∂L
∂fx

)
η(x)dx. (21.12b)

Inserting (21.12b) and (21.6) in (21.9d) and collecting terms for η(x) = ∂f(x)
∂ε , we find that

∫ b

a

[
∂L
∂f
− d

dx

(
∂L
∂fx

)]
η(x)dx = 0. (21.13)

Since η(x) was chosen as an arbitrary function for which η(a) = η(b) = 0, we must conclude that this is
only possible when

∂L
∂f
− d

dx

(
∂L
∂fx

)
= 0. (21.14)

To conclude, the function f is a solution to (21.4), if it is a solution to (21.14).
The variational derivative [Goldstein, 1980, Equation 13.63] is the direction in the function space for

where L in (21.1) increases the most, and it is found as the difference between the right-hand and left-hand
side of (21.14),

δ

δf
L =

∂L
∂f
− d

dx

(
∂L
∂fx

)
. (21.15)

21.2 Equation for Many Independent and High-Order Derivatives of 1 De-
pendent Variable

For more independent variables such as x, y, z, and t, where

L = L
(

x, y, z, t, f(x, y, z, t),
df(x, y, z, t)

dx
,
df(x, y, z, t)

dy
,
df(x, y, z, t)

dz
,
df(x, y, z, t)

dt

)
(21.16a)

= L (x, y, z, t, f(x, y, z, t), fx(x, y, z, t), fy(x, y, z, t), fz(x, y, z, t), ft(x, y, z, t)) , (21.16b)

the derivation of (21.14) yields the following simple extension [Hansen, 1988, Equation 5 in Section 2.5],

∂L
∂f
− d

dx

(
∂L
∂fx

)
− d

dy

(
∂L
∂fy

)
− d

dz

(
∂L
∂fz

)
− d

dt

(
∂L
∂ft

)
= 0 (21.17)

In this case, the variational derivative is given as

δ

δf
L =

(
∂

∂f
−
∑

i

d

dxi

∂

∂fxi

)
L, (21.18)

“book” — 2005/9/30 — 15:44 — page 644 — #656✐
✐

✐
✐

✐
✐

✐
✐

644 CHAPTER 21. CALCULUS OF VARIATION

where xi are the independent variables x, y, z,
We will now derive the Euler-Lagrange equations for the case where L in (21.4) depends on higher

order derivatives, for example,

L = L (x, y, f(x, y), fx(x, y), fy(x, y), fxx(x, y), fxy(x, y), fyy(x, y)) , (21.19)

where fxy = d2f(x,y)
dxdy etc.

To simplify, we introduce the following shorthand notation: assume that there are n independent
variables, then let fxi = df(x)

dxi
denote all possible first-order derivatives, and let fxixj = d2f(x)

dxidxj
denote all

possible different second-order derivatives. We may now write

L = L
(
xi, f, fxi , fxixj

)
. (21.20)

Again we assume that f is a solution and pick an arbitrary constant ε and some unknown function η,
which is zero at the border of our domain, and examine (21.8). By straightforward differentiation we get

d

dε
L(f(x)) =

∫ b1

a1

· · ·
∫ bn

an

⎡

⎣∂L
∂f

∂f

∂ε
+

n∑

i=1

∂L
∂fxi

∂fxi

∂ε
+

n∑

i=1

n∑

j=i

∂L
∂fxixj

∂fxixj

∂ε

⎤

⎦ dx1 · · · dxn. (21.21)

The first-order terms may be independently integrated by parts and the k’th term is rewritten as
∫ b1

a1

· · ·
∫ bn

an

∂L
∂fxk

∂fxk

∂ε
dx1 · · · dxn = −

∫ b1

a1

· · ·
∫ bn

an

(
d

dxk

∂L
∂fxk

)
∂f

∂ε
dx1 · · · dxn. (21.22)

since η(x1, · · · , ak, · · · , xn) = η(x1, · · · , bk, · · · , xn)) = 0 ∀x1, · · · , xk−1, xk+1, · · · , xn. Likewise,
the integration by parts for the h ≤ k’th second derivative term is rewritten as
∫ b1

a1

· · ·
∫ bn

an

∂L
∂fxhxk

∂fxhxk

∂ε
dx1 · · · dxn = −

∫ b1

a1

· · ·
∫ bn

an

(
d

dxh

∂L
∂fxhxk

)
∂fxk

∂ε
dx1 · · · dxn (21.23a)

=

∫ b1

a1

· · ·
∫ bn

an

(
d2

dxhdxk

∂L
∂fxhxk

)
∂f

∂ε
dx1 · · · dxn, (21.23b)

where we repeatedly have used the zero border conditions of η. Gathering all terms yields the Euler-
Lagrange equation:

∂L
∂f
−
∑

i

d

dxi

∂L
∂fxi

+
n∑

i=1

n∑

j=i

d2

dxjdxi

∂L
∂fxixj

= 0 (21.24)

and the variational derivative becomes

δ

δf
L =

⎛

⎝ ∂

∂f
−
∑

i

d

dxi

∂

∂fxi

+
n∑

i=1

n∑

j=i

d2

dxjdxi

∂

∂fxixj

⎞

⎠L. (21.25)

“book” — 2005/9/30 — 15:44 — page 645 — #657✐
✐

✐
✐

✐
✐

✐
✐

21.3 PHYSICS-BASED ANIMATION 645

21.3 Equation for Many Dependent Variables
In the situation where there are several dependent variables, such as f, g, . . . , the integration is over
functions on the following form.

L = L (x, f(x), fx(x), fxx(x), . . . , g(x), gx(x), gxx(x), . . .) . (21.26)

To evaluate the variation we introduce as many extra variables as dependent variables

f(x) = f̄(x) + εη(x), (21.27a)
g(x) = ḡ(x) + γξ(x), (21.27b)

...

for arbitrary functions η, ξ, . . . being zero on the boundaries. The integral is extremal, when the variation
w.r.t. f, g, . . . is zero. That is, we seek to solve the following system of equations:

δfL(f(x), g(x), . . .) =

[
d

dε
L(f(x) + εη(x), g(x), . . .)

]

ε=0

= 0, (21.28a)

δgL(f(x), g(x), . . .) =

[
d

dγ
L(f(x), g(x) + γξ(x), . . .)

]

γ=0

= 0, (21.28b)

...

where δf is the variation with respect to f , etc.
Each equation leads to independent differential equations as derived above, that is, the general solution

to the variational problem up to second order may be reformulated as solving the following system of
differential equations:

∂L
∂f (m)

−
∑

i

d

dxi

∂L
∂f (m)

xi

+
n∑

i=1

n∑

j=i

d2

dxjdxi

∂L
∂f (m)

xixj

= 0, (21.29)

where f (m) is the dependent variable and xk is the independent variable.
The variational derivative is naturally given as

δ

δf
L =

⎡

⎢⎢⎢⎢⎣

δ
δf(1)

δ
δf(2)

...
δ

δf(M)

⎤

⎥⎥⎥⎥⎦
L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂L
∂f(1) −

∑
i

d
dxi

∂L
∂f(1)

xi

+
∑n

i=1

∑n
j=i

d2

dxjdxi

∂L
∂f(1)

xixj
∂L
∂f(2) −

∑
i

d
dxi

∂L
∂f(2)

xi

+
∑n

i=1

∑n
j=i

d2

dxjdxi

∂L
∂f(2)

xixj

...
∂L

∂f(M) −
∑

i
d

dxi

∂L
∂f(M)

xi

+
∑n

i=1

∑n
j=i

d2

dxjdxi

∂L
∂f(M)

xixj

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(21.30)

where f = [f (1), f (2), . . . , f (M)]T is a vector of M dependent variables.

“book” — 2005/9/30 — 15:44 — page 646 — #658✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 647 — #659✐
✐

✐
✐

✐
✐

✐
✐

22

Basic Classical Mechanics

An understanding of basic physics is required to fully understand the physically based modeling that
is applied in physics-based animation. In this chapter we briefly present the basic physics required for
reading this book.

The first four sections of the chapter are mostly concerned with the basic theory of classical rigid body
mechanics. In Section 22.1 we present the equations of motion of rigid bodies. Thereafter, in Section 22.2
we discuss friction, and in Section 22.3 we consider work and energy. Having presented the reader with the
theory of rigid bodies in Section 22.4, we will present the basic theory of the harmonic oscillator, which is
important for understanding mass-spring systems. Following this, we will introduce the Lagrange formu-
lation in Section 22.5, which may be used when modeling deformable object in physics-based animation.
In Section 22.6 we treat the principle of virtual work, which is often used when considering constraint
forces. Finally, we close the chapter with an introduction to stress and strain in Section 22.7, which are
used to describe the physical properties of elastic objects.

22.1 The Newton-Euler Equations of Motion

In the following, we will introduce the reader to the equations of motion, also known as the Newton-Euler
equations. The theory found here is based on [Kleppner et al., 1978, Goldstein et al., 2002].

22.1.1 The Trajectory of a Particle

A particle is defined as a point with mass, but no volume. Hence, a particle is described by its mass, m,
and its trajectory, r(t), giving the particle position as a function of time, as illustrated in Figure 22.1. The
velocity of the particle is defined as the limit of the difference between two succeeding positions as the
time-step goes to zero,

v(t) = lim
∆t→0

r(t + ∆t)− r(t)

∆t
= lim

∆t→0

∆r(t)

∆t
=

dr(t)

dt
= ṙ(t), (22.1)

which is depicted in Figure 22.2. That is, the velocity is the time-derivative of the position. Similarly, the
acceleration is defined as the limit of the change in velocity,

a(t) = lim
∆t→0

v(t + ∆t)− v(t)

∆t
=

dv(t)

dt
= v̇(t) = r̈(t), (22.2)

as illustrated in Figure 22.3. That is, the acceleration is the double time-derivative of the position.

647

“book” — 2005/9/30 — 15:44 — page 648 — #660✐
✐

✐
✐

✐
✐

✐
✐

648 CHAPTER 22. BASIC CLASSICAL MECHANICS

WCS�

Particle�

Position�

r(t)�

Trajectory�

Figure 22.1: A particle trajectory.

WCS�

t�0�

r(t�)�

t�

r(t�0�)�

t=t�-t�0�

r�=r(t�)-r(t�0�)�

WCS�

r(t�)�

v(t�)�

v(t�) = lim�
t�

r�

t� 0�

Figure 22.2: The velocity of a particle.

WCS�

v(t�)�

a(t�) = lim�
t�

v�

t� 0�

Acceleration�

a(t�)�

Figure 22.3: The acceleration of a particle.

“book” — 2005/9/30 — 15:44 — page 649 — #661✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 649

22.1.2 Newton’s Laws of Motion

For pedagogical reasons, we will begin by formulating Newton’s law of motion for particle motion. New-
ton’s first law of motion states in words that

• Inertial systems exist and an inertial system moves uniformly.

• An isolated particle moves uniformly in an inertial system.

In computer animation, Newton’s first law of motion is used to define a global working frame called the
world coordinate system (WCS). The world coordinate system should be thought of as an ideal inertial
system, implying that it moves with zero velocity. Of course, in the real world such a coordinate system
cannot be uniquely determined, since only relative motion can be measured. Nevertheless, this ideal world
coordinate system is useful in computer animation because it provides a global frame of reference in which
the motion of all objects in the world may be described uniquely.

Newton’s second law of motion defines the linear momentum, p, of a particle as

p = mv, (22.3)

where m is the mass of the particle and v the velocity. Furthermore, Newton’s second law states that a
force, F , has both magnitude and direction. The effect of the force is a change in linear momentum,

F (t) =
dp(t)

dt
=

dmv(t)

dt
= m

dv(t)

dt
= ma(t), (22.4)

from which we have the relationship force equals mass times acceleration. Note that this is not a definition
of force, but rather it describes the effect of a force as an acceleration.

The point of action denotes the actual physical point where a force is applied. For a particle, the point
of action is simply the position of the particle. The point of action becomes very important when we
consider rotational motion later on.

Newton’s second law of motion also states that forces obey the superposition principle. That is, if all
forces, F i, acting on a particle are known, then the total effect they have on the particle is simply their
sum,

F tot(t) =
∑

i

F i(t) = m
∑

i

ai(t) = matot(t). (22.5)

Newton’s third law states that reaction equals action, and that all forces are due to real-world interac-
tions. The first part of this law comes in two flavors, a weak form and a strong form. The weak law states
that

F AB = −F BA, (22.6)

where a particle A is affected by the force F AB coming from another particle B, and the force F BA is the
force that particle A affects particle B with. The strong law requires that FAB and FBA must be central
forces, meaning that they must lie on the same line of action, that is, on the line between the two points of
action. The two flavors are illustrated in Figure 22.4.

“book” — 2005/9/30 — 15:44 — page 650 — #662✐
✐

✐
✐

✐
✐

✐
✐

650 CHAPTER 22. BASIC CLASSICAL MECHANICS

Particle A�

Particle B�

F�B�A�

F�AB�

The Weak Law�

Particle A�

Particle B�

F�B�A�

F�AB�

The Strong Law�

Figure 22.4: The weak and strong form of Newton’s third law.

22.1.3 A Particle System

Animating a single particle is trivial, so in the following, Newton’s law of motion will be extended to
include a system of particles. Given N -particles, Newton’s second law for the entire system is given as

F tot
1 = m1a

tot
1 (22.7a)

F tot
2 = m2a

tot
2 (22.7b)

...
F tot

N = mNatot
N . (22.7c)

The forces can now be split into external, F ext
i , and internal forces, F int

i . External forces come from
interactions from outside the particle system and internal forces are due to interactions inside the particle
system, that is, interactions in between the particles themselves. Splitting the forces gives

F tot
1 = F ext

1 + F int
1 = m1a

tot
1 (22.8a)

F tot
2 = F ext

2 + F int
2 = m2a

tot
2 (22.8b)

...

F tot
N = F ext

N + F int
N = mNatot

N . (22.8c)

Since internal forces are due to other particles, it is found that the total internal force acting on particle i
is given by the summation

F int
i =

∑

j,i̸=j

F ji, (22.9)

“book” — 2005/9/30 — 15:44 — page 651 — #663✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 651

where F ji is the force with which the j’th particle affects the i’th particle. The sum over all particles may
thus be written as

F tot =
∑

i

F ext
i + F int

i =
∑

i

F ext
i +

∑

i

∑

j,i̸=j

F ji. (22.10)

However, the weak form of Newton’s third law states that

F ji = −F ji, (22.11)

implying that all internal forces cancel each other, that is,
∑

i

∑

j,i̸=j

F ji = 0. (22.12)

This means that the total effect on the entire particle system is given entirely by the sum of the external
forces. Hence, we have

F tot =
∑

i

F ext
i (22.13a)

=
∑

i

(
mia

tot
i

)
. (22.13b)

The total mass, M , of the particle system is given by

M =
∑

i

mi. (22.14)

We define acm as the mass weighted mean of particle accelerations

acm =
1

M

∑

i

(mir̈i) . (22.15)

This is called the acceleration of the center of mass (CM) position. Exactly what this center of mass
position is, will become clearer later. However, we can now write Newton’s second law for a system of
particles as

F tot = Macm. (22.16)

The implication is that the motion of an entire particle system, regardless of the number of particles, may
be described as a single particle with mass M . But what is the position of this special particle? Since
the acceleration is the double time derivative of a position, acm = r̈cm, we can find the center of mass
position, rcm, by integrating the acceleration twice with respect to time.

By the superposition principle (Newton’s second law) and the definition of total mass we have

r̈cm =
1

M

∑

i

(mir̈i) . (22.17)

“book” — 2005/9/30 — 15:44 — page 652 — #664✐
✐

✐
✐

✐
✐

✐
✐

652 CHAPTER 22. BASIC CLASSICAL MECHANICS

Integrating twice with respect to time (and setting integration constants equal to zero), we find that the
position of the center of mass (CM) is

rcm =
1

M

∑

i

(miri) . (22.18)

That is, the particle system moves like a single particle with position rcm and mass M .
The Newtonian physics for a real-world object may be derived from a particle system by thinking of

a real-world object as a collection of infinitely many particles. Letting the number of particles, N , go to
infinity

rcm = lim
N→∞

1

M

N∑

i

(miri) =
1

M

∫
r(t) dm. (22.19)

and introducing the notion of the mass density ρ = dm/dV allows us to rewrite into a volume integral,

rcm =
1

M

∫

V
ρr dV. (22.20)

For rigid bodies, the mass density, ρ, is usually assumed to be constant throughout the entire rigid body,
implying that the total mass of the rigid body is given by M = ρV .

It is thus concluded that the center of mass of an object behaves as a single particle with position r cm
and mass M . In the above, it has implicitly been assumed that all particles have a fixed relative position
w.r.t. each other, and that the particles constitute a rigid body. For simulation purposes, this means that the
motion of a rigid body may be found by

d2rcm

dt2
=

F

M
, (22.21)

where F is the sum of all external forces. This is a second-order ordinary differential equation (ODE),
which is easily solved as a system of coupled first-order differential equations,

dvcm

dt
=

F

M
(22.22a)

drcm

dt
= vcm. (22.22b)

A thorough discussion on ordinary differential equations is found in Section 23.1.

22.1.4 The Body Frame
A brief summary of the previous sections is as follows:

• The world coordinate system (WCS) may be derived from Newton’s first law.

• The center of mass (CM) is found using Newton’s second law on a particle system.

“book” — 2005/9/30 — 15:44 — page 653 — #665✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 653

Figure 22.5: The body frame.

From these two results, we know how to describe the motion of the center of mass. However, rigid bodies
moving in 3D space not only change position, they also change orientation. In order to describe the
rotational movement, a coordinate frame is placed with its origin at center of mass and its axes fixed w.r.t.
the orientation of the rigid body. This is known as the body frame (BF) and is illustrated in Figure 22.5.

One possible way to describe the orientation of the body frame is by Euler angles, which can be
written in vector form as

θ = θxi + θyj + θzk, (22.23)

where i, j, and k are the world coordinate axes, and θx, θy, and θz are scalars. The Euler angles determine
the rotation of BF relative to WCS, as depicted in Figure 22.6. Unfortunately, the rotation of objects using
Euler angles is not commutative. That is, permuting the order of rotations results in different rotations, as
illustrated in Figure 22.7. The X − Y − Z order is commonly called fixed axis angles or roll, pitch, and
yaw angles.

Although the Euler angles do not commute, their time derivatives are simple to formulate and do
commute. These are known as the angular velocity,

ω =
dθx

dt
i +

dθy

dt
j +

dθz

dt
k. (22.24)

The direction of the angular velocity gives the rotation axis and the length is the rotation speed.
The absolute value of each component describes how fast the object spins around the corresponding

axis, and the sign indicates the direction of rotation around the axis. Positive means counterclockwise and

“book” — 2005/9/30 — 15:44 — page 654 — #666✐
✐

✐
✐

✐
✐

✐
✐

654 CHAPTER 22. BASIC CLASSICAL MECHANICS

Figure 22.6: The Euler angles describe the orientation of a rigid body.

minus means clockwise. Furthermore, the angular velocity obeys the superposition principle.
To familiarize ourselves with the angular velocity it helps to look at the simple case where θy = 0 and

θz = 0 and θx = ct, for some positive constant c. In this case, we derive

ω =
dct

dt
i +

d0

dt
j +

d0

dt
k =

⎡

⎣
c
0
0

⎤

⎦ . (22.25)

We see that the angular velocity is a vector along the x-axis, which is also the axis of rotation, the length
of the angular velocity is c, which is the rotational speed (traveling distance divided by traveling time).
By setting θz = ct, we see that we also get a rotation around the z-axis, and the angular velocity now lies
in the x-z plane indicating both a rotation around the x and z axes, as expected.

22.1.5 Velocity in a Particle System
Knowing the center of mass position, rcm, of a particle system, then the position, ri, of the i’th particle
can be written as

ri = ∆ri + rcm, (22.26)

“book” — 2005/9/30 — 15:44 — page 655 — #667✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 655

Rx(90) Rz(90)

(a) X-Z order

Rz(90) Rx(90)

(b) Z-X order

Figure 22.7: Rotation using Euler angles does not commute.

where ∆ri is a body-fixed vector, denoting the i’th particle position relative to the center of mass position,
as illustrated in Figure 22.8. By differentiation (22.26) w.r.t. time, the velocity of the i’th particle is

vi = ∆ṙi + vcm = ω ×∆ri︸ ︷︷ ︸
∆ṙi

+vcm. (22.27)

Observe that the time derivative of the body-fixed vector ∆r i is obtained by the cross product with the
angular velocity.

This relation between the time-derivative of a body-fixed vector and the angular velocity will be proven
in the following: to ease notation, the particle position in the body frame will be denoted s instead of ∆r i.
The vector, s, is rotating around a rotation axis, and the tip of the s-vector traces out a circular path. Let
the unit vector n denote the rotation axis, and ∆θ the rotation angle around n. Since the rotation axis
passes through the origin of the body frame, the angle, φ, between s and n is constant. The circular path
of the tip of s has radius ∥s∥

2
sin(φ), and after some small time-step ∆t, the displacement ∆s of s will

“book” — 2005/9/30 — 15:44 — page 656 — #668✐
✐

✐
✐

✐
✐

✐
✐

656 CHAPTER 22. BASIC CLASSICAL MECHANICS

Figure 22.8: The position of the i’th particle in a particle system.

be
∆s = s(t + ∆t)− s(t). (22.28)

The magnitude of the displacement must then be

∥∆s∥
2

= 2 ∥s∥
2
sin(φ) sin

(
∆θ

2

)
, (22.29)

which follows from trigonometry as can be seen in Figure 22.9. The small angle approximation,

sin

(
∆θ

2

)
≈ ∆θ

2
, (22.30)

“book” — 2005/9/30 — 15:44 — page 657 — #669✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 657

n�
s(t)� s(t+dt)�

ds�

phi�

axis of rotation�

theta�

ds�

theta�||s||sin(phi)�

theta/2�

||s||sin(phi)�

||s||sin(phi)sin(theta/2)�

Figure 22.9: The angular velocity.

is good, when ∆θ is very small, and hence

∥∆s∥
2
≈ ∥s∥

2
sin(φ)∆θ. (22.31)

If ∆θ occurs in time ∆t, then
∥∆s∥

2

∆t
≈ ∥s∥

2
sin(φ)

∆θ

∆t
. (22.32)

Taking the limit as ∆t→ 0, gives
∥∥∥∥
ds

dt

∥∥∥∥
2

= lim
∆t→0

∥s∥
2
sin(φ)

∆θ

∆t
= ∥s∥

2
sin(φ)

dθ

dt
. (22.33)

By definition ω = n dθ
dt , and thus

∥ω∥
2

= ∥n∥
2︸ ︷︷ ︸

1

dθ

dt
. (22.34)

By substitution, it is found that
∥∥∥∥

ds

dt

∥∥∥∥
2

= ∥s∥
2
sin(φ) ∥n∥

2

dθ

dt
. (22.35)

From the right-hand side it is seen that this is the magnitude of ω × s,
∥∥∥∥
ds

dt

∥∥∥∥
2

= ∥ω × s∥
2
. (22.36)

This indicates that either
ds

dt
= ω × s or

ds

dt
= s× ω. (22.37)

“book” — 2005/9/30 — 15:44 — page 658 — #670✐
✐

✐
✐

✐
✐

✐
✐

658 CHAPTER 22. BASIC CLASSICAL MECHANICS

However, to ensure that the direction of these vectors are sensible, ds
dt must be tangential to the circular

path and pointing in the direction of rotation. Using the right-hand rule, it is seen from Figure 22.9 that
ω × s points in the same direction as the rotation. Therefore, we have

ds

dt
= ω × s. (22.38)

It has thus been proven that

∆ṙi =
d∆ri

dt
= ω ×∆ri. (22.39)

22.1.6 Euler’s Equation
The angular momentum of a particle, L, is defined as

L = r × p, (22.40)

where r is the position of the particle, and p = mv is the linear momentum of the particle. The torque,
τ , of a particle is given by

τ = r × F , (22.41)

where F is the force acting on the particle. It is important to remember which coordinate frame L and τ
are given with respect to, since they have different values in different coordinate frames. The change of
the angular momentum is given by its derivative,

dL

dt
=

d (r × p)

dt
(22.42a)

=
dr

dt
× p + r × dp

dt
(22.42b)

= v × p︸ ︷︷ ︸
0

+r × F (22.42c)

= τ . (22.42d)

The above relation between angular momentum and torque is known as Euler’s equation. In words, Euler’s
equation is a rotational version of Newton’s second law.

Euler’s equation is the starting point for deriving the formulas for the rotational motion. By the
definition of angular momentum and Newton’s second law, the total angular momentum, L tot, for a particle
system is given as

Ltot =
∑

i

Li (22.43a)

=
∑

i

(ri × pi) (22.43b)

=
∑

i

(ri ×miṙi) . (22.43c)

“book” — 2005/9/30 — 15:44 — page 659 — #671✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 659

Using ri = ∆ri + rcm, and ṙi = ∆ṙi + ṙcm, the above may be rewritten as

Ltot =
∑

i

((∆ri + rcm)×mi (∆ṙi + ṙcm)) . (22.44)

Expanding the cross product and rewriting the summation we find four terms:

Ltot =
∑

i

(∆ri ×mi∆ṙi) +

(
∑

i

mi∆ri

)
× ṙcm

+ rcm ×
(
∑

i

miṙcm

)

+ rcm ×
(
∑

i

mi∆ṙi

)

.

(22.45)

Although seemingly complicated, this is a useful form for further analysis. To simplify, first use ∆r i =
r − rcm, which implies that

∑

i

mi∆ri =
∑

i

mi (ri − rcm) (22.46a)

=
∑

i

miri −
∑

i

mircm (22.46b)

=
∑

i

miri − rcm
∑

i

mi (22.46c)

Since M =
∑

mi, and rcm = 1
M

∑
miri, we find that

∑

i

mi∆ri =
∑

i

miri −Mrcm (22.47a)

= Mrcm −Mrcm (22.47b)
= 0. (22.47c)

Furthermore, since the derivative of a constant is zero, it is found that

∑

i

mi∆ṙi = 0. (22.48)

Using these facts about
∑

mi∆ri and
∑

mi∆ṙi in the equation for the angular momentum, it is found

“book” — 2005/9/30 — 15:44 — page 660 — #672✐
✐

✐
✐

✐
✐

✐
✐

660 CHAPTER 22. BASIC CLASSICAL MECHANICS

that

Ltot =
∑

i

(∆ri ×mi∆ṙi) +

(
∑

i

mi∆ri

)

︸ ︷︷ ︸
0

×ṙcm

+ rcm ×
(
∑

i

miṙcm

)
+ rcm ×

(
∑

i

mi∆ṙi

)

︸ ︷︷ ︸
0

(22.49a)

=
∑

i

(∆ri ×mi∆ṙi) + rcm ×Mvcm. (22.49b)

In a similar way, the total torque, τ tot, of a particle system is found to be

τ tot =
∑

i

τ i =
∑

i

(ri × F i) = . . . (22.50a)

=
∑

i

(∆ri × F i) + rcm × F . (22.50b)

By definition, Euler’s equation for a particle system is

τ tot =
dLtot

dt
(22.51a)

⇓
∑

i

(∆ri × F i) + rcm × F =
d

dt

(
∑

i

(∆ri ×mi∆ṙi) + rcm ×Mvcm

)

. (22.51b)

Differentiating the right-hand side with respect to time gives
∑

i

(∆ri × F i) + rcm × F =
d

dt

∑

i

(∆ri ×mi∆ṙi)

+
d

dt
rcm

︸ ︷︷ ︸
vcm

×Mvcm + rcm ×
d

dt
(Mvcm)

︸ ︷︷ ︸
F

(22.52a)

=
d

dt

∑

i

(∆ri ×mi∆ṙi) + rcm × F . (22.52b)

Observe that we have a rcm × F term on both the left- and right-hand sides, which cancels each other.
Implying that Euler’s equation for a particle system reduces to

∑

i

(∆ri × F i)

︸ ︷︷ ︸
τcm

=
d

dt

∑

i

(∆ri ×mi∆ṙi)

︸ ︷︷ ︸
Lcm.

. (22.53)

“book” — 2005/9/30 — 15:44 — page 661 — #673✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 661

Surprisingly enough, all terms referring to the motion of the center of mass have disappeared, and the
remaining terms describe the motion of the particle system around the center of mass. It is concluded
that that linear and rotational motion may be treated independently. The equations for Lcm and τ cm may
be conceptually simplified by introducing the concept of the inertia tensor. Briefly explained, the inertia
tensor is the rotational equivalent of the total mass. It tells how mass is distributed in an object and thus
gives information about how hard it is to rotate an object around any given axis. In the following, we will
derive the inertia tensor. Consider the angular momentum of particle system w.r.t. to the center of mass,

Lcm =
∑

i

(∆ri ×mi∆ṙi) (22.54a)

=
∑

i

(∆ri ×mi (ω ×∆ri)) (22.54b)

=
∑

i

mi (∆ri × (ω ×∆ri)) . (22.54c)

Using ∆ri = [xi, yi, zi]T , this can be written as

∑

i

mi∆ri × (ω ×∆ri) =
∑

i

mi

⎡

⎣

(
y2

i + z2
i

)
ωx − xiyiωy − xiziωz

−xiyiωx +
(
x2

i + z2
i

)
ωy − yiziωz

−xiziωx − yiziωy +
(
x2

i + y2
i

)
ωz

⎤

⎦ (22.55a)

=

⎡

⎣

∑
i mi

(
y2

i + z2
i

)
−
∑

i mi (xiyi) −
∑

i mi (xizi)
−
∑

i mi (xiyi)
∑

i mi
(
x2

i + z2
i

)
−
∑

i mi (yizi)
−
∑

i mi (xizi) −
∑

i mi (yizi)
∑

i mi
(
x2

i + y2
i

)

⎤

⎦

︸ ︷︷ ︸
I

⎡

⎣
ωx

ωy

ωz

⎤

⎦ .

(22.55b)

The matrix I is called the inertia tensor

I =

⎡

⎣

∑
i mi

(
y2

i + z2
i

)
−
∑

i mi (xiyi) −
∑

i mi (xizi)
−
∑

i mi (xiyi)
∑

i mi
(
x2

i + z2
i

)
−
∑

i mi (yizi)
−
∑

i mi (xizi) −
∑

i mi (yizi)
∑

i mi
(
x2

i + y2
i

)

⎤

⎦ =

⎡

⎣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎦ . (22.56)

Using the inertia tensor, the equation for Lcm simplifies to

Lcm = Iω. (22.57)

It is observed from (22.56) that the inertia tensor is symmetrical, I = IT . The terms on the diagonal are
called products of inertia, and the off-diagonal terms are called moments of inertia. The inertia tensor for
a solid object is found by letting the number of particles in the system tend to infinity and rewriting the

“book” — 2005/9/30 — 15:44 — page 662 — #674✐
✐

✐
✐

✐
✐

✐
✐

662 CHAPTER 22. BASIC CLASSICAL MECHANICS

sum as volume integrals,

Ixx =

∫

V
ρ
(
y2 + z2

)
dV, (22.58a)

Iyy =

∫

V
ρ
(
x2 + z2

)
dV, (22.58b)

Izz =

∫

V
ρ
(
x2 + y2

)
dV, (22.58c)

Ixy = −
∫

V
ρ (xy) dV, (22.58d)

Ixz = −
∫

V
ρ (xz) dV, (22.58e)

Izy = −
∫

V
ρ (yz) dV. (22.58f)

Although the inertia tensor, I , conceptually simplifies the equation, the underlying mathematics is still
complicated, since I is a function of orientation of the object. Fortunately, it can be split it into a sum, and
for a particle system it may be written as

I =
∑

i

mi

⎡

⎣

(
y2

i + z2
i

)
− (xiyi) − (xizi)

− (xiyi)
(
x2

i + z2
i

)
− (yizi)

− (xizi) − (yizi)
(
x2

i + y2
i

)

⎤

⎦ (22.59a)

=
∑

i

mi

⎛

⎝

⎡

⎣
x2

i + y2
i + z2

i 0 0
0 x2

i + y2
i + z2

i 0
0 0 x2

i + y2
i + z2

i

⎤

⎦−

⎡

⎣
x2

i xiyi xizi

xiyi y2
i yizi

xizi yizi z2
i

⎤

⎦

⎞

⎠ . (22.59b)

This may be recognized as the inner and outer product of the vector ∆r i = [xiyizi]
T , and the equation

can be rewritten as
I =

∑

i

mi
(
∆rT

i ∆ri1−∆ri∆rT
i

)
, (22.60)

where 1 is the identity matrix. The term ∆ri is the rotation, R, of some fixed vector, pi, in the body
frame, that is,

∆ri = Rpi. (22.61)

Substituting this gives

I =
∑

i

mi

(
(Rpi)

T Rpi1−Rpi (Rpi)
T
)

(22.62a)

=
∑

i

mi
(
pT

i RT Rpi1−Rpip
T
i RT

)
(22.62b)

=
∑

i

mi
(
pT

i pi1−Rpip
T
i RT

)
. (22.62c)

“book” — 2005/9/30 — 15:44 — page 663 — #675✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 663

Since pT
i pi is a scalar, the equation can be simplified further with a little mathematical trick:

I =
∑

i

mi
(
RpT

i piR
T1−Rpip

T
i RT

)
(22.63a)

= R

⎛

⎜⎜⎜⎜⎝

∑

i

mi
(
pT

i pi1− pip
T
i

)

︸ ︷︷ ︸
Ibody

⎞

⎟⎟⎟⎟⎠
RT . (22.63b)

Comparing with (22.60), it is found that the inertia tensor may be expressed as the product of a fixed
inertia tensor of the body frame and a rotation matrix. The inertia tensor of the body frame is thus given
as

Ibody =
∑

i

mi
(
pT

i pi1− pip
T
i

)
. (22.64)

From a computer simulation viewpoint, this is tremendously practical, since I body can be precomputed,
and I can always be found during simulation using the rotation R of the body frame. Given some thought,
it should be clear that the inertia tensor on the form I = RI bodyR

T is a consequence of the symmetry of
I, since any symmetric matrix, A, may be written as (Proposition 18.3),

A = RDRT , (22.65)

where D is a diagonal matrix, with the eigenvalues of A along its diagonal, and R is an orthonormal
matrix, where the columns are the eigenvectors of A. This indicates a clever initial orientation of the
body, where the body frame inertia tensor is a diagonal matrix, and R is then the rotation of this initial
body frame. Furthermore, if the columns of the rotation matrix are

R =
[

i j k
]
, (22.66)

then the columns are the instantaneous placement of the initial body frame’s x-, y-, and z-axis. Since
these axes are fixed body vectors, their time derivatives can be found simply by taking the cross product
with the angular velocity; the time derivative of the rotation matrix is thus,

Ṙ =
[
ω × i ω × j ω × k

]
. (22.67)

Using the cross product matrix notation from Proposition 18.4, we have

Ṙ = ω×R. (22.68)

22.1.7 Integrating over a Solid Object
There are three commonly used approaches for computing the mass, the center of mass, and the inertia
tensor for a solid object.

“book” — 2005/9/30 — 15:44 — page 664 — #676✐
✐

✐
✐

✐
✐

✐
✐

664 CHAPTER 22. BASIC CLASSICAL MECHANICS

Analytical Integration: In the first method volume integration is computed analytically. Consider an
axis-aligned cube with side length 2L and constant density, ρ. By definition, the Ixx element of the inertia
tensor is found as

Ixx = ρ

∫

V

(
y2 + z2

)
dV (22.69a)

= ρ

∫ L

−L

∫ L

−L

∫ L

−L

(
y2 + z2

)
dx dy dz (22.69b)

= ρ
16

3
L5. (22.69c)

The volume of the cube is
V = (2L)3 = 8L3, (22.70)

and therefore it is found that ρ = M
V = M

8L3 . Finally, it is found that

Ixx =
2

3
ML2. (22.71)

A similar approach may be used for the remaining volume integrals. Unfortunately, the analytical solution
is only simple for objects with very simple shape.

Decomposition: The second approach decomposes an object into simpler objects, for instance, small
cubes, voxels, as shown in Figure 22.10. The implication is that the analytical approach is tractable for
cubes, and if all mass properties are represented w.r.t. the same frame, then the mass properties of the
simpler volumes may be added in order to find an approximation to the original object.

V =
∑

Vi (22.72a)

M =
∑

Mi (22.72b)

rcm =
1

M

∑
Mircmi (22.72c)

I =
∑

I i (22.72d)

In order to sum the inertia tensor of each cube, we need to rotate and translate each inertia tensor into the
same coordinate frame.

Imagine we have an analytical formula for computing the inertia tensor in frame G, and we need to
transform the inertia tensor into coordinate frame F . Rotation is simply,

IF = RG→FIGRG→FT
. (22.73)

“book” — 2005/9/30 — 15:44 — page 665 — #677✐
✐

✐
✐

✐
✐

✐
✐

22.1 PHYSICS-BASED ANIMATION 665

→

Figure 22.10: A solid object may be decomposed into a set of smaller cubes, voxels.

If frame F is translated by [x, y, z]T w.r.t. frame G, but both F and G have the same orientation, then
inertia tensor can be computed by the transfer-of-axe theorem [Kleppner et al., 1978], which states that

IF
xx = IG

xx + M
(
y2 + z2

)
(22.74a)

IF
yy = IG

yy + M
(
x2 + z2

)
(22.74b)

IF
zz = IG

zz + M
(
x2 + y2

)
(22.74c)

IF
xy = IG

xy −M (xy) (22.74d)

IF
xz = IG

xz −M (xz) (22.74e)

IF
zy = IG

zy −M (yz) . (22.74f)

Dimension Reduction and Value Propagation: Finally, the integration may be performed using di-
mension reduction and value propagation [Mirtich, 1996]. The basic idea is to use Stokes’ and Gauss’s
theorems to reduce volume integrals to line integrals. This will not be discussed further.

Comparing the three approaches, the analytical integration is accurate within numerical precision, but
also tedious to work with, since complex shapes yield integrals that are difficult to solve analytically by
hand. The decomposition approach is quite simple, but requires that one can make a decomposition of
simpler volumes, which approximates the real object. The accuracy depends on how close the approxi-
mation is to the real object. Decompositions into spheres, boxes, and cylinders are often hand modeled in

“book” — 2005/9/30 — 15:44 — page 666 — #678✐
✐

✐
✐

✐
✐

✐
✐

666 CHAPTER 22. BASIC CLASSICAL MECHANICS

interactive applications, such as computer games and used for collision detection. These decompositions
can therefore easily be reused to compute the needed volume integrals. The last approach of dimension
reduction and value propagation can be applied to any polygonal closed surface mesh, and the method is
accurate within numerical precision. However, it is not always possible to obtain a closed surface mesh.
In practice, polygonal meshes often have open boundaries, flipped faces, and many more degeneracies.

22.1.8 A Summary of Newton’s Equations of Motion

Newton’s equations of motion for the linear and Euler’s equation of rotational motion of a rigid body have
been derived in the previous section, and they may be summarized as:

drcm

dt
= vcm (22.75a)

dpcm
dt

= F (22.75b)

dR

dt
= ω×R (22.75c)

dLcm

dt
= τ cm. (22.75d)

The first two described the linear motion, and the following two describe the rotational motion. These
four equations are commonly referred to as the Newton-Euler equations of motion.

The three auxiliary equations are

I−1 = RI−1
cm RT (22.76a)

ω = I−1Lcm (22.76b)

vcm =
pcm
M

, (22.76c)

with the mass and center of mass given by

M =

∫

V
ρ dV, (22.77a)

rcm =
1

M

∫

V
ρr dV, (22.77b)

“book” — 2005/9/30 — 15:44 — page 667 — #679✐
✐

✐
✐

✐
✐

✐
✐

22.2 PHYSICS-BASED ANIMATION 667

and the inertia tensor by

Ixx =

∫

V
ρ
(
y2 + z2

)
dV, (22.78a)

Iyy =

∫

V
ρ
(
x2 + z2

)
dV, (22.78b)

Izz =

∫

V
ρ
(
x2 + y2

)
dV, (22.78c)

Ixy = −
∫

V
ρ (xy) dV, (22.78d)

Ixz = −
∫

V
ρ (xz) dV, (22.78e)

Izy = −
∫

V
ρ (yz) dV. (22.78f)

The equations of motion are usually rewritten in terms of the state function, Y (t) as follows:

Y (t) =

⎡

⎢⎢⎣

rcm
R
pcm
Lcm

⎤

⎥⎥⎦ and
dY (t)

dt
=

⎡

⎢⎢⎣

vcm
ω×R

F
τ cm

⎤

⎥⎥⎦ , (22.79)

and using quaternions, which are described in detail in Section 18.5). Then Proposition 18.46 gives

Ṙ = ω×R ⇒ q̇ =
1

2
[0,ω] q, (22.80)

the state function may be written as

Y (t) =

⎡

⎢⎢⎣

rcm
q

pcm
Lcm

⎤

⎥⎥⎦ and
dY (t)

dt
=

⎡

⎢⎢⎣

vcm
1
2 [0,ω] q

F
τ cm

⎤

⎥⎥⎦ . (22.81)

This completes the Newtonian description of the unconstrained motion of a rigid body. Knowing the initial
position and orientation, the motion of the rigid bodies is found through integrations; see Chapter 23.

22.2 Coulomb’s Friction Law
A frequently used friction law is Coulomb’s friction law, and it will be discussed here for a single-point
contact (we refer the reader to [Trinkle et al., 2001] for an example of other friction laws).

Consider two rigid bodies touching at a single point of contact, as illustrated in Figure 22.11. At the
point of contact the surfaces of the two rigid bodies have parallel surface normals. The direction of the

“book” — 2005/9/30 — 15:44 — page 668 — #680✐
✐

✐
✐

✐
✐

✐
✐

668 CHAPTER 22. BASIC CLASSICAL MECHANICS

surface normals identifies a unit contact normal vector, n. The point of contact and the contact normal
describes a contact plane orthogonal to the contact normal. A unit vector lying in this contact plane is
denoted by t and referred to as the tangential direction. A force acting at the contact point is known as
a contact force, F contact, and is decomposed into two components: a normal force, F n, parallel to the
contact normal direction, and a friction force, F t, lying in the contact plane.

F contact = F n + F t. (22.82)

The normal force is equal in magnitude and opposite to the weight of the objects in the normal direction.
If the relative velocity at the point of contact by the vector, u, then the tangential component,

ut = u− (u · n)n, (22.83)

describes the amount and direction of sliding between the two rigid bodies.
Coulomb’s friction law relates the magnitude of the normal force to the magnitude of the friction force

through a coefficient of friction, µ. The actual relationship depends on the state of contact, and there is a
total of three different states to distinguish between:

• Dynamic (sliding) friction

• Stable static (dry) friction

• Unstable static (dry) friction

Dynamic (sliding) friction occurs when the two bodies move relative to each other, indicating that the
tangential relative velocity is nonzero. In this case, the friction force should attain its maximum possible
magnitude, and directly oppose the relative movement. That is,

ut ̸= 0⇒ F t = −µ
ut

∥ut∥2
∥F n∥2 . (22.84)

Stable static (dry) friction occurs when the two bodies do not move relatively to each other, meaning that
the relative tangential velocity is zero. In the stable case this relation is maintained, indicating that the
relative tangential acceleration is also zero. When these conditions occur Coulomb’s friction law states
that the magnitude of the friction force is less than or equal to the magnitude of the normal force multiplied
by the friction coefficient. However, no constraints are placed on the direction of the friction force,

ut = 0 and u̇t = 0 ⇒ ∥F t∥2 ≤ µ ∥F n∥2 . (22.85)

In unstable static friction, the conditions for this case are nearly identical to stable static friction; the
difference is that the relative tangential acceleration is nonzero, indicating that the tangential velocity is
just at the point of becoming nonzero. The magnitude of friction force is required to be as large as is
possible in the case of dynamic friction; however, for unstable static friction the direction of the friction
force is opposing the direction of the relative tangential acceleration,

ut = 0 and u̇t ̸= 0 ⇒ ∥F t∥2 = µ ∥F n∥2 and F t · u̇t ≤ 0. (22.86)

“book” — 2005/9/30 — 15:44 — page 669 — #681✐
✐

✐
✐

✐
✐

✐
✐

22.2 PHYSICS-BASED ANIMATION 669

w�

F�n�

n�

F�t�

Figure 22.11: 2D illustration of a friction cone of a ball sliding down an inclined plane. W is the weight
of the ball.

Observe however, that it is not required that the friction force directly opposes the direction of relative
tangential friction. The name unstable indicates that a transition can occur either to dynamic or stable
static friction.

An often-used geometric approach for describing the region of legal contact forces that can be applied
at a contact point is the friction cone. The friction cone is simply the region of space traced out by all
possible values of

F contact = F n + F t (22.87)

Figure 22.11 shows a 2D example of a friction cone. The slope of the friction cone is dictated by the
reciprocal value of the friction coefficient µ. For dynamic friction, the contact force is restricted to lie on
a straight line on the surface of the friction cone, and the straight line lies on the side of the friction cone
where the relative tangential velocity is pointing away from. For stable static friction, the contact force
can be anywhere interior or on the surface of the friction cone. For unstable static friction, the contact
force is restrained from being inside the friction cone, and instead it must be on the half-surface lying in
the opposite direction of the relative tangential acceleration.

“book” — 2005/9/30 — 15:44 — page 670 — #682✐
✐

✐
✐

✐
✐

✐
✐

670 CHAPTER 22. BASIC CLASSICAL MECHANICS

22.3 Work and Energy
Looking at a single particle again, we are sometimes facing the problem of determining the trajectory of
the particle given its equation of motion, that is,

m
dv

dt
= F (r). (22.88)

The problem with this is that the laws of nature often describe forces as functions of position, that is,
F (r), and not as functions of time, which is what we really want in order to solve the above equation in a
mathematically convenient way.

Imagine we knew the starting and ending points on the particle trajectory. We label these A and B,
and then we can integrate both the left- and right-hand sides of the above equation with respect to position
and obtain the following derivation

F (r) = m
dv

dt
, (22.89a)

∫ B

A
F (r) · dr =

∫ B

A
m

dv

dt
· dr, (22.89b)

=

∫ B

A
m

dv

dt
· vdt. (22.89c)

Now we use the following identity rule
1

2

d

dt
∥A∥2

2
=

1

2

d

dt
(A · A) , (22.90a)

=
1

2

(
dA

dt
· A + A · dA

dt

)
, (22.90b)

= A · dA

dt
, (22.90c)

which is really just a clever rewriting of the product differentiation rule. Applying the identity to our
derivation, we have

∫ B

A
F (r) · dr =

∫ B

A

1

2
m

d

dt
∥v∥2

2
dt, (22.91a)

=
1

2
m ∥vB∥22 −

1

2
m ∥vA∥22 . (22.91b)

Traditionally, physicists write v = ∥v∥2
2
; using this notation we can write:

∫ B

A
F (r) · dr

︸ ︷︷ ︸
WBA

=
1

2
mv2

B
︸ ︷︷ ︸

KB

− 1

2
mv2

A
︸ ︷︷ ︸

KA

, (22.92a)

⇓
WBA = KB −KA. (22.92b)

“book” — 2005/9/30 — 15:44 — page 671 — #683✐
✐

✐
✐

✐
✐

✐
✐

22.3 PHYSICS-BASED ANIMATION 671

Here,
∫ B
A F (r) · dr is termed the work, WBA, done by force F from A to B; the terms 1

2mv2 are called
the kinetic energy K. Sometimes the notations K = T = Ekin are also used. The simple looking equation

WBA = KB −KA, (22.93)

is known as the work-energy theorem. From the above derivations it is seen that the work ∆W done by
the force, F , in a small displacement ∆r is

∆W = F · ∆r. (22.94)

Splitting the force into an orthogonal and parallel component along ∆r, we immediately see that only
the component of the force parallel with the path contributes to the work done by the force. Thus, forces
orthogonal to the path do not contribute to the work.

If the work integral is not dependent on the actual path between A and B, but only on the positions A
and B, then the force F is called a conservative force.

Example 22.1
As an example of a conservative force, consider the gravitational field, where F = mg. In this case,

WBA =

∫ B

A
F (r) · dr, (22.95a)

=

∫ B

A
mg · dr, (22.95b)

= mg

∫ B

A
·dr, (22.95c)

= mg · (rB − rA) . (22.95d)

Usually, g = [0, 0,−g]T , where g = 9.8 m/s2, so

WBA = mg (zA − zB) . (22.96)

In conclusion, the work done by gravity depends only on the starting and ending positions.

Whenever we have conservative forces we can write the work integral in the form
∫ B

A
F (r) · dr = function of(rB)− function of(rA), (22.97)

or ∫ B

A
F (r) · dr = −U(rB) + U(rA), (22.98)

where U(r) is a function defined by the above expression and U is called the potential energy. The sign
convention might appear a little awkward at the moment; however, if we look at the work-energy theorem

“book” — 2005/9/30 — 15:44 — page 672 — #684✐
✐

✐
✐

✐
✐

✐
✐

672 CHAPTER 22. BASIC CLASSICAL MECHANICS

for a conservative force we have:

WBA = KB −KA (22.99a)
⇓

−UB + UA = KB −KA (22.99b)
⇓

KA + UA = KB + UB , (22.99c)

from which the chosen sign convention should be obvious. Sometimes the notation V is used instead of
U . However, we will stick with U in this section. Looking at the left-hand side of the equation we see
that we only have kinetic and potential energy at A, and the right-hand side only has energies at B, thus
the sum K + U is conserved. K + U is called the mechanical energy, (sometimes just the energy), and it
is often denoted by E or Emek. The conservation of mechanical energy is derived directly from Newton’s
second law. We say it is a derived law and it is a special case of the more general energy conservation law,
which states that if we look at all energies involved (heat, light, mass, etc.) then their sum is conserved.

In our derivation of the conservation of the mechanical energy, we assumed that the work was only
done by a conservative force. If we have a nonconservative force, we divide the applied force into two
terms: one equal to the sum of conservative forces, F C, and another equal to the sum of nonconservative
forces, F NC,

F = F C + F NC. (22.100)

The total work done by F from A to B is

W total
BA =

∫ B

A
F (r) · dr, (22.101a)

=

∫ B

A
(F C + F NC) · dr, (22.101b)

=

∫ B

A
F C +

∫ B

A
F NC · dr, (22.101c)

= −UB + UA +

∫ B

A
F NC · dr

︸ ︷︷ ︸
W NC

BA

, (22.101d)

= −UB + UA + W NC
BA . (22.101e)

“book” — 2005/9/30 — 15:44 — page 673 — #685✐
✐

✐
✐

✐
✐

✐
✐

22.3 PHYSICS-BASED ANIMATION 673

The work-energy theorem, W total
BA = KB −KA, now has the form

−UB + UA + W NC
BA = KB −KA, (22.102a)
⇓

W NC
BA = KB + UB −KA − UA, (22.102b)
⇓

W NC
BA = KB + UB︸ ︷︷ ︸

EB

− (KA + UA)︸ ︷︷ ︸
EA

, (22.102c)

⇓
W NC

BA = EB − EA. (22.102d)

We see that the mechanical energy E is no longer constant but depends on the state of the system. A typical
and often-used example of a nonconservative force is the friction force. The friction force is parallel to
the path, but points in the opposite direction, so W friction

BA < 0. Thus, energy is dissipated from the system
implying that EB < EA. How much EB decreases depends on how long the particle is moved along the
path.

Let’s turn our attention back to the definition of potential energy,

UB − UA = −
∫ B

A
F · dr. (22.103)

Consider the change in potential energy when a particle undergoes the displacement ∆r,

U(r + ∆r)− U(r) = −
∫ r+∆r

r
F (r′) · dr′. (22.104)

The left-hand side is the difference in U at the two ends of the path, ∆U . If ∆r is so small that F does
not change significantly over the path, F can be regarded as constant. Thus, we have

∆U = −F · ∆r, (22.105a)
= − (Fx∆x + Fy∆y + Fz∆z) . (22.105b)

In the last step, we have written the right-hand side in terms of Coordinates. Another way to write ∆U is
as a first-order differential,

∆U ≈ ∂U

∂x
∆x +

∂U

∂y
∆y +

∂U

∂z
∆z, (22.106)

combining the equations we have

∂U

∂x
∆x +

∂U

∂y
∆y +

∂U

∂z
∆z ≈ −Fx∆x− Fy∆y − Fz∆z. (22.107)

“book” — 2005/9/30 — 15:44 — page 674 — #686✐
✐

✐
✐

✐
✐

✐
✐

674 CHAPTER 22. BASIC CLASSICAL MECHANICS

In the limit (∆x,∆y,∆z) → 0, the approximation becomes exact. Since ∆x, ∆y, and ∆z are indepen-
dent, the coefficient on either side of the equation must be equal, meaning

Fx = −∂U

∂x
, (22.108a)

Fy = −∂U

∂y
, (22.108b)

Fz = −∂U

∂z
. (22.108c)

Using the gradient operator, ∇, these three equations are written as

F = −∇U. (22.109)

Not only does this equation allow us to find the force given the potential energy function, but it is also a
valuable tool when physicists analyze the stability of a system in terms of energy diagrams. The observa-
tion is that F is pointing toward minima of U .

Living in the real world, as humans, we are often quite used to measuring things in terms of absolute
measures; energy is a little tricky in this manner. In fact, the value of E is to a certain extent arbitrary,
only changes in E have physical significance. Let’s look at the potential energy definition once again.

UB − UA = −
∫ B

A
F · dr (22.110)

defines only the difference in potential energy between A and B and not potential energy itself. For
instance, we could add any constant to UA and the same constant to UB without violating the above
definition, but we would change the value of E, since E = K + U .

In the above, we have introduced the concepts of work, mechanical energy, kinetic energy, potential
energy, etc. for a single particle. We will now extend the concept of kinetic energy to a particle system,
which in the limiting case, yields the kinetic energy for a rigid body (the same recipe was used in sec-
tion 22.1). For a particle system, the total kinetic energy is simply given by the sum of the kinetic energy
of each particle. We have

K =
∑

j

1

2
mjv

2
j . (22.111)

From Section 22.1.5 we know that for a particle in a rigid body,

vj = vcm + ω ×∆rj︸ ︷︷ ︸
∆vj

, (22.112)

where the particle position is given by rj = rcm + ∆rj , so ∆rj is a vector from the center of mass to the
particle position. Inserting into the kinetic energy, we have

K =
∑

j

1

2
mj (vcm + ω ×∆rj) · (vcm + ω ×∆rj) , (22.113)

“book” — 2005/9/30 — 15:44 — page 675 — #687✐
✐

✐
✐

✐
✐

✐
✐

22.4 PHYSICS-BASED ANIMATION 675

with some mathematical manipulation this yields

K =
∑

j

1

2
mj (vcm · vcm + 2 (ω ×∆rj) · vcm + (ω ×∆rj) · (ω ×∆rj)) , (22.114a)

=
1

2
Mv2

cm + vcm ·
∑

j

mj (ω ×∆rj) +
∑

j

1

2
mj (ω ×∆rj) · (ω ×∆rj) , (22.114b)

=
1

2
Mv2

cm + vcm ·
∑

j

mj∆vj

︸ ︷︷ ︸
=0

+
∑

j

1

2
mj (ω ×∆rj) · (ω ×∆rj) , (22.114c)

=
1

2
Mv2

cm +
1

2

∑

j

mj (ω ×∆rj) · (ω ×∆rj) . (22.114d)

Using the vector identity (A×B) · C = A · (B ×C), with A = ω, B = ∆rj , and C = ω × ∆rj ,
yields

K =
1

2
Mv2

cm +
1

2

∑

j

mjω · (∆rj × (ω ×∆rj)) , (22.115a)

=
1

2
Mv2

cm +
1

2
ω ·
∑

j

mj (∆rj × (ω ×∆rj)) , (22.115b)

=
1

2
Mv2

cm +
1

2
ω ·
∑

j

(∆rj × (mj∆vj))

︸ ︷︷ ︸
Lcm

, (22.115c)

=
1

2
Mv2

cm +
1

2
ω · Lcm. (22.115d)

Taking the limit and recalling that L = Iω, we end up with the following formula for the kinetic energy
of a rigid body:

K =
1

2
Mv2

cm +
1

2
ωT Iω. (22.116)

The first term is due to translational motion only and the second term is due to rotational motion only;
thus, they are respectively called the translational kinetic energy and the rotational kinetic energy. This
concludes out treatment of classical rigid body mechanics.

22.4 The Harmonic Oscillator
In the preceding sections, we treated the basic theory of classical rigid body mechanics. In this section, we
will present the basic theory of the harmonic oscillator. A harmonic oscillator is a system occurring re-
peatedly in animation systems and is referred to as springs. First, a single-object system will be discussed
followed by a two-object system.

“book” — 2005/9/30 — 15:44 — page 676 — #688✐
✐

✐
✐

✐
✐

✐
✐

676 CHAPTER 22. BASIC CLASSICAL MECHANICS

Figure 22.12: The one-mass harmonic oscillator.

22.4.1 The One-Object Harmonic Oscillator
Consider a particle attached to a wall of infinite mass with a spring, as shown in Figure 22.12. The spring
force given by

Fspring = −kx, (22.117)

is called Hooke’s spring law, and k > 0 is called the spring coefficient. Newton’s second law of motion
dictates the motion of the particle as

mẍ = −kx, (22.118)

which yields the second-order ordinary differential equation

mẍ + kx = 0. (22.119)

An analytical solution to this equation exists and can be shown to be

x = B sin (ω0t) + C cos (ω0t) , (22.120)

where

ω0 =

√
k

m
(22.121)

is known as the natural frequency. The constants B and C can be evaluated from the initial position and
velocity of the particle. Using the trigonometric identity

cos (a + b) = cos (a) cos (b)− sin (a) sin (b) . (22.122)

“book” — 2005/9/30 — 15:44 — page 677 — #689✐
✐

✐
✐

✐
✐

✐
✐

22.4 PHYSICS-BASED ANIMATION 677

0 5 10 15 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Undamped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A cos(ω0 t)

k = 20
m = 10

Figure 22.13: The amplitude of an undamped harmonic oscillator plotted as a function of time.

The analytical solution (22.120) can be rewritten as a single cosine function,

x = A cos (ω0t + φ) . (22.123)

Setting (22.123) equal to (22.120) gives

A cos (ω0t) cos (φ)−A sin (ω0t) sin (φ) = B sin (ω0t) + C cos (ω0t) . (22.124)

The implication is that

A cos (φ) = C, (22.125a)
A sin (φ) = −B, (22.125b)

and that
A =

√
B2 + C2, (22.126)

and

tan(φ) = −B

C
. (22.127)

The particle will follow a cosine motion with amplitude A, frequency ω0, and phase φ. The motion is
consequently repetitive with a period T ,

T =
2π

ω0
=

2π√
k
m

. (22.128)

Figure 22.13 shows an example of a harmonic oscillator.

“book” — 2005/9/30 — 15:44 — page 678 — #690✐
✐

✐
✐

✐
✐

✐
✐

678 CHAPTER 22. BASIC CLASSICAL MECHANICS

The idealized harmonic oscillator assumes that there is no loss in energy over time. This is physically
unrealistic, and practically not as useful as a damped harmonic oscillator. A typical damping force is
given by

Fdamping = −bẋ, (22.129)

which is commonly referred to as a linear viscosity force, and the coefficient b > 0 is called the damping
or viscosity coefficient. From Newton’s second law of motion, the motion of the damped particle must
obey,

mẍ = −kx− bẋ, (22.130)

which is equivalent to the second-order ordinary differential equation

mẍ + bẋ + kx = 0, (22.131)

or
ẍ +

b

m
ẋ +

k

m
x = 0. (22.132)

Using the natural frequency ω2
0 = k

m and introducing γ = b
m , this may be written as

ẍ + γẋ + ω2
0x = 0. (22.133)

An analytical solution exists and is stated here without proof as

x = A exp
(
−γ

2
t
)

cos (ω1t + φ) , (22.134)

where A and φ are constants determined from initial conditions, and

ω1 =

√
ω2

0 −
γ2

4
(22.135)

is the frequency. The frequency ω1 has real solutions when

ω2
0 −

γ2

4
≥ 0 (22.136a)

⇓
k

m
− b2

4m2
≥ 0 (22.136b)

⇓
4km− b2 ≥ 0. (22.136c)

Introducing the notation
A(t) = A exp

(
−γ

2
t
)

, (22.137)

“book” — 2005/9/30 — 15:44 — page 679 — #691✐
✐

✐
✐

✐
✐

✐
✐

22.4 PHYSICS-BASED ANIMATION 679

0 2 4 6 8 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Lightly Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A exp(−γ t) cos(ω1 t)

k = 20
b = 1
m = 10γ / ω1 = 0.0707549137677225

Figure 22.14: The amplitude of a lightly damped harmonic oscillator plotted as a function of time.

the damped harmonic oscillator is written as

x = A(t) cos (ω1t + φ) , (22.138)

which is a cosine wave with a time-varying amplitude.
Comparing the damped harmonic oscillator (22.134) with the undamped harmonic oscillator (22.123),

we see that the amplitude of the damped oscillator is exponentially decaying and the frequency ω1 of the
damped oscillator is less than the frequency, ω0, of the undamped oscillator. In Figure 22.14 the amplitude
of a damped harmonic oscillator is shown.

The zero-crossings of the damped harmonic oscillator occurs at equal time intervals by the period

T =
2π

ω1
. (22.139)

Surprisingly though, the peaks of the motion do not lie halfway between the zero-crossings.
The damped motion may be described qualitatively by examining the value of b2 − 4mk and the ratio

of
γ

ω1
. (22.140)

The motion is:

Over damped, when b2 − 4mk > 0. Two cases of over-damping can be distinguished:

Lightly damped, if γ
ω1
≪ 1 then A(t) decays very little during the time the cosine makes many

zero crossings.

Heavily damped, if γ
ω1

is large then A(t) rapidly goes to zero while the cosine makes only a few
oscillations.

“book” — 2005/9/30 — 15:44 — page 680 — #692✐
✐

✐
✐

✐
✐

✐
✐

680 CHAPTER 22. BASIC CLASSICAL MECHANICS

0 2 4 6 8 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Lightly Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
) A exp(−γ t) cos(ω1 t)

k = 20
b = 1
m = 10γ / ω1 = 0.0707549137677225

0 5 10 15 20
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Heavily Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t) cos(ω1 t)

k = 20
b = 10
m = 10
γ / ω1 = 0.755928946018454

0 5 10 15 20
0

0.005

0.01

0.015

0.02
Critically Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t)

k = 10

b = 20

m = 10

0 5 10 15 20
−5

0

5

10

15

20 x 10−3 Under−Damped Harmonic Oscillator

time (seconds)

P
en

et
ra

tio
n

de
pt

h
(c

m
)

A exp(−γ t) cos(ω1 t)

k = 20
b = 20
m = 10
γ / ω1 = 2

Figure 22.15: A qualitative analysis of a damped harmonic oscillator. Amplitudes are plotted as functions
of time.

Critically damped, when b2 − 4mk = 0. In this case, the amplitude tends rapidly to zero (without
crossing zero) and flattens out.

Under damped, when b2 − 4mk < 0. In this case, the amplitude decays even faster than in the case of
critical damping, but the amplitude crosses zero and increases again before flattening out.

Examples of the four categories are illustrated in Figure 22.15.
Using a harmonic oscillator for a mass-spring system (see Section 8.4.1) to model penalty forces

(see Chapter 5), reasonable motion is obtained for heavily damped, or at best, critically damped, since
oscillating forces such as oscillating contact forces are often undesirable. Furthermore, it is often desirable
to require that the amplitude should decay to zero within a time-step, since this will make objects appear
rigid.

“book” — 2005/9/30 — 15:44 — page 681 — #693✐
✐

✐
✐

✐
✐

✐
✐

22.5 PHYSICS-BASED ANIMATION 681

Figure 22.16: The two-body harmonic oscillator.

22.4.2 The Two-Object Harmonic Oscillator
Consider a two-body system, as shown in Figure 22.16, where two particles are connected with a spring
and label uniquely by the labels i and j. Hooke’s law for this system is given as the following two
equations:

miẍi = k (xj − xi) , (22.141a)
mjẍj = −k (xj − xi) , (22.141b)

where xi is the position of the i’th particle and mi the mass. Similarly, xj and mj are the position and
mass of the j’th particle. Dividing the first equation by mi and the second by mj , yields

ẍi = k
1

mi
(xj − xi) , (22.142a)

ẍj = −k
1

mj
(xj − xi) , (22.142b)

and subtracting the first from the second yields

ẍj − ẍi = −k
1

mj
(xj − xi)− k

1

mi
(xj − xi) (22.143a)

= −k

(
1

mj
+

1

mi

)
(xj − xi) . (22.143b)

The two-object harmonic oscillator has the same motion as the one-object harmonic oscillator. This
may be seen by setting, x = xj − xi, in (22.143b), such that

ẍ = −k

(
1

mj
+

1

mi

)
x (22.144)

Introducing the reduced mass as
µ =

mimj

mi + mj
, (22.145)

it is discovered that
µẍ = −kx. (22.146)

It is thus concluded that the two-object harmonic oscillator behaves as a one-object system of mass µ.

“book” — 2005/9/30 — 15:44 — page 682 — #694✐
✐

✐
✐

✐
✐

✐
✐

682 CHAPTER 22. BASIC CLASSICAL MECHANICS

22.5 The Lagrange Formulation
The Lagrange formulation will be discussed in the following. This section is written with an emphasis on
obtaining a realistic implementation of a physical simulation rather than a complete physical and mathe-
matical understanding. The scope of this section is the derivation of [Terzopoulos et al., 1987, Equation 1],
shown here:

∂

∂t

(
µ(a)

(
∂r

∂t

))
+ γ(a)

∂r

∂t
+
δε

δr
= f(r, t). (22.147)

We will use a notation similar to [Goldstein, 1980]. The physical theory is based on [Goldstein, 1980,
Chapters 1, 2 and 13], and the calculus of variation used is discussed in detail in Chapter 21.

22.5.1 Lagrange’s Equation
If the total force on each particle in a particle system is zero, then the system is in equilibrium, and

F i = 0, ∀i. (22.148)

The virtual work of all the forces in a virtual displacement, δr i, is by definition
∑

i

F i · δri = 0, (22.149)

because all F is are zero. A virtual displacement is an infinitesimal instantaneous fictive displacement,
meaning it is infinitely small, there is no time duration, and the displacement never occurs in the real
world. Virtual displacements are a useful mathematical trick, which we will use in the following. The
only requirement for using virtual displacements is that their use must be consistent with the forces and
constraints in the system.

Newton’s second law (22.5) for the i’th particle is given by

F i = ṗi, (22.150a)
⇓

F i − ṗi = 0. (22.150b)

The total force can be split into two: the applied forces, F (a)
i , and the constraint forces, F (c)

i :
(
F (a)

i + F (c)
i

)
− ṗi = 0. (22.151)

Using a virtual displacement, the work performed is
∑

i

((
F (a)

i + F (c)
i

)
− ṗi

)
· δri = 0, (22.152)

and expanding the terms gives
∑

i

F (a)
i · δri +

∑

i

F (c)
i · δri −

∑

i

ṗi · δri = 0. (22.153)

“book” — 2005/9/30 — 15:44 — page 683 — #695✐
✐

✐
✐

✐
✐

✐
✐

22.5 PHYSICS-BASED ANIMATION 683

Consider a particle constrained to move in a plane. Any constraint force on this particle must be perpen-
dicular to the plane. Since any virtual displacement must be consistent with the constraints in the system,
they must lie in the plane and thus be orthogonal to the constraint forces. In this case, the virtual work of
the constraint forces is therefore zero. The discussion in the following will be restricted to systems where
the net virtual work of the constraint forces is zero. This is D’Alembert’s principle and reduces (22.153)
to: ∑

i

(
F (a)

i − ṗi

)
· δri = 0. (22.154)

The vectors ri are not necessarily independent of each other. It is useful to transform them into indepen-
dent coordinates, qj . To see why this is useful, recall from linear algebra that a linear combination of a set
of independent vectors, vi, can only be zero if all the coefficients, ai, are zero.

a1v1 + · · · + anvn = 0 ⇒ a1 = · · · = an = 0. (22.155)

Hence, given a set of transformed coordinates that are mutually independent and D’Alembert’s principle
(22.154), we can conclude that F (a)

i −ṗi are zero for all i. It will be assumed that such a set of independent
coordinates exists together with a set of transformation equations. The transformed coordinates q i will be
called the generalized coordinates.

r1 = r1(q1, q2, . . . , qn, t), (22.156a)
r2 = r2(q1, q2, . . . , qn, t), (22.156b)

...
rN = rN (q1, q2, . . . , qn, t), (22.156c)

where N > n, and k = N − n is the redundant degrees of freedoms removed from the representation.
Taking the derivative of the i’th particle

vi ≡
d

dt
ri =

∑

k

∂ri

∂qk
q̇k +

∂ri

∂t
, (22.157)

reveals a method for converting between the two set of coordinates, which is the i’th row of the Jacobian of
the transformation multiplied by the generalized velocity vector of the system. The virtual displacement
in the generalized coordinates δri is naturally a linear combination of the virtual displacements of the
system δqk through the Jacobian of the transformation:

δri =
∑

k

∂ri

∂qk
δqk. (22.158)

The virtual displacements are instantaneous; therefore, there is no variation in time to take into account,

“book” — 2005/9/30 — 15:44 — page 684 — #696✐
✐

✐
✐

✐
✐

✐
✐

684 CHAPTER 22. BASIC CLASSICAL MECHANICS

∂ri
∂t = 0. The first term in (22.154) expressed in generalized coordinates is thus,

∑

i

F (a)
i · δri =

⎛

⎝
∑

i

F (a)
i ·

⎛

⎝
∑

j

∂ri

∂qj
δqj

⎞

⎠

⎞

⎠ (22.159a)

=
∑

i,j

(
F (a)

i · ∂ri

∂qj
δqj

)
(22.159b)

=
∑

j

(
∑

i

F (a)
i · ∂ri

∂qj

)

︸ ︷︷ ︸
Qj

δqj , (22.159c)

implying that ∑

i

F (a)
i · δri =

∑

j

Qjδqj , (22.160)

where Qj is called the generalized force. The second term in (22.154) expressed in generalized coordinates
is

∑

i

ṗi · δri =
∑

i

mir̈i · δri (22.161a)

=
∑

i

mir̈i ·

⎛

⎝
∑

j

∂ri

∂qj
δqj

⎞

⎠ (22.161b)

=
∑

i,j

mir̈i ·
∂ri

∂qj
δqj (22.161c)

=
∑

j

(
∑

i

mir̈i ·
∂ri

∂qj

)
δqj . (22.161d)

The summation in the inner parentheses can be rewritten by using the product rule of differentiation

∑

i

mir̈i ·
∂ri

∂qj
=
∑

i

(
d

dt

(
miṙi ·

∂ri

∂qj

)
−miṙi ·

d

dt

(
∂ri

∂qj

))
(22.162a)

=
∑

i

(
d

dt

(
miṙi ·

∂ri

∂qj

)
−miṙi ·

∂ṙi

∂qj

)
. (22.162b)

Differentiating (22.157) by q̇j gives
∂vi

∂q̇j
=
∂ri

∂qj
. (22.163)

“book” — 2005/9/30 — 15:44 — page 685 — #697✐
✐

✐
✐

✐
✐

✐
✐

22.5 PHYSICS-BASED ANIMATION 685

and inserting into (22.162b) results in
∑

i

mir̈i ·
∂ri

∂qj
=
∑

i

(
d

dt

(
mivi ·

∂vi

∂q̇j

)
−mivi ·

∂vi

∂qj

)
. (22.164)

Rearranging terms and substituting back into (22.161d), it is found that

∑

i

ṗi · δri =
∑

j

{
d

dt

[
∂

∂q̇j

(
∑

i

1

2
miv

2
i

)]
− ∂

∂qj

(
∑

i

1

2
miv

2
i

)}
δqj . (22.165)

We can now substitute (22.160) and (22.165) into (22.154)
∑

j

{[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
−Qj

}
δqj = 0, (22.166)

where
T =

∑

i

1
2mv2

i , (22.167)

is the total kinetic energy of the system. Since all δqj are independent, the equation can only hold if the
coefficients are zero:

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
−Qj = 0 (22.168a)

⇓
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj . (22.168b)

It will be assumed that the forces constitute a gradient field (Definition 18.38), that is, that they may be
found as a gradient operator on a scalar field, V , as

F (a)
i = −∇iV, (22.169)

where V (r1, r2, . . . , rN , t) usually denotes the potential energy, and ∇i is the gradient of V with respect
to its coordinates corresponding to ri. The generalized forces then become,

Qj =
∑

i

F (a)
i · ∂ri

∂qj
(22.170a)

= −
∑

i

∇iV · ∂ri

∂qj
(22.170b)

= −
∑

i

∂V

∂ri
· ∂ri

∂qj
(22.170c)

= −∂V

∂qj
. (22.170d)

“book” — 2005/9/30 — 15:44 — page 686 — #698✐
✐

✐
✐

✐
✐

✐
✐

686 CHAPTER 22. BASIC CLASSICAL MECHANICS

Inserting this into (22.168b), it is found that

d

dt

(
∂T

∂q̇j

)
− ∂ (T − V)

∂qj
= 0. (22.171)

Assuming that V is independent of ∂q̇j , which is regularly the case, this is reduced to

d

dt

(
∂ (T − V)

∂q̇j

)
− ∂ (T − V)

∂qj
= 0. (22.172)

The Lagrange’s equation is found by defining the Lagrangian L as

L = T − V, (22.173)

which results in
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (22.174)

for all j. Observe that if some of the applied forces, f i, could not be derived from a scalar potential, then
Lagrange’s equation becomes

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj (22.175)

for all j, where

Qj =
∑

i

f i ·
∂ri

∂qj
. (22.176)

22.5.2 Lagrange’s Equations from Hamilton’s Principle
An alternative derivation of Lagrange’s Equations uses Hamilton’s principle. Hamilton’s principle states
that the motion of the system from time t1 to time t2 is such that the line integral of the Lagrangian,

I =

∫ t2

t1

L dt, (22.177)

has a stationary value for the actual path of the motion. In other words, Lagrange’s equation can be derived
by setting the variation of the integral,

δI = δ

∫ t2

t1

L(q1, . . . , qn, q̇1, . . . , q̇n, t) dt, (22.178)

equal to zero, see Chapter 21 for an introduction to calculus of variation. Forces that cannot be written in
terms of potentials are ignored in L similarly to (22.175).

Calculus of variation assumes a continuous system, however, until now the system has been described
by a discrete set of particles given in generalized coordinates, qis. Fortunately, an object may be considered

“book” — 2005/9/30 — 15:44 — page 687 — #699✐
✐

✐
✐

✐
✐

✐
✐

22.5 PHYSICS-BASED ANIMATION 687

as the continuous limit of infinitely many small particles. This is similar to thinking of a real-world object
as a continuous entity consisting of many, but a finite number of atoms.

In the continuous limit, the index i should be taken to be a continuous index, a, of the generalized
coordinates,

i ≃ a ∈ Ω, (22.179)

where Ω is the domain (that is, the volume of the object). For simplicity, a single continuous index will
be used; nevertheless, the mathematical treatment in the following may easily be generalized to three or
more indices.

i ≃ {a1, a2, a3} . (22.180)

One way to think of these continuous indices is as a parameterization of the volume of a deformable
object.

Example 22.2
For instance, imagine that the volume is given by the B-spline volume, B(u, v,w), defined as

B(u, v,w) =
∑

i

∑

j

∑

k

Ni(u)Nj(v)Nk(w)P ijk, (22.181)

where N is the B-spline basis function and P ijk are the control points. Here, u, v, and w are the B-spline
volume parameters, and they could be used as continuous indices. Given specific values of u, v, and w
would uniquely pinpoint a single particle in the material.

Given continuous indices, the Lagrangian is written as an integral,

L =

∫
L da, (22.182)

where L is known as the Lagrangian density. The Lagrangian density is a function of time, indices,
displacements, and derivatives of displacements,

L = L
(

a, t, r(a, t),
dr(a, t)

da
,
dr(a, t)

dt

)
, (22.183)

where r(a, t) is the displacement function, also sometimes called the field quantity. For a deformable
object, the displacement r(a, t) would be the displacement of the point, a, from its original placement
(that is, r(a, 0) = 0) in the deformable object.

Hamilton’s Principle can be stated as

δI = δ

∫ t2

t1

∫

Ω
L da dt = 0. (22.184)

Using calculus of variation, the integral equation is converted to the differential equation,

d

dt

(
∂L
∂ ∂r
∂t

)

+
d

da

(
∂L
∂ ∂r
∂a

)

− ∂L
∂r

= 0. (22.185)

“book” — 2005/9/30 — 15:44 — page 688 — #700✐
✐

✐
✐

✐
✐

✐
✐

688 CHAPTER 22. BASIC CLASSICAL MECHANICS

In general, the displacement vector r(a, t) for a system of independent variables a = {ai} is written in
condensed form as

d

dt

(
∂L
∂ ∂r
∂t

)
− δL
δr

= Q, (22.186)

where δ
δr is called the variational derivative for a system of independent variables ai, and it is given as

δ

δr
=

∂

∂r
−
∑

i

d

dai

∂

∂ ∂r
∂ai

. (22.187)

For integral equations involving second-order derivatives, the variational derivative is given as

δ

δr
=

∂

∂r
−
∑

i

d

dai

∂

∂ ∂r
∂ai

+
∑

i,j

d2

dajdai

∂

∂ ∂2r
∂aj∂ai

. (22.188)

22.6 Principle of Virtual Work

Virtual work is a method of introducing fictive constraints on an under-constrained system without adding
or subtracting energy. It will be shown in this section that the constraint forces can be written as

f̂ = J Tλ, (22.189)

where f̂ is the constraint force, J is the Jacobian matrix, and λ is a vector of Lagrange multipliers. From
the Newton-Euler equations (see Section 7.1 for details) the generalized acceleration vector can be derived
as

s̈ = M−1
(
f + f̂

)
. (22.190)

Here, M is the generalized mass matrix, s is the generalized position vector, and f is the generalized
applied force vector.

From a time-independent holonomic constraint, Φ(s) = 0, the following kinematic constraint can be
derived:

Φ̇ =
∂Φ

∂s︸︷︷︸
J

ṡ (22.191a)

= J ṡ = 0 (22.191b)
(22.191c)

Differentiation w.r.t. time leads to the acceleration constraint

Φ̈ = J̇ ṡ + J s̈ = 0. (22.192)

“book” — 2005/9/30 — 15:44 — page 689 — #701✐
✐

✐
✐

✐
✐

✐
✐

22.7 PHYSICS-BASED ANIMATION 689

Here, there are some subtleties concerning the term J̇ : from the chain rule it can be seen that it involves
taking a matrix differentiated w.r.t. a vector

J̇ =
∂J

∂s
ṡ, (22.193)

which would imply a 3D tensor. In practice, this can be avoided by using

J̇ =
∂Φ̇

∂s
. (22.194)

Insertion of s̈ in the acceleration constraint yields

Φ̈ = J̇ ṡ + JM−1
(
f + f̂

)
= 0, (22.195)

and rearranging gives
JM−1f̂ = −JM−1f − J̇ ṡ. (22.196)

The principle of virtual work states that constraint forces do no work, that is,

f̂ · ṡ = 0. (22.197)

However, from the constraint problem it is known that J ṡ = 0, and in combination with the principle of
virtual work this leads to

f̂ = J Tλ. (22.198)

To get an intuitive grasp of this equation, it may help to think in terms of simple geometry. The rows of
the Jacobian J are a collection of vectors, each of which is the gradient of a scalar constraint function. In
particular, the i’th row is the gradient of the i’th entry in Φ. In fact, the gradients are the normals to the
isosurfaces given by Φ = 0; their directions represent the domains where the solution is not permitted to
move into. To ensure this, it is required that the change of state ṡ is orthogonal to all those normals. In
other words, s is only allowed to change in the tangential direction, and this is exactly what the condition
J ṡ = 0 means. The set of vectors, f̂ , spanned by J Tλ are therefore all orthogonal to the state of change
vector ṡ = 0, and it will therefore always be the case that f̂ · ṡ = 0, which is exactly what the principle of
virtual work states.

The Lagrange multipliers may be solved by using f̂ = J Tλ, implying that

JM−1f̂ = −JM−1f − J̇ ṡ, (22.199a)
⇓

JM−1J Tλ = −JM−1f − J̇ ṡ, (22.199b)

from which the vector of Lagrange multipliers, and in turn the constraint forces, may be computed.

“book” — 2005/9/30 — 15:44 — page 690 — #702✐
✐

✐
✐

✐
✐

✐
✐

690 CHAPTER 22. BASIC CLASSICAL MECHANICS

x
a

Figure 22.17: A graphical representation of the deformation of an object.

22.7 Stress and Strain
In order to model deformable objects, a way to measure deformation is needed. In this section, we will
define measures for deformation and relate them to stress in a deformable object. The field of continuum
mechanics has derived a general theory in this respect, which will be described in a condensed form.

Consider an object in an undeformed state, as seen on the left in Figure 22.17. A point within the
undeformed object is denoted by the vector a, given in material coordinates. When the object is translated,
rotated, or deformed, the material at point a changes location. This new location is described by the vector
x, given in world coordinates. This is illustrated on the right in Figure 22.17. The displacement of the
material is given as

u = x− a. (22.200)

For any point a in the material, there exists a mapping toward its actual position in the deformed
object, given by x(a). This function is undefined if the vector a is outside the material. Knowing the
function, one can calculate the change of x with respect to change of a by

dx = Fda, (22.201)

where Fij is the deformation gradient (also known as the Jacobian), given by

Fij =
∂xi

∂aj
, (22.202)

which describes the change in world coordinates with respect to change in material coordinates. The
indexes i and j define a particular value of the vectors x and a, respectively.

A displacement does not necessarily mean that the object deforms. Rotating and translating the object
gives rise to a displacement, but not a deformation. The deformation gradient in (22.202) is invariant
to translation, but not to rotation, since the derivative of vector x changes with respect to a, as seen in
Figure 22.18; but the magnitude does not change. Therefore, it is possible to describe deformation as the
change in squared length of dx and da:

dx2 − da2 = dxT dx− daT da. (22.203)

“book” — 2005/9/30 — 15:44 — page 691 — #703✐
✐

✐
✐

✐
✐

✐
✐

22.7 PHYSICS-BASED ANIMATION 691

x

a

x’

da

dx

dx’

u

u’
R

Figure 22.18: A rotation changes the derivative of vector x with respect to a; but the magnitude does not
change.

Using (22.201), this can be rewritten in terms of material coordinates only, to obtain

daT F T Fda− daT da = daT
(
F T F − I

)
da = daT 2Eda. (22.204)

The symbol E is Green’s strain tensor also known as the Lagrangian strain tensor, defined as

E =
1

2

(
F T F − I

)
. (22.205)

The Green strain tensor is invariant to rigid body motion. Rewriting it in terms of partials, one obtains

E =
1

2

(
∂x

∂ai
· ∂x

∂aj
− δij

)
, (22.206)

where δij is the delta function. Using (22.200), this can further be rewritten in terms of the displacements,
by

E =
1

2

(
∂ (u + a)

∂ai
· ∂ (u + a)

∂aj
− δij

)
(22.207a)

=
1

2

(
∂u

∂ai
· ∂u

∂aj
+
∂u

∂ai
· ∂a

∂aj
+
∂a

∂ai
· ∂u

∂aj
+
∂a

∂ai
· ∂a

∂aj
− δij

)
(22.207b)

=
1

2

(
∂u

∂ai
· ∂u

∂aj
+
∂ui

∂aj
+
∂uj

∂ai

)
. (22.207c)

The Green strain tensor contains a quadratic term, which means that analysis of large deformations be-
comes nonlinear. However, if the displacements are very small, the quadratic term becomes negligible.

“book” — 2005/9/30 — 15:44 — page 692 — #704✐
✐

✐
✐

✐
✐

✐
✐

692 CHAPTER 22. BASIC CLASSICAL MECHANICS

This is the assumption for the Cauchy strain tensor, which is a first-order approximation to the Green
strain tensor, given by

ϵij =
1

2

(
∂ui

∂aj
+
∂uj

∂ai

)
. (22.208)

In addition to the strain at a given point, one can calculate the rate of change by taking the derivative
with respect to time. For the Green strain tensor, given in (22.206), this becomes

d

dt
Eij =

d

dt

1

2

(
∂x

∂ai
· ∂x

∂aj
− δij

)
=

1

2

(
∂x

∂ai
· ∂ẋ

∂aj
+
∂ẋ

∂ai
· ∂x

∂aj

)
. (22.209)

From the above, the strain rate V is defined as

Vij =
∂x

∂ai
· ∂ẋ

∂aj
+
∂ẋ

∂ai
· ∂x

∂aj
. (22.210)

The stress in a deformable body is related to the strain and the strain-rate. This relationship is deter-
mined by the elastic and viscous properties of the material. A way to express this relationship is by the
2nd Piola-Kirchoff stress tensor S, given by

S = S(E) + S(V). (22.211)

The elastic stress, S(E), depends on the Green strain tensor, defined in (22.206), and the viscous stress,
S(V), depends on the strain-rate, defined in (22.210). These are given by

S(E)
ij =

3∑

k=1

3∑

l=1

CijklEkl, (22.212a)

S(V)
ij =

3∑

k=1

3∑

l=1

DijklVkl, (22.212b)

where the relation between the elastic stress and the strain is given by the stiffness matrix C , and the
relation between the viscous stress and the strain-rate is given by the damping matrix D. In three di-
mensions, the strain and stress tensors consist of nine values. To fully describe how each of the strain
values affects the stress, it requires 9 × 9 = 81 coefficients for both the stiffness matrix and the damping
matrix. But since E is symmetric, most of the coefficients of C are redundant, and can be reduced to 6× 6
different values. If the material being considered is isotropic, the material properties are independent of
direction. Such materials have only two independent variables (that is, elastic constants) in their stiffness
and damping matrices, as opposed to the 36 elastic constants in the general anisotropic case.

For isotropic materials, the elastic stress tensor is given by

S(E)
ij =

3∑

k=1

λEkkδij + 2µEij , (22.213)

“book” — 2005/9/30 — 15:44 — page 693 — #705✐
✐

✐
✐

✐
✐

✐
✐

22.7 PHYSICS-BASED ANIMATION 693

where µ determines the rigidity of the object, and λ determines the resistance to a change in volume. A
similar argument can be done for the viscous stress. Since the strain tensor is symmetric, the strain-rate
tensor will also be symmetric. The damping matrix D is therefore reduced to the two values φ and ψ, and
the viscous stress for isotropic materials is calculated by

S(V)
ij =

3∑

k=1

φVkkδij + 2ψvij . (22.214)

The isotropic elastic stress tensor from (22.213) can be conveniently written on matrix-vector form:
⎡

⎢⎢⎢⎢⎢⎢⎣

S11

S22

S33

S23

S31

S12

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

E11

E22

E33

E23

E31

E12

⎤

⎥⎥⎥⎥⎥⎥⎦
, (22.215)

using the fact that E is symmetric.
The isotropic elastic stress tensor given above uses the Lamé coefficients µ and λ. Often materials are

specified using Young’s modulus E and Poisson’s ratio ν. To convert from one to the other, one can use
the formulas:

λ =
νE

(1 + ν)(1− 2ν)
(22.216a)

µ =
E

2(1 + ν)
. (22.216b)

Inserting these conversions in (22.215), gives the commonly seen stress-strain relationship:
⎡

⎢⎢⎢⎢⎢⎢⎣

S11

S22

S33

S23

S31

S12

⎤

⎥⎥⎥⎥⎥⎥⎦
=

E

(1 + ν)(1− 2ν)

⎡

⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

E11

E22

E33

E23

E31

E12

⎤

⎥⎥⎥⎥⎥⎥⎦
. (22.217)

Comparing (22.217) with for example, the one given in [Zienkiewicz et al., 2000, Chapter 6], there is a
factor of 1

2 in the difference on the last three diagonal elements. To explain this, write out the entry ϵ23 in
the Cauchy strain tensor from (22.208):

ϵ23 =
1

2

(
∂u2

∂a3
+
∂u3

∂a2

)
. (22.218)

This is the average of the two shear strains. The total of the two shear strains is sometimes used instead:

γ23 =

(
∂u2

∂a3
+
∂u3

∂a2

)
, (22.219)

which gives rise to the difference. This is sometimes called engineering shear strain.

“book” — 2005/9/30 — 15:44 — page 694 — #706✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 695 — #707✐
✐

✐
✐

✐
✐

✐
✐

23

Differential Equations and Numerical Inte-
gration

Differential equations of interest in animation are often so complicated that it is impossible to find an-
alytical solutions. Therefore, this chapter concentrates on numerical solutions using finite differences
for explicit and implicit solution methods. Euler [Euler, 1768] was probably the first to use finite dif-
ferences for solving differential equations, while many consider Courant, Friedrichs, and Levy’s paper
[Courant et al., 1928] as the starting point of the modern numerical methods for solving partial differen-
tial equations. In this chapter, we will review [Press et al., 1999a, Chapter 16] on ordinary differential
equations, [Ames, 1969, Collatz, 1986, Morton et al., 1994, Butcher, 2003] on partial differential equa-
tions, [Baraff, 1997a, Baraff, 1997b] on explicit and implicit integration of differential equations, and
[Sethian, 1999, Osher et al., 2003] on level-set methods.

A differential equation is an equation where the differential of one or more functions appear. They
are typically classified as either being ordinary or partial. An ordinary differential equation (ODE) is an
equation of one independent variable x and one dependent variable y(x) and its derivatives. For example,
F [x, y(x), y′(x), y′′(x), . . .] = 0, where y(n)(x) = dny

dxn . A partial differential equation (PDE) is an
equation where partial derivatives occur, such as F [x, y, z(x, y), zx(x, y), zy(x, y), zxx(x, y), . . .] = 0,
where z(x, y) is the variable depending on the independent variables x and y, and zx(x, y) = ∂z(x,y)

∂x ,
etc. The highest order of the derivative occurring in a differential equation is the order of the differential
equation, and if the differential equation can be written as a polynomial in the dependent variables and
their derivatives, then the degree of the equation is also called the degree of the differential equation. A
differential equation of degree one is said to be linear.

23.1 Ordinary Differential Equations

Ordinary differential equations may always be reduced to a problem involving only coupled differential
equations of the form

dx1(t)

dt
= ẋ1 = f1(t, x1, ...xN), (23.1a)

dx2(t)

dt
= ẋ2 = f2(t, x1, ...xN), (23.1b)

...
dxN (t)

dt
= ẋN = fN (t, x1, ...xN), (23.1c)

695

“book” — 2005/9/30 — 15:44 — page 696 — #708✐
✐

✐
✐

✐
✐

✐
✐

696 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

−1
−0.5

0
0.5

1

−1

0

1

−1

−0.5

0

0.5

1

x−axisx−axis

f(x
,y

)

(a)

x−axis

x−
ax

is

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b)

Figure 23.1: A function (a) and its corresponding gradient field (b).

where the expressions fi are given, together with some boundary conditions on xi. As an example,
consider a 2D function f : R2 → R, and its gradient ∇f : R2 → R2, as shown in Figure 23.1. The
gradient of f is given by

∇f =

[
∂f
∂x1

∂f
∂x2

]

, (23.2)

and solutions to ẋ(t) = φ(x, t) = −∇f will be curves [x1(t), x2(t)]T , which have−∇f(x, y) as tangent.
It may be helpful to think of these curves as the paths a ball will follow when it rolls down the hill of f .

For some ordinary differential equations, the analytical solution is simple to find. As an example,
consider the ordinary differential equation

ẋ(t) = φ(x, t) = −kx(t). (23.3)

By writing the differentiation explicitly,

ẋ(t) =
dx

dt
= −kx, (23.4)

and by rearranging the dx and dt, we find

1

x
dx = −k dt. (23.5)

Each side of the equation now denotes a small infinitesimal element in x and t respectively, thus by
integrating both sides ∫

1

x
dx = −

∫
k dt, (23.6)

“book” — 2005/9/30 — 15:44 — page 697 — #709✐
✐

✐
✐

✐
✐

✐
✐

23.1 PHYSICS-BASED ANIMATION 697

we may find a solution as
ln x = −kt + c (23.7)

with some unknown integration constant c. Isolating x, we conclude that the particular differential equa-
tion has the analytical solution,

x = e−kt+c = ece−kt = Ce−kt, (23.8)

and the unknown constant C may be determined if boundary conditions are specified. In spite of the
apparent magical rearrangement of differential terms and integration w.r.t. different variables on each side
of the equation, it can readily be demonstrated that the above equation is a solution to (23.3)

dx

dt
=

dCe−kt

dt
= −kCe−kt = −kx. (23.9)

Unfortunately, most differential equations do not have analytical solutions. Instead, their solutions must
be approximated by finite differencing schemes, for example.

23.1.1 Explicit Euler Integration
Assume we are given a single first-order ordinary differential equation, ṙ(t) = φ(t, r). We think of
r = [x1, x2, . . . , xN]T as a particle moving on a height field, as shown in Figure 23.1(a), or more precisely,
as traveling in a corresponding gradient field φ, as shown in Figure 23.1(b). We thus wish to find the
trajectory, r, of the particle under initial conditions, r(0) = r0; ṙ(0) = ṙ0.

Examining the Taylor expansion (20.7) for r around t to first order:

r(t + h) = r(t) + hṙ(t) + O(h2) (23.10a)

= r(t) + hφ(t) + O(h2). (23.10b)

We realize that the function r may be approximated from φ by iteratively calculating r(t + ih) for i =
1 . . . n up to the order of precision of h2 in each step. This procedure is an approximation of

r(hT) = r(0) +
n∑

i=0

hφ(ih) ≃ r(0) +

∫ T

0
φ(t) dt, (23.11)

where T = nh. This is illustrated in Figure 23.2. This is known as explicit Euler integration. Unfor-
tunately, the iterative nature of the approximation implies that the error term accumulates. The solution
is simple to implement and fast to compute, but neither stable nor very accurate! This is demonstrated
in Figure 23.3. A vector field is shown in Figure 23.3(a), whose continuous solutions are circles, some
of which are indicated. Any explicit solution will give spirals, since any finite step will follow a locally
linear approximation of the circular arc, thus leaving the correct solution. This is most prominent near
the center, where the curvature of the correct solution is highest. In 23.3(b) we show a vector field whose
continuous solutions are translated exponentials. Taking steps that are too large will make the solution
diverge, since the locally linear approximation brings the numerical approximation to vectors of gradually
increasing size, thus making the numerical approximation explode.

“book” — 2005/9/30 — 15:44 — page 698 — #710✐
✐

✐
✐

✐
✐

✐
✐

698 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

f(t)

t
h

Figure 23.2: The explicit Euler method is an implementation of integration by box counting.

(a) (b)

Figure 23.3: Explicit Euler is inaccurate and can be unstable. Arrows denote the velocity field, thin lines
are the continuous solutions, and thick lines are a numerical approximation.

“book” — 2005/9/30 — 15:44 — page 699 — #711✐
✐

✐
✐

✐
✐

✐
✐

23.1 PHYSICS-BASED ANIMATION 699

23.1.2 Improving Accuracy with the Runge-Kutta Method
The accuracy of Euler’s method may be improved by taking into account higher-order terms in the Taylor
series. The midpoint method (second-order Runge-Kutta method) uses the Taylor-series to second order,

r(ti+1) = r(ti) + hṙ(ti) +
h2

2
r̈(ti) + O(h3). (23.12)

Although we are not given r̈, we may find a clever approximation as follows: recall that ṙ = φ(r), and
therefore

r̈ =
∂φ(r(t))

∂t
=
∂φ

∂r
· ∂r

∂t
= ∇φ(r(t)) ṙ = ∇φ(r(t))φ(r(t)). (23.13)

Further approximating φ(r(t)) by first-order Taylor series,

φ(ri + ∆r) = φ(ri) +∇φ(ri)∆r + O(∆r2), (23.14)

and cleverly choosing ∆r = h
2φ(ri), we may write

φ(ri +
h

2
φ(ri)) = φ(ri) +∇φ(ri)

h

2
φ(ri) + O(h2) (23.15a)

= φ(ri) +
h

2
r̈i + O(h2). (23.15b)

Thus, by isolating h2

2 r̈ we find

h2

2
r̈i = hφ(ri +

h

2
φ(ri))− hφ(ri) + O(h3), (23.16)

which may substituted directly into (23.12) as follows:

ri+1 = ri + hṙi +
h2

2
r̈i + O(h3) (23.17a)

= ri + hφ(ri +
h

2
φ(ri)) + O(h3). (23.17b)

Thus, we conclude that by probing φ in ri + h
2φ(ri), we have made a more accurate numerical approxi-

mation.
Further improvement in accuracy along the approach of the midpoint method is very tedious. However,

a general result exists [Butcher, 1963, Hairer et al., 2002, Butcher, 2003].
Definition 23.1 (s-stage Runge-Kutta method)
Given coefficients bi, aij ,∈ R, i, j = 1 . . . s, and letting ci =

∑s
j=1 aij , then an s-stage Runge-Kutta

method is given as

ki = φ

⎛

⎝t0 + cih, r0 + h
s∑

j=1

aijkj

⎞

⎠ , (23.18a)

r1 = r0 + h
s∑

i=1

biki. (23.18b)

“book” — 2005/9/30 — 15:44 — page 700 — #712✐
✐

✐
✐

✐
✐

✐
✐

700 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

The method is of

order 1 if
s∑

i=1

bi = 1 (23.19a)

order 2 if the above and
s∑

i=1

bici =
1

2
(23.19b)

order 3 if the above and
s∑

i=1

bic
2
i =

1

3
, and

s∑

j=1

s∑

i=1

biaijc
2
i =

1

6
. (23.19c)

For conditions on higher order are more complicated (see [Hairer et al., 2002, Section III.1] for a deriva-
tion).

The coefficients are often depicted as

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

(23.20)

in which case we have

explicit Euler : 0 0
1

(23.21a)

implicit Euler : 1 1
1

(23.21b)

trapezoidal integration :
0 0 0
1 1 0

1
2

1
2

(23.21c)

explicit midpoint :
0 0 0
1
2

1
2 0
0 1

(23.21d)

4th-order Runge-Kutta integration :

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6 .

(23.21e)

23.1.3 Adaptive Step Size Control
For many systems, a major reduction in computation time can be obtained by allowing for adaptive step
size. A simple method for adaptive control of accuracy is step doubling (and the analogous step halving),

“book” — 2005/9/30 — 15:44 — page 701 — #713✐
✐

✐
✐

✐
✐

✐
✐

23.1 PHYSICS-BASED ANIMATION 701

where a big step is compared with the equivalent using two smaller steps. For an explicit Euler, two small
steps of size h are found to be

r(t + h) = r(t) + hṙ(t) + O(h2), (23.22a)

r(t + 2h) = r(t + h) + hṙ(t + h) + O(h2) (23.22b)

= r(t) + hṙ(t) + hṙ(t + h) + O(h2). (23.22c)

Conversely, a single step of size 2h is found to be

r2(t + 2h) = r(t) + 2hṙ(t) + O(h2), (23.23)

and it is seen that the difference between r(t + 2h) and r2(t + 2h) depends only on h, and the difference
between ṙ(t) and hṙ(t + h), that is,

∆r = r(t + 2h)− r2(t + 2h) (23.24a)

= h (ṙ(t + h)− ṙ(t)) + O(h2). (23.24b)

Thus, when ∆r is large, doubling will imply a large error of approximation, while h may be safely doubled
for small ∆r.

To conclude, step doubling requires three steps, two of size h and one of size 2h. The extra computa-
tion time is often outweighed by the possible doubling of h. Step halving is analogous to the step doubling
discussed above.

23.1.4 Implicit Integration
Explicit integration is accurate for small step sizes, h. By step doubling the step size may be adapted to
reduce the number of steps dynamically. Nevertheless, there exists a class of differential equations, which
requires extremely small steps to converge, and these are called stiff ordinary differential equations. As
an example, consider a particle unsymmetrically attracted toward (0, 0).

ṙ(t) =
∂

∂t

[
x(t)
y(t)

]
=

[
−x(t)
−cy(t)

]
, y(t) ̸= 0. (23.25)

Large c results in unstable or stiff solutions by Euler’s method, which is seen by the first step,

r(t + h) = r(t) + hṙ(t) =

[
x(t)
y(t)

]
+ h

[
−x(t)
−cy(t)

]
=

[
(1− h)x(t)
(1− hc)y(t)

]
. (23.26)

In the limit for large h this solution does not converge.

lim
h→∞

[
(1− h)x(t)
(1− hc)y(t)

]
=

[
−∞
−∞

]
(23.27)

That is, when |1 − hc| > 1, then the solution will diverge and thus become unstable. Conversely, the
solution will converge to 0 when |1 − hc| < 1, which implies that 0 < hc < 2 or equivalently h < 2/c,
as h, c > 0.

“book” — 2005/9/30 — 15:44 — page 702 — #714✐
✐

✐
✐

✐
✐

✐
✐

702 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

Implicit integration stabilizes Euler’s method by solving the equation backward, that is, by solving

r(t + h) = r(t) + hṙ(t + h). (23.28)

At first glance, this may appear impossible, since it would require a solution to exist in order for us to be
able to evaluate ṙ(t + h). However, assuming that we are given a vector field φ(r(t)) such that

ṙ(t + h) = φ(r(t + h)), (23.29)

then it is possible to solve (23.28) when φ is linear in r, that is, when φ may be written as

φ(r + δr) = φ(r) +∇φ δr, (23.30)

for some fixed r and variable δr, and where ∇φ is the Jacobian of φ taken in r. Cleverly choosing
δr = r(t + h) − r(t) such that φ(r(t + h)) = φ(r(t) + δr) = φ(r + δr) and inserting (23.30) into
(23.28) we find

r(t + h) = r(t) + h (φ(r) +∇φ δr) , (23.31a)
⇓

r(t + h)− r(t) = h (φ(r) +∇φ δr) , (23.31b)
⇓
δr = h (φ(r) +∇φ δr) . (23.31c)

We can now isolate δr as

δr − h∇φ δr = hφ(r), (23.32a)
⇓

(1− h∇φ) δr = hφ(r), (23.32b)
⇓

(
1

h
1−∇φ

)
δr = φ(r), (23.32c)

where 1 is the identity matrix. The matrix 1
h1 − ∇φ is often invertible, since its structure often will be

dominated by 1, in which case the system may be solved for δr as

δr =

(
1

h
1−∇φ

)−1

φ(r), (23.33)

and in which case
r(t + h) = r(t) + δr. (23.34)

In the example of our particle attracted to [0, 0]T , we have φ(r) = ṙ = [−x,−cy]T , hence,

∇φ =

[
−1 0
0 −c

]
, (23.35)

“book” — 2005/9/30 — 15:44 — page 703 — #715✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 703

and
1

h
1−∇φ =

[
1
h + 1 0

0 1
h + c

]
, (23.36)

whose inverse may be seen to be

(
1

h
1−∇φ

)−1

=

[h
1+h 0
0 h

1+hc

]
. (23.37)

Thus, the solution for δr is therefore

δr =

(
1

h
1−∇φ

)−1

φ(r) =

[
1
h + 1 0

0 1
h + c

]−1 [−x(t)
−cy(t)

]
(23.38a)

=

[
− h

1+hx(t)
− h

1+chcy(t)

]
. (23.38b)

In contrast to (23.27), the implicit solution is unconditionally stable and will converge regardless of the
size of h, since

lim
h→∞

δr =

[
−x(t)
−1

c cy(t)

]
=

[
−x(t)
−y(t)

]
= −r(t), (23.39)

and thus
r(t + h) = r(t) + δr = 0. (23.40)

We conclude that the implicit solution will converge for arbitrarily large h for this example, in contrast to
the explicit solution, which requires h < 2/c for convergence.

23.1.5 Semi-Implicit Integration

If φ is nonlinear, then a closed-form solution cannot be found. Nevertheless, a linear approximation may
be used

φ(r(t + h)) = φ(r(t)) +∇φ δr + O(∥δr∥2
2
) ≃ φ(r(t)) +∇φ δr, (23.41)

ignoring the higher-order terms. The derivations are identical to those presented in the previous section,
except they are now approximations. This is known as semi-implicit integration. Hence, it is not guaran-
teed that the solution is stable, but it usually is because the approximation is locally precise.

23.2 Partial Differential Equations

Many differential equations in animation contain partial derivatives and are therefore partial differential
equations (PDE s). We will only treat linear partial differential equations; for nonlinear partial differential
equations, see [Ames, 1969, Morton et al., 1994].

“book” — 2005/9/30 — 15:44 — page 704 — #716✐
✐

✐
✐

✐
✐

✐
✐

704 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

23.2.1 Linear First-Order Partial Differential Equation
An example of a linear first-order partial differential equation of a function u(x, y) is

Aux + Buy = 0, (23.42)

where ux = ∂u(x,y)
∂x and uy = ∂u(x,y)

∂y . This equation can be simplified into a 1D problem by a change of
base. Consider the base given by some arbitrary parameters a, b, c, and d:

α = ax + by and β = cx + dy. (23.43)

The terms in (23.42) may be rewritten in the new base as

ux =
∂u

∂x
=
∂u

∂α

∂α

∂x
+
∂u

∂β

∂β

∂x
= uαa + uβc (23.44a)

uy =
∂u

∂y
=
∂u

∂α

∂α

∂y
+
∂u

∂β

∂β

∂y
= uαb + uβd. (23.44b)

Inserting (23.44) into (23.42) we find

0 = A(uαa + uβc) + B(uαb + uβd) = uα(Aa + Bb) + uβ(Ac + Bd). (23.45)

Remember that the coordinate shift was arbitrary and does not influence the solution. Hence, we may
choose the coordinate system, for which the solution is most easy to find. Consider a system where
Ac + Bd = 0, for example c = B and d = −A. Assuming that Aa + Bb ̸= 0, we may divide both sides
of the equation by Aa + Bb resulting in

uα = 0. (23.46)

Hence, the solution does not change in the α direction and is therefore independent on α. On the other
hand, there are no bindings in the equation on the solution in the β direction; it can therefore be any
differential function in β. Hence, the general solution is

u(x, y) = f(β) = f(cx + dy) = f(Bx−Ay) (23.47)

where f is an arbitrary differentiable function. A single first-order partial differential equation behaves
similarly to a hyperbolic second-order differential equation. Numerical solutions will be discussed in
Section 23.2.5.

Systems of two first-order partial differential equations may be classified according to the flow of
information. Consider two 2D functions u(x, y) and v(x, y) and the following system of equations:

a1ux + b1uy + c1vx + d1vy = f1 (23.48a)
a2ux + b2uy + c2vx + d2vy = f2. (23.48b)

We will now investigate conditions for unique solutions to the partial derivatives. Assume that the func-
tions u and v have been solved for up to some curve Γ, as illustrated in Figure 23.4. We now wish to

“book” — 2005/9/30 — 15:44 — page 705 — #717✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 705

Initial
Conditions

Boundary
ConditionsBoundary

Conditions

P

Γ

y

x

Figure 23.4: An assumed state in the process of solving a differential equation. The solution is assumed
found up to the curve Γ.

investigate under what conditions the partial derivatives are uniquely determined at point P on Γ using
values of u and v on Γ.

The tangent vector to Γ at P defines a local linear fit to the curve, and assuming that it is nonvertical
we may write it as

µ(x) = αx + β, (23.49)

and on the curve we may write our 2D functions as u(x, µ(x)) and v(x, µ(x)). Hence, the partial deriva-
tives of u and v along the curve are

du

dx
= ux + uy

dµ

dx
, (23.50a)

dv

dx
= vx + vy

dµ

dx
. (23.50b)

Since u and v are known on the curve, their derivatives in the tangent direction are also known. Combining
(23.48) and (23.50a) results in a system of equations:

⎡

⎢⎢⎣

a1 b1 c1 d1

a2 b2 c2 d2

1 dµ
dx 0 0

0 0 1 dµ
dx

⎤

⎥⎥⎦

⎡

⎢⎢⎣

ux

uy

vx

vy

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

f1

f2
du
dx
dv
dx

⎤

⎥⎥⎦ (23.51)

where all coefficients are known except the partial derivatives of u and v. The system has a unique solution
to ux, uy , vx, and vy , when the determinant of the system matrix is nonzero. When the determinant is
zero, that is,

(b2d1 − b1d2) + (−b2c1 + b1c2 − a2d1 + a1d2)
dµ

dx
+ (a2c1 − a1c2)

(
dµ

dx

)2

= 0, (23.52)

“book” — 2005/9/30 — 15:44 — page 706 — #718✐
✐

✐
✐

✐
✐

✐
✐

706 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

the system does not have a unique solution. The above equation is called the characteristic equation.
Slopes dµ

dx of the curve Γ at P , which are solutions to the characteristic equation, are called the char-
acteristic directions. The differential equation may be classified according to the discriminant of the
characteristic equation,

(−b2c1 + b1c2 − a2d1 + a1d2)
2 − 4 (a2c1 − a1c2) (b2d1 − b1d2) , (23.53)

and the characteristic directions may be real and distinct, real and identical, or imaginary, when the dis-
criminant is positive, zero, or negative, respectively. This induces a classification of the system of linear
first-order differential equations (23.48), which are called parabolic for zero discriminant, elliptic for
negative discriminant, and hyperbolic for positive discriminant. These classes are in a physical setting
typically characterized as

Parabolic
A time-dependent, dissipative process that evolves toward a steady state.

Elliptic
A time-independent process, and thus is in its steady state.

Hyperbolic
A time-dependent process that does not evolve toward a steady state.

The characteristic directions are important for the numerical schemes used to produce stable implementa-
tions of the partial differential equations to be discussed next.

23.2.2 Linear Second-Order Differential Equations

For a 2D function u : R2 → R, the simplest second-order differential equations are

uxy = 0, (23.54)

since it is readily verified that
u(x, y) = f(x) + g(y), (23.55)

is a solution whenever f and g are some arbitrary 1D differential functions. The functions u, which
fulfill (23.54), are conceptually produced by translation. Consider a fixed function g(y) = u(0, y). The
remainder of u is produced by translating g along x using f(x) as its offset.

The wave equation,
κ2uxx − uyy = 0 (23.56)

for some constant κ ̸= 0, is similar to (23.54) in that the solution may be written as two independent
differential functions along two directions. Consider the same change in base as (23.43):

α = ax + by and β = cx + dy. (23.57)

“book” — 2005/9/30 — 15:44 — page 707 — #719✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 707

Continuing from (23.44) it is found that

uxx =
∂ux

∂x
=
∂ux

∂α

∂α

∂x
+
∂ux

∂β

∂β

∂x
= (uααa + uαβc)a + (uαβa + uββc)c, (23.58a)

uyy =
∂uy

∂y
=
∂uy

∂α

∂α

∂y
+
∂uy

∂β

∂β

∂y
= (uααb + uαβd)b + (uαβb + uββd)d. (23.58b)

Inserting the above equations into (23.56) and rearranging terms results in:

0 = κ2(uααa2 + 2uαβac + uββc
2)− (uααb2 + 2uαβbd + uββd

2),

= uαα(κ2a2 − b2) + 2uαβ(κ
2ac− bd) + uββ(κ

2c2 − d2). (23.59)

We now choose a coordinate systems such that

κ2a2 − b2 = 0, (23.60a)

κ2c2 − d2 = 0, (23.60b)

κ2ac− bd ̸= 0. (23.60c)

For example, b = κa and d = −κc, which implies that

uαβ = 0, (23.61)

and that the solution is:

u = f(α) + g(β) = f(ax + by) + g(cx + dy) = f(ax + κay) + g(cx− κcy). (23.62)

The constants a and c may, without loss of generality, be chosen to be a = c = 1. The solution is the sum
of two translated functions. The first term, f(x+ κy), is produced as a linear translation with slope κ of a
mother function at y = 0. Likewise, g(x− κy) is a translation with slope −κ of another mother function
at y = 0. Hence, assuming that κ is positive, then as y is increased, the f function is translated toward
smaller x values and g is translated toward larger x values, both with velocity κ.

Any quasi-linear second-order partial differential equations may be written on the form

Auxx + Buxy + Cuyy + F (ux, uy, f) = 0, (23.63)

where F (ux, uy, b) is any function of the first-order partial derivatives and a function f not depending on
u. The equation is quasi-linear since F may be nonlinear. Analogous to the first-order system, we may
classify (23.63) according to its characteristic equation. To derive the characteristic equation, consider an
equation solved on half of its domain up to the curve Γ, as illustrated in Figure 23.4. The curve Γ may be
approximated locally at P along the tangent as the line

µ(x) = αx + β. (23.64)

“book” — 2005/9/30 — 15:44 — page 708 — #720✐
✐

✐
✐

✐
✐

✐
✐

708 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

Classification Condition Characteristic Directions
Parabolic B2 − 4AC = 0 1
Elliptic B2 − 4AC < 0 0

Hyperbolic B2 − 4AC > 0 2

Table 23.1: The classification of a general linear second-order partial differential equation (23.63) accord-
ing to its characteristic equation.

The derivatives uxx, uxy , and uyy are known along Γ, and we wish to find slopes of Γ for which the
derivatives cannot be determined across Γ. On Γ we can write ux(x, µ(x)) and uy(x, µ(x)), and since we
know u on Γ, then we can calculate the derivatives as

dux

dx
= uxx + uxy

dµ

dx
(23.65a)

duy

dx
= uxy + uyy

dµ

dx
. (23.65b)

Writing the system of equations as
⎡

⎣
A B C
1 dµ

dx 0
0 1 dµ

dx

⎤

⎦

⎡

⎣
uxx

uxy

uyy

⎤

⎦ =

⎡

⎣
0

dux
dx
duy

dx

⎤

⎦ . (23.66)

The derivatives uxx, uxy , and uyy are undetermined if the system matrix is singular, that is,

A

(
dµ

dx

)2

−B
dµ

dx
+ C = 0, (23.67)

which is a second-order equation in dµ
dx . That is, the number of characteristic directions dµ

dx are determined
by the discriminant

B2 − 4AC, (23.68)

and the second-order linear partial differential equations (23.63) are classified according to Table 23.1.
The second-order partial differential equation (23.63) may alternatively be transformed into a system

of first-order linear equations, for example, by using v = ux and w = uy , resulting in the system of
equations:

0 = Avx + Bvy + 0wx + Cwy,

0 = 0vx + 1vy − 1wx + 0wy. (23.69)

The two equations are needed since we introduce an extra variable and hence need to fix the added degree
of freedom. The first of the equations above can be seen to be (23.63) in disguise, while the second
couples v and w by requiring that vy = wx ⇔ uxy = uyx. This system of equations can easily be shown
to have the same characteristic equation, and this system of first-order equations will therefore have the
same characteristic directions as the original second-order equation.

“book” — 2005/9/30 — 15:44 — page 709 — #721✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 709

23.2.3 Parabolic Equations

In the following, we will discuss convergence and stability for the parabolic equations. For a parabolic
second-order differential equation,

Auxx + Buxy + Cuyy = 0, (23.70)

with B2 − 4AC = 0, there is one characteristic direction given by dµ
dx = 0, which implies that µ is

constant. The prototypical example of a parabolic differential equation is the heat diffusion equation,

∂u

∂t
=
∂2u

∂x2
, (23.71)

where t is time and x is the spatial dimension for a 1D signal u(x, t). For the heat diffusion equation
A = 1 and B = C = 0, and the discriminant (23.68) is therefore zero.

Although several methods exist for solving the heat diffusion equation, we solve it with finite differ-
ences on a grid u(i∆x, j∆t) ≃ Ui,j , where U is an approximation of u. We further impose boundary
conditions Ux,0 = u(x, 0) = b1(x), U0,t = u(0, t) = b2(t), and U1,t = u(1, t) = b3(t).

23.2.3.1 Stability and Convergence for Explicit Solutions.

An explicit solution of the heat diffusion equation is found using a forward finite difference operator for
the time derivative and a central difference operator for the spatial derivative:

Ui,j+1 − Ui,j

∆t
=

Ui+1,j − 2Ui,j + Ui−1,j

∆x2
(23.72)

Rewriting suggests the following update rule:

Ui,j+1 = mUi+1,j + (1− 2m)Ui,j + mUi−1,j, (23.73)

where m = ∆t
∆x2 . This is an explicit solution in j, since the solution at time j + 1 is explicitly given as a

function of prior values of the solution at times j and earlier. The elements on the grid taking part in the
computation is often illustrated as a computational molecule, as shown in Figure 23.5.

The truncation error, T , of the approximation is found by replacing the approximation Ui,j with the
true solution, u(x, t) = u(i∆x, j∆t), that is,

u(x, t + ∆t)− u(x, t)

∆t
=

u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+ T (x, t) (23.74)

and then inserting the Taylor series for u,

∞∑

n=1

(∆t)n−1

n!

∂n

∂tn
u(x, t) =

∞∑

n=1

(∆x)n−2

n!

∂n

∂xn
u(x, t) +

∞∑

n=1

(−∆x)n−2

n!

∂n

∂xn
u(x, t) + T (x, t). (23.75)

“book” — 2005/9/30 — 15:44 — page 710 — #722✐
✐

✐
✐

✐
✐

✐
✐

710 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

t = j∆t

x = i∆x

Figure 23.5: The computational molecule for an explicit finite differencing scheme for the heat diffusion
equation.

Isolating T gives

T (x, t) =
∞∑

n=1

(∆t)n−1

n!

∂n

∂tn
u(x, t)−

∞∑

n=1

(∆x)n−2 + (−∆x)n−2

n!

∂n

∂xn
u(x, t), (23.76)

whose leading terms are

T (x, t) =
∂u(x, t)

∂t
+

∆t

2

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
− (∆x)2

12

∂4u(x, t)

∂x4
+ O(∆t2 + ∆x4) (23.77a)

=
∆t

2

∂2u(x, t)

∂t2
− ∆x2

12

∂4u(x, t)

∂x4
+ O(∆t2 + ∆x4). (23.77b)

The simplification above was obtained by applying the heat diffusion equation, ut = uxx. From this we
observe that the solution has first-order accuracy in ∆t, but if ∆x2 = 6∆t, then the method has second-
order accuracy in ∆t. Furthermore, using the mean value theorem, Theorem 20.1, we realize that there
are two constants x0 and t0 in the open intervals x0 ∈ (x−∆x, x + ∆x) and t0 ∈ (t, t + ∆t), where

T (x, t) =
∆t

2

∂2u(x, t0)

∂t2
− ∆x2

12

∂4u(x0, t)

∂x4
(23.78a)

=
∆t

2

(
∂2u(x, t0)

∂t2
− 1

6m

∂4u(x0, t)

∂x4

)
, (23.78b)

where m = ∆t
∆x2 . Hence, if we assume that utt and uxxxx are bounded, then the truncation error is T → 0

as ∆t,∆x→ 0, and we say that the method is unconditionally consistent.
The convergence of a finite difference method is typically studied in two manners—either using Taylor

series or Fourier series. These will be described below. For Taylor convergence, we write the error as

Ei,j = Ui,j − u(i∆x, j∆j). (23.79)

“book” — 2005/9/30 — 15:44 — page 711 — #723✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 711

The approximation U satisfies (23.73) exactly, while u differs by the truncation error, that is,

Ui,j+1 − u(x, t + ∆j) = m(Ui+1,j − u(x + ∆x, t)) + (1− 2m)(Ui,j − u(x, t))

+ m(Ui−1,j − u(x−∆x, t)) + ∆tT (x, t) (23.80a)
⇓

Ei,j+1 = mEi+1,j + (1− 2m)Ei,j + mEi−1,j + ∆tT (x, t). (23.80b)

The coefficients in front of E are positive as long as

m ≥ 0 and 1− 2m ≥ 0, (23.81a)
⇓

0 ≤m ≤ 1

2
, (23.81b)

and in which case

|Ei,j+1| ≤ m|Ei+1,j | + (1− 2m)|Ei,j | + m|Ei−1,j| + ∆t|T (x, t)|. (23.82)

Since the sum of the coefficients on the right-hand side is always 1, That is, m+ (1− 2m) + m = 1, then
the sum of the error terms on the right-hand side will never exceed the maximum value, that is,

|Ei,j+1| ≤ max(|Ei+1,j |, |Ei,j |, |Ei−1,j |) + ∆t|T (x, t)|. (23.83)

Finally, since the approximation agrees with the analytical solution on the boundary, Ui,0 = u(i∆x, 0),
then the error must be zero on the boundary,

Ei,0 = 0, (23.84)

and by induction we find that
|Ei,j+1| ≤ j∆t|T (x, t)|. (23.85)

We conclude that the error E → 0 as ∆t → 0, when 0 ≤ m ≤ 1
2 , and hence the numerical solution

approximation converges to the analytical solution.
In Fourier convergence, the error is expressed as a Fourier series and the stability is studied as limits

on the Fourier coefficients. Let’s start by using the method of splitting, where it is assumed that u is
separable, that is,

u(x, t) = f(x)g(t). (23.86)

The heat diffusion equation (23.71) then becomes

f(x)g′(t) = f ′′(x)g(t) (23.87a)
⇓

g′(t)

g(t)
=

f ′′(x)

f(x)
. (23.87b)

“book” — 2005/9/30 — 15:44 — page 712 — #724✐
✐

✐
✐

✐
✐

✐
✐

712 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

Since both sides of the equation are independent, they must equal a constant,

g′(t)

g(t)
=

f ′′(x)

f(x)
= c, (23.88)

and we find that

g(t) = exp(ct), (23.89a)

f(x) = sin(x
√
−c), (23.89b)

where we further have to require that c ≤ 0 for g to be bounded and for f to be real. Thus writing
c = −k2, we find

u(x, t) = exp(−k2t) sin(kx), (23.90)

and since the solution is independent on k, then any linear combination in k will also be a solution, that
is,

u(x, t) =
∞∑

k=−∞
ak exp(−k2t) sin(kx). (23.91)

At the boundary, we have

u(x, 0) =
∞∑

k=−∞
ak sin(kx), (23.92)

and we realize that this is a Fourier series with ak as the Fourier coefficients.
In the finite difference scheme (23.73) we’ll assume that the complex exponential is a solution, that is,

Ui,j = λj exp(−ki∆x
√
−1) (23.93a)

= λUi,j−1, (23.93b)

for some constant λ, and where we write
√
−1 explicitly to avoid confusion with the index i, and where

λ exp(θ
√
−1) is the complex exponential,

λ exp(θ
√
−1) = λ cos(θ) + λ

√
−1 sin(θ). (23.94)

Using the recursive form of our guess (23.93) in (23.73) and dividing with a factor, Uij we find

λUi,j

Ui,j
= m

Ui+1,j

Ui,j
+ (1− 2m)

Ui,j

Ui,j
+ m

Ui−1,j

Ui,j
(23.95a)

⇓

λ = m
Ui+1,j

Ui,j
+ 1− 2m + m

Ui−1,j

Ui,j
, (23.95b)

“book” — 2005/9/30 — 15:44 — page 713 — #725✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 713

and when we insert (23.94), we find that

λ = m exp
(
−k(i + 1)∆x

√
−1 + ki∆x

√
−1
)

+ 1− 2m

+ m exp
(
−k(i− 1)∆x

√
−1 + ki∆x

√
−1
)

(23.96a)

= 1− 2m + m exp
(
−k∆x

√
−1
)

+ m exp
(
k∆x
√
−1
)

(23.96b)
= 1− 2m + 2m cos(k∆x) (23.96c)
= 1− 2m (1− cos(k∆x)) . (23.96d)

Thus, we conclude that (23.93) is a solution, when λ = 1 − 2m (1− cos(k∆x)) for some k. Since
the solution does not depend on k, we further conclude that any linear combination of (23.93) is also a
solution, that is,

Ui,j =
∞∑

k=−∞
akλ

j
k exp(−ki∆x

√
−1). (23.97)

Again, we find a Fourier series and find that the coefficients ak are determined by the boundary function
Ui,0. In the continuous solution (23.91), the high frequencies were exponentially damped. In the numerical
scheme (23.97), the solution is damped by λj

k, and thus requires that |λk| ≤ 1 for all k will ensure that the
solution does not diverge as j → ∞. The function |λk| takes its maximum value when k = nπ

∆x for any
integer n, in which case

1 ≥ λk ≥ 1− 4m. (23.98)

Since |λk| ≤ 1, we must require that
|1− 4m| ≤ 1, (23.99)

and for m ≥ 0 this implies that m ≤ 1
2 . Hence, again we find that when 0 ≤ m ≤ 1

2 , then the high
frequencies in the solutions will not be amplified and the solution will converge.

Stability conditions for explicit equations typically implies very small iteration steps in the solution.
A qualitative argument for this is that the characteristic direction of the heat diffusion equation is t =
constant, implying that the flow of information from the boundary conditions is along t = constant. This
contradicts the numerical implementation in (23.73), in which the value at (i, j+1) is determined by values
at (i − 1, j), (i, j), and (i + 1, j), implying characteristic directions dy

dx = ± ∆t
∆x , and the characteristic

directions only approaches the continuous directions when ∆t→ 0 for some fixed ∆x.

23.2.3.2 Stability and Convergence for Implicit Solutions.

The heat diffusion equation may be approximated by an implicit method,

Ui,j+1 − Ui,j

∆t
+ O(∆t) =

Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

∆x2
+ O(∆x2), (23.100)

and comparing with the explicit solution (23.72), the spatial derivative uxx has been approximated as a
central second-order finite difference approximation at time j +1 rather than at time j. The computational
molecule for this implicit approximation is shown in Figure 23.6. This suggests an update rule as

“book” — 2005/9/30 — 15:44 — page 714 — #726✐
✐

✐
✐

✐
✐

✐
✐

714 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

t = j∆t

x = i∆x

Figure 23.6: The computational molecule for an implicit finite differencing scheme for the heat diffusion
equation.

−mUi+1,j+1 + (1 + 2m)Ui,j+1 −mUi−1,j+1 = Ui,j , (23.101)

where m = ∆t
∆x2 . This is a linear system of equations in Ui,j , and the solution for j + 1 is undetermined

without the boundary conditions at j + 1 in agreement with the continuous solution. As an example, set
u(x, 0) = 1, when 0 < x < 1, u(0, t) = 0, u(1, t) = 0, ∆x = ∆t = 1

4 , and i, j = 0, 1, The system
of equations is then

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−m 1 + 2m −m 0 0 0
0 −m 1 + 2m −m 0 0
0 0 −m 1 + 2m −m 0
0 0 0 −m 1 + 2m −m
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1
U1,j+1

U2,j+1

U3,j+1

U4,j+1

1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
U1,j

U2,j

U3,j

U4,j

1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (23.102)

using m = ∆t
∆x2 and starting with Ui,0 = 1. The determinant of the system matrix is 1 + 8m + 21m2 +

20m3 + 5m4. In general, it can be proven by induction that the determinant is

det An = (1 + 2m) det An−1 −m2 det An−2, (23.103)

for n > 4 for systems on the form

A3 =

⎡

⎣
1 0 0
−m 1 + 2m −m
0 0 1

⎤

⎦ , (23.104a)

A4 =

⎡

⎢⎢⎣

1 0 0 0
−m 1 + 2m −m 0
0 −m 1 + 2m −m
0 0 0 1

⎤

⎥⎥⎦ . (23.104b)

...

“book” — 2005/9/30 — 15:44 — page 715 — #727✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 715

Since m > 0, it can be seen that detAn > 1, and that the system matrix always has an inverse. The most
common solution is to decompose the system matrix into an LU decomposition (see Section 19.2).

The convergence of this system is most easily studied using Fourier convergence. Similarly, to the
explicit method we guess that the complex exponential

Ui,j = λj exp(−ki∆x
√
−1) (23.105a)

= λUi,j−1, (23.105b)

is a solution to the finite difference scheme. Inserting the recursive formulation and dividing by U i,j , we
find

−m
λUi+1,j

Ui,j
+ (1 + 2m)

λUi,j

Ui,j
−m

λUi−1,j

Ui,j
=

Ui,j

Ui,j
(23.106a)

⇓

λ

(
1 + 2m−m

(
Ui+1,j

Ui,j
+

Ui−1,j

Ui,j

))
, = 1 (23.106b)

and when we expand the complex exponential, we find that

λ
(
1 + 2m−m

(
exp(−k∆x

√
−1) + exp(+k∆x

√
−1)

))
= 1 (23.107a)

⇓

λ =
1

1 + 2m (1− cos(k∆x)) .
(23.107b)

Thus, we conclude that (23.105) is a solution, when λ = (1 + 2m (1− cos(k∆x)))−1, and since this is
independent of k, we further conclude that any linear combination of (23.93) is also a solution, that is,

Ui,j =
∞∑

k=−∞
akλ

j
k exp(−ki∆x

√
−1). (23.108)

Again, we find a Fourier series and find that the coefficients, ak, are determined by the boundary function
Ui,0. In contrast to the explicit approximation, the implicit approximation is unconditionally stable, since

λ ≤ 1. (23.109)

23.2.4 Elliptic Equations

In the following, we will discuss convergence and stability for the elliptic equations. For an elliptic
differential equation,

Auxx + Buxy + Cuyy = 0, (23.110)

with B2 − 4AC < 0, there are no real characteristic directions.

“book” — 2005/9/30 — 15:44 — page 716 — #728✐
✐

✐
✐

✐
✐

✐
✐

716 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

The prototypical example of an elliptic differential equations is the Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
+ f(x, y) = 0. (23.111)

This equation is quite similar to the 2D version of the heat diffusion equation (23.71),

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (23.112)

and the elliptical equation may be solved as the steady state of this. We will assume that the solution
has been obtained somehow, and go on to analyze the truncation and convergence of the following finite
differencing scheme: assuming a grid Ui,j ≃ u(i∆x, j∆y) and using central differencing, we find that

Ui+1,j − 2Ui,j + Ui−1,j

∆x2
+

Ui,j+1 − 2Ui,j + Ui,j−1

∆y2
+ fi,j = 0. (23.113)

For short, we will write this on operator form

L[U] + f = 0. (23.114)

The truncation error is found by inserting the true solution u in place of U ,

u(x + ∆x, y)− 2u(x, y) + u(x−∆x, y)

∆x2

+
u(x, y + ∆y)− 2u(x, y) + u(x, y −∆y)

∆y2
+ f(x, y) = T (x, y),

(23.115)

and represent u by its Taylor series,

∞∑

n=1

(∆x)n−2 + (−∆x)n−2

n!

∂n

∂xn
u(x, y)

+
∞∑

n=1

(∆y)n−2 + (−∆y)n−2

n!

∂n

∂yn
u(x, y) + f(x, y) = T (x, y).

(23.116)

Identifying leading terms,

T (x, y) = f(x, y) +
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y)

+
∆x2

12

∂4

∂x4
u(x, y) +

∆y2

12

∂4

∂y4
u(x, y) + O(∆x4 + ∆y4) (23.117a)

=
∆x2

12

∂4

∂x4
u(x, y) +

∆y2

12

∂4

∂y4
u(x, y) + O(∆x4 + ∆y4), (23.117b)

“book” — 2005/9/30 — 15:44 — page 717 — #729✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 717

where we have used (23.111) in the last simplification above. As discussed in Chapter 20, this will be
limited by some constants Mx4 and My4 as

T (x, y) ≤ ∆x2

12
Mx4 +

∆y2

12
My4 (23.118a)

= M (23.118b)

The convergence of (23.113) is found by studying the error of the approximation as a function of ∆x and
∆y. The error is defined as

ei,j = Ui,j − u(i∆x, j∆y). (23.119)

A bound on e may be obtained with the help of a comparison function,

Ψi,j =

(
x− i∆x− 1

2

)2

+

(
y − j∆y − 1

2

)2

, (23.120)

for which the second-order structure is simple. Now we produce a linear combination of (23.119),
(23.120), and (23.118b), as

ψi,j = ei,j +
1

4
TΨi,j. (23.121)

Applying the finite difference scheme (23.113) to both sides of this equation gives

L[ψ]i,j = L[e]i,j +
1

4
ML[Ψ]i,j (23.122)

The first term is evaluated as

L[e]i,j = L[U]i,j − L[u](i∆x, j∆y) (23.123a)
= −T (i∆x, j∆y), (23.123b)

since L[U] = −f according to (23.113) and L[u](x, y) = T (x, y) − f(x, y) according to (23.115). The
second term is evaluated to

1

4
ML[Ψ]i,j = M, (23.124)

since Ψ is a quadratic function that does not contain higher-order terms. Hence, we conclude that

L[ψ]i,j = −T (i∆x, j∆y) + M ≥ 0, (23.125)

since M is the maximum bound on T . To get a bound on Ψ, we will use the maximum principle.
The maximum principle is derived as follows: assume that an operator L is given on the form

L[U]i,j =
∑

k∈N
akUk − aUi,j, (23.126)

“book” — 2005/9/30 — 15:44 — page 718 — #730✐
✐

✐
✐

✐
✐

✐
✐

718 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

where k is some set of neighboring positions N , and where all the coefficients are positive, i.e., ak > 0
and a > 0. Furthermore, assume that the coefficients are given such that

a ≥
∑

k∈N
ak, (23.127)

and that
L[U]i,j ≥ 0 (23.128)

for all coordinates (i, j) in the interior of the domain, then Ψi,j cannot be greater than the maximum value
at the boundary of the domain. This will be proven by contradiction: assume that there was a maximum
UM ≥ 0 in the interior of the domain, then L[U] ≥ 0 ⇒ Ui,j ≤

∑
k akUk/a ≤

∑
k akUm/a ≤

Um. Hence, all values Uk must also be equal to UM . Applying this argument to the neighboring values
iteratively until we reach the maximum at the boundary, we must conclude that the maximum at the
boundary is equal to the maximum in the interior, but this is a contradiction.

Hence, for (23.113), we have that the coefficients are positive in the sense of (23.126) and that (23.127)
is fulfilled, since a =

∑
k ak = 2

∆x2 + 2
∆y2 . Hence, we can conclude that Ψi,j cannot be greater than its

neighbors due to (23.125). Thus, the maximal value must be located on the boundary of the domain, but
here ei,j = 0, hence,

max
i,j

ψi,j = max
1

4
MΨi,j =

M

8
. (23.129)

Furthermore, since Ψ is nonnegative, we conclude that

ei,j = ψi,j −
1

4
MΨi,j ≤ ψi,j ≤

M

8
=

∆x2

96
Mx4 +

∆y2

96
My4 . (23.130)

Similar analysis for −ei,j will show that

|ei,j | = |Ui,j − u(i∆x, j∆y)| ≤ ∆x2

96
Mx4 +

∆y2

96
My4 . (23.131)

To conclude, the finite difference scheme (23.113) will converge to the continuous solution as (∆x,∆y)→
0.

23.2.5 Hyperbolic Equations

In the following, we will discuss convergence and stability for the hyperbolic equations. First, we will dis-
cuss characteristic directions for hyperbolic second-order equations, and then we will study the numerics
of the more common hyperbolic first-order equation.

For a hyperbolic second-order differential equation,

Auxx + Buxy + Cuyy = 0, (23.132)

“book” — 2005/9/30 — 15:44 — page 719 — #731✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 719

with B2 − 4AC > 0, there are two characteristic directions given by dµ
dx = −B±

√
B2−4AC
2A . These

directions are perpendicular when
[

1
−B+

√
B2−4AC
2A

]
·
[

1
−B−

√
B2−4AC
2A

]
= 0, (23.133)

that is, when A = −C . As an example, consider the Wave equation,

utt − uxx = 0, . (23.134)

Seeing that A = −C = 1 and B = 0, we realize that the characteristic directions are perpendicular. The
slope of the characteristic direction may be found to be ±1 by evaluating dµ

dx . The characteristic directions
are special, since they simplify the partial differential equation. That is, when transforming the equation
to a coordinate system aligned with the characteristic directions,

α = x + t, (23.135a)
β = x− t. (23.135b)

we may write u(x, t) = v(α,β), and we may substitute v for u in (23.134). Evaluating the second-order
derivatives of v w.r.t. x and t we find

vtt = vαα − 2vαβ + vββ, (23.136a)
vxx = vαα + 2vαβ + vββ, (23.136b)

and we therefore conclude that (23.134) is equivalent to

vαβ = 0. (23.137)

It is readily checked that solutions to this equation are specified by

v(α,β) = f(α) + g(β), (23.138)

or equivalently
u(x, t) = f(x + t) + g(x− t), (23.139)

for any twice differentiable functions f and g. In this example, we see that the hyperbolic equation
has a limited interval of dependence, as shown in Figure 23.7. More rigorously, if we fix the boundary
conditions u(x, 0) = F (x) and ut(x, 0) = Ft(x), then we find

u(x, 0) = f(x) + g(x) = F (x), (23.140a)
ut(x, 0) = f ′(x)− g′(x) = Ft(x). (23.140b)

Differentiating (23.140a), we find two equations in f ′ and g′ as

f ′(x) + g′(x) = F ′(x), (23.141a)
f ′(x)− g′(x) = Ft(x), (23.141b)

“book” — 2005/9/30 — 15:44 — page 720 — #732✐
✐

✐
✐

✐
✐

✐
✐

720 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

t = j∆t

x = i∆x

(x, t)

x − t x + t

Figure 23.7: The interval of dependence for the wave equation at the point (x, t) in the solution is [x −
t, x + t].

and solving for f ′ and g′, we have

f ′(x) =
1

2

(
F ′(x) + Ft(x)

)
, (23.142a)

g′(x) =
1

2

(
F ′(x)− Ft(x)

)
. (23.142b)

Integrating both equations gives

f(x) =

∫ x

0
f ′(x) dx =

1

2

(
F (x) +

∫ x

0
Ft(ξ) dξ

)
, (23.143a)

g(x) =

∫ x

0
g′(x) dx =

1

2

(
F (x)−

∫ x

0
Ft(ξ) dξ

)
, (23.143b)

and thus,

u(x, t) = f(x + t) + g(x− t) (23.144a)

=
1

2

(
F (x + t) +

∫ x+t

0
Ft(ξ) dξ

)
+

1

2

(
F (x− t)−

∫ x−t

0
Ft(ξ) dξ

)
(23.144b)

=
1

2

(
F (x + t) + F (x− t) +

∫ x+t

0
Ft(ξ) dξ +

∫ 0

x−t
Ft(ξ) dξ

)
(23.144c)

=
1

2

(
F (x + t) + F (x− t) +

∫ x+t

x−t
Ft(ξ) dξ

)
. (23.144d)

Thus, the values of u at x, t only depend on the values of F at x + t, and x − t and on Ft in the interval
[x− t, x + t].

“book” — 2005/9/30 — 15:44 — page 721 — #733✐
✐

✐
✐

✐
✐

✐
✐

23.2 PHYSICS-BASED ANIMATION 721

The prototypical example of a hyperbolic differential equation is the linear advection equation,

∂u

∂t
= −a

∂u

∂x
. (23.145)

The solution to the linear advection equation is given by (23.47), as

u(x, t) = f(x + at), (23.146)

for any differential function f . Comparing with the second-order equation (23.144d), we find that they are
similar in the sense that the flow of information is along lines, but in contrast to the second-order equation,
the solution to the advection equation depends only on a single point on the boundary u(x, 0) = f(x).

Hyperbolic differential equations in several dimensions are rather complex to solve numerically, and
we will limit ourselves to the discussion of the simplest case of the linear advection equation (23.145),
which is important for the much used Navier-Stokes equation discussed in Section 11.2. In the following,
we will approximate the advection equation on a grid u(i∆x, j∆t) ≃ Ui,j , where U is an approximation
of u. We further impose boundary conditions Ux,0 = u(x, 0) = b1(x).

23.2.5.1 Stability and Convergence of the Upwind Schemes

The linear advection equation (23.145) is straightforwardly approximated by a forward finite difference in
time and either a forward or backward finite difference in space, depending on the characteristic direction.
We will assume that Ui,j > 0, hence,

Ui,j+1 − Ui,j

∆t
= −a

Ui,j − Ui−1,j

∆x
. (23.147)

The truncation error is found in the standard way by replacing U with u represented by its Taylor series,

T (x, t) =
u(i∆x, (j + 1)∆t)− u(i∆x, j∆t)

∆t
+ a

u(i∆x, j∆t)− u((i − 1)∆x, j∆t)

∆x
(23.148a)

=
∞∑

n=1

∆tn−1

n!

∂n

∂tn
u(x, t) + a

∞∑

n=1

(−∆x)n−1

n!

∂n

∂xn
u(x, t) (23.148b)

=
∆t

2

∂2

∂t2
u(x, t) + a

−∆x

2

∂2

∂x2
u(x, t) + O(∆t2 + ∆x2) (23.148c)

where we have used (23.145) in the last simplification. Thus, T → 0 linearly as (∆t,∆x)→ 0.
The forward finite difference in time and backward difference in space suggest the following update

rule:
Ui,j+1 = (1−m)Ui,j + mUi−1,j, (23.149)

using m = a∆t
∆x . For this update rule, the value at time (j + 1)∆t depends on the small interval i∆x, (i−

1)∆x at time j∆t, which recursively generalizes to a triangle of dependence as illustrated in Figure 23.8.
Comparing with the analytical solution, u(x, t) = u(x− at, 0), we realize that the analytical solution can
only be properly approximated by this update rule if a > 0, and further only if m ≤ 1. This is the so-called

“book” — 2005/9/30 — 15:44 — page 722 — #734✐
✐

✐
✐

✐
✐

✐
✐

722 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

t = j∆t

x = i∆x

(i, j + 1)

(i−
3,j

−
2)

(i,j
−

2)

Figure 23.8: The forward time and backward space approximation of the linear advection equation gives
a triangular domain of dependence.

CFL condition [Courant et al., 1928], that is, that the flow of information should lie within the numerical
triangle of dependency. The CFL condition is a necessary, but not sufficient, condition for convergence.

The Fourier analysis of (23.149) is again based on the guess that

Ui,j = λj exp(ki∆x
√
−1) (23.150)

is a solution, and we insert this guess into (23.149), use the recursive formulation, Ui,j+1 = λUi,j , divide
by Ui,j , which gives

λUi,j

Ui,j
= (1−m)

Ui,j

Ui,j
+ m

Ui−1,j

Ui,j
(23.151a)

⇓
λ = 1−m + m exp

(
k(i− 1)∆x

√
−1− ki∆x

√
−1
)

(23.151b)

= 1−m + m exp
(
−k∆x

√
−1
)
. (23.151c)

To find the Fourier convergence, we use the length of a complex number

|α+
√
−1β| =

√
α2 + β2 (23.152)

“book” — 2005/9/30 — 15:44 — page 723 — #735✐
✐

✐
✐

✐
✐

✐
✐

23.3 PHYSICS-BASED ANIMATION 723

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 23.9: The function 1− 4(1−m)m in the interval [−1, 1].

and evaluate the squared length of λ as

|λ|2 = |1−m + m cos(k∆x)−m
√
−1 sin(k∆x)|2 (23.153a)

= (1−m + m cos(k∆x))2 + (−m
√
−1 sin(k∆x))2 (23.153b)

= (1−m)2 + 2(1−m)m cos(k∆x) + m2 cos2(k∆x) + m2 sin2(k∆x) (23.153c)

= (1−m)2 + 2(1−m)m cos(k∆x) + m2 (23.153d)

= 1− 2m + 2m2 + 2(1−m)m cos(k∆x) (23.153e)
= 1− 2(1−m)m + 2(1−m)m cos(k∆x) (23.153f)
= 1− 2(1−m)m(1− cos(k∆x)). (23.153g)

Since the range of cos is [-1,1], we conclude that for |λ| ≤ 1 is equivalent to requiring that 1−4(1−m)m ≤
1. This is a quadratic function illustrated in Figure 23.9, and we conclude that it is sufficient to require that
m ≤ 1 as also indicated by the CFL condition. This could suggest that the full interval of a ̸= 0 would be
covered by a central differencing scheme in space, that is,

Ui,j+1 − Ui,j

∆t
+ O(∆t) = −a

Ui+1,j − Ui−1,j

2∆x
+ O(∆x2), (23.154)

but using (23.150) it may be shown that this scheme has |λ| > 1 and does therefore not converge. The
best choice is therefore to use the upwind scheme, where a backward differencing scheme in space is used,
when a > 0, and a forward difference scheme in space is used, when a < 0, that is,

Ui,j+1 =

{
(1−m)Ui,j + mUi−1,j, when a > 0,

(1 + m)Ui,j −mUi−1,j, when a < 0.
(23.155)

Just as for the case of backward difference in space, when a > 0, it may equally be proven that m ≤ 1
is sufficient for convergence of the forward difference in space. Further investigation into the truncation
error will show that the upwind scheme always has an amplitude in the order of k∆x and a relative phase
error, which vanishes at k∆x = 1

2 (see [Morton et al., 1994, Chapter 4.4] for the derivation).

“book” — 2005/9/30 — 15:44 — page 724 — #736✐
✐

✐
✐

✐
✐

✐
✐

724 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

}v ·∇u

u(x, t)
v

∇u

r(t0) r(t1)
x

u(x, t0) u(x, t1)

Figure 23.10: Comparing the Lagrangian and the Eulerian method for moving an interface: an interface
is moved along an external vector V .

23.3 Level-Set Methods
The motion of particles moving in an externally generated velocity field is given as

dri(t)

dt
= vi(t), (23.156)

where ri and vi are the position and velocity of particle i at time t. This is a Lagrangian view of the dynam-
ical system discussed in detail in Chapter 8, and it is very useful for animating systems where the configu-
ration of the particles is fixed or nonexisting. For objects that can change topology, such as water that may
separate into droplets, the splitting and merging process becomes complicated [McInerney et al., 2000].
When topology may change, it is more natural to define the object boundary as an implicit function, u,
and apply the level set equation [Osher et al., 1988, Sethian, 1999, Osher et al., 2003]

ut + v ·∇xu = 0, (23.157)

where u is an implicit function such that

u(x, y, z, t) = 0, (23.158)

defines the interface between, for example, water and air, and v is now a velocity field sufficiently smooth
near the interface. The equivalence of (23.157) with (23.156) is shown in Figure 23.10. The figure shows
a particle at its initial position in r(t0), and later after the application of the velocity vector v, resulting
in position r(t1). It is assumed that the time-step is one unit of time. Equivalently, the implicit function
u(x, t) intersects the horizontal axis at u(r, t0) = 0 initially, and since the function is locally linear, the

“book” — 2005/9/30 — 15:44 — page 725 — #737✐
✐

✐
✐

✐
✐

✐
✐

23.3 PHYSICS-BASED ANIMATION 725

addition of −v∇xu will cause the interface to move to u(r, t1) = 0. We thus conclude that the level-set
equation (23.157) implements (23.156), when the implicit function is linear in a band v∇xu around its
interface.

The most used implicit function is the signed distance map, which for an object with boundary δO is
given as

d(r) = (−1)I(r) min
rO
∥rO − r∥ , (23.159)

where rO ∈ δO is a point on the interface and I(r) is the indicator function,

I(r) =

{
1, if r is inside the object,
0, otherwise.

(23.160)

The signed distance map is numerically advantageous since |∇xd| = 1 in almost all points. It is very
convenient for collision detection, since sgn d can be used to detect intersections between objects. If
d(r) < 0, then d(r)∇xd(r) is the shortest route out to the boundary of the object, where d(r) = 0.

In contrast to the Lagrangian formulation, where an interface is represented directly as a set of control
points or particles, the level-set approach depends on the spatial sampling of the implicit function and
speed vector field. This is however, analogous, since finer sampling in space achieves finer representation
of the interface, just as adding more particles does in the Lagrangian formulation. Methods also exist
for sparse representation of the implicit function, such that the memory requirement can be reduced to be
near that of the Lagrangian system. For some systems, v is only determined on the interface, that is, at
d = 0, and for the level-set method we need to extend the velocities at least to a band around d = 0. Since
the interface is moving in the normal direction, the most natural solution is to impose constancy in the
velocity field along the normal. However, setting v(r) to be equal to the velocity of the nearest point on
the interface seems to preserve signed distance maps.

We will analyze the simplest case of one space and time dimension,

ut(x, t) = −v · ux(x, t), (23.161)

This equation is the linear advection equation (23.145), which holds for (23.157) in general, hence we
must consider the directions of the characteristics. Assuming a grid Ui,j ≃ u(i∆x, j∆t), a forward finite
difference in time and an upwind scheme in space gives

Ui,j+1 − Ui,j

∆t
= −

{
vUi+1,j−Ui,j

∆x , if Ui,j ≤ 0,
vUi,j−Ui−1,j

∆x , otherwise.
(23.162)

The truncation error is found similarly to (23.148c) to be

T (x, t) =
∆t

2

∂2

∂t2
u(x, t) +

{
v∆x

2
∂2

∂x2 u(x, t) if Ui,j ≤ 0,
v−∆x

2
∂2

∂x2 u(x, t) otherwise.
+ O(∆t2 + ∆x2) (23.163)

Likewise, we find the CFL conditions using (23.153g) to be

∆t ≤ ∆x

v
(23.164)

“book” — 2005/9/30 — 15:44 — page 726 — #738✐
✐

✐
✐

✐
✐

✐
✐

726 CHAPTER 23. DIFFERENTIAL EQUATIONS AND NUMERICAL INTEGRATION

for constant positive velocities, and

∆t ≤ ∆x

maxx ∥v∥2
(23.165)

in general.

“book” — 2005/9/30 — 15:44 — page 727 — #739✐
✐

✐
✐

✐
✐

✐
✐

24

Open Nonuniform B-Spline Theory

In this section we will present the classical theory of nonuniform B-splines and simultaneously we will
derive a c-style pseudocode for efficient implementation of the theory.

The theory of B-splines is a much wider area than the treatment we give in this paper. Therefore, we
encourage the reader to look at our references [Piegl et al., 1995, Watt et al., 1992, Hoschek et al., 1993,
Boor, 1978, Boehm, 1980, Farin, 1993, Erleben et al., 2003a] if a wider coverage is wanted.

24.1 The B-Spline Basis Functions
A B-spline is a parameterized curve in the parameter u. It can be evaluated as the interpolation of a set of
basis functions. Therefore, before we look at the B-splines we will describe the B-spline basis functions.

We’ll start by defining the normalized basis function for the B-spline.

Definition 24.1
The normalized basis functions, Ni,k, are defined recursively by the Cox de Boor definition. For k > 1:

Ni,k =
u− ti

ti+k−1 − ti
Ni,k−1 +

ti+k − u

ti+k − ti+1
Ni+1,k−1, (24.1)

and for k = 1:

Ni,1 =

{
1 if ti ≤ u < ti+1 ,

0 otherwise.
(24.2)

The index k is called the order of the basis function. For a given value of k this definition results in a
polynomium of degree k − 1. All the tis are called knot values, and are usually arranged in a so-called
knot vector, T :

T =
[
. . . , ti−1, ti, ti+1, ti+2, . . .

]T
. (24.3)

To better understand the definition (24.1), we will consider a value u that lies between two knot-values

ti ≤ u < ti+1. (24.4)

Looking at the definition of the B-spline basis functions (24.1), we can easily derive the dependency table
shown in Table 24.1. The table should be read bottom-up. Starting at the bottom with the knot vector, one
can track all nonzero basis functions up to any wanted k-value. Observe that Ni+1,1 is zero due to (24.2).
The pattern is obvious and we could easily have extended the table to any value of k.

There are three properties, which can be seen immediately from the table and which we are going to
put to practical use later on.

727

“book” — 2005/9/30 — 15:44 — page 728 — #740✐
✐

✐
✐

✐
✐

✐
✐

728 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

k = 3 0 Ni−2,3 Ni−1,3 Ni,3 0
k = 2 0 Ni−1,2 Ni,2 0
k = 1 . . . 0 Ni,1 0 . . .

ti−1 ti u ti+1 ti+2

Table 24.1: Dependency table showing only nonzero basis functions at the value of u.

1. At the k’th order there are exactly k basis functions, which are different from zero.

2. From the table we can derive that if
ti ≤ u < ti+1, (24.5)

then only
Ni−k+1,k, . . . ,Ni,k, (24.6)

will be nonzero.

3. Computing the basis functions bottom-up, instead of top-down, will make it possible to reuse pre-
viously computed results.

We will use properties one and two to make a sort of fast rejection on which basis functions we need to
compute. The third property is obvious from the table, but it requires some work before it can be applied
efficiently in a practical implementation.

24.1.1 Implementing the Basis Functions

Let’s look at an example. Assume we have

ti ≤ u < ti+1, (24.7)

Then, by the definition of the basis functions, and the properties one and two, we can write up all the
nonzero basis functions:

k = 1:
Ni,1 = 1. (24.8)

k = 2:

Ni−1,2 =
u− ti−1

ti+0 − ti−1
Ni−1,1 +

ti+1 − u

ti+1 − ti
Ni,1 =

ti+1 − u

ti+1 − ti
Ni,1, (24.9a)

Ni,2 =
u− ti

ti+1 − ti
Ni,1 +

ti+2 − u

ti+2 − ti+1
Ni+1,1 =

u− ti
ti+1 − ti

Ni,1. (24.9b)

“book” — 2005/9/30 — 15:44 — page 729 — #741✐
✐

✐
✐

✐
✐

✐
✐

24.1 PHYSICS-BASED ANIMATION 729

k = 3:

Ni−2,3 =
u− ti−2

ti+0 − ti−2
Ni−2,2 +

ti+1 − u

ti+1 − ti−1
Ni−1,2 =

ti+1 − u

ti+1 − ti−1
Ni−1,2, (24.10a)

Ni−1,3 =
u− ti−1

ti+1 − ti−1
Ni−1,2 +

ti+2 − u

ti+2 − ti
Ni,2, (24.10b)

Ni,3 =
u− ti

ti+2 − ti
Ni,2 +

ti+3 − u

ti+3 − ti+1
Ni+1,2 =

u− ti
ti+2 − ti

Ni,2. (24.10c)

We can immediately make a few observations. For instance, if we look at Ni−1,3, then we observe that
the part ···

ti+2−ti
Ni,2 of the second term reappears in the first term of Ni,3. Another observation we can

make is that the first part of Ni−2,3 is always zero and the same goes for the last part of Ni,3. This is seen
directly from the properties observed from Table 24.1. These two observations can be used to speed up
computations.

Looking at the fractions of the knot differences, we see that they appear to be similar for increasing
values of k. This similarity can be systematized by introducing two new auxiliary functions called left and
right. These are defined as follows:

left(j) = u− ti+1−j , (24.11a)
right(j) = ti+j − u. (24.11b)

Rewriting the example for k = 3, using the auxiliary functions yields:

Ni−2,3 =
left(3)

right(0) + left(3)
Ni−2,2 +

right(1)
right(1) + left(2)

Ni−1,2, (24.12a)

Ni−1,3 =
left(2)

right(1)− left(2)
Ni−1,2 +

right(2)
right(2) + left(1)

Ni,2, (24.12b)

Ni,3 =
left(1)

right(2) + left(1)
Ni,2 +

right(3)
right(3) + left(0)

Ni+1,2. (24.12c)

From this, we can derive the following general relation:

M(r, k) = Ni−(k−r−1),k (24.13a)

=
left(k − r)

right(r)− left(k − r)
Ni−1,k−1

+
right(r + 1)

right(r + 1) + left(k − r − 1)
Ni,k−1, (24.13b)

where
0 ≤ r < k. (24.14)

By close examination of (24.9a), (24.9b), (24.10a), (24.10b), and (24.10c) from earlier, we notice that
when computing a new k’th level, the only left and right values not already computed are left(k) and
right(k). We are now ready to write up pseudocode for computing the values of all nonzero B-spline basis
functions Ni,k (see Figure 24.1).

“book” — 2005/9/30 — 15:44 — page 730 — #742✐
✐

✐
✐

✐
✐

✐
✐

730 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

algorithm BasisFunc(i,u,K,T)
left = array(K+1)
right = array(K+1)
M = array(K)
left[0] = u - T[i+1]
right[0] = T[i] - u

left[1] = u - T[i]
right[1] = T[i+1] - u
M[0] = 1

For k = 2 to K do
left[k] = u - T[i+1-k]
right[k] = T[i+k] - u

saved = 0

For r=0 to k-2
tmp = M[r]/(right[r+1]+left[k-r-1])
M[r] = saved + right[r+1]*tmp
saved = left[k-r-1]*tmp;

Next r

M[k-1] = saved

Next k
return M

end algorithm

Figure 24.1: Pseudocode for computing nonzero B-spline basis functions.

24.1.2 The Derivatives of the Basis Functions

It will prove useful to us later to continue studying the basis functions, as it turns out the derivative of a
B-spline can be written as the interpolation of the derivatives of the basis functions. Therefore, we seek a
convenient and tractable method for computing the derivative of the basis functions.

We will start by showing the result of computing the first-order derivative of a basis function.

Theorem 24.1 (Derivative of B-Spline Bases)
The first-order derivative of a B-spline basis function is given by

dNi,k

du
=

k − 1

ti+k−1 − ti
Ni,k−1 −

k − 1

ti+k − ti+1
Ni+1,k−1. (24.15)

Proof of Theorem 24.1:
We will prove the equation by induction on k. Setting k = 2 we see by direct differentiation of (24.1) that

“book” — 2005/9/30 — 15:44 — page 731 — #743✐
✐

✐
✐

✐
✐

✐
✐

24.1 PHYSICS-BASED ANIMATION 731

the derivative would be either
1

ti+k−1 − ti
,

−1

ti+k − ti+1
, or 0 (24.16)

depending on what interval u lies within. By direct substitution into (24.15) we can easily verify that
(24.15) is true in the case of k = 2. Assume now that (24.15) is true for k − 1 and that k > 2. To prove
that (24.15) is true for the k’th case, we start by applying the product rule to (24.1) and get the following,

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
u− ti

ti+k−1 − ti

dNi,k−1

du
+

ti+k − u

ti+k − ti+1

dNi+1,k−1

du
. (24.17)

We substitute (24.15) for the terms dNi,k−1

du and dNi+1,k−1

du and get the following,

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
u− ti

ti+k−1 − ti

(
k − 2

ti+k−2 − ti
Ni,k−2 −

k − 2

ti+k−1 − ti+1
Ni+1,k−2

)

+
ti+k − u

ti+k − ti+1

(
k − 2

ti+k−1 − ti+1
Ni+1,k−2 −

k − 2

ti+k − ti+2
Ni+2,k−2

)
. (24.18)

By rearranging terms we get

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

u− ti
ti+k−2 − ti

Ni,k−2

+
k − 2

ti+k−1 − ti+1

(
ti+k − u

ti+k − ti+1
− u− ti

ti+k−1 − ti

)
Ni+1,k−2

− k − 2

ti+k − ti+1

ti+k − u

ti+k − ti+2
Ni+2,k−2. (24.19)

We perform a mathemagical trick. We add zero to the equation by adding 1 and subtracting 1:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

u− ti
ti+k−2 − ti

Ni,k−2

+
k − 2

ti+k−1 − ti+1

(
ti+k − u

ti+k − ti+1
− 1 + 1− u− ti

ti+k−1 − ti

)
Ni+1,k−2

− k − 2

ti+k − ti+1

ti+k − u

ti+k − ti+2
Ni+2,k−2. (24.20)

“book” — 2005/9/30 — 15:44 — page 732 — #744✐
✐

✐
✐

✐
✐

✐
✐

732 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Expressed as fractions, we get:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

u− ti
ti+k−2 − ti

Ni,k−2

+
k − 2

ti+k−1 − ti+1

(
ti+k − u

ti+k − ti+1
− ti+k − ti+1

ti+k − ti+1

+
ti+k−1 − ti
ti+k−1 − ti

− u− ti
ti+k−1 − ti

)
Ni+1,k−2

− k − 2

ti+k − ti+1

ti+k − u

ti+k − ti+2
Ni+2,k−2. (24.21)

Setting on common denominators, we get:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

u− ti
ti+k−2 − ti

Ni,k−2

+
k − 2

ti+k−1 − ti+1

(
ti+k − u− ti+k + ti+1

ti+k − ti+1

+
ti+k−1 − ti − u + ti

ti+k−1 − ti

)
Ni+1,k−2

− k − 2

ti+k − ti+1

ti+k − u

ti+k − ti+2
Ni+2,k−2. (24.22)

Reduction yields:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

u− ti
ti+k−2 − ti

Ni,k−2

+
k − 2

ti+k−1 − ti+1

(
ti+1 − u

ti+k − ti+1
+

ti+k−1 − u

ti+k−1 − ti

)
Ni+1,k−2

− k − 2

ti+k − ti+1

ti+k − u

ti+k − ti+2
Ni+2,k−2. (24.23)

“book” — 2005/9/30 — 15:44 — page 733 — #745✐
✐

✐
✐

✐
✐

✐
✐

24.1 PHYSICS-BASED ANIMATION 733

Now we are almost at our goal. By rearranging the equation once more, we get:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti

(
u− ti

ti+k−2 − ti
Ni,k−2 +

ti+k−1 − u

ti+k−1 − ti+1
Ni+1,k−2

)

− k − 2

ti+k − ti+1

(
u− ti+1

ti+k−1 − ti+1
Ni+1,k−2 +

ti+k − u

ti+k − ti+2
Ni+2,k−2

)
. (24.24)

Looking at the terms in the parentheses, we immediately recognize (24.1), which we apply to get the
following:

dNi,k

du
=

1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

+
k − 2

ti+k−1 − ti
Ni,k−1 −

k − 2

ti+k − ti+1
Ni+1,k−1. (24.25)

Cleaning up a bit more we get:

dNi,k

du
=

(k − 2) + 1

ti+k−1 − ti
Ni,k−1 −

(k − 2) + 1

ti+k − ti+1
Ni+1,k−1

=
k − 1

ti+k−1 − ti
Ni,k−1 −

k − 1

ti+k − ti+1
Ni+1,k−1. (24.26)

Finally, we can conclude that (24.15) is true. !

Now let us try to look at higher-order derivatives. If we differentiate (24.15), we get:

d2Ni,k

du2
=

k − 1

ti+k−1 − ti

dNi,k−1

du
− k − 1

ti+k − ti+1

dNi+1,k−1

du
. (24.27)

From this, it is not hard to see that a general formula can be written for the j’th derivative:

djNi,k

duj
=

k − 1

ti+k−1 − ti

dj−1Ni,k−1

duj−1
− k − 1

ti+k − ti+1

dj−1Ni+1,k−1

duj−1
. (24.28)

Our results can be generalized into the following theorem.

Theorem 24.2 (Higher-Order Derivatives of B-Spline Bases)
For j < k the higher-order derivatives of a B-spline basis function is given by

djNi,k

duj
=

(k − 1)!

(k − j − 1)!

j∑

p=0

aj,pNi+p,k−j, (24.29)

“book” — 2005/9/30 — 15:44 — page 734 — #746✐
✐

✐
✐

✐
✐

✐
✐

734 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

with

a0,0 = 1, (24.30a)

aj,0 =
aj−1,0

ti+k−j − ti
, (24.30b)

aj,p =
aj−1,p − aj−1,p−1

ti+k+p−j − ti+p
, (24.30c)

aj,j = − aj−1,j−1

ti+k − ti+j
. (24.30d)

Proof of Theorem 24.2:
We will now try to prove (24.29) by induction on j. We’ll start by examining if the equation holds for
j = 1. From direct substitution into (24.29) we get the following result:

dNi,k

du
=

(k − 1)!

(k − 2)!
(a1,0Ni,k−1 + a1,1Ni+1,k−1) (24.31a)

= (k − 1)

(
a0,0

ti+k−1 − ti
Ni,k−1 +

−a0,0

ti+k − ti+1
Ni+1,k−1

)
(24.31b)

= (k − 1)

(
1

ti+k−1 − ti
Ni,k−1 −

1

ti+k − ti+1
Ni+1,k−1

)
(24.31c)

=
k − 1

ti+k−1 − ti
Ni,k−1 −

k − 1

ti+k − ti+1
Ni+1,k−1. (24.31d)

We immediately recognize (24.15) and conclude that (24.29) is true for j = 1. Now, we’ll assume that
(24.29) is true for the case of j = j − 1 and we’ll try to prove that it also is true in the j’th case. We have

dj−1Ni,k

dtj−1
=

(k − 1)!

(k − (j − 1)− 1)!

j−1∑

p=0

aj−1,pNi+p,k−j+1. (24.32)

If we differentiate this once more we get the j’th derivative, that is,

djNi,k

dtj
=

(k − 1)!

(k − (j − 1)− 1)!

j−1∑

p=0

aj−1,p
dNi+p,k−j+1

du
. (24.33)

Now let us apply (24.15) to the derivative inside the summation:

djNi,k

dtj
=

(k − 1)!

(k − j)!

j−1∑

p=0

aj−1,p

(
k − j

ti+p+k−j − ti+p
Ni+p,k−j

− k − j

ti+p+k−j+1 − ti+p+1
Ni+p+1,k−j

)
. (24.34)

“book” — 2005/9/30 — 15:44 — page 735 — #747✐
✐

✐
✐

✐
✐

✐
✐

24.1 PHYSICS-BASED ANIMATION 735

Rearranging yields:

djNi,k

dtj
=

(k − 1)!

(k − j − 1)!

j−1∑

p=0

(
aj−1,p

ti+p+k−j − ti+p
Ni+p,k−j

− aj−1,p

ti+p+k−j+1 − ti+p+1
Ni+p+1,k−j

)
. (24.35)

Let’s write out the summation into explicit terms. This results in the following:

djNi,k

dtj
=

(k − 1)!

(k − j − 1)!

(
aj−1,0

ti+k−j − ti
Ni,k−j −

aj−1,0

ti+k−j+1 − ti+1
Ni+1,k−j

+
aj−1,1

ti+1+k−j − ti+1
Ni+1,k−j −

aj−1,1

ti+k−j+2 − ti+2
Ni+2,k−j

+
aj−1,2

ti+2+k−j − ti+2
Ni+2,k−j −

aj−1,2

ti+k−j+3 − ti+3
Ni+3,k−j

· · ·

+
aj−1,j−1

ti+k−1 − ti+j−1
Ni+j−1,k−j −

aj−1,j−1

ti+k − ti+j
Ni+j,k−j

)
. (24.36)

This equation can be rewritten by collecting terms of equal N -factors:

djNi,k

dtj
=

(k − 1)!

(k − j − 1)!

(
aj−1,0

ti+k−j − ti
Ni,k−j

+
aj−1,1 − aj−1,0

ti+1+k−j − ti+1
Ni+1,k−j

+
aj−1,2 − aj−1,1

ti+2+k−j − ti+2
Ni+2,k−j

· · ·

+
aj−1,j−1 − aj−1,j−2

ti+k−1 − ti+j−1
Ni+j−1,k−j

− aj−1,j−1

ti+k − ti+j
Ni+j,k−j

)
. (24.37)

Looking at how the a-coefficients in (24.30a)–(24.30d) are defined, we can easily rewrite the equation
into the following form:

djNi,k

dtj
=

(k − 1)!

(k − j − 1)!
(aj,0Ni,k−j + aj,1Ni+1,k−j + aj,2Ni+2,k−j + · · ·

· · · + aj,jNi+j,k−j) , (24.38)

“book” — 2005/9/30 — 15:44 — page 736 — #748✐
✐

✐
✐

✐
✐

✐
✐

736 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Ni,1 Ni−1,2 Ni−2,3 Ni−3,4

ti+1 − ti Ni,2 Ni−1,3 Ni−2,4

ti+1 − ti−1 ti+2 − ti Ni,3 Ni−1,4

ti+1 − ti−2 ti+2 − ti−1 ti+3 − ti Ni,4

Table 24.2: M -table example for k = 4.

which conveniently can be written as:

djNi,k

dtj
=

(k − 1)!

(k − j − 1)!

j∑

p=0

aj,pNi+p,k−j. (24.39)

By comparison with (24.29), we can now conclude that it also holds in j’th case. !

24.1.3 Implementing the Derivatives of the Basis Functions
Now we’ll turn our attention toward making an efficient implementation. By (24.29) we have

djNi,k

duj
=

(k − 1)!

(k − j − 1)!

j∑

p=0

aj,pNi+p,k−j, j < k. (24.40)

and we see that the numerators in (24.30b)–(24.30d) are

∆T = ti+k+p−j − ti+p for 0 ≤ p ≤ j. (24.41)

By (24.1) we have

Ni+p−1,k−j+1 =
u− ti+p−1

ti+k+p−j−1 − ti+p−1
Ni+p−1,k−j +

ti+k+p−j − u

ti+k+p−j − ti+p
Ni+p,k−j. (24.42)

Now, if we compare the numerator of the second term to (24.41), we immediately see that they are iden-
tical. In other words, we have seen that the knot differences used to compute the N -values can be reused
in the computation of the derivatives. We’ll create a table, which we call M , and for 0 ≤ r < k we store
values into M as follows:

Ni−k+1+r,k →Mr,k−1, (24.43)
∆T →Mk−1,r. (24.44)

The diagonal is special since we will store Ni,k in it. In Table 24.2 we have given an example of an
M -table to help familiarize you with it. Observe that M contains all the nonzero values of N from the
dependency table and it also stores the corresponding knot differences (from the right terms only) in the
transpose position of the corresponding N value.

“book” — 2005/9/30 — 15:44 — page 737 — #749✐
✐

✐
✐

✐
✐

✐
✐

24.1 PHYSICS-BASED ANIMATION 737

The knot difference we need in the a-coefficient of Ni+p,k−j is computed by Ni+p−1,k−j+1. In the
M -table, Ni+p−1,k−j+1 would lie just to the right of Ni+p,k−j. Knowing this, we can easily come up with
the following rule for looking up the knot difference we need, when we want to compute the a-coefficients.
The rule is as follows:

1. Get the transpose position of the corresponding N -value.

2. Add one to the row index.

If we compute the derivatives in succeeding order starting at 0, then 1, 2, .., j − 1, j, and we observe
that when we compute the j’th derivative, we only need the a-coefficient values, which we found in the
computation of the j−1’th derivatives (and the knot differences of course). This means that we only have
to remember the a-coefficient from the previous iteration. Using a cyclic memory buffer makes it possible
to implement a very efficient way of computing the a-coefficients.

Looking closely at (24.29), we see that some of the terms involved in the summation could potentially
have a zero N -value. In an implementation, we could take advantage of this knowledge as follows: first
we split the summation into three parts, each part corresponding to the three different ways of computing
the a-coefficients (equations (24.30b)–(24.30d)). That is, we are going to use the following index values
for the N -values:

i− k + 1 + r for aj,0 (24.45a)
i− k + 1 + r + 1 to i− k + 1 + r + j − 1 for aj,1 to aj,j−1 (24.45b)

i− k + 1 + r + j for aj,j. (24.45c)

Now, since all these N -values are of order k − j we know that there are at most k − j nonzero N -values
and we also know that their index range is

i− k + j + 1 to i. (24.46)

In other words, if

i− k + 1 + r ≥ i− k + j + 1, (24.47a)
⇓

r ≥ j, (24.47b)

then the aj,0 term have a nonzero N -value and should therefore be included in the summation. Similarly,
we see that if

i− k + 1 + r + j ≤ i, (24.48a)
⇓

r ≤ k − 1− j. (24.48b)

“book” — 2005/9/30 — 15:44 — page 738 — #750✐
✐

✐
✐

✐
✐

✐
✐

738 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Then the aj,j term should be included as well. The aj,p terms (for p = 1 to j − 1) are handled a little
differently. In this case, we want to derive the range of p-values, pmin, . . . , pmax, which results in nonzero
values. First, we look for a lower limit. If

i− k + 1 + r + 1 ≥ i− k + j + 1, (24.49a)
⇓

r + 1 ≥ j, (24.49b)

then pmin should be set to 1. If not, we have to solve for pmin, such that we find the lowest value of pmin

where:

i− k + 1 + r + pmin ≥ i− k + j + 1, (24.50a)
⇓

pmin ≥ j − r, (24.50b)
⇓

pmin = j − r. (24.50c)

In a similar way we find pmax. If

i− k + 1 + r + j − 1 ≤ i, (24.51a)
⇓

r ≤ k − j, (24.51b)

then pmax = j − 1. If not, then we need the biggest value of pmax, such that

i− k + 1 + r + pmax ≤ i, (24.52)

which is pmax = k − 1− r.
This concludes our walk-through of implementation details, and we can now show the pseudocode of

the entire algorithm. In Figure 24.2 pseudocode is shown for initializing the M -table; this initialization is
used by the algorithm for computing the derivatives shown in Figure 24.3.

24.2 The B-Spline
Having taken care of the basis functions, we are now ready for the actual B-spline.

Definition 24.2
A nonperiodic, nonuniform, k-order B-spline is defined by

C(u) =
n∑

i=0

Ni,kP i (24.53)

“book” — 2005/9/30 — 15:44 — page 739 — #751✐
✐

✐
✐

✐
✐

✐
✐

24.2 PHYSICS-BASED ANIMATION 739

algorithm initializeM(i,u,K,T)
left = array(K+1)
right = array(K+1)
M = array(K,K)
left[0] = u - T[i+1]
right[0] = T[i] - u

left[1] = u - T[i]
right[1] = T[i+1] - u
M[0][0] = 1

For k = 2 to K do
left[k] = u - T[i+1-k]
right[k] = T[i+k] - u

saved = 0

For r=0 to k-2
M[k-1][r] = (right[r+1]+left[k-r-1])
tmp = M[r][k-2]/M[k-1][r]

M[r][k-1] = saved + right[r+1]*tmp
saved = left[k-r-1]*tmp;

Next r
M[k-1][k-1] = saved

Next k
return M

end algorithm

Figure 24.2: Initialization of M-table.

where

a ≤ u ≤ b (24.54)

The n + 1 points {P i|i = 0, . . . , n} are called the control points and the functions {Ni,k|i = 0, . . . , n}
are the k’th order normalized basis functions, which were treated in the previous sections.

These are defined on a knot vector T , such that

T = [a, . . . , a︸ ︷︷ ︸
k

, tk, . . . , tn, b, . . . , b︸ ︷︷ ︸
k

]T . (24.55)

Notice that the knot vector has a total of n + k + 1 elements and the first k-elements all have the same
value and the last k elements also have the same value. Succeeding values in the knot vector should be
nondecreasing.

“book” — 2005/9/30 — 15:44 — page 740 — #752✐
✐

✐
✐

✐
✐

✐
✐

740 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

algorithm derivatives(i,u,K,T,J)
D = array(J+1,K) // D[j][r] = j’th derivative of Ni−k+1+r,k

a = array(2,K)
M = initializeM(i,u,K,T)

For r=0 to K-1
D[0][r] = M[r][K-1]

Next r

For r=0 to K-1
s1 = 0, s2 = 1, a[0][0] = 1
For j=1 to J
djN = 0
If r >= j then

a[s2][0] = a[s1][0]/M[K-j][r-j]
djN += a[s2][0] * M[r-j][K-j-1]

End if
If r + 1 >= j then pMin = 1
Else pMin = j-r End if
If r <= K -j then pMax = j - 1
Else pMax = K - 1 -r End if
For p=pMin to pMax

a[s2][p]=(a[s1][p]-a[s1][p-1])/M[K-j][r+p-j]
djN+=a[s2][p]*M[r+p-j][K-j-1]

Next p
If r <= (K-1-j) then

a[s2][j] = -a[s1][K-1]/M[K-j][r]
djN += a[s2][j] * M[r][K-j-1]

End if
D[j][r] = djN
swap(s1,s2)

Next j
Next r

factor = K-1;
For j=1 to J

For r=0 to K-1
D[j][r] = factor * D[j][r]

Next r
factor = factor * (K-1-j)

next J
return D

end algorithm

Figure 24.3: Pseudocode for computing derivatives of the B-spline basis functions.

“book” — 2005/9/30 — 15:44 — page 741 — #753✐
✐

✐
✐

✐
✐

✐
✐

24.3 PHYSICS-BASED ANIMATION 741

algorithm curvePoint(u,K,T,P)
i = knot index, such that ti ≤ u < ti+1

N = BasisFuncs(i,u,K,T)
C = 0
For r=0 to K-1

C = C + N[r]*P[i-K+1+r]
Next r
return C

end algorithm

Figure 24.4: Pseudocode for computing a point on a B-spline.

To obtain the derivative of a B-spline, we differentiate (24.53) with respect to u. By the product rule
we get

C ′(u) =
n∑

i=0

N ′
i,kP i + Ni,kP

′
i. (24.56)

Since {P i} are all constants and independent of u, this reduces to

C′(u) =
n∑

i=0

N ′
i,kP i. (24.57)

From this, it is easily seen that

C(j)(u) =
n∑

i=0

N (j)(i, k)P i. (24.58)

Recalling our very first algorithm for computing the basis functions discussed in Section 24.1.1, we
can easily derive an algorithm for computing a single point on a B-spline. This is shown in Figure 24.4.
From (24.58) it is not hard to see how we can put our previous algorithm for computing the derivatives of
the basis functions (see Section 24.1.3) to practical use. This is shown in Figure 24.5.

24.3 Global Interpolation
In this section, we will look at the inverse problem of computing points on a B-spline. Instead, we will
try to compute the B-spline passing through a set of points on it. The approach we will take is called
global interpolation. We call the initial given set of points for break points or data points and introduce
the notation {X i} for them. The indices have the meaning that if j < i, then we should encounter X j

before X i if we walk along the resulting spline as the parameter u increases.
With the introduced formalism, we can state our task at hand quite simply: given a set of break points

and a knot vector, we need to find the control points {P i} of the nonuniform B-spline, which passes
through all the break points. Assume that we have a knot vector consisting of the following knot values

t0, t1, t2, . . . , tk−1, tk, . . . , tn, tn+1, tn+2, . . . , tn+k, (24.59)

“book” — 2005/9/30 — 15:44 — page 742 — #754✐
✐

✐
✐

✐
✐

✐
✐

742 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

algorithm curveDerivatives(u,K,T,P,J)
i = knot index, such that ti ≤ u < ti+1

J = Min(J,K-1)
dC = array(J+1)
dN = derivatives(i,u,K,T,J)
For j=0 to J

dC[j] = 0
For r=0 to K-1
dC[j] = dC[j] + N[j][r]*P[i-K+1+r]

Next r
Next j
return dC

end algorithm

Figure 24.5: Pseudocode for computing the derivative of a B-spline.

where
t0 = · · · . = tk−1, (24.60)

and
tn+1 = · · · = tn+k. (24.61)

Given such a knot vector, we know that

C(tk−1) = P 0, (24.62a)
C(tn+1) = P n. (24.62b)

Each (unique) knot value will correspond to a single break point. From this we see that we must have a
total of n− k + 3 break points:

X0,X1,X2, . . . ,Xn−k+1,Xn−k+2. (24.63)

For each of these break points we will require that

C(ti+k−1) = Xi for 0 ≤ i ≤ n− k + 2. (24.64)

That is, we have a total of n− k + 3 equations, but we have n + 1 unknowns, and a spline with n + k + 1
knot values must have n + 1 control points. In short, we might need a few more equations in order to
solve our problem. Typically k = 4; this results in a fairly inexpensive spline computation with acceptable
flexibility. When k = 4 two more equations are needed to solve for the control points. We could simply
pick

P 0 = P 1, and P n = P n−1. (24.65)

as the two extra equations. Now we can solve the system of linear equations given by (24.64). This
strategy could be applied for an arbitrary value of k. However, we choose to work with k = 4; the reader

“book” — 2005/9/30 — 15:44 — page 743 — #755✐
✐

✐
✐

✐
✐

✐
✐

24.3 PHYSICS-BASED ANIMATION 743

u-t�i�
t�i+3 �- t�i�

N�i,3�

t�i+4�-u�

t�i+4 �- t�i+1�

N�i+1,3�

N�i,4�

u-t�i�
t�i+2 �- t�i�

N�i,2�

t�i+3�-u�

t�i+3 �- t�i+1�
N�i+1,2�

u-t�i+1�

t�i+2 �- t�i+1�

N�i+1,2�

t�i+4�-u�

t�i+4 �- t�i+2�
N�i+2,2�

t�i+4�-u�

t�i+4 �- t�i+3�
N�i+3,1�

u-t�i+2�

t�i+3 �- t�i+2�
N�i+2,1�

t�i+3�-u�

t�i+3 �- t�i+2�
N�i+2,1�

u-t�i+1�

t�i+2 �- t�i+1�
N�i+1,1�

t�i+3�-u�

t�i+3 �- t�i+2�
N�i+2,1�

u-t�i+1�

t�i+2 �- t�i+1�
N�i+1,1�

t�i+2�-u�

t�i+2 �- t�i+1�
N�i+1,1�

u-t�i�
t�i+1 �- t�i�

N�i,1�

Figure 24.6: The computation of the basis function.

should be able to generalize from our derivations. Let us set the value of k to 4 and see if we can derive
an efficient way of solving (24.41). We start out by writing up C(ti+3) as

C(ti+3) =
n∑

i=0

P iNi,4. (24.66)

Only k = 4 of the basis functions are potentially nonzero, since they have a support that overlaps with
ti+3. That is,

C(ti+3) =
n∑

i=0

P iNi,4 = P iNi,4 + P i+1Ni+1,4 + P i+2Ni+2,4 + P i+3Ni+3,4. (24.67)

Now let us examine each of the 4 N -terms. We start by looking at Ni,4. By our definition of a basis
function (see (24.1)) we can construct the tree shown in Figure 24.6, which shows how Ni,4 is computed.
Since we know that Ni,4 should be evaluated at ti+3, we can easily write up an explicit expression for
Ni,4. From the tree in Figure 24.6 we see that it would be the terms along the path from the rightmost leaf
up to the root of the tree, because Ni+3,1 = 1 is the only nonzero leaf of the tree.

Ni,4 =

(
ti+4 − ti+3

ti+4 − ti+1

)(
ti+4 − ti+3

ti+4 − ti+2

)(
(ti+4 − ti+3)

(ti+4 − ti+3)
Ni+3,1

)
(24.68a)

=
(ti+4 − ti+3)2

(ti+4 − ti+1)(ti+4 − ti+2)
. (24.68b)

“book” — 2005/9/30 — 15:44 — page 744 — #756✐
✐

✐
✐

✐
✐

✐
✐

744 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

If we draw similar trees for Ni+1,4,Ni+2,4, and Ni+3,4 and evaluate them at ti+3, we can derive the
remaining expressions we need,

Ni+1,4 =
(ti+5 − ti+3)(ti+3 − ti+2)

(ti+5 − ti+2)(ti+4 − ti+2)
+

(ti+3 − ti+1)(ti+4 − ti+3)

(ti+4 − ti+1)(ti+4 − ti+2)
, (24.69a)

Ni+2,4 =
(ti+3 − ti+2)2

(ti+5 − ti+2)(ti+4 − ti+2)
, (24.69b)

Ni+3,4 = 0. (24.69c)

Now let us write up all the equations that determine the break points.

i = 0 : C(t3) = P 1 = X0,
i = 1 : C(t4) = α1P 1 + β1P 2 + γ1P 3 = X1,
...
i = i : C(ti+3) = αiP i + βiP i+1 + γiP i+2 = Xi,
...
i = n− 2 : C(tn+1) = P n−1 = Xn−2,

(24.70)

where

αi =
(ti+4 − ti+3)2

(ti+4 − ti+1)(ti+4 − ti+2)
, (24.71a)

βi =
(ti+5 − ti+3)(ti+3 − ti+2)

(ti+5 − ti+2)(ti+4 − ti+2)
+

(ti+3 − ti+1)(ti+4 − ti+3)

(ti+4 − ti+1)(ti+4 − ti+2)
, (24.71b)

γi =
(ti+3 − ti+2)2

(ti+5 − ti+2)(ti+4 − ti+2)
. (24.71c)

All these n− 1 equations can be expressed in matrix form, as shown here:
⎡

⎢⎢⎢⎢⎣

1
α1 β1 γ1

· · ·
· · · αn−3 βn−3 γn−3

1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

P 1

P n−1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

X0

Xn−2

⎤

⎥⎥⎥⎥⎦
. (24.72)

Looking at this matrix equation, we observe that it has a particularly appealing shape. Such shape is called
tridiagonal, and it is particularly easy to solve a system of tridiagonal linear equations [Press et al., 1999b]
and by doing so we can compute all the control points.

However, we have omitted a small detail: how should the knot vector be constructed if we are only
given the break points? A good approach to this problem is to use a heuristic, which is known as the chord
length heuristic (see [Watt et al., 1992]). We will require that the following condition is always fulfilled:

ti+4 − ti+3

ti+5 − ti+4
=
∥Xi+1 −Xi∥
∥Xi+2 −Xi+1∥

. (24.73)

“book” — 2005/9/30 — 15:44 — page 745 — #757✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 745

24.4 Cubic Curve Decomposition

B-splines are attractive due to two properties. They have local support and they guarantee continuity
across adjacent curve segments. These properties are not mutually present when having a composition of
Bezier curve segments. Changing a control point on one curve segment means that one has to change the
control points on all other curve segments to ensure continuity. However, a Bezier curve composition is
far better to work with for rendering and evaluation. In our opinion it pays off in terms of performance
to convert a B-spline to a composition of Bezier curve segments when one is finished with modeling the
final shape of the spline.

Nonuniform B-splines are easily converted into a composition of corresponding Bezier curve segments
[Hoschek et al., 1993] by performing an operation on them, which is called knot insertion. We have
devoted this section to treat all the details about how one takes a nonuniform B-spline and ends up with a
composition of cubic Bezier curve segments.

24.4.1 The Cubic Bezier Curve and the B-Spline Connection

The best way to see how a cubic nonuniform B-spline corresponds to a cubic Bezier curve is by direct
computation. Assume that we have the nonuniform B-spline

C(u) =
3∑

i=0

P iNi,4, (24.74)

defined on the knot vector

T =
[
0, 0, 0, 0, 1, 1, 1, 1

]T
. (24.75)

We say that such a knot vector has no internal knots and that the multiplicity of all its knots is k = 4. We
immediately see that only four basis functions are involved. These are:

N0,4,N1,4,N2,4,N3,4. (24.76)

Looking at Figure 24.6 it is fairly easy to evaluate these four basis functions. We can see that only those
paths with leaves where the numerator tj+1 − tj are nonzero contributes to the value of the N -function.
By direct substitution, we derive:

N0,4 = (1− u)3 , (24.77a)

N1,4 = 3u (1− u)2 , (24.77b)

N2,4 = 3u2 (1− u) , (24.77c)

N3,4 = u3. (24.77d)

“book” — 2005/9/30 — 15:44 — page 746 — #758✐
✐

✐
✐

✐
✐

✐
✐

746 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Expansion of terms yield:

N0,4 = −u3 + 3u2 − 3u + 1, (24.78a)

N1,4 = 3u3 − 6u2 + 3u, (24.78b)

N2,4 = −3u3 + 3u2, (24.78c)

N3,4 = u3. (24.78d)

Plugging our results into the original summation for the B-spline and using matrix notation we derive

C(u) =
[
u3, u2, u, 1

]

⎡

⎢⎢⎣

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

P 0

P 1

P 2

P 3

⎤

⎥⎥⎦ . (24.79)

But this is actually the matrix definition of a cubic Bezier curve. There is no doubt by now that there
definitely is a connection between the spline and Bezier curve representations. However, there is a small
complication: not all nonuniform B-splines have the particularly nice looking knot vector as we used to
show the connection with Bezier curves. What should we do about a general looking B-spline? For now,
we assume that every knot value in the general B-spline has multiplicity k (in the next section we will start
on attacking the problem of twisting the spline into this form). The general cubic nonuniform B-spline
can then be seen as a sequence of separate nonuniform B-splines, because at each unique knot value the
first k − 1 derivative vanishes (see Section 24.6.1). Each sequence of this special looking spline looks
almost like the one we used in our derivation above. The only difference is that the knot values are not
zeroes and ones. Instead, the knot vector looks like this:

T =
[
ti, ti, ti, ti, ti+1, ti+1, ti+1, ti+1

]T
. (24.80)

The indices are the ones from the original spline with multiplicity 1. We can easily get the zeroes by
subtracting the left knot value from all the knot values. This is perfectly legal because we are looking at a
local segment of the spline. We end up with a knot vector like the following:

T =
[
0, 0, 0, 0, s, s, s, s

]T
, (24.81)

where
s = ti+1 − ti. (24.82)

This knot vector almost looks like the one we want except for the s-value, which is not necessarily 1. If
we repeat the above computation, we will derive at a cubic Bezier curve with similar parameter scaled
by s. We can conclude that we still have the connection between cubic Bezier curves and nonuniform
B-splines.

Let us try to get rid of this scaling problem. We introduce the terminology of global and local param-
eters. The global parameter is denoted by U and it is the parameter that was used to define the original

“book” — 2005/9/30 — 15:44 — page 747 — #759✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 747

nonuniform B-spline with (see (24.1)). We now use u for the local parameter of the i’th curve segment
B(u) of the original spline. We want

B(u) = C(U). (24.83)

If we compute u as follows:
u = f(U), (24.84)

where
f(U) =

U − ti
ti+1 − ti

, (24.85)

then our property is fulfilled. Another nice property is that u runs from 0 to 1.

24.4.2 Global and Local Parameter Conversion of Derivatives
Given a local Bezier segment Bi(u) of C(U) where we know that

C(U) = Bi(u). (24.86)

We want to derive a conversion rule for the derivatives of the curve segments.
By straightforward differentiation we get

d

dU
C(U) =

d

dU
Bi(f(U)) = B′

i(f(U))f ′(U), (24.87)

where
f ′(U) =

1

ti+1 − ti
. (24.88)

Putting it together we get the conversion rule for the first-order derivative we we’re looking for.

C ′(U) =
1

ti+1 − ti
B′

i(f(U)) =
1

ti+1 − ti
B′

i(u). (24.89)

If we continue our differentiation, we get

d2

dU2
C(U) =

d

dU
B′

i(f(U))f ′(U) = B′′
i (f(U))f ′(U)2 + B′

i(f(U))f ′′(U), (24.90)

and we can easily compute

f ′′(U) =
d

dU

(
1

ti+1 − ti

)
= 0. (24.91)

Substituting back into our computation, we get the conversion rule we were looking for.

C ′′(U) =

(
1

ti+1 − ti

)2

B′′
i (f(U)) =

(
1

ti+1 − ti

)2

B′′
i (u). (24.92)

By now the pattern should be obvious and we can conclude

C(j)(U) =

(
1

ti+1 − ti

)j

B(j)
i (f(U)) =

(
1

ti+1 − ti

)j

B(j)
i (u). (24.93)

“book” — 2005/9/30 — 15:44 — page 748 — #760✐
✐

✐
✐

✐
✐

✐
✐

748 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

24.4.3 Knot Insertion
We are now ready to tackle the task of knot insertion. Even though the resulting algorithm is quite simple
and resembles the de Boor algorithm discussed in Section 24.7, we will need a number of preliminary
definitions and theorems.
Definition 24.3 (Divided Differences)
Assume we have a function g(t) and a knot vector

T =
[
. . . , ti, ti+1, . . . , ti+k, . . .T

]
, (24.94)

where
∀i : ti ≤ ti+1 < ti+k. (24.95)

We define the divided difference on g recursively1 in the following manner. The zero’th divided difference
is given by

∆ig = g(ti), (24.96)

and for k = 1

∆i,i+1g =
∆i+1g(ti + 1)−∆ig(ti)

ti+1 − ti
. (24.97)

The general k’th divided difference2 is defined by

∆i,...,i+kg =
∆i,...,tr−1,tr+1,...,i+kg −∆i,...,ts−1,ts+1,...,i+kg

ts − tr
. (24.98)

An important property of the divided difference, which we are going to use, is that it is symmetric. This is
easily shown. It follows trivially in the case of k = 0. Using operator notation and assuming the k − 1’th
divided difference is symmetric for all k > 2, we notice that

∆i,...,v,...,w,...,i+k =
∆i+1,...,v,...,w,...,i+k −∆i,...,v,...,w,...,i+k−1

ti+k − ti
(24.99a)

=
∆i+1,...,w,...,v,...,i+k −∆i,...,w,...,v,...,i+k−1

ti+k − ti
(24.99b)

= ∆i,...,w,...,v,...,i+k. (24.99c)

This clearly shows that the divided difference is symmetric.

Theorem 24.3 (Leibniz’ Formula)
If we have f(t) = g(t)h(t) then Leibniz’ formula states

∆i,...,i+kf =
i+k∑

r=i

∆i,...,rg∆r,...,i+kh. (24.100)

1There are other ways to define the divided difference (see [Boor, 1978]).
2We have ignored the case ti = · · · = ti+k (see [Boor, 1978] for details).

“book” — 2005/9/30 — 15:44 — page 749 — #761✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 749

The proof requires another definition of the divided difference The interested reader should refer to
[Boor, 1978] for a proof.

Lemma 24.4 (Divided Difference Relation)
Given divided differences ∆i,...,i+k, ∆i,...,i+k−1,j, and ∆j,i+1,...,i+k the following holds:

0 = (ti − ti+k)∆i,...,i+k + (tj − ti)∆i,...,i+k−1,j + (ti+k − tj)∆j,i+1,...,i+k. (24.101)

Proof of Lemma 24.4:
For now, we will try to show that this funny equation is in fact true. We’ll start out by using the definition
of the divided differences on the funny (24.101):

0 = (ti − ti+k)∆i,...,i+k + (tj − ti)
∆i+1,...,i+k−1,j −∆i,...,i+k−1

tj − ti

+ (ti+k − tj)
∆i+1,...,i+k −∆j,i+1,...,i+k−1

ti+k − tj
.

(24.102)

Cleaning up gives us

0 = ∆i,...,i+k +
∆i+1,...,i+k−1,j −∆j,i+1,...,i+k−1

ti − ti+k
−

∆i+1,...,i+k −∆i,...,i+k−1

ti+k − ti
. (24.103)

By symmetry of the divided difference we have:

∆i+1,...,i+k−1,j = ∆j,i+1,...,i+k−1 (24.104)

so our second term vanishes from our equation. Now looking at the third term we recognize the definition
of the divided difference, that is,

∆i,...,i+k =
∆i+1,...,i+k −∆i,...,i+k−1

ti+k − ti
. (24.105)

So the first and third terms cancel each other out, and we immediately see that (24.101) is true. !

Definition 24.4 (The Ordinary B-Spline Basis Function)
The unnormalized k’th order B-spline basis function Mi,k, also called the ordinary B-spline basis function,
is defined recursively. This is very similar to (24.1). We have, for k > 1:

Mi,k =
u− ti

ti+k − ti
Mi,k−1 +

ti+k − u

ti+k − ti
Mi+1,k−1, (24.106)

and for k = 1:

Mi,1 =

{
1

ti+1−ti
if ti ≤ u < ti+1,

0 otherwise.
(24.107)

The ordinary B-spline basis function can be turned into the normalized B-spline basis function using:

“book” — 2005/9/30 — 15:44 — page 750 — #762✐
✐

✐
✐

✐
✐

✐
✐

750 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Theorem 24.5 (Relation between Ordinary and Normalized B-Spline Bases)
An ordinary B-Spline basis M may be converted into a normalized B-spline N using

Ni,k = (ti+k − ti)Mi,k. (24.108)

This is all easily verified by straightforward computation and comparison with the definition of the nor-
malized B-spline basis function (see (24.1)).

We will now show how to obtain an Ordinary B-spline using divided differences.

Theorem 24.6 (Ordinary B-Spline from Divided Differences)
Given a known function3 g,

g(t) =

{
0 if t ≤ u,

(t− u)k−1 if t > u,
(24.109)

then the k’th divided difference corresponds to the ordinary k’th order B-spline basis function as

Mi,k = ∆i,...,i+k

(
(t− u)k−1

)

>u
. (24.110)

We have adopted the notation
(
(t− u)k−1

)
>u

to mean (t− u)k−1 if t > u and 0 otherwise. We will now
show this by induction4 on k .

Proof of Theorem 24.6:
First we observe that for k = 1 we have

Mi,1 = ∆i,i+1
(
(t− u)0

)
>u

(24.111a)

=
∆i+1

(
(t− u)0

)
>u
−∆i

(
(t− u)0

)
>u

ti+1 − ti
(24.111b)

=

(
(ti+1 − u)0

)
>u
−
(
(ti − u)0

)
>u

ti+1 − ti
, (24.111c)

Now if u < ti then

Mi,1 =
(ti+1 − u)0 − (ti − u)0

ti+1 − ti
=

1− 1

ti+1 − ti
= 0. (24.112)

If ti ≤ u < ti+1 then

Mi,1 =
(ti+1 − u)0 − 0

ti+1 − ti
=

1− 0

ti+1 − ti
=

1

ti+1 − ti
. (24.113)

And finally, if u ≥ ti+1 then

Mi,1 =
0− 0

ti+1 − ti
= 0. (24.114)

3Notice we have defined g differently than in [Boor, 1978, Boehm, 1980].
4Note that if we use the definition of g in [Boor, 1978, Boehm, 1980], then the base case will always fail.

“book” — 2005/9/30 — 15:44 — page 751 — #763✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 751

So we can conclude that (24.110) is true when k = 1. Now let us assume that (24.110) is true for k = k−1
and examine (

(t− u)k−1
)

>u
= (t− u)

(
(t− u)k−2

)

>u
. (24.115)

We can think of this as the product of two functions, so let’s try to use Leibniz’ formula (24.100) on it.

∆i,...,i+k

(
(t− u)k−1

)

>u
= ∆i(t− u)∆i,...,i+k

(
(t− u)k−2

)

>u

+ ∆i,i+1(t− u)∆i+1,...,i+k

(
(t− u)k−2

)

>u

+ ∆i,...,i+2(t− u)∆i+2,...,i+k

(
(t− u)k−2

)

>u

· · ·

+ ∆i,...,i+k(t− u)∆i+k

(
(t− u)k−2

)

>u
. (24.116)

Now, by straightforward computation we have

∆i(t− u) = (ti − u) (24.117a)
⇓

∆i,i+1(t− u) =
(ti+1 − u)− (ti − u)

ti+1 − ti
= 1 (24.117b)

⇓

∆i,...,i+2(t− u) =
∆i+1,i+2(t− u)−∆i,i+1(t− u)

ti+2 − ti
=

1− 1

ti+2 − ti
= 0 (24.117c)

⇓
...
⇓

∆i,...,i+k(t− u) = 0. (24.117d)

Using these results (24.116) reduces to

∆i,...,i+k

(
(t− u)k−1

)

>u
= (ti−u)∆i,...,i+k

(
(t− u)k−2

)

>u
+∆i+1,...,i+k

(
(t− u)k−2

)

>u
. (24.118)

By the definition of the k’th divided difference we have

∆i,...,i+k =
∆i+1,...,i+k −∆i,...,i+k−1

ti+k − ti
. (24.119)

Multiplying by (ti − u) gives

(ti − u)∆i,...,i+k =
(ti − u)

(ti+k − ti)
(∆i+1,...,i+k −∆i,...,i+k−1) . (24.120)

“book” — 2005/9/30 — 15:44 — page 752 — #764✐
✐

✐
✐

✐
✐

✐
✐

752 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Substituting this into (24.118) yields

∆i,...,i+k

(
(t− u)k−1

)

>u
=

(ti − u)

(ti+k − ti)

(
∆i+1,...,i+k

(
(t− u)k−2

)

>u
−∆i,...,i+k−1

(
(t− u)k−2

)

>u

)

+ ∆i+1,...,i+k

(
(t− u)k−2

)

>u
. (24.121)

Now, by induction, this means that we have

Mi,k =
(ti − u)

(ti+k − ti)
(Mi+1,k−1 −Mi,k−1) + Mi+1,k−1. (24.122)

Rearranging the terms, this equation can be rewritten to

Mi,k =
u− ti

ti+k − ti
M1,k−1 +

ti+k − u

ti+k − ti
Mi+1,k−1. (24.123)

But this is the definition of Mi,k, which means that we have proven the correspondence of Mi,k and the
k’th divided difference. !

Finally, we are ready to make the knot insertion algorithm. Imagine that we insert a new knot value,
t∗, into the knot vector, T , where

tr ≤ t∗ < tr+1. (24.124)

Then we get a new knot vector

T̂ =
[
. . . , tr, t∗, tr+1, . . . , tr+k, . . .

]T
. (24.125)

Observe that

t̂i =

⎧
⎪⎨

⎪⎩

ti if i ≤ r,
t∗ if i = r + 1,
ti−1 if i > r + 1.

(24.126)

Given a nonuniform B-spline, C(u), defined on T , we want to find a new nonuniform B-spline, Ĉ(u),
defined on T̂ , such that

C(u) = Ĉ(u) (24.127)

for all values of u. If we look at the definition of the nonuniform B-spline, this means that we have to find
all P̂ is such that

n∑

i=0

Ni,kP i =
n+1∑

i=0

N̂i,kP̂ i, (24.128)

“book” — 2005/9/30 — 15:44 — page 753 — #765✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 753

where the hat-notation means that the quantity is defined with respect to T̂ . Recall that Ni,k has support
on the knot values ti, . . . , ti+k. This means that t∗ only affects the basis functions

Nr−k+1,k, . . . ,Nr,k. (24.129)

Since C(u) and Ĉ(u) should have the same shape we can conclude that

N̂i =

{
Ni if i < r − k + 1,
Ni−1 if i > r + 1,

(24.130)

from which it follows that we must have

P̂ i =

{
P i if i < r − k + 1,
P i−1 if i > r + 1.

(24.131)

This leaves us with the problem of determining the P̂ is such that

r∑

i=r−k+1

Ni,kP i =
r+1∑

i=r−k+1

N̂i,kP̂ i. (24.132)

To solve this problem we will try to write N in terms of N̂ . To accomplish this we will turn back to the
funny (24.101). Let’s set tj = t∗ and rearrange the equation. Then we have

(ti+k − ti)∆i,...,i+k = (t∗ − ti)∆i,...,i+k−1,∗ + (ti+k − t∗)∆∗,i+1,...,i+k. (24.133)

Using (24.110) we get, for all values of i = r − k + 1 to r:

(ti+k − ti)Mi,k = (t∗ − ti)M̂i,k + (ti+k − t∗)M̂i+1,k. (24.134)

We’ll convert the M -terms into N -terms by using (24.108)

Ni,k =
t∗ − ti

t̂i+k − t̂i
N̂i,k +

ti+k − t∗

t̂i+k+1 − t̂i+1
N̂i+1,k. (24.135)

Now we want to change notation from old knot values into new knot values. We can do this by observing
that for any value of i = r − k + 1 to r, we have:

ti = t̂i and ti+k = t̂i+k+1. (24.136)

So we end up with

Ni,k =
t∗ − t̂i

t̂i+k − t̂i
N̂i,k +

t̂i+k+1 − t∗

t̂i+k+1 − t̂i+1
N̂i+1,k. (24.137)

“book” — 2005/9/30 — 15:44 — page 754 — #766✐
✐

✐
✐

✐
✐

✐
✐

754 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

We use this to rewrite the terms in the summation of C(u), that is,

r∑

i=r−k+1

Ni,kP i =
r∑

i=r−k+1

(
t∗ − t̂i

t̂i+k − t̂i
N̂i,k +

t̂i+k+1 − t∗

t̂i+k+1 − t̂i+1
N̂i+1,k

)
P i. (24.138)

Expanding the summation gives

r∑

i=r−k+1

Ni,kP i =

(
t∗ − t̂r−k+1

t̂r+1 − t̂r−k+1
N̂r−k+1,k +

t̂r+2 − t∗

t̂r+2 − t̂r−k+2
N̂r−k+2,k

)
P r−k+1

+

(
t∗ − t̂r−k+2

t̂r+2 − t̂r−k+2
N̂r−k+2,k +

t̂r+3 − t∗

t̂r+3 − t̂r−k+3
N̂r−k+3,k

)
P r−k+2

...

+

(
t∗ − t̂r

t̂r+k − t̂r
N̂r,k +

t̂r+k+1 − t∗

t̂r+k+1 − t̂r+1
N̂r+1,k

)
P r. (24.139)

With the knowledge that t∗ = t̂r+1, we immediately see that some of the fractions in the summation
become 1. This reduction results in

r∑

i=r−k+1

Ni,kP i =

(
N̂r−k+1,k +

t̂r+2 − t∗

t̂r+2 − t̂r−k+2
N̂r−k+2,k

)
P r−k+1

+

(
t∗ − t̂r−k+2

t̂r+2 − t̂r−k+2
N̂r−k+2,k +

t̂r+3 − t∗

t̂r+3 − t̂r−k+3
N̂r−k+3,k

)
P r−k+2

...

+

(
t∗ − t̂r

t̂r+k − t̂r
N̂r,k + N̂r+1,k

)
P r. (24.140)

We then collect terms of equal N̂ , to get

r∑

i=r−k+1

Ni,kP i = N̂r−k+1,kP r−k+1

+ N̂r−k+2,k

(
t̂r+2 − t∗

t̂r+2 − t̂r−k+2
P r−k+1 +

t∗ − t̂r−k+2

t̂r+2 − t̂r−k+2
P r−k+2

)

...

+ N̂r,k

(
t̂r+k − t∗

t̂r+k − t̂r
P r−1 +

t∗ − t̂r
t̂r+k − t̂r

P r

)

+ N̂r+1,kP r. (24.141)

“book” — 2005/9/30 — 15:44 — page 755 — #767✐
✐

✐
✐

✐
✐

✐
✐

24.4 PHYSICS-BASED ANIMATION 755

Observe that we now have a summation over N̂i just like we wanted for (24.132). All we need now is to
make the formulas look nicer. We do this by first expressing the fractions in terms of T and not T̂ .

r∑

i=r−k+1

Ni,kP i = N̂r−k+1,kP r−k+1

+ N̂r−k+2,k

(
tr+1 − t∗

tr+1 − tr−k+2
P r−k+1 +

t∗ − tr−k+2

tr+1 − tr−k+2
P r−k+2

)

...

+ N̂r,k

(
tr+k−1 − t∗

tr+k−1 − tr
P r−1 +

t∗ − tr
tr+k−1 − tr

P r

)

+ N̂r+1,kP r. (24.142)

Finally, we will introduce the notation

αi =
t∗ − ti

ti+k−1 − ti
, (24.143)

from which we observe that
(1− αi) =

ti+k−1 − t∗

ti+k−1 − ti
. (24.144)

With the new notation at hand, we have
r∑

i=r−k+1

Ni,kP i = N̂r−k+1,kP r−k+1

+ N̂r−k+2,k ((1− αr−k+2)P r−k+1 + αr−k+2P r−k+2)

...

+ N̂r,k ((1− αr)P r−1 + αrP r)

+ N̂r+1,kP r. (24.145)

From this we conclude that the solution to (24.132) is

P̂ i =

⎧
⎪⎨

⎪⎩

P i if i = r − k + 1,

(1− αi)P i−1 + αiP i if r − k + 2 ≤ i ≤ r,

P i−1 if i = r + 1.

(24.146)

Putting it all together, we can now state the knot insertion algorithm. We have

Ĉ(u) =
n+1∑

i=0

N̂i,kP̂ i, (24.147)

“book” — 2005/9/30 — 15:44 — page 756 — #768✐
✐

✐
✐

✐
✐

✐
✐

756 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

algorithm lookupSegment(s)
int i=0;
do{

i++;
}while(ArcLengthTable[i]<s);
i--;
return i;

end algorithm

Figure 24.7: Pseudocode for linear search of segment corresponding to a given arc length value.

with

P̂ i = (1− αi) P i−1 + αiP i, (24.148)

where

αi =

⎧
⎪⎨

⎪⎩

1 if i ≤ r − k + 1,
t∗−ti

ti+k−1−ti
if r − k + 2 ≤ i ≤ r,

0 if i ≥ r + 1.

(24.149)

If we compare the algorithm with the de Boor algorithm (see Section 24.7), then we will discover that the
newly computed control points correspond to the de Boor points P 1

r ,P
1
r−1, . . . ,P

1
r−k+2.

24.5 Accumulated Arc Length Table

In the previous section we explained how the spline could be decomposed into a sequence of Bezier
curves. Sometimes we are interested in quickly finding the Bezier curve segment that corresponds to a
given arc length value along the spline C(u); for instance, if we do spline driven animation.

Stated mathematically, we are given an arc length value s and we are now looking for the Bezier curve
segment Bi, such that

S(ti) ≤ s < S(ti+1). (24.150)

One way to quickly determine the curve segment is by using an accumulated arc length table. After
having found the decomposition of the spline into Bezier curve segments, B0, . . . ,Bn−1, this table is
easily constructed by computing the total arc length of each Bezier curve segment SBi and letting entry i
store the value

∑i−1
j=0 SBj . We can now perform a linear search through the table to find the segment we

are looking for, or even better we can do a binary search. In Figure 24.7 pseudocode for a linear search
of a segment is shown. This sort of strategy is also known under the name accumulated chord length and
it comes in different flavors, but the basic idea still remains the same. For more details about the other
flavors see [Watt et al., 1992].

“book” — 2005/9/30 — 15:44 — page 757 — #769✐
✐

✐
✐

✐
✐

✐
✐

24.6 PHYSICS-BASED ANIMATION 757

24.6 The Regular Cubic Nonuniform B-Spline
In this section, we will look at a subclass of the B-splines, which is known as regular B-splines. A regular
B-spline is defined by having nonzero first-order derivatives everywhere. Regular B-splines are useful for
describing a physical meaningful motion. That is the center of mass trajectory of a real-world object (see,
for instance, [Erleben et al., 2003a]).

In this section, we will formulate different conditions on how one should define a B-spline such that
it would be a regular B-spline. We will only consider cubic B-splines.

24.6.1 First-Order Derivatives at Knot Values
Let us derive an equation for the derivative at the knot value ti

C ′(ti) = N ′
i−3,4P i−3 + N ′

i−2,4P i−2 + N ′
i−1,4P i−1 + N ′

i,4P i (24.151a)

=

(
3

ti − ti−3
Ni−3,3 −

3

ti+1 − ti−2
Ni−2,3

)
P i−3

+

(
3

ti+1 − ti−2
Ni−2,3 −

3

ti+2 − ti−1
Ni−1,3

)
P i−2

+

(
3

ti+2 − ti−1
Ni−1,3 −

3

ti+3 − ti
Ni,3

)
P i−1

+

(
3

ti+3 − ti
Ni,3 −

3

ti+4 − ti+1
Ni+1,3

)
P i. (24.151b)

Recall that Ni−3,3 = 0 and Ni+1,3 = 0 since we are looking at the i’th knot value of a third-order B-spline.
Using this knowledge we can rewrite our equation into the following sum of differences

C ′(ti) =
3Ni−2,3

ti+1 − ti−2
(P i−2 − P i−3)

+
3Ni−1,3

ti+2 − ti−1
(P i−1 −P i−2)

+
3Ni,3

ti+3 − ti
(P i − P i−1) . (24.152)

We’ll evaluate the basis functions by using de Cox’s definition(24.1); we start by looking at Ni,3.

↙ u−ti
ti+1−ti

Ni,1
u−ti

ti+2−ti
Ni,2

↙ ↖ ti+2−u
ti+2−ti+1

Ni+1,1

Ni,3

↖ ↙ u−ti+1
ti+2−ti+1

Ni+1,1
ti+3−u

ti+3−ti+1
Ni+1,2

↖ ti+3−u
ti+3−ti+2

Ni+2,1

“book” — 2005/9/30 — 15:44 — page 758 — #770✐
✐

✐
✐

✐
✐

✐
✐

758 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

Recall that only Ni,1 is nonzero for u = ti. From this we see that Ni,3 is always zero. Now let us look at
Ni−1,3

↙ u−ti−1

ti−ti−1
Ni−1,1

u−ti−1
ti+1−ti−1

Ni−1,2

↙ ↖ ti+1−u
ti+1−ti

Ni,1

Ni−1,3

↖ ↙ u−ti
ti+1−ti

Ni,1
ti+2−u
ti+2−ti

Ni,2

↖ ti+2−u
ti+2−ti+1

Ni+1,1

Setting u = ti, we see that

Ni−1,3 =
ti − ti−1

ti+1 − ti−1
≥ 0. (24.153)

Finally, we only have to evaluate Ni−2,3

↙ u−ti−2

ti−1−ti−2
Ni−2,1

u−ti−2
ti−ti−2

Ni−2,2

↙ ↖ ti−u
ti−ti−1

Ni−1,1

Ni−2,3

↖ ↙ u−ti−1
ti−ti−1

Ni−1,1
ti+1−u

ti+1−ti−1
Ni−1,2

↖ ti+1−u
ti+1−ti

Ni,1

Again we have u = ti, and from this we conclude that

Ni−2,3 =
ti+1 − ti

ti+1 − ti−1
≥ 0. (24.154)

Substituting the basis functions we just found into our equation for the first-order derivative, we obtain

C ′(ti) =
3

ti+1 − ti−1

(
ti+1 − ti

ti+1 − ti−2
(P i−2 − P i−3) +

ti − ti−1

ti+2 − ti−1
(P i−1 − P i−2)

)
. (24.155)

If we wanted to make C ′(ti) equal to zero how could we then go about this? From our equation, we can
by straightforward inspection derive the following complete list of conditions, which will make C ′(ti)
equal to zero,

• P i−1 = P i−2 = P i−3,

• P i−1 = P i−2 and ti+1 = ti,

• P i−2 = P i−3 and ti = ti−1,

“book” — 2005/9/30 — 15:44 — page 759 — #771✐
✐

✐
✐

✐
✐

✐
✐

24.6 PHYSICS-BASED ANIMATION 759

• ti+1 = ti = ti−1,

• The final condition is a bit more difficult to derive

0 =
ti+1 − ti

ti+1 − ti−2
(P i−2 − P i−3) +

ti − ti−1

ti+2 − ti−1
(P i−1 − P i−2) . (24.156)

From which we get

−(ti+1 − ti) (ti+2 − ti−1)

(ti+1 − ti−2) (ti − ti−1)
(P i−2 − P i−3) = (P i−1 − P i−2) . (24.157)

This tells us that the three succeeding control points P i−3, P i−2, and P i−1 all have to lie on the
same line and the magnitude of (P i−2 − P i−3) must be a scalar multiple of the magnitude of
(P i−1 − P i−2).

With all this theory at our disposal we surely know how to avoid that C ′(ti) ever becomes zero for any
knot value. C ′(ti) is always nonzero for any knot value ti if the following three criteria is fulfilled.

1. No knot value has multiplicity greater than one.

2. All control points are unique.

3. We never have three (or more) succeeding control points lying on the same line.

Note that if we put this theory to practical use then it is slightly more restrictive than it needs to be; that
is, it does exclude some splines having nonzero first-order derivatives.

24.6.2 First-Order Derivatives between Knot Values
By now we have complete knowledge about how we can control C ′(u) at any knot value, ti, but what
happens between the knot values? That is, how do we ensure that

C′(u) ̸= 0 (24.158)

for an u-value in between two knot values? That is,

ti < u < ti+1. (24.159)

Let us start writing up the equation for C ′(u) again

C ′(ti) =
3Ni−2,3

ti+1 − ti−2
(P i−2 − P i−3)

+
3Ni−1,3

ti+2 − ti−1
(P i−1 −P i−2)

+
3Ni,3

ti+3 − ti
(P i − P i−1) . (24.160)

“book” — 2005/9/30 — 15:44 — page 760 — #772✐
✐

✐
✐

✐
✐

✐
✐

760 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

And like previously, we will now evaluate the basis functions.

Ni−2,3 =
(ti+1 − u)2

(ti+1 − ti) (ti+1 − ti−1)
, (24.161a)

Ni−1,3 =
(ti+1 − u)

(ti+1 − ti)

(u− ti−1)

(ti+1 − ti−1)
+

(u− ti)

(ti+1 − ti)

(ti+2 − u)

(ti+2 − ti)
, (24.161b)

Ni,3 =
(u− ti)

2

(ti+1 − ti) (ti+2 − ti)
. (24.161c)

From our knowledge of the knot vector

ti−1 < ti < u < ti+1 < ti+2. (24.162)

We can conclude that Ni,3, Ni−1,3, and Ni−2,3 are always positive and never zero. So our equation for the
first-order derivative reduces to the equation

C ′(ti) = a (P i−2 − P i−3)

+ b (P i−1 − P i−2)

+ c (P i − P i−1) (24.163)

where

a =
3 (ti+1 − u)2

(ti+1 − ti−2) (ti+1 − ti) (ti+1 − ti−1)
> 0, (24.164a)

b =
3

(ti+2 − ti−1)

(
(ti+1 − u) (u− ti−1)

(ti+1 − ti) (ti+1 − ti−1)
+

(u− ti) (ti+2 − u)

(ti+1 − ti) (ti+2 − ti)

)
> 0, (24.164b)

c =
3 (u− ti)

2

(ti+3 − ti) (ti+1 − ti) (ti+2 − ti)
> 0. (24.164c)

All we have left to do is to solve the linear system

a∆i−2 + b∆i−1 + c∆i = 0, (24.165)

where ∆i = P i − P i−1 and since we already have decided that none of the control points coincide we
know that all ∆i are nonzero. In other words, we can only find a solution if the ∆is are linear dependent.
In three dimensions and higher it is quite easy to come up with a condition, which always ensures that
C′(u) is nonzero. Simply make sure that no four succeeding control points lie in the same plane. However,
in two or one dimensions it is unavoidable to have linear dependent ∆s, and the problem still persists in
3D space (or higher) if one wants the spline (or a subpart of it) to lie in a plane. So let us try to handle the
linear dependence.

“book” — 2005/9/30 — 15:44 — page 761 — #773✐
✐

✐
✐

✐
✐

✐
✐

24.6 PHYSICS-BASED ANIMATION 761

Two Linear Dependent ∆s Recall that each a, b, and c is a function of u; actually they are all second-
order polynomials. So assuming we have two linear independent ∆s at our disposal, then we have three
possibilities.

s∆i + t∆i−1 = ∆i−2, (24.166a)
v∆i−2 + w∆i = ∆i−1, (24.166b)

x∆i−1 + y∆i−2 = ∆i, (24.166c)

for some nonzero scalar values s, t, v, w, x, and y. Now let us look closely at the first possibility.

a(u) (s∆i + t∆i−1)︸ ︷︷ ︸
∆i−2

+b(u)∆i−1 + c(u)∆i = 0, (24.167a)

⇓
(a(u)s + c(u))∆i + (a(u)t + b(u))∆i−1 = 0. (24.167b)

Since ∆i and ∆i−1 are linear independent and different from zero, this can only occur if

a(u)s + c(u) = 0, (24.168a)
a(u)t + b(u) = 0. (24.168b)

Similarly, the other two possibilities give rise to

b(u)v + a(u) = 0, (24.169a)
b(u)w + c(u) = 0, (24.169b)

and

c(u)x + b(u) = 0, (24.170a)
c(u)y + a(u) = 0. (24.170b)

In other words, our problem has been reduced to determine if two parabola intersect and if they do then to
determine the u-values where they intersect.

Three Linear Dependent ∆’s Following our derivation from the previous section, we have

a(u)x∆i + b(u)y∆i + c(u)z∆i = 0 (24.171)

for some nonzero scalar values x, y, and z (all nonzero). All this boils down to a single equation.

a(u)x + b(u)y + c(u)z = 0. (24.172)

By now we are tempted to repeat our earlier idea and look at the linear dependency of the three polynomials
a(u), b(u), and c(u). If they all are linear independent then no solutions exist and we are guaranteed that

“book” — 2005/9/30 — 15:44 — page 762 — #774✐
✐

✐
✐

✐
✐

✐
✐

762 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

C′(u) is always nonzero. If, on the other hand, we have some polynomials that are linear dependent, then
we are once again left with determining if and where two parabola intersect. To see this, imagine we have

a(u) = vb(u) + wc(u), (24.173)

then (24.172) becomes

a(u)x + b(u)y + c(u)z = 0, (24.174a)
⇓

(vb(u) + wc(u))x + b(u)y + c(u)z = 0, (24.174b)
⇓

(vx + y)b(u) + (wx + z)c(u) = 0, (24.174c)
⇓

(vx + y)

(wx + z)
b(u) + c(u) = 0 (24.174d)

just like we have seen previously.
We can conclude that we can only have C ′(u) = 0 between ti and ti+1 when two second-order

polynomials in u have an intersection in the interval [ti..ti+1]. In other words, the first derivative can only
vanish at isolated values of u, that is, C ′(u) = 0 between knot values can only occur at cusps.

24.7 The de Boor Algorithm
In this section, we will state the de Boor algorithm and prove it.
Theorem 24.7 (The de Boor algorithm)
The de Boor algorithm can be stated as follows:

C(u) =
n+j∑

i=0

Ni,k−jP
j
i for 0 ≤ j ≤ k − 1, (24.175)

where
P j

i = (1− ai,j)P
j−1
i−1 + ai,jP

j−1
i for j > 0, (24.176)

and
ai,j =

t− ti
ti+k−j − ti

, and P 0
i = P i. (24.177)

The points P j
i are called the de Boor points.

Proof of Theorem 24.7:
Now we will prove the de Boor algorithm. First, let us write up the definition of a nonuniform B-spline.

C(u) =
n∑

i=0

Ni,kP i. (24.178)

“book” — 2005/9/30 — 15:44 — page 763 — #775✐
✐

✐
✐

✐
✐

✐
✐

24.7 PHYSICS-BASED ANIMATION 763

If we now apply de Cox’s definition for Ni,k then we get

C(u) =
n∑

i=0

u− ti
ti+k−1 − ti

Ni,k−1P i +
n∑

i=0

ti+k − u

ti+k − ti+1
Ni+1,k−1P i. (24.179)

This looks a bit nasty, but by applying a little mathematical trick of shifting the index of the second term
by i = i− 1, we get

C(u) =
n∑

i=0

u− ti
ti+k−1 − ti

Ni,k−1P i +
n+1∑

i=1

ti+k−1 − u

ti+k−1 − ti
Ni,k−1P i−1. (24.180)

Finally, if we define P−1 = 0 and P n+1 = 0, then we are allowed to rewrite the two summations into a
single summation

C(u) =
n+1∑

i=0

P i (u− ti) + P i−1 (ti+k−1 − u)

ti+k−1 − ti
Ni,k−1. (24.181)

Again, we apply a little mathematical trick of adding and subtracting ti from the second term in the
denominator. That is,

C(u) =
n+1∑

i=0

P i (u− ti) + P i−1 (ti+k−1 − ti + ti − u)

ti+k−1 − ti
Ni,k−1

=
n+1∑

i=0

P i (u− ti) + P i−1 (ti+k−1 − ti − (u− ti))

ti+k−1 − ti
Ni,k−1

=
n+1∑

i=0

(
P iα

1
i + P i−1

(
1− α1

i

))
Ni,k−1, (24.182)

where α1
i is defined as in the definition of the de Boor algorithm. The final equation is derived by intro-

ducing the notation
P 1

i =
(
1− α1

i

)
P i−1 + α1

i P i. (24.183)

So we get

C(u) =
n+1∑

i=0

P 1
i Ni,k−1. (24.184)

From all this we can conclude that we have proven the de Boor algorithm in the case where j = 1. It is
not hard to see that if we apply the same index shifting and definitions recursively we will end up with the
de Boor algorithm in the general j’th case. !

“book” — 2005/9/30 — 15:44 — page 764 — #776✐
✐

✐
✐

✐
✐

✐
✐

764 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

24.8 Repeated Knot Insertion

If our spline, C(U), does not have any sequences of identical control points or knot values, then the local
Bezier segment Bi(u) corresponding to the segment ti to ti+1 will have geometry vectors, G0, G1, G2

and G3, which are unique and distinct. This postulate follows rather easily from direct computation.
Let us assume that we have a multiplicity of k = 4 for all knot values to the left of tr and that all knot

values to the right of tr and tr itself have a multiplicity of 1. Now imagine we have

tr ≤ t∗ < tr+1. (24.185)

This means that for a cubic spline (i.e., k = 4) we have Nr−3,4, . . . ,Nr,4 ̸= 0. From this we also know
that it is the control points P r−3, P r−2, P r−1, and P r, which have to be recomputed in the new spline.
The new de Boor points are generated as in the table below

P 0
r−3

↘
(1− ar−2)

↘
P 0

r−2 → ar−2 → P 1
r−2

↘
(1− ar−1)

↘
P 0

r−1 → ar−1 → P 1
r−1

↘
(1− ar)

↘
P 0

r → ar → P 1
r

where

ar−2 =
(tr − tr−2)

(tr+1 − tr−2)
> 0, (24.186a)

ar−1 =
(tr − tr−1)

(tr+2 − tr−1)
> 0, (24.186b)

ar =
(tr − tr)

(tr+3 − tr)
= 0. (24.186c)

Now we can construct the new control points P̂

P 0 P 1 P 2 . . . P r−3 P 1
r−2 P 1

r−1 P 1
r P r P r+1 . . . P n

P 0 P 1 P 2 . . . P r−3 P 1
r−2 P 1

r−1 P r−1 P r P r+1 . . . P n

P̂ 0 P̂ 1 P̂ 2 . . . P̂ r−3 P̂ r−2 P̂ r−1 P̂ r P̂ r+1 P̂ r+2 . . . P̂ n+1

“book” — 2005/9/30 — 15:44 — page 765 — #777✐
✐

✐
✐

✐
✐

✐
✐

24.8 PHYSICS-BASED ANIMATION 765

and the new knot vector T̂ .

t0 t1 . . . tr t∗ tr+1 . . . tn+k

t0 t1 . . . tr tr tr+1 . . . tn+k

t̂0 t̂1 . . . t̂r t̂r+1 t̂r+2 . . . t̂n+k+1

We now have multiplicity of 2 for the knot value tr. Let’s try to insert t∗ = tr once more. This time we
will discover that

t̂r+1 ≤ t∗ < t̂r+2, (24.187)

from which we conclude that it is the control points P̂ r−2, P̂ r−1, P̂ r, and P̂ r+1, which have to be
recomputed in the new spline.

P̂
0
r−2

↘
(1− ar−1)

↘
P̂

0
r−1 → ar−1 → P̂

1
r−1

↘
(1− ar)

↘
P̂

0
r → ar → P̂

1
r

↘
(1− ar+1)

↘
P̂

0
r+1 → ar+1 → P̂

1
r+1

where

ar−1 =
(tr − t̂r−1)

(t̂r+2 − t̂r−1)
=

tr − tr−1

tr+1 − tr−1
> 0, (24.188a)

ar =
(tr − t̂r)

(t̂r+3 − t̂r)
=

tr − tr
tr+2 − tr

= 0, (24.188b)

ar+1 =
(tr − t̂r+1)

(t̂r+4 − t̂r+1)
=

tr − tr
tr+2 − tr

= 0. (24.188c)

With this information we can write up the new control points P̃

“book” — 2005/9/30 — 15:44 — page 766 — #778✐
✐

✐
✐

✐
✐

✐
✐

766 CHAPTER 24. OPEN NONUNIFORM B-SPLINE THEORY

P̂ 0 . . . P̂ r−3 P̂ r−2 P̂
1
r−1 P̂

1
r P̂

1
r+1 P̂ r+1 . . . P̂ n+1

P 0 . . . P r−3 P 1
r−2 P̂

1
r−1 P̂

0
r−1 P̂

0
r P r . . . P n

P 0 . . . P r−3 P 1
r−2 P̂

1
r−1 P 1

r−1 P r−1 P r . . . P n

P̃ 0 . . . P̃ r−3 P̃ r−2 P̃ r−1 P̃ r P̃ r+1 P̃ r+2 . . . P̃ n+2

and the new knot vector T̃

t̂0 t̂1 . . . t̂r t̂r+1 t∗ t̂r+2 . . . t̂n+k+1

t0 t1 . . . tr tr tr tr+1 . . . tn+k

t̃0 t̃1 . . . t̃r t̃r+1 t̃r+2 t̃r+3 . . . t̃n+k+2

We now have a multiplicity of 3 for the knot value tr. Let’s see what happens upon the last knot insertion.
First, we see that we have.

t̃r+2 ≤ t∗ < t̃r+3, (24.189)

from which we know that we have to recompute the following control points.

P̃
0
r−1

↘
(1− ar)

↘
P̃

0
r → ar → P̃

1
r

↘
(1− ar+1)

↘
P̃

0
r+1 → ar+1 → P̃

1
r+1

↘
(1− ar+2)

↘
P̃

0
r+2 → ar+2 → P̃

1
r+2

where

ar =
(tr − t̃r)

(t̃r+3 − t̃r)
=

tr − tr
tr+1 − tr

= 0, (24.190a)

ar+1 =
(tr − t̃r+1)

(t̃r+4 − t̃r+1)
=

tr − tr
tr+2 − tr

= 0, (24.190b)

ar+2 =
(tr − t̃r+2)

(t̃r+5 − t̃r+2)
=

tr − tr
tr+3 − tr

= 0. (24.190c)

Finally, we write up the new control points ρ.

“book” — 2005/9/30 — 15:44 — page 767 — #779✐
✐

✐
✐

✐
✐

✐
✐

24.8 PHYSICS-BASED ANIMATION 767

P̃ 0 . . . P̃ r−3 P̃ r−2 P̃ r−1 P̃
1
r P̃

1
r+1 P̃

1
r+2 P̃ r+2 . . . P̃ n+2

P 0 . . . P r−3 P 1
r−2 P̂

1
r−1 P̃ r−1 P̃ r P̃ r+1 P r . . . P n

P 0 . . . P r−3 P 1
r−2 P̂

1
r−1 P̂

1
r−1 P 1

r−1 P r−1 P r . . . P n

ρ0 . . . ρr−3 ρr−2 ρr−1 ρr ρr+1 ρr+2 ρr+3 . . . ρn+3

And the new knot vector τ .

t̃0 . . . t̃r t̃r+1 t̃r+2 t∗ t̃r+3 . . . t̃n+k+2

t0 . . . tr tr tr tr tr+1 . . . tn+k

τ0 . . . τr τr+1 τr+2 τr+3 τr+4 . . . τn+k+3

Now let us examine our results a little closer. We have now discovered that only three new control points
are actually computed: P 1

r−2, P̂
1
r−1, and P 1

r−1, which are all distinct.
Notice that P̂

1
r−1 = P 2

r−1. This means the new control points actually can be computed directly by
using the de Boor algorithm (see Chapter 24.7) on P r−3, P r−2, and P r−1.

P 0
r−3

↘
P 0

r−2 → P 1
r−2

↘ ↘
P 0

r−1 → P 1
r−1 → P̂

2
r−1

“book” — 2005/9/30 — 15:44 — page 768 — #780✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 769 — #781✐
✐

✐
✐

✐
✐

✐
✐

25

Software: OpenTissue

OpenTissue is an open-source library for physics-based animation developed mainly by the Computer
Graphics Group at the Department of Computer Science, University of Copenhagen.

25.1 Background History of OpenTissue
The history of OpenTissue goes back to November 2001, where a small group of people: K. Erleben, H.
Dohlmann, J. Sporring, and K. Henriksen started to collect a toolbox of code-pieces of their own work in
order to ease project collaboration and teaching efforts. We, as well as students, often reinvent the wheel
during project work, limiting the time set aside for in-depth understanding and experimenting with specific
simulation methods. Around August 2003, OpenTissue had proven to be a valuable tool for students and
researchers at the Department, and it was released under the terms of the GNU Lesser General Public
License. Today, OpenTissue works as a foundation for research and student projects in physics-based
animation at the Department of Computer Science, University of Copenhagen and it is used as a research
platform at several universities.

Due to the experimental nature of OpenTissue, it contains a wide variety of algorithms and data struc-
tures. Some code-pieces are merely wrappers of third-party software ensuring that the programmers can
use these tools within the common framework of OpenTissue. Other code-pieces consist of tools extracted
from our own research projects in soft tissue simulation and medical image data acquisition. An increasing
number of students are beginning to contribute their own code and are helping greatly in maintaining and
improving OpenTissue. The list of tools in OpenTissue is constantly growing, but a summary of methods
and data structures at the time of writing includes:

• Rectilinear 3D Grid Data Structures

• Twofold Mesh Data Structure

• Tetra4 Mesh Data Structure

• Chan-Vese Segmentation Tools

• Signed Distance Map Computations

• OpenGL-Based Voxelizer

• Quasi Static Stress-Strain Simulation (FEM)

• Relaxation-Based Particle System Simulation (support for surface meshes, solids, cloth meshes,
pressure soft models, self-intersection, and much more)

769

“book” — 2005/9/30 — 15:44 — page 770 — #782✐
✐

✐
✐

✐
✐

✐
✐

770 CHAPTER 25. SOFTWARE: OPENTISSUE

• CJK, SAT, VClip and other algorithms for Collision Detection

• Mesh Plane Clipper and Patcher

• QHull Convex Hull Wrapper

• Script files for Maya and 3DMax for generating Mesh data files

• Generic Bounding Volume Hierarchies with Custom Bottom-Up Construction, Single and Tandem
Traversals, etc.

• Multibody Dynamics Velocity-Based Complementarity Formulation

• First-Order World Rigid Body Simulation

• Volume Visualization Using 3D Texture-Based View Aligned Slabbing with 12-bit Preintegration

• and much more

25.2 Obtaining OpenTissue
The newest version of OpenTissue, demonstrations, and download and installation instructions, etc. can
be found at:

www.opentissue.org

The following is the download and installation procedure as of the time of writing:
The development of the OpenTissue software is revisioned using Subversion (SVN). To download any

version of OpenTissue, you must have Subversion installed on your system. Subversion can be obtained
from, subversion.tigris.org. Gentoo Linux users may write, emerge -av subversion, as
root. New users will most likely want to read the Subversion book at svnbook.org. There are also
gui-interfaces, TortoiseSVN, tortoisesvn.tigris, for Windows R⃝ and RapidSVN, rapidsvn.
tigris.org, for Linux.

For anonymous checkout through http use:

svn co http://image.diku.dk/svn/OpenTissue/trunk OpenTissue

You may also browse with a Web browser in the repository using the url: image.diku.dk/svn/
OpenTissue. When browsing, you will notice three top-level directories. Normally, you will be inter-
ested in the most resent version in trunk/.

We have collected a small subset of DataTissue, containing data for the demos only. For anonymous
checkout of the small subset through http use:

svn co http://image.diku.dk/svn/DataTissue/trunk/demos

You may also browse with a Web browser in the repository using the url: image.diku.dk/svn/
OpenTissue. See the different READMEs in OpenTissue for details about data demo dependencies.

The full DataTissue (more than 1.6 GB) is available from

“book” — 2005/9/30 — 15:44 — page 771 — #783✐
✐

✐
✐

✐
✐

✐
✐

25.3 PHYSICS-BASED ANIMATION 771

svn co http://image.diku.dk/svn/DataTissue/trunk/

To set up the OpenTissue for development, make sure you have the prerequisites in place before trying
to compile any of the code. These consist of:

1. Fetching OpenTissue/trunk.

2. Fetching DataTissue/trunk/demos.

3. Fetching boost_1_32_0 from www.boost.org.

4. Fetching bindings from www.opentissue.org.

5. Set the environment variables OPENTISSUE, DATATISSUE, and BOOST.

6. On Linux, have a link from /usr/local/include/boost to boost_1_32_0/boost.

See the different READMEs in OpenTissue for details.

25.3 Using OpenTissue
OpenTissue is mainly aimed for the Windows platform, although a high-priority in its design has always
been to use only strict standard C++ constructs. In practice, this means that all code is required also to be
compilable under Linux with a recent g++ version.

OpenTissue is installed simply by copying it onto a selected location on the hard drive of your own
choice. Then an environment variable must be defined named OPENTISSUE that points to the topmost
OpenTissue folder of your chosen location.

25.3.1 Developer Information
The source code of OpenTissue is located in the folder:

$(OPENTISSUE)/OpenTissue

Microsoft Visual Studio C++ .NET 2003 R⃝ (MSVC) solution file and project file are located at:

$(OPENTISSUE)/

Demo applications are in:

$(OPENTISSUE)/demos/opengl/

Script files for Maya R⃝ and 3DMax R⃝ are located in:

$(OPENTISSUE)/scripts/

“book” — 2005/9/30 — 15:44 — page 772 — #784✐
✐

✐
✐

✐
✐

✐
✐

772 CHAPTER 25. SOFTWARE: OPENTISSUE

Various bat-files and MSVC project files to help setting up external dependencies have been built into:

$(OPENTISSUE)/dependencies

When building OpenTissue with MSVC on Windows 2000 R⃝ or Windows XP R⃝ the following folder struc-
ture will be generated:

$(OpenTissue)/Release
$(OpenTissue)/Debug
$(OpenTissue)/lib/windows

The first two folders are used by the compiler to hold object files and temporaries, while the last folder
contains the actual lib-file. Currently, the default settings of OpenTissue are to only build a lib-file for
static-linking.

All demo applications have been set up to statically link with OpenTissue. Their binaries and tempo-
raries are generated in local Debug and Release folders in every demo application.

25.3.1.1 File Structure of Data Structures

The subfolder structure is rather flat and not very deep. Each top-level subfolder usually contains a single
data structure, and the next level of subfolders contains I/O-routines and algorithms for the data structure:

$(OPENTISSUE)/OpenTissue/bitmap 2D Bitmap data structure
$(OPENTISSUE)/OpenTissue/bvh Generic Bounding volume hierarchy data structure
$(OPENTISSUE)/OpenTissue/geometry Geometric Primitives
$(OPENTISSUE)/OpenTissue/math Vector, Matrices, Quaternions, CoordSys
$(OPENTISSUE)/OpenTissue/map 3D rectilinear grid data structure
$(OPENTISSUE)/OpenTissue/mesh Twofold mesh data structure
$(OPENTISSUE)/OpenTissue/spline Nonuniform B-Splines
$(OPENTISSUE)/OpenTissue/tetra4 Tetrahedral Mesh data structure

25.3.1.2 File Structure of Utilities

OpenTissue also contains various utilities for different tasks, such as visualization, interaction, and wrap-
pers for third-party software. Each utility is contained in a subfolder of its own:

$(OPENTISSUE)/OpenTissue/mc Isosurface extractor
$(OPENTISSUE)/OpenTissue/RenderTexture RenderTexture Wrapper
$(OPENTISSUE)/OpenTissue/trackball Virtual Trackball
$(OPENTISSUE)/OpenTissue/utility Various utilities
$(OPENTISSUE)/OpenTissue/xml PUG XML wrapper
$(OPENTISSUE)/OpenTissue/volvis Direct Volume Visualization

“book” — 2005/9/30 — 15:44 — page 773 — #785✐
✐

✐
✐

✐
✐

✐
✐

25.3 PHYSICS-BASED ANIMATION 773

25.3.1.3 File Structure of Simulation Methods

All simulation methods using dynamics have been collected in a single top-level subfolder:

$(OPENTISSUE)/OpenTissue/dynamics

Algorithms based on kinematics are intended to be placed in another single top-level subfolder named:

$(OPENTISSUE)/OpenTissue/kinematics

Beneath the simulation method subfolder, another folder structure is used, indicating a classification of
the simulation method. For instance, particle systems are placed in a particle system subfolder, multibody
dynamics in a multibody folder and so on:

$(OPENTISSUE)/OpenTissue/dynamics/cfd Computational Fluid Dynamics
$(OPENTISSUE)/OpenTissue/dynamics/multibody Multibody Dynamics
$(OPENTISSUE)/OpenTissue/dynamics/particleSystem Particle System
$(OPENTISSUE)/OpenTissue/dynamics/deformation/terzopoulos/ Elastic Deformable Models

25.3.2 Dependencies

OpenTissue has dependencies on a great many deal of third-party software. These third-party software
libraries are distributed as binaries with OpenTissue or incorporated directly in the source code of Open-
Tissue, except for Boost, which you must download and install yourself. The list of third-party software
includes:

• Boost www.boost.org

• RenderTexture www.markmark.net/misc/rendertexture.html

• Atlas math-atlas.sourceforge.net

• PUG XML www.codeproject.com/soap/pugxml.asp

• Matlab R⃝www.mathworks.com/products/matlab

• QHull www.qhull.org

• GLEW glew.sourceforge.net

• DeVIL openil.sourceforge.net

• Cg developer.nvidia.com

• MovieMaker R⃝(from NVSDK R⃝) developer.nvidia.com

• PATH from CPNET www.cs.wisc.edu/cpnet/cpnetsoftware

“book” — 2005/9/30 — 15:44 — page 774 — #786✐
✐

✐
✐

✐
✐

✐
✐

774 CHAPTER 25. SOFTWARE: OPENTISSUE

As of this writing the OpenTissue-specific code parts contain the following dependencies on external
libraries:

OpenTissue/map/util/cscgl → RenderTexture, openGL
OpenTissue/map/util/voxelizer → RenderTexture, openGL
OpenTissue/map/CgUtil/* → RenderTexture, Cg
OpenTissue/math/algebra/* → Atlas
OpenTissue/math/lcp/dantzigBruteUblasAtlasAdapter → Atlas
OpenTissue/math/lcp/path.* → PATH
OpenTissue/math/lcp/m2cLemke → Matlab R⃝

OpenTissue/mesh/util/ConvexHull → QHull
OpenTissue/tetra4/util/qsss → Atlas

If you do not need some or all of these parts of OpenTissue, you should just remove them from your
project file.

25.3.3 Sample Data
In our DEMO applications we use an environment variable, DATATISSUE. This should point to the folder
location, where the demo application will look for data files. Sample data can be downloaded from the
OpenTissue Web page:

• www.opentissue.org

Or freely available volume data sets (CT-scans and more) can be downloaded from the Web pages:

• www.osc.edu/~jbryan/VolSuite/downloads.shtml

• openqvis.sourceforge.net/index.html

25.3.4 Guidelines for Developing in OpenTissue
For those with write access to the OpenTissue Subversion (SVN) Repository, we kindly ask to follow some
simple guidelines:

• Every file should at least contain the Lesser GPL license header.

• All headers should have the pragma once lines added immediately after the license header.

• The included guarding should reflect the file structure and file name of the header file, as an example:
OpenTissue/map/map.h uses OPENTISSUE_MAP_MAP_H.

• Everything should be encapsulated into the OpenTissue namespace.

• No two classes should have the same name, even if they are located in different folders.

• Please make your own local copy of project files and solution files so you do not overwrite the ones
in the repository with your specific settings. If you use Makefiles, then please do not pollute the
Makefiles in the repository, which will prevent others from building OpenTissue.

“book” — 2005/9/30 — 15:44 — page 775 — #787✐
✐

✐
✐

✐
✐

✐
✐

25.3 PHYSICS-BASED ANIMATION 775

• Please try to follow our naming conventions and usage of uppercase and lowercase letters.

• No data files should be added directly to OpenTissue.

• Please separate your data structure from algorithms and input/output routines. A good example of
this is the map part of OpenTissue. The actual map data structure is located in the folder

$(OPENTISSUE)/OpenTissue/map/

Various classes for reading and writing different map file formats are located in

$(OPENTISSUE)/OpenTissue/map/io

All algorithms working on the map data structure are located in

$(OPENTISSUE)/OpenTissue/map/util

• Please always document your code as well as possible. We use Doxygen style (www.doxygen.
org) throughout all our code. We stride toward documenting code on class level, method, and
member level as well. For methods this should include full description of all arguments and return
values. If part of an algorithm, the intended caller/callee relationship would be nice to have in the
long description of the method.

“book” — 2005/9/30 — 15:44 — page 776 — #788✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 777 — #789✐
✐

✐
✐

✐
✐

✐
✐

26

Notation, Units, and Physical Constants

With such a large and diverse field as physics-based animation, notation is doomed to be creatively and
inconsistently used. A good attempt at a unified notation is found in [Weisstein, 2005b, Weisstein, 2005a].
Below we summarize the notation used in this book.

The international system of units and the fundamental physical and chemical constants form a ba-
sis of the physics and chemistry as we know it. The following have been selected from [NIST, 2005,
Kaye et al., 1995] for convenience.

777

“book” — 2005/9/30 — 15:44 — page 778 — #790✐
✐

✐
✐

✐
✐

✐
✐

778 BIBLIOGRAPHY

C A set
Z, R, C The set of integers, the real line, and the complex plane
a, b, c, . . . ,α,β, γ A scalars or scalar field, e.g. a ∈ R or f ∈ R3 → R
|a| The absolute value of a

x =

⎡

⎢⎢⎢⎣

x1

x2
...

xn

⎤

⎥⎥⎥⎦
A vector or vector field e.g. x ∈ R3 or y : R3 → R3

∥x∥ , ∥A∥ A general norm

∥x∥
2

=
√

x · x =
√∑

i x2
i The Euclidean vector norm

|x| =
[
|x1| , |x2| , . . . , |xn|

]T The vector of absolute elements
x · y, x× y The dot and cross product between two vectors
ex,ey,ez The unit vectors defining a coordinate axes
A = {aij}, AT = {aji} A general matrix and its transpose
AB = {

∑
k aikbkj} The matrix product

A−1 The inverse of a matrix
Ai∗, A∗j The i’th row and j’th column of matrix A
A =

[
A∗1 | A∗2 | · · · | A∗n

]
Matrix concatenation

det A = |A| The determinant of matrix A
1 The identity matrix, having 1 on the diagonal and 0 elsewhere
a× = A A cross matrix, such that a× b = a×b = Ab
∂
∂x = ∂x The partial differential operator w.r.t. coordinate axis ex

ẋ = ∂x
∂t The time derivative of x

r, v = ṙ, a = r̈ Typically the position, velocity, and acceleration
da, dx, dA The differential of a scalar, vector, and matrix

∇ =

⎡

⎣
∂x

∂y

∂z

⎤

⎦ The gradient operator

∇x The gradient operator restricted to the elements of x
∇f The functional derivative
δL
δf The variational derivative
A = ∇ r The Jacobian matrix
div = ∇ · The divergence operator
curl = ∇× The curl or rotation operator

Table 26.1: Often-used notation

“book” — 2005/9/30 — 15:44 — page 779 — #791✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 779

Name Domain Implementation

Spatial Nabla ∇ = ∇[x,y,z]T =

⎡

⎣
∂x

∂y

∂z

⎤

⎦ (26.1)

Gradient
f : R3 → R
∇f : R3 → R3

∇ f =

⎡

⎣
fx

fy

fz

⎤

⎦ (26.2)

Jacobian
u = [u, v,w]T : R3 → R3

∇u : R3 → R3×3
∇u =

⎡

⎣
(∇u)T

(∇v)T

(∇w)T

⎤

⎦ =

⎡

⎣
ux uy uz

vx vy vz

wx wy wz

⎤

⎦ (26.3)

Divergence
u = [u, v,w]T : R3 → R3

div u : R3 → R
div u = ∇ · u = ux + vy + wz (26.4)

Rotation
u = [u, v,w]T : R3 → R3

curl u : R3 → R3
curl u = ∇× u =

⎡

⎣
wy − vz

uz − wx

vx − uy

⎤

⎦ (26.5)

Laplace
f : R3 → R

∆f : R3 → R
∆f = ∇2f = ∇ ·∇f (26.6a)

= fxx + fyy + fzz (26.6b)

Laplace
u = [u, v,w]T : R3 → R3

∆u : R3 → R3

∆u = ∇2u =
(
∇T (∇u)T

)T
(26.7a)

=

⎡

⎣
uxx + uyy + uzz

vxx + vyy + vzz

wxx + wyy + wzz

⎤

⎦ (26.7b)

Table 26.2: Common differential operators used on vector and scalar fields in three-dimensional space.

“book” — 2005/9/30 — 15:44 — page 780 — #792✐
✐

✐
✐

✐
✐

✐
✐

780 BIBLIOGRAPHY

English Case English Case English Case
Name Lower Upper Name Lower Upper Name Lower Upper
Alpha α A Iota ι I Rho ρ P
Beta β B Kappa κ K Sigma σ Σ
Gamma γ Γ Lambda λ Λ Tau τ T
Delta δ ∆ Mu µ M Upsilon υ Υ
Epsilon ϵ E Nu ν N Phi φ Φ
Zeta ζ Z Xi ξ Ξ Chi χ X
Eta η H Omicron o O Psi ψ Ψ
Theta θ Θ Pi π Π Omega ω Ω

Table 26.3: The Greek alphabet.

Unit Name Measures
m Meter Length
g Gram Mass
s Second Time
A Ampere Electrical Current
K Kelvin Temperature
mol Mole Molecules
cd Candela Luminous Intensity

Table 26.4: International System of Units (SI).

Prefix Exponential value Modifier
Giga 109 G
Mega 106 M
Kilo 103 k
Hecto 102 -
Deka 101 -
Base 100 -
Deci 10−1 d
Centi 10−2 c
Milli 10−3 m
Micro 10−6 µ
Nano 10−9 n

Table 26.5: Metric modifiers.

“book” — 2005/9/30 — 15:44 — page 781 — #793✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 781

Unit Name Measures
Hz = s−1 Hertz Frequency
N = m kg s−2 Newton Force
J = m2 kg s−2 Joule Energy
Pa = kg m−1 s−2 Pascal Pressure and stress

Table 26.6: Some derived units.

Symbol Description
G = 6.6742 10−11m3 kg−1 s−1 Newtonian constant of gravity
R = 8.314472J mol−1 K−1 Molar gas constant
c = 299792458m s−1 Speed of light in vacuum

Table 26.7: Some fundamental constants.

Density Shear viscosity Kinematic viscosity Young’s modulus Poisson’s ratio
Material ρ/(kg m−3) η/(Pa s) µ/(m2s−1) GPa -
Air 1.18 1.82 × 10−5 1.54 × 10−5 - -
Bone 200 - - 14 0.43
Cork 180 - - 0.032 0.25
Glass 2.5 × 103 1018–1021 1015–1018 65 0.23
Granite 260 - - 66 0.25
Honey 1.4 × 103 14 1× 10−2 - -
Ice 920 - - 9.1 0.28
Olive oil 0.9 × 103 6.7 × 10−2 7.4× 10−5 - -
Steel 780 - - 210 0.28
Water 1.00 × 103 1.00 × 10−3 1.00 × 10−6 - -
Blood 1.06 × 103 2.7 × 10−3 2.5× 10−6 - -

Table 26.8: Some physical properties.

Materials Static Frictions Kinematic Frictions
Steel on Steel 0.74 0.57
Rubber on Concrete 1.0 0.8
Glass on Glass 0.94 0.4
Ice on Ice 0.1 0.03

Table 26.9: Some friction coefficients.

“book” — 2005/9/30 — 15:44 — page 782 — #794✐
✐

✐
✐

✐
✐

✐
✐

“book” — 2005/9/30 — 15:44 — page 783 — #795✐
✐

✐
✐

✐
✐

✐
✐

Bibliography

[Aanæs et al., 2003] Aanæs, H. and Bærentzen, J. A. (2003). Pseudo–normals for signed distance com-
putation. In Proceedings of Vision, Modeling, and Visualization.

[Adams, 1995] Adams, R. A. (1995). Calculus: A Complete Course. Addison-Wesley Publishing Com-
pany, 3rd edition.

[Airy, 1845] Airy, G. B. (1845). Tides and waves. In Encyclopedia Metropolitan. London, England.

[Ames, 1969] Ames, W. F. (1969). Numerical Methods for Parital Differential Equations. Thomas Nelson
and Sons Ltd.

[Anitescu et al., 1997] Anitescu, M. and Potra, F. (1997). Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementary problems. Nonlinear Dynamics, 14:231–247.

[Anitescu et al., 2002] Anitescu, M. and Potra, F. (2002). A time-stepping method for stiff multibody
dynamics with contact and friction. International J. Numer. Methods Engineering, 55(7):753–784.

[Anitescu et al., 1996] Anitescu, M. and Potra, F. A. (1996). Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementary problems. Reports on Computational
Mathematics No 93/1996, Department of Mathematics, The University of Iowa.

[Armstrong et al., 1985] Armstrong, W. W. and Green, M. W. (1985). The dynamics of articulated rigid
bodies for purposes of animation. The Visual Computer, 1(4):231–240.

[Arnold, 1989] Arnold, V. I. (1989). Mathematical Method of Classical Mechanics. Springer-Verlag, 2nd
edition.

[Baciu et al., 2002] Baciu, G. and Wong, W. S.-K. (2002). Hardware-assisted self-collision for de-
formable surfaces. In Proceedings of the ACM symposium on Virtual Reality Software and Technology,
pages 129–136. ACM Press.

[Baraff, 1989] Baraff, D. (1989). Analytical methods for dynamic simulation of non-penetrating rigid
bodies. Computer Graphics, 23(3):223–232.

[Baraff, 1991] Baraff, D. (1991). Coping with friction for non-penetrating rigid body simulation. Com-
puter Graphics, 25(4):31–40.

[Baraff, 1994] Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies. Com-
puter Graphics, 28(Annual Conference Series):23–34.

783

“book” — 2005/9/30 — 15:44 — page 784 — #796✐
✐

✐
✐

✐
✐

✐
✐

784 BIBLIOGRAPHY

[Baraff, 1995] Baraff, D. (1995). Interactive simulation of solid rigid bodies. IEEE Computer Graphics
and Applications, 15(3):63–75.

[Baraff, 1997a] Baraff, D. (1997a). Physical based modeling: Differential equation basics. SIGGRAPH
2001 course notes, Pixar Animation Studios. www-2.cs.cmu.edu/~baraff/sigcourse/.

[Baraff, 1997b] Baraff, D. (1997b). Physical based modeling: Implicit methods. SIGGRAPH 2001
course notes, Pixar Animation Studios. www-2.cs.cmu.edu/~baraff/sigcourse/.

[Baraff, 2001] Baraff, D. (2001). Physical based modeling: Rigid body simulation. SIGGRAPH 2001
course notes, Pixar Animation Studios. www-2.cs.cmu.edu/~baraff/sigcourse/.

[Baraff et al., 1998] Baraff, D. and Witkin, A. (1998). Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer Graphics and Interactive Techniques, pages 43–54. ACM
Press.

[Baraff et al., 2003a] Baraff, D., Witkin, A., Anderson, J., and Kass, M. (2003a). Physically based mod-
eling. SIGGRAPH course notes.

[Baraff et al., 2003b] Baraff, D., Witkin, A., and Kass, M. (2003b). Untangling cloth. ACM Transactions
on Graphics, 22(3):862–870.

[Barsky et al., 1991] Barsky, B., Badler, N., and Zeltzer, D., editors (1991). Making Them Move: Me-
chanics Control and Animation of Articulated Figures. The Morgan Kaufmann Series in Computer
Graphics and Geometric Modeling. Morgan Kaufman Publishers.

[Barzel et al., 1988] Barzel, R. and Barr, A. (1988). A modeling system based on dynamic constraints.
In Computer Graphics, volume 22, pages 179–187.

[Barzel et al., 1996] Barzel, R., Hughes, J. F., and Wood, D. N. (1996). Plausible motion simulation for
computer graphics animation. In Proceedings of the Eurographics Workshop, Computer Animation and
Simulation, pages 183–197.

[Berg et al., 1997] Berg, M. d., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (1997). Computa-
tional Geometry, Algorithms and Applications. Springer-Verlag.

[Bergen, 1997] Bergen, G. v. d. (1997). Efficient collision detection of complex deformable models using
AABB trees. Journal of Graphics Tools, 2(4):1–13.

[Bergen, 1999] Bergen, G. v. d. (1999). A fast and robust GJK implementation for collision detection of
convex objects. Journal of Graphics Tools: JGT, 4(2):7–25.

[Bergen, 2001] Bergen, G. v. d. (2001). Proximity queries and penetration depth computation on 3D
game objects. Game Developers Conference.

[Bergen, 2003a] Bergen, G. v. d., editor (2003a). Collision Detection in Interactive 3D Environments.
Interactive 3D Technology Series. Morgan Kaufmann.

“book” — 2005/9/30 — 15:44 — page 785 — #797✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 785

[Bergen, 2003b] Bergen, G. v. d. (2003b). Collision Detection in Interactive 3D Environments. Series in
Interactive 3D Technology. Morgan Kaufmann.

[Boas, 1983] Boas, M. L., editor (1983). Mathematical Methods in the Physical Sciences. John Wiley &
Sons, 2nd edition.

[Boehm, 1980] Boehm, W. (1980). Inserting new knots into B-spline curves. Computer Aided Design,
12:199–201.

[Boldt et al., 2004] Boldt, N. and Meyer, J. (2004). Self-intersections with CULLIDE. Available as DIKU
Project No. 04-02-19.

[Boor, 1978] Boor, C. d. (1978). A Practical Guide to Splines, volume 27 of Applied Mathematical
Sciences. Springer-Verlag.

[Bouma et al., 1993] Bouma, W. J. and Vaněček, Jr., G. (1993). Modeling contacts in a physically based
simulation. In SMA ’93: Proceedings of the Second Symposium on Solid Modeling and Applications,
pages 409–418.

[Bradshaw et al., 2004] Bradshaw, G. and O’Sullivan, C. (2004). Adaptive medial-axis approxima-
tion for sphere-tree construction. ACM Transactions on Graphics, 23(1). isg.cs.tcd.ie/
spheretree/.

[Bridson et al., 2002] Bridson, R., Fedkiw, R., and Anderson, J. (2002). Robust treatment of collisions,
contact and friction for cloth animation. Proceedings of ACM SIGGRAPH, 21(3):594–603.

[Bridson et al., 2003] Bridson, R., Marino, S., and Fedkiw, R. (2003). Simulation of clothing with folds
and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 28–36. Eurographics Association.

[Bronshtein et al., 1997] Bronshtein, I. and Semendyayev, K. (1997). Handbook of Mathematics.
Springer-Verlag, 3rd edition.

[Burden et al., 1997] Burden, R. L. and Faires, J. D. (1997). Numerical Analysis. Brooks/Cole Publishing
Company, 6th edition.

[Butcher, 1963] Butcher, J. (1963). Coefficients for the study of Runge-Kutta integration processes. J.
Austral. Math. Soc., 3:185–201.

[Butcher, 2003] Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons, 2nd edition.

[Cameron, 1990] Cameron, S. (1990). Collision detection by four–dimensional intersectin testing. IEEE
Transaction on Robotics and Automation, 6(3):291–302.

[Cameron, 1997] Cameron, S. (1997). Enhancing GJK: computing minimum and penetration distances
between convex polyhedra. Int. Conf. Robotics & Automation.

“book” — 2005/9/30 — 15:44 — page 786 — #798✐
✐

✐
✐

✐
✐

✐
✐

786 BIBLIOGRAPHY

[Carlson et al., 2004] Carlson, M., Mucha, P. J., and Turk, G. (2004). Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Transactions on Graphics, 23(3):377–384.

[Chatterjee, 1999] Chatterjee, A. (1999). On the realism of complementarity conditions in rigid body
collisions. Nonlinear Dynamics, 20(2):159–168.

[Chatterjee et al., 1998] Chatterjee, A. and Ruina, A. (1998). A new algebraic rigid body collision law
based on impulse space considerations. Journal of Applied Mechanics. www.tam.cornell.edu/
Ruina.html.

[Chen et al., 1992] Chen, D. T. and Zeltzer, D. (1992). Pump it up: computer animation of a biome-
chanically based model of muscle using the finite element method. In Proceedings of the 19th annual
conference on Computer Graphics and Interactive Techniques, pages 89–98. ACM Press.

[Choi et al., 2005] Choi, M. G. and Ko, H.-S. (2005). Modal warping: Real-time simulation of large
rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics,
11(1):91–101.

[Christensen et al., 2004] Christensen, M. and Fleron, A. (2004). Integrity improvements in classically
deformable solids. In Olsen, S. I., editor, DSAGM 2004, pages 87–93, August.

[Collatz, 1986] Collatz, L. (1986). Differential Equations. John Wiley & Sons.

[Cook et al., 2002] Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2002). Concepts and
Applications of Finite Element Analysis. John Wiley & Sons. Inc., fourth edition.

[Cormen et al., 1994] Cormen, T. H., Leiserson, C. E., and Riverst, R. L. (1994). Introduction to Algo-
rithms. MIT press, 14 print edition.

[Cottle et al., 1992] Cottle, R., Pang, J.-S., and Stone, R. E. (1992). The Linear Complementarity Prob-
lem. Computer Science and Scientific Computing. Academic Press.

[Courant et al., 1928] Courant, R., Friedrichs, K., and Lewy, H. (1928). Ü die partiellen differenzengle-
ichungen der mathematischen physik. Math. Ann., 100(32).

[Craig, 1986] Craig, J. J. (1986). Introduction to Robotics, Mechanics and Controls. Addision-Wesley
Publishing Company, Inc., 2nd edition.

[Craik, 2004] Craik, A. D. D. (2004). The origins of water wave theory. Annual Review of Fluid Mechan-
ics, 36:1–28.

[Dam et al., 1998] Dam, E. B., Koch, M., and Lillholm, M. (1998). Quaternions, interplation, and ani-
mation. Technical Report DIKU 98/5, Department of Computer Science, University of Copenhagen.

[Denaro, 2003] Denaro, F. M. (2003). On the application of the helmholtz-hodge decomposition in pro-
jection methods for incompressible flows with general boundary conditions. International journal for
Numerical Methods in Fluids, 43:43–69.

“book” — 2005/9/30 — 15:44 — page 787 — #799✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 787

[Dingliana et al., 2000] Dingliana, J. and O’Sullivan, C. (2000). Graceful degradation of collision han-
dling in physically based animation. Computer Graphics Forum, 19(3).

[Eberly, 2003a] Eberly, D. (2003a). Derivative approximation by finite differences. Online Paper. www.
geometrictools.com.

[Eberly, 2005a] Eberly, D. (2005a). Centers of simplex. Online Paper. www.geometrictools.com.

[Eberly, 2005b] Eberly, D. (2005b). Dynamic collision detection using oriented bounding boxes. Online
Paper. www.geometrictools.com.

[Eberly, 2005c] Eberly, D. (2005c). Intersection of objects with linear and angular velocities using ori-
ented bounding boxes. Online Paper. www.geometrictools.com.

[Eberly, 2000] Eberly, D. H. (2000). 3D Game Engine Design : A Practical Approach to Real-Time
Computer Graphics. Morgan Kaufmann.

[Eberly, 2003b] Eberly, D. H. (2003b). Game Physics. Interactive 3D Technology Series. Morgan Kauf-
mann.

[Ehmann et al., 2000a] Ehmann, S. and Lin, M. (2000a). Accelerated proximity queries between convex
polyhedra by multi-level voronoi marching.

[Ehmann et al., 2000b] Ehmann, S. A. and Lin, M. C. (2000b). Swift: Accelerated proximity queries be-
tween convex polyhedra by multi-level voronoi marching. Technical report, Computer Science Depart-
ment, University of North Carolina at Chapel Hill. www.cs.unc.edu/\simgeom/SWIFT/.

[Ehmann et al., 2001] Ehmann, S. A. and Lin, M. C. (2001). Accurate and fast proximity queries between
polyhedra using convex surface decomposition. In Chalmers, A. and Rhyne, T.-M., editors, EG 2001
Proceedings, volume 20(3), pages 500–510. Blackwell Publishing.

[Elbek, 1994] Elbek, B. (1994). Elektromagnetisme. Niels Bohr Institutet, University of Copenhagen.

[Enright et al., 2002] Enright, D., Marschner, S., and Fedkiw, R. (2002). Animation and rendering of
complex water surfaces. In Proceedings of the 29th annual conference on Computer Graphics and
Interactive Techniques, pages 736–744. ACM Press.

[Eriksson et al., 1996] Eriksson, K., Estep, D., Hansbo, P., and Johnson, C. (1996). Computational Dif-
ferential Equations. Cambridge University Press.

[Erleben, 2005] Erleben, K. (2005). Stable, Robust, and Versatile Multibody Dynamics Animation. PhD
thesis, Department of Computer Science, University of Copenhagen (DIKU), Universitetsparken 1,
DK-2100 Copenhagen, Denmark. www.diku.dk/~kenny/thesis.pdf.

[Erleben et al., 2004] Erleben, K., Dohlmann, H., and Sporring, J. (2004). The adaptive thin shell tetra-
hedral mesh. (Submitted to Conference).

“book” — 2005/9/30 — 15:44 — page 788 — #800✐
✐

✐
✐

✐
✐

✐
✐

788 BIBLIOGRAPHY

[Erleben et al., 2003a] Erleben, K. and Henriksen, K. (2003a). Scripted bodies and spline driven anima-
tion. In Lande, J., editor, Graphics Programming Methods. Charles River Media.

[Erleben et al., 2003b] Erleben, K. and Sporring, J. (2003b). Review of a general module based design
for rigid body simulators. Unpublished, draft version can be obtained by email request.

[Etzmuss et al., 2003] Etzmuss, O., Keckeisen, M., and Strasser, W. (2003). A fast finite element solution
for cloth modelling. In PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics
and Applications, page 244, Washington, DC, USA. IEEE Computer Society.

[Euler, 1744] Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici lattissimo sensu accepti (A method for finding curved
lines enjoying properties of maximum or minimum, or solution of isoperimetric problems in the broad-
est accepted sense), volume 24 of 1. Opera Omnia. See www.eulerarchive.com/ for a brief
description.

[Euler, 1755] Euler, L. (1755). Principes géneraux du mouvement des fluides. Mém. Acad. Sci. Berlin,
11:274–315.

[Euler, 1768] Euler, L. (1768). Institutioners Calculi Integralis. PhD thesis, St. Petersburg.

[Farin, 1993] Farin, G. (1993). Curves and Surfaces for Computer Aided Geometric Design. A Practical
Guide. Computer Science and Scientific Computing. Academic Press, Inc., third edition.

[Fattal et al., 2004] Fattal, R. and Lischinski, D. (2004). Target-driven smoke animation. ACM Transac-
tions on Graphics, 23(3):441–448.

[Featherstone, 1998] Featherstone, R. (1998). Robot Dynamics Algorithms. Kluwer Academic Publish-
ers. Second Printing.

[Feldman et al., 2003] Feldman, B. E., O’Brien, J. F., and Arikan, O. (2003). Animating suspended
particle explosions. ACM Transactions on Graphics, 22(3):708–715.

[Finch et al., 2004] Finch, M. and Worlds, C. (2004). Effective water simulation from physical models.
In Fernando, R., editor, GPU Gems, Programming Techniques, Tips and Tricks for Real-Time graphics,
chapter 1. Addison-Wesley.

[Fisher et al., 2001] Fisher, S. and Lin, M. C. (2001). Deformed distance fields for simulation of non-
penetrating flexible bodies. In Proceedings of the Eurographic workshop on Computer Animation and
Simulation, pages 99–111. Springer-Verlag New York, Inc.

[Florack, 1997] Florack, L. (1997). Image Structure. Computational Imaging and Vision. Kluwer Aca-
demic Publishers, Dordrecht.

[Foley et al., 1996] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1996). Computer Graphics:
Principles and Pratice; In C. Addison-Wesley, 2nd edition.

“book” — 2005/9/30 — 15:44 — page 789 — #801✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 789

[Foster et al., 1997] Foster, N. and Metaxas, D. (1997). Modeling the motion of a hot, turbulent gas. In
Proceedings of the 24th annual conference on Computer Graphics and Interactive Techniques, pages
181–188. ACM Press/Addison-Wesley Publishing Co.

[Frank et al., 1995] Frank, O. and Thomas, J. (1995). Illusion of Life: Disney Animation. Hyperion Press.

[Frisken et al., 2000] Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively
sampled distance fields: a general representation of shape for computer graphics. In Proceedings of
the 27th annual conference on Computer Graphics and Interactive Techniques, pages 249–254. ACM
Press/Addison-Wesley Publishing Co.

[Fuhrmann et al., 2003] Fuhrmann, A., Sobottka, G., and Groß, C. (2003). Distance fields for rapid
collision detection in physically based modeling. In Proceedings of GraphiCon, pages 58–65.

[Ganovelli et al., 2000] Ganovelli, F., Dingliana, J., and O’Sullivan, C. (2000). Buckettree: Improv-
ing collision detection between deformable objects. In Spring Conference in Computer Graphics
(SCCG2000), pages 156–163, Bratislava.

[Gerstner, 1802] Gerstner, F. J. v. (1802). Theorie der Wellen. Abhand. Kön. Bömischen Gesel. Wiss.

[Gilbert et al., 1988] Gilbert, E., Johnson, D., and Keerthi, S. (1988). A fast procedure for computing the
distance between complex objects in three-dimensional space. IEEE Journal of Robotics and Automa-
tion, 4:193–203.

[Goktekin et al., 2004] Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. (2004). A method for animat-
ing viscoelastic fluids. ACM Transactions on Graphics, 23(3):463–468.

[Goldsmith et al., 1987] Goldsmith, J. and Salmon, J. (1987). Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics and Applications, 7(5):14–20. see Scherson & Caspary
article for related work.

[Goldstein, 1980] Goldstein, H. (1980). Classical Mechanics. Addison-Wesley, Reading, MA, U.S.A.,
3rd edition. 638 pages.

[Goldstein et al., 2002] Goldstein, H., Poole, C. P., Poole, C. P. J., and Safko, J. L. (2002). Classical
Mechanics. Prentice Hall, 3rd edition.

[Golub et al., 1996] Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. The Johns Hopkins
University Press, 3rd edition.

[Gottschalk, 2000] Gottschalk, S. (2000). Collision Queries using Oriented Bounding Boxes. PhD thesis,
Department of Computer Science, University of N. Carolina, Chapel Hill.

[Gottschalk et al., 1996] Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBB-Tree: A hierarchi-
cal structure for rapid interference detection. Technical Report TR96-013, Department of Computer
Science, University of N. Carolina, Chapel Hill. www.cs.unc.edu/\simgeom/OBB/OBBT.
html.

“book” — 2005/9/30 — 15:44 — page 790 — #802✐
✐

✐
✐

✐
✐

✐
✐

790 BIBLIOGRAPHY

[Gourret et al., 1989] Gourret, J. P., Magnenat-Thalmann, N., and Thalmann, D. (1989). Simulation of
object and human skin deformations in a grasping task. Computer Graphics, 23(3):21–31.

[Govindaraju et al., 2003] Govindaraju, N., Redon, S., Lin, M., and Manocha, D. (2003). CULLIDE:
Interactive collision detection between complex models in large environments using graphics hardware.
ACM SIGGRAPH/Eurographics Graphics Hardware.

[Guendelman et al., 2003] Guendelman, E., Bridson, R., and Fedkiw, R. (2003). Nonconvex rigid bodies
with stacking. ACM Transaction on Graphics, Proceedings of ACM SIGGRAPH.

[Hahn, 1988] Hahn, J. K. (1988). Realistic animation of rigid bodies. In Computer Graphics, volume 22,
pages 299–308.

[Hairer et al., 2002] Hairer, E., Lubich, C., and Wanner, G. (2002). Geomeric Numerical Integration.
Springer-Verlag.

[Halsey et al., 1986] Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I.
(1986). Fractal measures and their singularities: The characterization of strange sets. Physical Review
A, 33:1141–1151.

[Haltiner et al., 1980] Haltiner, G. J. and Williams, R. T. (1980). Numerical Prediction and Dynamic
Meteorology. John Wiley & Sons IUnc., New York, 2nd edition.

[Hansen, 1988] Hansen, E. B. (1988). Variationsregning. Polyteknisk Forlag.

[Harris, 2004] Harris, M. J. (2004). Fast fluid dynamics simulation on the GPU. In Fernando, R., editor,
GPU Gems, Programming Techniques, Tips and Tricks for Real-Time graphics, chapter 38. Addison-
Wesley.

[Hart et al., 2003] Hart, G. D. and Anitescu, M. (2003). A hard-constraint time-stepping approach for
rigid multibody dynamics with joints, contact, and friction. In Proceedings of the 2003 conference on
Diversity in Computing, pages 34–41. ACM Press.

[Hasegawa et al., 2003] Hasegawa, S., Fujii, N., Koike, Y., and Sato, M. (2003). Real-time rigid body
simulation based on volumetric penalty method. In Proceedings of the 11th Symposium on Haptic In-
terfaces for Virtual Environment and Teleoperator Systems (HAPTICS’03), page 326. IEEE Computer
Society.

[Hauser et al., 2003] Hauser, K. K., Shen, C., and O’Brien, J. F. (2003). Interactive deformation
using modal analysis with constraints. In Graphics Interface, pages 247–256. CIPS, Canadian
Human-Computer Commnication Society, A. K. Peters. ISBN 1-56881-207-8, ISSN 0713-5424,
www.graphicsinterface.org/proceedings/2003/.

[He, 1999] He, T. (1999). Fast collision detection using quospo trees. In Proceedings of the 1999 sympo-
sium on Interactive 3D graphics, pages 55–62. ACM Press.

“book” — 2005/9/30 — 15:44 — page 791 — #803✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 791

[Heidelberger et al., 2003] Heidelberger, B., Teschner, M., and Gross, M. (2003). Volumetric collision
detection for deformable objects. Technical report, Computer Science Department, ETH Zurich.

[Heidelberger et al., 2004] Heidelberger, B., Teschner, M., and Gross, M. (2004). Detection of colli-
sions and self-collisions using image-space techniques. In Proc. WSCG, pages 145–152, Plzen, Czech
Republic.

[Hirota, 2002] Hirota, G. (2002). An Improved Finite Element Contact Model for Anatomical Simulations.
PhD thesis, University of N. Carolina, Chapel Hill.

[Hirota et al., 2000] Hirota, G., Fisher, S., and Lin, M. (2000). Simulation of non-penetrating elastic
bodies using distance fields. Technical report, University of North Carolina at Chapel Hill.

[Hirota et al., 2001] Hirota, G., Fisher, S., State, A., Lee, C., and Fuchs, H. (2001). An implicit finite
element method for elastic solids in contact. In Computer Animation, Seoul, South Korea.

[Hoff, III et al., 1999] Hoff, III, K. E., Keyser, J., Lin, M., Manocha, D., and Culver, T. (1999). Fast com-
putation of generalized voronoi diagrams using graphics hardware. In Proceedings of the 26th annual
conference on Computer Graphics and Interactive Techniques, pages 277–286. ACM Press/Addison-
Wesley Publishing Co.

[Hoff III et al., 2001] Hoff III, K. E., Zaferakis, A., Lin, M., and Manocha, D. (2001). Fast and simple
2D geometric proximity queries using graphics hardware. In Proc. of ACM Symposium on Interactive
3D Graphics.

[Hongbin et al., 2005] Hongbin, J. and Xin, D. (2005). On criterions for smoothed particle hydrodynam-
ics kernels in stable field. Journal of Computational Physics, 202(2):699–709.

[Hoschek et al., 1993] Hoschek, J. and Lasser, D. (1993). Fundamentals of Computer Aided Geometric
Design. A. K. Peters. English translation 1993 by A. K. Peters, Ltd.

[House et al., 2000] House, D. H. and Breen, D., editors (2000). Cloth Modeling and Animation. A. K.
Peters.

[Hubbard, 1993] Hubbard, P. M. (1993). Interactive collision detection. In Proceedings of the IEEE
Symposium on Research Frontiers in Virtual Reality, pages 24–32.

[Hubbard, 1996] Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics, 15(3):179–210.

[III et al., 2002] III, K. E. H., Zaferakis, A., Lin, M., and Manocha, D. (2002). Fast 3D geometric prox-
imity queries between rigid and deformable models using graphics hardware acceleration. UNC-CS
Technical Report.

[IO Interactive A/S, 2005] IO Interactive A/S (2005). www.ioi.dk.

“book” — 2005/9/30 — 15:44 — page 792 — #804✐
✐

✐
✐

✐
✐

✐
✐

792 BIBLIOGRAPHY

[Irving et al., 2004] Irving, G., Teran, J., and Fedkiw, R. (2004). Invertible finite elements for robust
simulation of large deformation. ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA).

[Irving et al., 2005] Irving, G., Teran, J., and Fedkiw, R. (2005). Tetrahedral and hexahedral invertible
finite elements. Graphical Models (in press).

[Jakobsen, 2001] Jakobsen, T. (2001). Advanced character physics. Presentation, Game Developer’s
Conference. www.ioi.dk/Homepages/thomasj/publications/AdvancedPhysics_
files/v3_document.htm.

[Jakobsen, 2005] Jakobsen, T. (2005). Personal communication.

[James et al., 2002] James, D. L. and Pai, D. K. (2002). Dyrt: dynamic response textures for real time
deformation simulation with graphics hardware. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer Graphics and Interactive Techniques, pages 582–585. ACM Press.

[Jansson et al., 2002a] Jansson, J. and Vergeest, J. S. M. (2002a). Combining deformable and rigid
body mechanics simulation. The Visual Computer Journal. www.math.chalmers.se/$\
sim$johanjan/.

[Jansson et al., 2002b] Jansson, J. and Vergeest, J. S. M. (2002b). A discrete mechanics model for de-
formable bodies. Computer-Aided Design, 34(12):913–928.

[Jensen, 2001] Jensen, L. (2001). Deep-water animation and rendering. Gamasutra, www.gamasutra.
com/gdce/jensen/jensen_01.htm.

[Johansen, 2005] Johansen, J. (2005). Personal Communication.

[Joukhadar et al., 1998] Joukhadar, A., Deguet, A., and Laugier, C. (1998). A collision model for rigid
and deformable bodies. In IEEE Int. Conference on Robotics and Automation, Vol. 2, pages 982–988,
Leuven (BE).

[Joukhadar et al., 1999] Joukhadar, A., Scheuer, A., and Laugier, C. (1999). Fast contact detection be-
tween moving deformable polyhedra. In IEEE-RSJ Int. Conference on Intelligent Robots and Systems,
Vol. 3, pages 1810–1815, Kyongju (KR).

[Joukhadar et al., 1996] Joukhadar, A., Wabbi, A., and Laugier, C. (1996). Fast contact localisation be-
tween deformable polyhedra in motion. In IEEE Computer Animation Conference, pages 126–135,
Geneva (CH).

[Karma, 2005] Karma (2005). Middleware physics software provider. MathEngine Karma, www.
mathengine.com/karma/.

[Kačić-Alesić et al., 2003] Kačić-Alesić, Z., Nordenstam, M., and Bullock, D. (2003). A practical dy-
namics system. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 7–16, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

“book” — 2005/9/30 — 15:44 — page 793 — #805✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 793

[Kaye et al., 1995] Kaye, G. W. C. and Laby, T. H. (1995). Tables of Physical and Chemical Constants.
Longman Group Ltd., 16th edition.

[Kelager et al., 2005] Kelager, M., Fleron, A., and Erleben, K. (2005). Area and volume restoration in
elastically deformable solids. Electronic Letters on Compuer Vision and Image Analysis (ELCVIA),
5(3):32–43. Special Issue on Articulated Motion, elcvia.cvc.uab.es.

[Kim et al., 2002] Kim, Y. J., Otaduy, M. A., Lin, M. C., and Manocha, D. (2002). Fast penetra-
tion depth computation for physically-based animation. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer Animation, pages 23–31. ACM Press.

[Kleppner et al., 1978] Kleppner, D. and Kolenkow, R. J. (1978). An Introduction to Mechanics.
McGraw-Hill Book Co., international edition.

[Klosowski, 1998] Klosowski, J. T. (1998). Efficient collision detection for interactive 3D graphics and
virtual environments. www.ams.sunysb.edu/\simjklosow/publications.

[Klosowski et al., 1998] Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., and Zikan, K. (1998).
Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4(1):21–36.

[Koenderink, 1990] Koenderink, J. J. (1990). Solid Shape. MIT Press, Cambridge.

[Kraus et al., 1997] Kraus, P. R. and Kumar, V. (1997). Compliant contact models for rigid body colli-
sions. In IEEE International Conference on Robotics and Automation, Albuquerque.

[Kreyszig, 1993] Kreyszig, E. (1993). Advanced Engineering Mathematics. John Wiley & Sons, Inc., 7
edition.

[Krishnan et al., 1998] Krishnan, S., Pattekar, A., Lin, M., and Manocha, D. (1998). Spherical shell: A
higher order bounding volume for fast proximity queries. In Proc. of Third International Workshop on
Algorithmic Foundations of Robotics, pages 122–136.

[Lacoursiere, 2003] Lacoursiere, C. (2003). Splitting methods for dry frictional contact problems in rigid
multibody systems: Preliminary performance results. In Ollila, M., editor, The Annual SIGRAD Con-
ference, number 10 in Linkøping Electronic Conference Proceedings.

[Lagrange, 1762] Lagrange, J.-L. (1762). Calculus of variation. Mélanges de Turin.

[Larsen et al., 1999] Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. (1999). Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, Department of Computer Science,
University of N. Carolina, Chapel Hill. www.cs.unc.edu/\simgeom/SSV.

[Larsson et al., 2001] Larsson, T. and Akenine-Möller, T. (2001). Collision detection for continuously
deforming bodies. In Eurographics, pages 325–333.

“book” — 2005/9/30 — 15:44 — page 794 — #806✐
✐

✐
✐

✐
✐

✐
✐

794 BIBLIOGRAPHY

[Larsson et al., 2003] Larsson, T. and Akenine-Möller, T. (2003). Efficient collision detection for models
deformed by morphing. The Visual Computer, 19(2):164–174.

[Lassiter, 1987] Lassiter, J. (1987). Principles of traditional animation applied to 3D computer animation.
In Proceedings of the 14th annual conference on Computer Graphics and Interactive Techniques, pages
35–44. ACM Press.

[Lautrup, 2005] Lautrup, B. (2005). Physics of Continuous Matter. IoP.

[Layton et al., 2002] Layton, A. T. and Panne, M. v. d. (2002). A numerically efficient and stable algo-
rithm for animating water waves. The Visual Computer, 18:41–53.

[Lin et al., 1998] Lin, M. C. and Gottschalk, S. (1998). Collision detection between geometric models: a
survey. In Proc. of IMA Conference on Mathematics of Surfaces, pages 37–56.

[Lin et al., 1994] Lin, M. C. and Manocha, D. (1994). Efficient contact determination between geometric
models. Technical Report TR94-024, The University of North Carolina at Chapel Hill, Department of
Computer Science.

[llerhøj, 2004] llerhøj, K. M. (2004). Simulering af rigid-body systemer med coulomb friktion ved brug
af en implicit tidsskridts metode. Master’s thesis, Department of Computer Science, University of
Copenhagen (DIKU). NO. 03-04-17.

[Lorensen et al., 1987] Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D
surface construction algorithm. ACM Computer Graphics, pages 163–169.

[M.M̃üller, 2004a] M.M̃üller, M. G. (2004a). Interactive virtual materials. In Proceedings of Graphics
Interface (GI 2004), pages 239–246, London, Ontario, Canada.

[M.M̃üller, 2004b] M.M̃üller, M.T̃eschner, M. G. (2004b). Physically-based simulation of objects repre-
sented by surface meshes. In Proc. Computer Graphics International, pages 26–33, Crete, Greece.

[Magnus et al., 1988] Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics. John Wiley & Sons.

[Mandelbrot, 2004] Mandelbrot, B. B. (2004). Fractals and Chaos. Springer.

[Matyka et al., 2003] Matyka, M. and Ollila, M. (2003). Pressure model of soft body simulation. In
SIGRAD2003, The Annual SIGRAD Conference. Special Theme – Real-Time Simulations, Linkö ping
Electronic Conference Proceedings, UmeåUniversity, Umeå, Sweden. www.ep.liu.se/ecp/
010/007/.

[Mauch, 2000] Mauch, S. (2000). A fast algorithm for computing the closest point and distance transform.
www.acm.caltech.edu/~seanm/software/cpt/cpt.html.

[McClellan et al., 1998] McClellan, J. H., Schafer, R. W., and Yoder, M. A. (1998). DSP First: A Multi-
media Approach. Prentice Hall.

“book” — 2005/9/30 — 15:44 — page 795 — #807✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 795

[McInerney et al., 2000] McInerney, T. and Terzopoulos, D. (2000). T-snakes: Topology adaptive snakes.
Medical Image Analysis, 4:73–91.

[McKenna et al., 1990] McKenna, M. and Zeltzer, D. (1990). Dynamic simulation of autonomous legged
locomotion. In Proceedings of the 17th annual conference on Computer Graphics and Interactive
Techniques, pages 29–38. ACM Press.

[McNamara et al., 2003] McNamara, A., Treuille, A., Popovic, Z., and Stam, J. (2003). Keyframe control
of smoke simulations. Proceedings of SIGGRAPH 2003.

[Melax, 2001] Melax, S. (2001). Bsp collision detection as used in mdk2 and neverwinter nights. Gama-
sutra. www.gamasutra.com/features/20010324/melax_01.htm.

[Messer, 1994] Messer, R. (1994). Linear Algebra: Gateway to Mathematics. HarperCollins College
Publishers.

[Mezger et al., 2003] Mezger, J., Kimmerle, S., and Etzmuss, O. (2003). Hierarchical techniques in col-
lision detection for cloth animation. WSCG, 11(1).

[Milenkovic et al., 2001] Milenkovic, V. J. and Schmidl, H. (2001). Optimization-based animation. SIG-
GRAPH Conference.

[Mirtich, 1995] Mirtich, B. (1995). Hybrid simulation: Combining constraints and impulses. Proceedings
of First Workshop on Simulation and Interaction in Virtual Environments.

[Mirtich, 1996] Mirtich, B. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems. PhD
thesis, University of California, Berkeley.

[Mirtich, 1998a] Mirtich, B. (1998a). Rigid body contact: Collision detection to force computation.
Technical Report TR-98-01, MERL.

[Mirtich, 1998b] Mirtich, B. (1998b). V-clip: Fast and robust polyhedral collision detection. ACM Trans-
actions on Graphics, 17(3):177–208.

[Mirtich et al., 1994] Mirtich, B. and Canny, J. F. (1994). Impulse-based dynamic simulation. Technical
Report CSD-94-815, University of Califonia, Berkley, CA, USA.

[Mirtich et al., 1995] Mirtich, B. and Canny, J. F. (1995). Impulse-based simulation of rigid bodies. In
Symposium on Interactive 3D Graphics, pages 181–188, 217.

[Molino et al., 2004] Molino, N., Bao, Z., and Fedkiw, R. (2004). A virtual node algorithm for changing
mesh topology during simulation. ACM Transactions on Graphics, 23(3):385–392.

[Monaghan, 1988] Monaghan, J. J. (1988). An introduction to sph. Computer Physics Communications,
48:89–96.

[Monaghan, 1992] Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of Astron-
omy and Astrophysics, 30(1):543–574.

“book” — 2005/9/30 — 15:44 — page 796 — #808✐
✐

✐
✐

✐
✐

✐
✐

796 BIBLIOGRAPHY

[Moore et al., 1988] Moore, M. and Wilhelms, J. (1988). Collision detection and response for computer
animation. In Computer Graphics, volume 22, pages 289–298.

[Morton et al., 1994] Morton, K. and Mayers, D. (1994). Numerical Solution of Partial Differential Equa-
tions. Cambridge University Press.

[Mosegaard, 2003] Mosegaard, J. (2003). Realtime cardiac surgical simulation. Master’s thesis, Depart-
ment of Computer Science at the Faculty of Science, University of Aarhus, Denmark.

[Mosterman, 2001] Mosterman, P. J. (2001). On the normal component of centralized frictionless colli-
sion sequences. submitted to ASME Journal of Applied Mechanics, in review.

[Müller et al., 2003] Müller, M., Charypar, D., and Gross, M. (2003). Particle-based fluid simulation for
interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 154–159. Eurographics Association.

[Müller et al., 2002] Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. (2002). Stable real-
time deformations. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer Animation, pages 49–54. ACM Press.

[Müller et al., 2004a] Müller, M. and Gross, M. (2004a). Interactive virtual materials. In Balakrishnan, R.
and Heidrich, W., editors, Proceedings of Graphics Interface 2004, pages 239–246, Waterloo, Canada.
Canadian Human-Computer Communications Society.

[Müller et al., 2004b] Müller, M., Teschner, M., and Gross, M. (2004b). Physically-based simulation of
objects represented by surface meshes. In Proceedings of Computer Graphics International 2004.

[Murty, 1988] Murty, K. G. (1988). Linear Complementarity, Linear and Nonlinear Programming.
Helderman-Verlag. This book is now available for download. ioe.engin.umich.edu/people/
fac/books/murty/linear_complementarity_webbook/.

[Navier, 1822] Navier, C. L. M. H. (1822). Mémoire sur les lois du mouvement des fluides. Mém. Aca.
Sci. Inst. France, 6:389–440.

[NIST, 2005] NIST (2005). The nist reference on constants, units, and uncertainty. physics.nist.
gov/cuu/Units/units.html.

[Nooruddin et al., 2003] Nooruddin, F. S. and Turk, G. (2003). Simplification and repair of polygonal
models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics,
9(2):191–205.

[Nordlund, 2005] Nordlund, Å. (2005). Personal Communication.

[NovodeX, 2005] NovodeX (2005). Novodex physics sdk v2. www.novodex.com/.

[O’Brien et al., 2002a] O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. (2002a). Graphical modeling
and animation of ductile fracture. In SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer Graphics and Interactive Techniques, pages 291–294, New York, NY, USA. ACM Press.

“book” — 2005/9/30 — 15:44 — page 797 — #809✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 797

[O’Brien et al., 1999] O’Brien, J. F. and Hodgins, J. K. (1999). Graphical modeling and animation of brit-
tle fracture. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer Graphics and
Interactive Techniques, pages 137–146, New York, NY, USA. ACM Press/Addison-Wesley Publishing
Co.

[O’Brien et al., 2002b] O’Brien, J. F., Shen, C., and Gatchalian, C. M. (2002b). Synthesizing sounds
from rigid-body simulations. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer Animation, pages 175–181. ACM Press.

[ODE, 2005] ODE (2005). Open Dynamics Engine. Opensource Project, Multibody Dynamics Software.
q12.org/ode/.

[OpenTissue, 2005] OpenTissue (2005). www.opentissue.org.

[O’Rourke, 1998] O’Rourke, J. (1998). Computational Geometry in C. Cambridge University Press, 2nd
edition. cs.smith.edu/~orourke/.

[Osher et al., 2003] Osher, S. and Fedkiw, R. (2003). Level-Set Methods and Dynamic Implicit Surfaces,
volume 153 of Applied Mathematical Sciences. Springer.

[Osher et al., 1988] Osher, S. and Sethian, S. (1988). Fronts propagating with curvature dependent speed:
algorithms based on the Hamilton-Jacobi formalism. J. Computational Physics, 79:12–49.

[O’Sullivan et al., 1999] O’Sullivan, C. and Dingliana, J. (1999). Real-time collision detection and re-
sponse using sphere-trees.

[Palmer, 1995] Palmer, I. (1995). Collision detection for animation: The use of the sphere-tree data
structure. In The Second Departmental Workshop on Computing Research. University of Bradford.

[Palmer et al., 1995] Palmer, I. and Grimsdale, R. (1995). Collision detection for animation using sphere-
trees. Computer Graphics Forum, 14(2):105–116.

[Parent, 2001] Parent, R. (2001). Computer Animation: Algorithms and Techniques. Morgan Kaufmann.

[Path, 2005] Path (2005). Path cpnet software. www.cs.wisc.edu/cpnet/cpnetsoftware/.

[Pedersen et al., 2004] Pedersen, C., Erleben, K., and Sporring, J. (2004). Ballet balance strategies. In
Elmegaard, B., Sporring, J., Erleben, K., and Sørensen, K., editors, SIMS 2004, pages 323–330.

[Pentland et al., 1989] Pentland, A. and Williams, J. (1989). Good vibrations: model dynamics for graph-
ics and animation. In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer Graph-
ics and Interactive Techniques, pages 215–222. ACM Press.

[Pfeiffer et al., 1996a] Pfeiffer, F. and Glocker, C. (1996a). Multibody Dynamics with Unilateral Con-
tacts. Wiley series in nonlinear science. John Wiley & Sons, Inc.

[Pfeiffer et al., 1996b] Pfeiffer, F. and Wösle, M. (1996b). Dynamics of multibody systems containing
dependent unilateral constraints with friction. Journal of Vibration and Control, 2:161–192.

“book” — 2005/9/30 — 15:44 — page 798 — #810✐
✐

✐
✐

✐
✐

✐
✐

798 BIBLIOGRAPHY

[Piegl et al., 1995] Piegl, L. and Tiller, W. (1995). The NURBS Book. Springer-Verlag Berlin Heidelberg
New York.

[Platt et al., 1988] Platt, J. and Barr, A. (1988). Constraint methods for flexible bodies. In Computer
Graphics, volume 22, pages 279–288.

[Ponamgi et al., 1997] Ponamgi, M. K., Manocha, D., and Lin, M. C. (1997). Incremental algorithms
for collision detection between polygonal models:. IEEE Transactions on Visualization and Computer
Graphics, 3(1):51–64.

[Press et al., 1999a] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1999a). Nu-
merical Recipes in C. Cambridge University Press, 2nd edition.

[Press et al., 1999b] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and P.Flannery, B. (1999b). Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge University Press, sixth edition.
www.nr.com.

[Provot, 1995] Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth
behavior. In Procedings of Graphics Interface, pages 147–154.

[Rasmussen et al., 2003] Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. (2003). Smoke simu-
lation for large scale phenomena. ACM SIGGRAPH Transactions on Graphics, 22(3).

[Redon, 2004a] Redon, S. (2004a). Continuous collision detection for rigid and articulated bodies. To
appear in ACM SIGGRAPH Course Notes, 2004.

[Redon, 2004b] Redon, S. (2004b). Fast continuous collision detection and handling for desktop virtual
prototyping. Virtual Reality Journal. Accepted for publication.

[Redon et al., 2002] Redon, S., Kheddar, A., and Coquillart, S. (2002). Fast continuous collision detec-
tion between rigid bodies. Computer Graphics Forum (Eurographics 2002 Proceedings), 21(3).

[Redon et al., 2003] Redon, S., Kheddar, A., and Coquillart, S. (2003). Gauss least constraints principle
and rigid body simulations. In In proceedings of IEEE International Conference on Robotics and
Automation. www.cs.unc.edu/~redon/.

[Redon et al., 2004a] Redon, S., Kim, Y. J., Lin, M. C., and Manocha, D. (2004a). Fast continuous
collision detection for articulated models. Proceedings of ACM Symposium on Solid Modeling and
Applications. To appear.

[Redon et al., 2004b] Redon, S., Kim, Y. J., Lin, M. C., Manocha, D., and Templeman, J. (2004b). In-
teractive and continuous collision detection for avatars in virtual environments. IEEE International
Conference on Virtual Reality Proceedings.

[Rettrup, 2005] Rettrup, S. (2005). Personal Communication.

“book” — 2005/9/30 — 15:44 — page 799 — #811✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 799

[Rissanen, 1989] Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific,
Singapore.

[Roy, 1995] Roy, T. M. (1995). Physically-based fluid modeling using smoothed particle hydrodynamics.
Master’s thesis, University of Illinois at Chicago. www.plunk.org/~trina/work.html.

[Rusinkiewicz et al., 2000] Rusinkiewicz, S. and Levoy, M. (2000). QSplat: A multiresolution point ren-
dering system for large meshes. In Proceedings of the 27th annual conference on Computer Graphics
and Interactive Techniques, pages 343–352.

[Saint-Venant, 1871] Saint-Venant, A. J. C. d. (1871). Théorie du mouvement non-permanent des eaux,
avec crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris, pages 147–
154. (in French).

[Sauer et al., 1998] Sauer, J. and Schömer, E. (1998). A constraint-based approach to rigid body dynamics
for virtual reality applications. ACM Symposium on Virtual Reality Software and Technology, pages
153–161.

[Schmidl, 2002] Schmidl, H. (2002). Optimization-based animation. PhD thesis, Univeristy of Miami.

[Sederberg et al., 1986] Sederberg, T. W. and Parry, S. R. (1986). Free-form deformation of solid geo-
metric models. In SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer Graphics
and Interactive Techniques, pages 151–160. ACM Press.

[Sethian, 1999] Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods. Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press. Cambridge Monograph on Applied and Computational Mathematics.

[SGI, 2005] SGI (2005). Opengl extension registry: arb_occlusion_query. Online web site. oss.
sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt.

[Shannon et al., 1949] Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communica-
tion. The University of Illinois Press, Urbana.

[Shao et al., 2003] Shao, S. and Lo, E. Y. M. (2003). Incompressible sph method for simulating newtonian
and non-newtonian flows with a free surface. Advances in Water Resources, 26:787–800.

[Shen et al., 2004] Shen, C., O’Brien, J. F., and Shewchuk, J. R. (2004). Interpolating and approximating
implicit surfaces from polygon soup. ACM Transactions on Graphics, 23(3):896–904.

[Shewchuk, 1994] Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the
agonizing pain. Technical report, Carnegie Mellon University.

[Shoemake et al., 1992] Shoemake, K. and Duff, T. (1992). Matrix animation and polar decomposition.
In Proceedings of the conference on Graphics interface ’92, pages 258–264, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

“book” — 2005/9/30 — 15:44 — page 800 — #812✐
✐

✐
✐

✐
✐

✐
✐

800 BIBLIOGRAPHY

[Sigg et al., 2003] Sigg, C., Peikert, R., and Gross, M. (2003). Signed distance transform using graphics
hardware. In Proceedings of IEEE Visualization, pages 83–90, Seattle, WA, USA. IEEE Computer
Society Press.

[Somchaipeng et al., 2004] Somchaipeng, K., Erleben, K., and Sporring, J. (2004). A multi-scale sin-
gularity bounding volume hierarchy. DIKU technical report 04/08, Department of Computer Science,
University of Copenhagen.

[Song et al., 2003] Song, P., Pang, J.-S., and Kumar, V. (2003). A semi-implicit time-stepping model for
frictional compliant contact problems. Submitted to International Journal of Numerical Methods for
Engineering. Avaible at www.mts.jhu.edu/~pang/dcm_kps.pdf.

[Sørensen, 2005] Sørensen, A. M. K. (2005). Personal Communication.

[Spiegel, 1968] Spiegel, M. R. (1968). Mathematical Handbook of Formulas and Tables. Schaum’s
outline series. McGraw-Hill.

[Stewart et al., 1996] Stewart, D. and Trinkle, J. (1996). An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and coulomb friction. International Journal of Numerical Methods
in Engineering.

[Stewart et al., 2000] Stewart, D. and Trinkle, J. (2000). An implicit time-stepping scheme for rigid body
dynamics with coulomb friction. IEEE International Conference on Robotics and Automation, pages
162–169.

[Stewart, 2000] Stewart, D. E. (2000). Rigid-body dynamics with friction and impact. SIAM Review,
42(1):3–39.

[Stokes, 1845] Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion. Trans.
Cambridge Philos. Soc., 8.

[Sud et al., 2004] Sud, A., Otaduy, M. A., and Manocha, D. (2004). Difi: Fast 3D distance field compu-
tation using graphics hardware. Computer Graphics Forum, 23(3):557–566. gamma.cs.unc.edu/
DiFi/.

[Sundaraj et al., 2000] Sundaraj, K. and Laugier, C. (2000). Fast contact localisation of moving de-
formable polyhedras. In IEEE Int. Conference on Control, Automation, Robotics and Vision, Singapore
(SG).

[Teran et al., 2003] Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. (2003). Finite volume methods
for the simulation of skeletal muscle. In Breen, D. and Lin, M., editors, ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pages 68–74.

[Teran et al., 2005] Teran, J., Sifakis, E., Blemker, S., Ng Thow Hing, V., Lau, C., and Fedkiw, R. (2005).
Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visu-
alization and Computer Graphics, 11:317–328.

“book” — 2005/9/30 — 15:44 — page 801 — #813✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 801

[Terzopoulos et al., 1987] Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastic deformable
models. In Computer Graphics, volume 21, pages 205–214.

[Terzopoulos et al., 1994] Terzopoulos, D., Tu, X., and Grzeszczuk, R. (1994). Artificial fishes. Artificial
Life, 1(4):327–351.

[Teschner et al., 2003] Teschner, M., B.H̃eidelberger, M. M., Pomeranets, D., and Gross, M. (2003). Op-
timized spatial hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visu-
alization, pages 47–54, Munich, Germany.

[Teschner et al., 2004] Teschner, M., Heidelberger, B., Müller, M., and Gross, M. (2004). A versatile and
robust model for geometrically complex deformable solids. In Proc. of CGI.

[Trinkle et al., 1995] Trinkle, J., Pang, J.-S., Sudarsky, S., and Lo, G. (1995). On dynamic multi-rigid-
body contact problems with coulomb friction. Technical Report TR95-003, Texas A&M University,
Department of Computer Science.

[Trinkle et al., 2001] Trinkle, J. C., Tzitzoutis, J., and Pang, J.-S. (2001). Dynamic multi-rigid-body
systems with concurrent distributed contacts: Theory and examples. Philosophical Trans. on Mathe-
matical, Physical, and Engineering Sciences, 359(1789):2575–2593.

[Tritton, 1988] Tritton, D. (1988). Physical Fluid Dynamics. Oxford University Press.

[Tzafestas et al., 1996] Tzafestas, C. and Coiffet, P. (1996). Real-time collision detection using spherical
octrees : Vr application.

[Verlet, 1967] Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical prop-
erties of Lennard-Jones molecules. Physical Review, 159(1):98–103.

[Vinter, 2005] Vinter, B. (2005). Personal Communication.

[Volino et al., 1995] Volino, P. and Magnenat Thalmann, N. (1995). Collision and self-collision detection:
Efficient and robust solutions for highly deformable surfaces. In Terzopoulos, D. and Thalmann, D.,
editors, Computer Animation and Simulation ’95, pages 55–65. Springer-Verlag.

[Volino et al., 2000] Volino, P. and Magnenat-Thalmann, N. (2000). Virtual Clothing, Theory and Prac-
tice. Springer-Verlag Berlin Heidelbarg.

[Volino et al., 1998] Volino, P. and Thalmann, N. M. (1998). Collision and self-collision detection: Effi-
cient and robust solutions for highly deformable surfaces. Technical report, MIRALab.

[Vortex, 2005] Vortex (2005). CMLabs Vortex. www.cm-labs.com/products/vortex/.

[Wagenaar, 2001] Wagenaar, J. (2001). Physically Based Simulation and Visualization: A particle-base
approach. PhD thesis, the Mærsk Mc-Kinney Møller Institute for Production Technology.

[Watt et al., 1992] Watt, A. and Watt, M. (1992). Advanced Animation and Rendering Techniques, Theory
and Practice. Addison-Wesley.

“book” — 2005/9/30 — 15:44 — page 802 — #814✐
✐

✐
✐

✐
✐

✐
✐

802 INDEX

[Weickert et al., 1997] Weickert, J., Ishikawa, S., and Imiya, A. (1997). On the history of Gaussian scale-
space axiomatics. In Sporring, J., Nielsen, M., Florack, L., and Johansen, P., editors, Gaussian Scale-
Space Theory, chapter 4, pages 45–59. Kluwer Academic Publishers, Dordrecht, The Netherlands.

[Weisstein, 2005a] Weisstein, E. (2005a). World of physics. scienceworld.wolfram.com/
physics/.

[Weisstein, 2004] Weisstein, E. W. (2004). Frobenius norm. From MathWorld–A Wolfram Web Resource.
mathworld.wolfram.com/FrobeniusNorm.html.

[Weisstein, 2005b] Weisstein, E. W. (2005b). Mathworld–the web’s most extensive mathematics re-
source. www.mathworld.com.

[Wellman, 1993] Wellman, C. (1993). Inverse kinematics and geometric constraints for articulated figure
manipulation. Master’s thesis, Simon Fraser University.

[Welzl, 1991] Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In Maurer, H., editor,
New Results and New Trends in Computer Science, LNCS. Springer.

[Wilhelms et al., 2001] Wilhelms, J. and Gelder, A. V. (2001). Fast and easy reach-cone joint limits.
Journal of Graphics Tools, 6(2):27–41.

[Witkin et al., 1994] Witkin, A. P. and Heckbert, P. S. (1994). Using particles to sample and control
implicit surfaces. In Proceedings of the 21st annual conference on Computer Graphics and Interactive
Techniques, pages 269–277. ACM Press.

[Zachmann, 1998] Zachmann, G. (1998). Rapid collision detection by dynamically aligned dop-trees.

[Zachmann et al., 2003a] Zachmann, G. and Knittel, G. (2003a). An architecture for hierarchical collision
detection. WSCG, 11(1). www.gabrielzachmann.org.

[Zachmann et al., 2003b] Zachmann, G. and Langetepe, E. (2003b). Geometric data structures for com-
puter graphics. SIGGRAPH 2003 course notes.

[Zienkiewicz et al., 2000] Zienkiewicz, O. and Taylor, R. (2000). The Finite Element Method: The Basis,
volume 1. Butterworth-Heinemann, 5th edition.

“book” — 2005/9/30 — 15:44 — page 803 — #815✐
✐

✐
✐

✐
✐

✐
✐

Index

A-orthogonal, 625
curl, 593
div, 593
n-body problem, 401
2nd Piola-Kirchoff stress, 692
4th-order Runge-Kutta integration, 700

AABB, 405, 461, 525
acceleration, 647

centripetal, 207
coriolis, 207
gravitational, 91

accumulated
arc length table, 756
chord length, 756

ACM SIGGRAPH, 1
adaptive step size, 700
air

friction, 269
friction coefficient, 270

Airy’s Model, 372
algebraic collision law, 130
algorithm

backtracking, 447
all-pair

problem, 402
test, 413

amplitude, 95, 371, 677
analytical function, 636
anchor point, 120, 206
angle-weighted vertex normals, 274
angular

momentum, 658
springs, 279

animation
blending, 13

pipeline, 433
applied mechanics, 260
approximating bounding volume hierarchy, 465
approximation principle, 405
arc length, 78, 309

integrand, 79
articulated

body, 87
figure, 15, 45, 87

averaging function, 392
axes aligned bounding box, 405, 461
axis joint, 206

B-spline, 284, 727, 738
regular, 757
tensor, 288

back substitution, 605, 608, 609
backtracking, 433, 447

time-control algorithm, 447
baking, 14
ball-in-socket joint, 199, 208
barycentric coordinates, 337, 512, 531
base coordinate system, 15
base link, 33
basis, 573
believability, 1
bending spring, 272
Bezier curve composition, 745
BF, 653
bilateral constraints, 198
bilinear interpolation, 287
body frame, 17, 126, 573, 653
bottom-up methods, 478
boundary condition, 696

Dirichlet, 331
von Neumann, 329

803

“book” — 2005/9/30 — 15:44 — page 804 — #816✐
✐

✐
✐

✐
✐

✐
✐

804 INDEX

boundary value problem, 262
bounding volume, 451

tightness of, 467
test tree, 495

bounding volume hierarchy, 451
approximating, 465
heterogeneous, 463
homogeneous, 463
hybrid, 463

Boussinesq approximation, 384
breadth-first traversal, 179, 273
break points, 741
broad-phase collision detection, 399, 401
BucketTree, 530
BV, 451
BVH, 451
BVP, 262
BVTT, 495

calculus of variation, 641
cartoon mesh, 288
Cauchy strain tensor, 692
cell resolution, 421
center of mass, 17, 126, 652
central difference scheme, 329
centripetal accelerations, 207
CF, 442
CFL condition, 722
characteristic

direction, 706
equation, 706
time, 102

characteristic equation, 707
Choleski decomposition, 329, 611
closest feature pair theorem, 533
cloth, 271
CM, 652
coefficient

air friction, 270
damping, 95, 355, 678
friction, 121
restitution, 128, 333

viscosity, 95, 270, 678
coefficient of restitution, 128
coherence principle, 412
colliding contact, 128
collision

broad-phase detection, 399, 401
continuous detection, 9, 516
detection, 267, 399, 558
envelope, 166, 438
impulse, 125, 129
incremental law, 125
law, 130
narrow-phase detection, 399, 433
response, 106, 267, 333
sequential, 152
sequential resolving method, 125
simultaneous, 152
single-point, 125

comparison function, 717
complementarity condition, 153, 189
complexity, 405
compliant contact model collision law, 130
compression

phase, 128
plane of maximum, 146

computational
mechanics, 260
molecule, 709

computer graphics model, 3
cone-based spring creation method, 274
conjugate

directions, 625
gradient, 329
gradient descent, 624
Gram-Schmidt process, 626

conservation
of mass, 380
of mechanical energy, 672

Conservative Advancement, 168
conservative force, 333, 671
consistent mass matrix, 356
constraint

“book” — 2005/9/30 — 15:44 — page 805 — #817✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 805

bilateral, 198
hard, 295
kinematic, 200
scleronomous, 199

constraint-based simulation, 106, 125
contact

colliding, 128
condition, 189
determination, 435, 437, 504
force, 183, 668
force equivalence principle, 152
formulation, 442
generation, 558
normal, 125, 437, 668
plane, 437, 668
point, 91, 437
principal, 437
region, 441
resting, 128
separating, 128
single point of, 667
static, 125
tracking, 447
unilateral, 198
velocity, 127

contact forces, 332, 433
continuity, 745
continuity equation, 380
continuous collision detection, 9, 516
continuous index, 687
continuum models, 305
control points, 739
convention

contact normal, 184
Einstein’s summation, 591
tetrahedra mesh notation, 337

convergence
Fourier, 711
Taylor, 710

convex decomposition, 555
convex polyhedra, 534
coordinate

barycentric, 337, 512, 531
generalized, 683
homogeneous, 46
material, 305
natural, 337
sorting, 416
world axes, 653

coordinate system, 573
left-handed, 579
orthogonal, 573
right-handed, 579
world, 406, 460, 573, 649

coriolis acceleration, 207
coriolis force, 129
Coulomb’s friction law, 120, 134, 193, 667
coupled differential equations, 695
covariance matrix, 475
Cox de Boor definition, 727
critical damping, 680
cross product, 572

matrix, 291, 581
Crout’s algorithm, 609
CULLIDE, 525
curvature, 309

mean, 309
tensor, 309
testing, 497

cusps, 762
cylinders, 405
Cyrus-Beck clipping, 543

D’Alembert’s principle, 683
damped oscillator

critically, 101
harmonic, 94, 269, 678
heavily, 101

damping
coefficient, 95, 355, 678
coefficient of mass, 367
coefficient of stiffness, 367
constant, 298
critical, 680

“book” — 2005/9/30 — 15:44 — page 806 — #818✐
✐

✐
✐

✐
✐

✐
✐

806 INDEX

density, 306
force, 95, 306, 355, 678
matrix, 326, 692
matrix element, 356
over, 679
Rayleigh, 367
time, 102
viscosity force, 269

data acquisition and modeling, 2
data points, 741
de Boor algorithm, 762
deformable objects, 259, 305, 470
degenerate mesh, 276
Denavit-Hartenberg, 57

notation, 22
density, 378

damping, 306
Lagrangian, 306
of damping, 306
of energy, 306
of mass, 306

derivative
directional, 594
functional, 597
test, 546
total, 587
variational, 643, 688

design matrix, 612
determinant of a matrix, 578
differential, 587, 613

forms, 587
geometry, 308
volume, 306

differential equation, 695
coupled, 695
ordinary, 118, 262, 695
partial, 695
quasi-linear second-order partial, 707
second-order, 265
second-order ordinary, 652, 676
stiff ordinary, 701
unstable, 316

dimension reduction and value propagation, 665
Dirac delta function, 394
directional derivative, 594
Dirichlet boundary conditions, 331
discrete filtering kernels, 320
displacement, 206, 335

function, 341
nodal, 340
vector, 316
virtual, 348

diverge, 701
divergence, 593
divergence theorem, 593
dot product, 572
dry friction, 668
dynamic

algorithm, 413
friction, 120, 134, 668

dynamics, 3
multibody, 87

edge clipping, 541
eigenvalue, 477, 582

problem, 477
eigenvector, 477, 582
Einstein’s summation convention, 591
elastic

energy, 128, 305
force, 305
potential energy, 306

element
damping matrix, 356
mass matrix, 356
stiffness matrix, 349
surface force, 350

elliptic, 706
end effector, 45
energy

conservation of mechanical, 672
density, 306
elastic, 128, 305
function, 270, 293

“book” — 2005/9/30 — 15:44 — page 807 — #819✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 807

kinematic, 128
kinetic, 671
kinetic contact, 139
mechanical, 672
potential, 293, 332, 671
potential elastic, 306
rotational kinetic, 675
translational kinetic, 675

engineering shear strain, 693
equations of motion, 307, 647
equilibrium, 109, 335, 682

hydrostatic, 387
position, 109
shape, 308
static, 340, 348
system in, 87, 282

error-correcting methods, 178
Euler angles, 46, 653
Euler scheme, 187, 194

explicit first-order, 104
implicit first-order, 106

Euler’s
equation, 379, 658
explicit method, 266

Euler-Lagrange equation, 262, 641
exhaustive search, 413
experimental mechanics, 260
explicit

Euler integration, 266, 697, 700
first-order Euler scheme, 104
integration, 299
midpoint method, 700
solution, 709

exponential springs, 122
external forces, 306
External Voronoi Region, 536

factor
rigidity, 272

FDM, 261
feature-based algorithm, 434, 525
FEM, 262, 335

FFD, 288
FIFO, 457
finite difference, 305

method, 261
operators, 318

finite element method, 262, 335
finite volume method, 261
first fundamental form, 308
first-in-first-out queue, 457
first-order world, 247
fit-and-split strategy, 472
fixed axis angles, 653
fixed joints, 219
fluid

incompressible, 380
inviscid, 381
viscous, 381

force
balance equation, 350
conservative, 333, 671
contact, 183, 332, 433, 668
Coriolis, 129
damping, 306, 355, 678
damping viscosity, 269
elastic, 305
element surface, 350
external, 306
friction, 120, 134, 193, 668
frictional motor, 228
generalized, 684
gravity, 332
inertia, 340, 355
linear viscosity, 678
N-ary, 270
node, 340
nonconservative, 672
normal, 668
penalty, 90, 332
potential, 270
pressure, 281
spring, 332
unary, 270

“book” — 2005/9/30 — 15:44 — page 808 — #820✐
✐

✐
✐

✐
✐

✐
✐

808 INDEX

viscous, 332
force-based formulations, 183
form

strong, 260
variational, 261
weak, 261

forward
dynamics, 3
kinematics, 3, 45, 51

four principles, 403
Fourier convergence, 711
frame

body, 17, 126, 573, 653
Frenet, 285
inner, 17
model, 460
outer, 17

free-form deformations, 288
Frenet frame, 285
frequency, 95, 371, 677

natural, 95, 269, 676
friction, 193, 381

air, 269
air coefficients, 270
coefficient, 121, 668
cone, 147, 193, 669
Coulomb’s law, 120, 134, 193, 667
dry, 668
dynamic, 120, 121, 134, 668
force, 120, 134, 193, 668
impulse, 195
motor force, 228
pyramid, 193
sliding, 134, 668
stable static, 134, 668
static, 120, 121, 134
tangential constraint, 221
torsional, 197
unstable static, 134, 668

full deformation collision law, 130
Full-Coordinate methods, 207
fully conservative coverage, 465

functional derivative, 597

Galerkin’s method, 261
gas constant, 282
Gauss elimination, 605
Gauss’ theorem, 593
Gauss’s theorem, 665
Gauss-Jordan elimination, 605
Gauss-Seidel method, 614
Gaussian kernel, 392
general assembly, 354
general position, 338
generalized

coordinates, 683
force, 684
joint limits, 226
joint parameters, 45
orientation, 185
position, 185
velocity, 185

geometric algorithms, 557
geometrical shapes, 2
geometry vectors, 764
GJK, 445, 555
global interpolation, 741
global parameter, 746
gradient, 592
gradient descent, 621
gravitational acceleration, 91
gravity

force, 332
waves, 372

Green’s strain tensor, 691

half-life time, 104
Hamilton’s principle, 686
Hamiltonian formulation, 89
hard constraints, 295
harmonic oscillator, 89, 269, 675

damped, 94, 269, 678
hash

function, 530
map, 530

“book” — 2005/9/30 — 15:44 — page 809 — #821✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 809

Hausdorff Distance, 467
heap, 171
heat, 128
heat diffusion equation, 709
Helmholtz-Hodge decomposition, 381
heterogeneous bounding volume hierarchy, 463
hierarchical decomposition, 529
hierarchical hash tables, 421
Hilbert-Schmidt norm, 311
hinge joint, 209

limit, 225
hinge-2 joint, 215
holonomic constraints, 198
homogeneous bounding volume hierarchy, 463
homogeneous coordinates, 46
Hooke’s Spring Law, 94, 268, 315, 347
Hooke’s spring law, 676
hybrid bounding volume hierarchy, 463
hydrostatic equilibrium, 387
hyperbolic, 706
hypothesis

Poisson’s, 132
Stronge’s, 133

Ideal Gas Law, 282, 382
ideal wave, 373
identity matrix, 576
image-based techniques, 557
impact zone, 445
implicit

Euler integration, 700
first-order Euler scheme, 106
function, 293, 557
integration, 299, 326, 701, 702
scheme, 266, 327

impuls-based simulation, 108
impulse, 129, 183

collision, 125, 129
force equivalence principle, 152
friction, 195
plastic sliding, 139
plastic sticking, 140

propagating, 152
space, 139
time-integral, 125

impulse-based simulator, 125
Impulse-Momentum Law, 133
impulse-momentum relation, 136
incompressible fluid, 380
incremental collision law, 125, 130
Incremental methods, 480
inertia forces, 340, 355
inertia tensor, 661
initial conditions, 269
initial value problem, 262
inner frame, 17
insertion sort, 417
integration, 131

4th-order Runge-Kutta, 700
analytical volume, 664
by dimension reduction and value propaga-

tion, 665
by parts, 642
explicit, 299
explicit Euler, 266, 697, 700
explicit midpoint, 700
implicit, 299, 326, 701, 702
implicit Euler, 700
numerical, 79, 89, 118
semi-implicit, 328, 703
semi-Lagrangian time, 388
time, 172, 366
trapezoidal, 700
Verlet, 267
volume by decomposition, 664

interference query, 506, 507
internal pseudo Voronoi regions, 552
International System, 378
interpolation

bilinear, 287
global, 741
splines, 72
trilinear, 273

intersection query, 435

“book” — 2005/9/30 — 15:44 — page 810 — #822✐
✐

✐
✐

✐
✐

✐
✐

810 INDEX

interval of dependence, 719
inverse

dynamics, 3
kinematics, 3, 45, 52
matrix, 577

inviscid
fluid, 381
gas, 384

inward mesh extrusion, 275
isotropic elastic stress tensor, 693
isotropic elasticity matrix, 347
isotropic materials, 340
iterative traversal, 457
IVP, 262

Jacobi method, 614
Jacobian

matrix, 53, 297, 300, 592
joint, 15

axis, 206
ball-in-socket, 199, 208
fixed, 219
generalized parameters, 45
hinge, 209
hinge-2, 215
limits, 222
motor, 227
parameters, 45
prismatic, 57
revolute, 57, 209
slider, 212
universal, 218
wheel, 215

jointed mechanism, 87

key-frames, 72
kinematic

constraint, 200
viscosity, 378, 381

kinematics, 3, 45
forward, 45, 51, 71
inverse, 45, 52
principle, 413

kinetic
contact energy, 139
energy, 128, 671

knot
insertion, 748
insertion algorithm, 752
value, 727
vector, 288, 727

Kronecker symbol, 190

Lagrange
equation, 686
formulation, 682
multipliers, 688

Lagrangian, 686
density, 306, 687
formulation, 89, 307
model, 307
strain tensor, 691

Lamé coefficients, 693
Landau symbol, 636
Laplace

equation, 716
operator, 595

law
algebraic collision, 130
collision, 130
compliant contact model collision, 130
Coulomb’s friction, 120, 134, 193, 667
full deformation collision, 130
Hooke’s spring, 94, 268, 315, 347, 676
ideal gas, 282, 382
impulse-momentum, 133
incremental collision, 125, 130
Newton’s first, 649
Newton’s impact, 132
Newton’s second, 265, 649
Newton’s third, 649
physical, 2

layered depth image, 276, 559
LCP, 190, 629
LDI, 276, 559

“book” — 2005/9/30 — 15:44 — page 811 — #823✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 811

left-handed coordinate system, 579
level set equation, 724
Lin-Canny, 533
line search, 622
linear

advection, 721
Cauchy strain matrix, 342
Cauchy strain tensor, 358
complementarity problem, 158, 190
interpolation, 72
least squares, 612
set of equations, 605
velocity, 127
viscosity force, 678

Linear Complementarity Problem, 629
Linear Elastostatic Model, 340
linear programming, 630
link, 15

length, 22
offset, 22
twist, 22

link rotation, 22
local parameter, 747
local support, 745
locality principle, 410
LP, 630
LU

decomposition, 609
factorization, 329

lumped mass matrix, 357

Maclaurin series, 635
mass damping coefficient, 367
mass-spring systems, 271
material coordinates, 305
mathematical

model, 2
programming, 7
tools, 2

mathematical programming, 630
matrix, 575

addition, 576

covariance, 475
cross product, 291, 581
damping, 326, 692
design, 612
determinant, 578
element damping, 356
element mass, 356
element stiffness, 349
elements, 575
field, 587
function, 588
identity, 576
inverse, 577
isotropic elasticity, 347
Jacobian, 53, 297, 300, 592
linear Cauchy strain, 342
lumped mass, 357
multiplication, 576
quaterion, 604
stiffness, 320, 340, 358, 692
trace, 577
transpose, 577
Vandermonde, 639

maximum principle, 717
maximum variance, 475
mean curvature, 309
mean value theorem, 635
mechanical energy, 672

conservation of, 672
mechanics, 260

applied, 260
computational, 260
experimental, 260
theoretical, 260

mesh
cartoon, 288
connectivity, 275
coupling, 273, 288, 367
degenerated, 276
inward extrusion, 275
surface, 274
tetrahedal, 273

“book” — 2005/9/30 — 15:44 — page 812 — #824✐
✐

✐
✐

✐
✐

✐
✐

812 INDEX

triangular, 299
unstructured, 272
unstructured solid, 273
volume, 273

method
least squares, 261
splitting, 711
time-integration, 172

metric tensor, 308, 316
Microsoft Visual Studio C++ .NET 2003, 771
midpoint method, 699
minimal coordinate methods, 7
minimum norm solution, 292
model

frame, 460
relaxation, 310
space, 460
space update, 460

modified tandem traversal, 496
motion

alignment, 13
blending, 13
capture, 13
constraint matching, 13
interpolation, 71
programs, 13
time-warping, 13

MSVC, 771
multibody, 87

animation, 87
dynamics, 87

multilevel gridding, 421
multiple queries, 402
multiplicity, 745
myopic view, 437

N-ary forces, 270
narrow-phase collision detection, 399, 433
natural coordinates, 337
natural frequency, 95, 269, 676
Navier-Stokes equations, 381
Newton’s

Collision Law, 148
first law, 649
impact law, 132
second law, 265, 649
third law, 649

Newton-Euler equations, 89, 184, 647
nodal displacements, 340
node forces, 340
non-holonomic constraints, 201
nonconservative forces, 672
nonlinear anisotropic material properties, 7
nonlinear Green-Lagrange strain tensor, 359
norm

Hilbert-Schmidt, 311
vector, 574
weighted Frobenius, 311

normal
angle-weighted vertex, 274
force, 668

normalized basis function, 727
nullspace, 611
numerical integration, 79, 89, 118

OBB, 405, 461
object space algorithms, 557
ODE, 262, 652, 695
OpenTissue, 769
optimal spatial hashing, 530
order, 695, 727
ordinary B-spline basis function, 749
ordinary differential equation, 89, 118, 262, 695
orientation generalized, 185
oriented bounding box, 405, 461
origin, 573
orthogonal coordinate system, 573
orthonormal basis, 573
outer frame, 17
over-constrained system, 611
over-damping, 679
over-relaxation, 260

paired joint coordinates, 17
pairwise tests, 455

“book” — 2005/9/30 — 15:44 — page 813 — #825✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 813

parabolic, 706
partial differential equation, 695, 703
particle, 265, 647

level set methods, 7
system, 266, 270, 650
trajectory, 284

PC, 437
PCS, 525
PDE, 695, 703
penalty

force, 90, 332
function, 293

penetration, 128, 547
penetration depth, 332
period, 677
permissible region in impulse space, 147
Petrov-Galerkin’s method, 261
phase, 677

compression, 128
restitution, 128
space, 265

physical laws, 2
physical realism, 1
physics-based animation, 1
pitch, 46, 653
pivot, 608
plane of contact, 437
plane of maximum compression, 146
plastic sliding impulse, 139
plastic sticking impulse, 140
plausible simulation, 1
point

anchor, 206
break, 741
control, 739
data, 741
of action, 649

point location, 401
Poisson equation, 381
Poisson’s hypothesis, 132
Poisson’s ratio, 347, 693
position

general, 338
generalized, 185
of center of mass, 652

potential
elastic energy, 306
energy, 671
energy function, 332
fields, 293
force, 270
function, 293

potentially colliding set, 525
predictions, 3
pressure, 378

force, 281
soft bodies, 281

principal contact, 437
principle

Animation, 1
approximation, 405
coherence, 412
contact force equivalence, 152
D’Alembert’s, 683
Hamilton’s, 686
impulse equivalence, 152
kinematics, 413
locality, 410
maximum, 717
of animation, 1, 13
of virtual work, 689
virtual work, 296

Principles of Animation, 13
prismatic joint, 15, 57
projection error-correction, 178
projection method, 333, 382
propagating impulses, 152
proximity query, 435, 506, 513
pseudoinverse, 55, 292, 613

QP, 630
quadratic programming, 630
quaternion, 600, 667

matrix, 604

“book” — 2005/9/30 — 15:44 — page 814 — #826✐
✐

✐
✐

✐
✐

✐
✐

814 INDEX

product, 600
rotation, 601

query
interference, 506, 507
intersection, 435
proximity, 435, 506, 513
recursive collision, 457
visibility, 525

radius of convergence, 636
Raleigh-Ritz method, 262
range searching, 401
Rayleigh damping, 367
recursive

collision query, 457
methods, 7
search algorithms, 552
tandem traversal, 457

Reduced Coordinate methods, 207
regular B-splines, 757
regular spline, 285
relative contact normal velocity, 132
relaxation, 295

model, 310
over, 260
successive over, 617

resonance effects, 108
rest shape, 310
resting contact, 128
restitution

coefficient, 128, 333
phase, 128

retroactive detection approach, 229
retroactive time control, 235
revolute joint, 15, 57, 209
right-handed coordinate system, 579
rigid body assumptions, 129
rigid body simulation, 87
rigidity factor, 272
rigidity tensor, 317
roll, 46, 653
rolling contact, 195

rotation, 593
quaternion, 601
theorem, 593

rotational kinetic energy, 675
Runge-Kutta method, 699

sample-based coverage, 465
scalar, 571

field, 587
scheme

Euler, 187
implicit integration, 299, 326
semi-implicit integration, 328
semi-Lagrangian time integration, 388
time-stepping, 173

scientific computing, 5
scleronomous constraint, 199
scripted

body, 76
motion, 76

second fundamental form, 309
second-order differential equation, 265

ordinary, 652, 676
second-order partial differential equations

quasi-linear, 707
secondary oscillations, 108
self-intersections, 434, 494
semi-implicit integration, 328, 703
semi-Lagrangian time integration, 388
separating contact, 128, 195
sequential collision resolving method, 125
sequential collisions, 152
SF, 260
shallow water equations, 387
shape functions, 342
shear viscosity, 378, 381
shearing diagonals, 273
shearing spring, 272
shock propagation, 176, 268
SI, 378
signed distance map, 534, 557
simplex methods, 9

“book” — 2005/9/30 — 15:44 — page 815 — #827✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 815

simplex-based algorithm, 434
simulation

loop, 91, 399
method, 399
rigid body, 87

simulator
constraint-based, 125
impulse-based, 108, 125
velocity-based, 125

simultaneous collisions, 152
single point of contact, 667
single traversal, 496
single-point collision, 125
singular value decomposition, 292, 611
slider joint, 212
slider joint limit, 222
sliding contact, 195
sliding friction, 134, 668
smoothing kernel, 392
SOR, 617
space product, 573
spatial

data structures, 434
diagonals, 273
hashing, 368
subdivision, 434, 451

spatial-temporal coherence analysis, 125
spheres, 405, 461
splatter method, 478
splitting method, 473, 711
splitting plane, 473
spring, 268, 676

angular, 279
bending, 272
coefficient, 94, 676
constant, 298
creation method, 272
exponential, 122
force, 332
shearing, 272
structural, 271
surface, 272

volume preserving, 274
spring-damper system, 89
stable static friction, 134, 668
stack layers, 177, 178
state

function, 667
variable, 59
vector, 46, 51, 296

static
contacts, 125
equilibrium, 340, 348
friction, 120, 134

stencils, 320
step doubling, 700
stiff ordinary differential equations, 701
stiffness

damping coefficients, 367
matrix, 320, 340, 358, 692
warping, 359

Stokes’ theorem, 593, 665
strain, 335, 340, 342

engineering shear, 693
rate, 692

strain tensor
Cauchy, 692
Green’s, 691
linear Cauchy, 358
nonlinear Green-Lagrange, 359

stress, 335, 340, 346
2nd Piola-Kirchoff, 692
viscous, 340

stress tensor
isotropic elastic, 693

strong form, 260
Stronge’s hypothesis, 133
structural spring, 271
subdivision, 473
subdomain method, 261
Subversion, 770
successive over relaxation, 617
surface meshes, 274
surface springs, 272

“book” — 2005/9/30 — 15:44 — page 816 — #828✐
✐

✐
✐

✐
✐

✐
✐

816 INDEX

SVD, 292, 611
SVN, 770, 774
Sweep and Prune, 416
sweep line, 416
sweeping volumes, 427
SWIFT, 533
systems in equilibrium, 87, 282

tandem traversal, 451
tangential contact velocity, 139
tangential friction constraints, 221
Taylor

approximation, 266
convergence, 710
expansion, 53
series, 266, 589, 635

Taylor’s theorem, 636
temperature, 378
tensor

B-spline, 288
curvature, 309
metric, 308, 316
rigidity, 317

tetrahedral mesh, 273
tetrahedron, 335
theorem

Gauss’, 593
Stokes’, 593, 665
Taylor’s, 636

theoretical mechanics, 260
Three-Dimensional Linear Elastostatics Model,

340
tightness of a bounding volume, 467
time

integral impulse, 125
integration, 172, 366
of impact, 166, 413, 433
of impact heap, 171
stepping method, 166, 173, 229

time-critical tandem traversal, 458
TOI, 166, 413, 433
top-down method, 472

topological errors, 276
torque, 658
torsion, 309
torsional friction, 197
total derivative, 379, 587
trace of a matrix, 577
trajectory, 647, 697
transfer-of-axe theorem, 665
translational kinetic energy, 675
transpose matrix, 577
trapezoidal integration, 700
traversal

breadth-first, 179, 273
iterative, 457
modified tandem, 496
recursive tandem, 457
single, 496
tandem, 451
time-critical tandem, 458

triangular mesh, 299
trilinear interpolation, 273
truncation error, 709

unary forces, 270
unconditionally consistent, 710
unconditionally stable, 106
unconstrained motion, 667
unilateral contacts, 198
universal joint, 218
unstable, 701
unstable static friction, 134, 668
unstructured meshes, 272
unstructured solid meshes, 273
upwind scheme, 723

V-Clip, 445, 533
Vandermonde matrix, 639
variational derivative, 311, 643, 688
variational form, 261
vector, 571

addition, 571
field, 587
geometry, 764

“book” — 2005/9/30 — 15:44 — page 817 — #829✐
✐

✐
✐

✐
✐

✐
✐

PHYSICS-BASED ANIMATION 817

knot, 288, 727
length, 571
norm, 574
of displacements, 316
product, 572
state, 46, 51, 296

velocity, 378, 647
contact, 127
generalized, 185
linear, 127
relative contact normal, 132
tangential contact, 139

velocity-based formulation, 183
velocity-based simulators, 125
Verlet integration, 267
VF, 261
virtual displacement, 348, 682
virtual work, 682
viscosity, 270

coefficient, 95, 678
kinematic, 378, 381
shear, 378, 381

viscous
fluid, 381
force, 332
stress, 340

visibility queries, 525
VoI, 559
volume

integration, 664
integration by decomposition, 664
intersection of, 559
mesh, 273
preserving springs, 274

volume-based algorithms, 434
volumetric representation, 557
von Neumann boundary conditions, 329
Voronoi

diagram, 536
internal pseudo regions, 552
plane, 536
regions, 447, 533

Voronoi-Clip, 533
voxelization, 273

wave
breaking, 377
equation, 719
gravity, 372
ideal, 373

WCS, 406, 460, 573, 649
weak form, 261
weighted Frobenius norm, 311
weighted residual method, 261
WF, 261
wheel joint, 215
work, 671

balance equation, 348
principle of virtual, 296
virtual, 682

work-energy theorem, 671
world coordinate axes, 653
world coordinate system, 406, 460, 573, 649
world space update, 460

yaw, 46, 653
Young’s modulus, 347, 693

“book” — 2005/9/30 — 15:44 — page 818 — #830✐
✐

✐
✐

✐
✐

✐
✐

