
Stable, Robust, and Versatile
Multibody Dynamics Animation

This is a Ph.D. dissertation in Computer Science at The Department of Computer
Science, University of Copenhagen, Denmark. Supervisor has been Knud Henriksen.

Kenny Erleben

November 2004
(Revised version, April 2005)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” i

c© Copyright 2004 by Kenny Erleben
All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the author.
This dissertation was set in LATEX by the author.

Contents

1 Introduction to Physics-based Animation 1
1.1 Scientific Computing Versus Computer Graphics in Practice 3
1.2 Classification . 5
1.3 Examples . 6
1.4 Introduction to Multibody Dynamics . 7

2 A Modular Approach to Rigid Body Simulators 9
2.1 A Modular Design . 10
2.2 The Simulation Component . 11

2.2.1 The Time-Control Module . 11
2.2.2 The Motion Solver Module . 14
2.2.3 The Constraint Solver Module . 15
2.2.4 The Collision Solver Module . 16
2.2.5 The Simulation Loop . 17

2.3 The Collision Detection Component . 17
2.3.1 The Broad Phase Collision Detection Module 18
2.3.2 The Narrow Phase Collision Detection Module 18
2.3.3 The Contact Determination Module 18
2.3.4 The Spatial-Temporal Coherence Analysis Module 19

2.4 Simulator Paradigms . 20
2.4.1 Constraint-based Methods . 20
2.4.2 Penalty Methods . 20
2.4.3 Impulse-based methods . 20
2.4.4 Collision Synchronization . 23
2.4.5 Hybrids . 23

2.5 Comparison With Existing Simulators 23
2.5.1 Open Dynamics Engine . 23
2.5.2 Vortex . 24

2.6 Discussion . 25

3 Spline Driven Scripted Motion 27
3.1 The Basic Idea . 29
3.2 The Linear Scripted Motion Function . 31

3.2.1 The Arc Length Function . 31
3.2.2 Arc Length Re-parameterization 34
3.2.3 Time Re-parameterization . 34

ii

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” iii

3.2.4 Computing the Derivatives . 36
3.3 Degenerate Cases . 38
3.4 Testing . 38
3.5 The Rotational Motion . 41
3.6 Discussion . 42

4 Constraint-Based Rigid Body Simulation 45
4.1 Introduction . 45
4.2 Previous Work . 46
4.3 Equations of Motion . 47
4.4 The Contact Condition . 50
4.5 Linearization . 54
4.6 The Frictional Case . 55
4.7 Joints . 60

4.7.1 Holonomic Constraints . 60
4.7.2 Non-holonomic Constraints . 64
4.7.3 A Unified Notation for Unilateral and Bilateral Constraints 66

4.8 Joint Modeling . 67
4.8.1 Joint Error . 68
4.8.2 Connectivity . 69
4.8.3 Error Reduction Parameter . 69

4.9 Joint Types . 71
4.9.1 Ball-in-Socket Joint . 71
4.9.2 Hinge Joint . 72
4.9.3 Slider Joint . 74
4.9.4 Hinge-2 Joint . 77
4.9.5 Universal Joint . 79
4.9.6 Fixed Joint . 81
4.9.7 Contact Point . 83

4.10 Joint Limits . 83
4.10.1 Slider Joint Limits . 84
4.10.2 Hinge Joint Limits . 86
4.10.3 Generalization of Joint Limits . 88

4.11 Joint Motors . 89
4.12 Time-Stepping Methods . 90

4.12.1 Numerical Issues with Retroactive Time Control 96
4.12.2 Unavoidable Penetrations . 97

4.13 A unified Object Oriented Constraint Design 99
4.14 Modified Position Update . 101
4.15 Constraint Force Mixing . 105
4.16 First Order World . 107

4.16.1 Single Point of Contact . 109
4.16.1.1 Penetration Correction 111
4.16.1.2 Continuous Motion . 111

4.16.2 Multiple Contact Points . 112

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” iv

5 Contact Graphs in Multibody Dynamics Simulation 115
5.1 The Contact Graph . 116
5.2 The Contact Graph Algorithm . 118

5.2.1 Edge Insertion and Removal . 119
5.2.2 Logical and Coherence Testing . 120
5.2.3 Narrow Phase and Short Circuiting 121
5.2.4 Contact Determination . 122
5.2.5 The Contact Groups . 122

5.3 The Event Handling . 124
5.4 The Spatial-Temporal Coherence Analysis Module 125
5.5 Using Contact Groups . 125
5.6 Results . 127
5.7 Discussion . 131

6 Velocity Based Shock-Propagation 136
6.1 Iterative Methods for solving LCPs in Multibody Dynamics 136

6.1.1 Iterative Matrix Solvers . 137
6.1.2 Convergence Testing and Stopping Criteria 143
6.1.3 Iterative Methods For Solving LCPs 145
6.1.4 Implementation of an iterative LCP solver 148
6.1.5 Optimization by Precomputation 150
6.1.6 Optimization of Matrix Computations 153
6.1.7 Applying an iterative LCP solver. 155

6.2 Collision Detection using Signed Distance Maps 162
6.2.1 Point Sampling . 164
6.2.2 Sphere Tree Acceleration . 167
6.2.3 Results . 170
6.2.4 Discussion . 174

6.3 Box Box Collision . 178
6.4 Velocity Based Complementarity Formulation with Shock-Propagation . 184

6.4.1 Review of Shock-Propagation . 185
6.4.2 Computing Stack Layers . 186
6.4.3 Adopting Shock-Propagation . 188
6.4.4 Weight Feeling Problem . 193
6.4.5 Rippling Effect . 193
6.4.6 Results . 197

6.5 Sleepy Policy . 198

7 Conclusion 208
7.1 The Future . 209
7.2 Seven Rules of Thumb . 210

List of Figures

1 128 balls falling through a funnel using a velocity based complementarity
formulation using constraint stabilization. Complementarity problems were
solved with Path [115]. Rendering was done using Maya r©. iv

2 A robot assembles itself during simulation using constraint stabilization.
Simulation was done using a velocity based complementarity formulation.
Complementarity problems were solved with Path [115]. Rendering was
done using Maya r©. iv

3 10 Jacks thrown into a motorized ventilator. Simulation was done using
a velocity based complementarity formulation. Complementarity problems
were solved with Path [115]. Rendering was done using Maya r©. v

1.1 Schematic overview of physics-based animation and simulation. Yellow ar-
rows are known from traditional engineering, blue arrows depict typical
extra steps taken in computer graphics, green arrows show steps common
to both engineering and computer graphics. 2

1.2 Example showing the difference in forward and inverse kinematics/dynamics.
In the inverse case, the starting and ending positions of the tool frame
(yellow) is known, whereas in the forward case, the end position must be
predicted. 6

2.1 The Simulation Loop. 10
2.2 At the top level a simulator consist of two components. 11
2.3 Complete General Purpose Modular Design. Red arrows show invocation,

blue arrows show returned results, and green arrows are special cases.
Dashed lines indicate computations by modules. Analogous to humans,
the time-control is the heart, red arrows are the aorta, blue arrows the
veins, and green arrows the nerves. 12

2.4 The Timewarp Algorithm. The object motion is desynchronized and global
simulation time is synchronized in the time-control. 13

2.5 The states of The Simulation Loop (see Figure 2.1) shown at the corre-
sponding places in the modular design of the simulation component (right
part of Figure 2.3). 17

2.6 A typical penalty-based simulator. 21
2.7 An impulse-based simulator using Mirtich’s approach. 22

v

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” vi

2.8 An impulse-based simulator using Guendelmann’s approach. Velocity up-
date occurs at the circled A, the position update occurs at the circled B,
and both the collision resolving and the contact handling iterates several
times with the collision detection. A contact graph is only used in the
constraint solver. 22

2.9 The Open Dynamics Engine version 0.035. 24
2.10 The Vortex Simulation Kit version 2.01. 25

3.1 The arc length estimate of a Bezier curve and the flatness measure. . . . 32
3.2 Recursive computation of the arc length of a Bezier curve. 33
3.3 Recursive computation of arc length at given parameter value. 33
3.4 Schematic drawing of the method for arc length re-parameterization. . . 35
3.5 Schematic drawing of the method for time re-parameterization. 35
3.6 Numerical evidence of the correctness of a spline driven scripted motion. 39
3.7 A spline driven scripted object moves into 125 balls organized into a regular

cube stack. Real world clock time per frame 0.01 seconds. 41
3.8 A spline driven scripted object moves inward in a spiral motion while

interacting with 2000 Balls on a table. Real world clock time per frame
0.2-0.3 seconds. 42

3.9 A spline driven scripted object is colliding with a 200 brick wall. Real world
clock time per frame 0.02-0.03 seconds 43

3.10 A spline driven scripted object interacts with a 320 brick tower. Real world
clock time per frame 0.03-0.04 seconds. 44

4.1 Illustration of the convention and notation of the contact normals. 48
4.2 The S matrix layout. 51
4.3 The M matrix layout. 51
4.4 The N matrix layout. 52
4.5 The C matrix layout. 52
4.6 The friction pyramid approximation for η = 6. Observe that the vectors

~dhk
positively span the friction pyramid. 56

4.7 The D matrix layout. 57
4.8 The E matrix layout. 59
4.9 A 2D illustration of a ball in a socket joint. 63
4.10 A ball-in-socket joint example. 71
4.11 A hinge joint example. 72
4.12 A slider joint example. 75
4.13 A car wheel joint example. 78
4.14 A universal joint example. 80
4.15 Fixed time-stepping. 91
4.16 2D illustration of the problem with violated contacts in a fixed time step-

ping due to overlooking potential furture contact. Small white circles show
valid contacts, small black circles show violated contacts. Notice that con-
tacts not detected at time t will be detected as violated contacts at time
t + dt. 91

4.17 Retroactive detection of contacts in a fixed time-stepping method. 92

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” vii

4.18 2D example showing visual artifacts of resolving future contacts at time t.
The elastic ball never touches the fixed box before it bounces, while the
inelastic ball is hanging in the air after its impact. 92

4.19 A system moving along a concave boundary of the admissible region in
configuration space. 93

4.20 Different ways to project a violated contact back into a valid contact. The
horizontal projection does not change the potential energy of the box, while
both the vertical and the inclined projections increase the potential energy.
In the following time-step, the added potential energy is transformed into
kinetic energy, resulting in a more violent collision between the two objects. 94

4.21 An example of constraint stabilization on a violated contact of a resting
box causing the box to bounce off the resting surface. 94

4.22 Fix-point-iteration algorithm, Typical values according to [129] are ∆t ≤
10−3 and ǫfix ≤ 10−4. 95

4.23 Explicit time-stepping with retroactive detection of colliding contacts. . . 95
4.24 Example of retroactive advancement based on a bisection root search al-

gorithm. 96
4.25 Illustration of how penetrations can occur with fixed semi-implicit time-

stepping. 98
4.26 Allocate system matrix and setup sub-block structure for constraints. . . 102
4.27 Fill-in data in sub-block structure for constraints and bodies. 103
4.28 The constraints design. Observe the unification of contacts and joints. . . 104
4.29 Position update on i’th body. 106
4.30 A sequence in a first order world simulation where two identical objects

are aligned. The left box is pulled to the right. Observe that both the left
and right boxes are equally affected. 108

4.31 A sequence in a first order world simulation where two objects of different
mass are aligned. The left box has less mass than the right box. The left
box is pulled to the right. Observe that the heavier box on the right is less
affected than the light box on the left in comparison with Figure 4.30. . . 108

4.32 First order world simulation used to correct penetration error. The left
figure shows initial state, while the right shows the corrected state. Observe
that when corrected, the upper box is both translated and rotated. . . . 108

5.1 Contact graph data structures. 118
5.2 A contact graph example. The symbolic notation is listed in Table 5.1. . 118
5.3 Edge insertion and removal. 119
5.4 Logical and coherence testing. 120
5.5 Narrow phase and short circuiting. 121
5.6 Contact determination. 122
5.7 Connected components search. 122
5.8 Traverse group . 123
5.9 Example contact groups. 123
5.10 Event handling. 124
5.11 Spatial-temporal coherence analysis module. 126
5.12 120 falling spheres onto inclined plane with engravings. 127

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” viii

5.13 The brute force method. In this case there is only one large contact group. 128
5.14 The performance impact of using a contact graph to determine independent

contact groups. 129
5.15 Motion results of selected combinations of speed up. 133
5.16 Performance measurements on the four selected combinations of speed ups. 134
5.17 Figure showing sleepy object hanging in the air. Purple means sleepy, red

moving, blue absolute rest, and green fixed. Frame grabs of simulation at
time 9.8 secs and 9.87 secs using zeroing, damping, subgrouping and fixation.135

6.1 The Jacobi method. 139
6.2 The Gauss-Seidel method. 140
6.3 The SOR method. 142
6.4 Illustration of the complementarity condition on the i’th variable. 146
6.5 LCP SOR method, with upper iteration bound. 149
6.6 SOR LCP method with permutation of variables and fixed iteration limit. 149
6.7 Linear dependent limits and index array. 150
6.8 Warm-starting with early exiting. 151
6.9 Inner loop of iterative SOR LCP method. 152
6.10 Improved inner loop of the iterative SOR LCP method. 152
6.11 Using zero entries of the i’th column of JT to reduce computations of the

i’th column of M−1JT . Entries marked with blue correspond to the k’th
body, and entries marked in red corresponds to the l’th body. White entries
are zero. 153

6.12 A grid stack of 125 balls, using, 10 iterations with Gauss Seidel. 156
6.13 A grid stack of 125 balls, using, 100 iterations with Gauss Seidel. 156
6.14 A stack of 25 boxes on top of each other, using 10 iterations with Gauss

Seidel. 157
6.15 A stack of 25 boxes on top of each other, using 100 iterations with Gauss

Seidel. 157
6.16 A stack of 25 boxes on top of each other, using 1000 iterations with Gauss

Seidel. 158
6.17 A stack of 25 boxes on top of each other, using 10000 iterations with Gauss

Seidel. 158
6.18 A wall of 200 bricks, using 10 iterations with Gauss Seidel. 159
6.19 A wall of 200 bricks, using Gauss Seidel with and without error correction

by projection. 160
6.20 A tower of 320 bricks, using 10 iterations with Gauss Seidel. 161
6.21 A tower of 320 bricks, using Gauss Seidel with and without error correction

by projection. 162
6.22 Frame times of the box stack configuration as a function of increasing

iterations: 10, 100, 200, 400, . . . , 1000, 2000, 10000. 163
6.23 Two ball configuration with large mass ratios. For 64000 iterations the

simulation becomes visually stable. Frame times take rougly 0.01 seconds
when using 64000 iterations per time-step. 163

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” ix

6.24 An illustration showing why face re-sampling is needed. On the left no face
re-sampling is used, and box A is thus not prevented from sinking down
into box B, while on the right, a face sampling point ensures a contact
point is generated to prevent penetration. 165

6.25 Point re-sampling of box object. 166
6.26 Point re-sampling of cow object. 167
6.27 The difference between sensible re-sampling and oversampling. Notice how

normals rotate when edges cross. Where they are horizontal instead of
vertical due to the local property of signed distance maps. 168

6.28 Sphere tree of vertex, edge, and face point re-sampling of box object. . . 169
6.29 Sphere tree of vertex, edge, and face point re-sampling of cow object. . . 169
6.30 The sphere pruning test has been extended to a sphere-primitive collision

detection test against the signed distance map. 170
6.31 Still-frames from a sliding boxes configuration using the brute force approach.171
6.32 Still-frames from a billiard ball configuration using sphere-trees. 172
6.33 Still-frames from a see-saw configuration using sphere-trees. 173
6.34 Still-frames from a flip-over configuration using sphere-trees. 174
6.35 Still-frames from a box-stack configuration using sphere-trees. The boxes

are not moving as the simulation progresses. 174
6.36 Still-frames from a wall configuration using the brute approach. 175
6.37 Still-frames from a wall configuration using the brute approach. Boxes are

initially displaced by a small distance and during the explicit time-stepping
the boxes will slightly penetrate. Due to the local property of the signed
distance maps, unfortunate contact normals are generated pointing in a
horizontal direction causing a blow-up. 175

6.38 Still-frames from cow pile configuration using sphere-trees. 176
6.39 Frame time plots comparison. 177
6.40 Contact point count plots comparison. 178
6.41 Contact generation using the old box-box test. 180
6.42 2D projected view of two boxes illustrating when an edge-edge case is

picked over face-case. 181
6.43 Animated box-box collision sequence using the old box-box method. . . . 181
6.44 Animated box-box collision sequence using the improved box-box method. 182
6.45 Wall simulation using the old box-box method. Blue arrows show contact

points and contact normals. 183
6.46 Wall simulation using the improved box-box method. Blue arrows show

contact points and contact normals. 183
6.47 Pseudo-code version of the general shock-propagation algorithm. 186
6.48 Simple stacked objects annotated with stack height. 186
6.49 Non simple stacked objects annotated with stack height. Free floating ob-

jects are marked with a question mark. 187
6.50 Initialization of stack analysis algorithm. All bodies in a contact group are

traversed, fixed bodies are identified and are then added to a queue for
further processing. 187

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” x

6.51 A breadth-first-traversal is performed assigning a stack height to each body
equal to the number of edges on the minimum path to any fixed body.
Edges of the contact group are collected into a list for further processing. 189

6.52 Building stack layers by processing all edges and bodies by examining their
stack height and layer indices. 190

6.53 A grid stack of 125 balls with severe penetrations using 5 iterations with
Gauss Seidel and no shock-propagation. 191

6.54 A grid stack of 125 balls with severe penetrations using 5 iterations with
Gauss Seidel and shock-propagation. 191

6.55 Errors can not be corrected by shock propagation if there are cyclic de-
pendencies. 192

6.56 Pseudo-code of the velocity based shock-propagation algorithm. f denotes
the weighting of the dynamics vs. the shock-propagation. 192

6.57 Rippling effect seen in a 640 brick tower simulation using f = 0.025. . . . 194
6.58 Rippling effect seen in a 640 brick tower simulation using f = 0.05. . . . 195
6.59 Penetration errors causing a rippling effect in a 640 brick tower simulation

using f = 0.05. Penetration depths are drawn as red arrows, multiplied by
a factor of 50 for better visualization. 195

6.60 Pseudo-code of the modified velocity based shock-propagation algorithm
which adds robustness against rippling. 196

6.61 Rippling effect caused by high speed moving objects, changing their stack
height to a lower layer. 196

6.62 Three test configurations simulated using the modified velocity based shock-
propagation algorithm. Simulation results of these configurations can be
seen in Figure 6.30, Figure 6.38, and Figure 6.72. 197

6.63 Massive number of balls falling into a box silo, total number of objects is
3000. 198

6.64 Total frame times and generated contact points as functions of frame number.199
6.65 Total time spent on time-stepping as function of the number of contact

points. That is the total frame time minus total time spent on collision
detection. 200

6.66 Total time spent on collision detection as a function of the number of
contact points. That is to say, the total frame time minus the total time
spent on time-stepping. 200

6.67 Box-stack simulation with a low restitution coefficient of 0.1. Blue objects
indicate sleepy objects. Observe that in the fifth frame, i.e. 0.04 seconds,
all objects are sleepy. 202

6.68 Box-stack simulation with a medium restitution coefficient of 0.4. Blue
objects indicate sleepy objects. The large coefficient of restitution causes
simulation errors to be propagated between neighboring boxes. It takes 28
frames (not shown) before all the boxes turn sleepy. 203

6.69 Box-stack simulation with high restitution coefficient of 1.0. Blue objects
indicate sleepy objects. Notice that the combination of large restitution
and simulation errors causes the box stack to blow-up. 204

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” xi

6.70 Wall simulation with f = 0. Friction was 0.25 and restitution was 0.4.
Simulation time-step was 0.01 seconds. Blue objects indicate sleepy objects.
Notice that all wall bricks are quickly turned sleepy, even the upper left
most brick. This is due to using an over-aggressive sleepy threshold. . . . 205

6.71 Wall simulation with f = 0.125. The wall contains 200 bricks of dimension
1m×1m×1m. Friction was 0.25 and restitution was 0.4. Simulation time-
step was 0.01 seconds. Blue objects indicate sleepy objects. Notice how
internal bricks of the wall are turned sleepy, whereas the “tooth” along the
side of the wall is non-sleepy, as expected. 206

6.72 Tower simulation with f = 0.01. The tower contains 640 bricks of dimen-
sion 1.5m×1m×1m. Friction was 0.25 and restitution was 0.1. Simulation
time-step was 0.01 seconds. Blue objects indicate sleepy objects. Notice
how objects change their sleepy state on impact. 206

List of Tables

2.1 Notation used in typical ODEs. 14

5.1 Node types. 116
5.2 Edge types. 117
5.3 Event types. 124
5.4 The performance effect of dividing simulation into independent contact

groups. 128
5.5 Comparison of various combinations of performance speed-up methods.

“+” means enabled, “-” means disabled. 132

6.1 Matrix forms of iterative matrix solver methods. Top is Jacobi method,
middle is Gauss-Seidel method, bottom is SOR method. 143

6.2 Convergence rates of iterative LCP solvers. N is number of variables, ε is
wanted accuracy. 159

6.3 Frame timings for the first 500 frames of the ball grid, wall, and tower
simulations. 161

6.4 Statistics of box object, mesh has 152 vertices, 450 edges, and 300 faces. 166
6.5 Statistics of cow object, mesh has 752 vertices, 2250 edges, and 1500 faces. 167
6.6 Frame time statistics for different configurations using signed distance

maps. A value of zero means that time duration were less than the timer
resolution. 172

6.7 Statistics over the number of contacts for different configurations using
signed distance maps. 173

xii

Abstract

This dissertation is concerned with the theory and difficulties of stable, robust, and versa-
tile multibody dynamics simulation for the purpose of computer animation. The subjects
covered touch many aspects in simulation and animation including convergence rate,
numerical errors, time-stepping, error-correction et cetera.

From an algorithmic viewpoint, the most novel contributions are considered to be
a velocity-based shock-propagation time-stepping scheme, and a method for computing
general scripted motion. A formal presentation of contact graphs and their usage is given.
Also discussed is insight into speed-up methods, object oriented design of constraints, and
optimized and easy implementation of iterative linear complementarity problem (LCP)
solvers. Contributions to the subject of collision detection include improvements of using
signed distance maps for collision detection and contact point generation for box-box
primitives.

The focus of the dissertation is technical and theoretical. Great effort has been made
to show clearly how one should approach an implementation of the presented material.
An implementation of all the presented algorithms and data structures has been made
publicly available in [113].

Preface

To put this dissertation in a proper perspective, I feel it is important to give a little
insight into my background history and motivation for working in the field of physics-
based animation.

As a first year undergraduate student in physics, with a fascination of classical me-
chanics, the course of my studies was layed down, inspired by computer games such as
Scorched Earth (Shareware Computer Game by Wendell Hicken, 1991) just to mention
one. Here, simple Newtonian physics was used to compute trajectories of bombs being
fired by small tanks placed in a 2D landscape. The idea itself of using a computer com-
bined with the laws of physics to predict events in a completely dynamic way were so
interesting and appealing that today I am still captivated with this fascination. It did
not take long before my study interests moved from physics towards computer science. In
particular, computer graphics and computer animation became the major topics forming
a common theme in my (under-) graduate studies.

Being the sole person at the time in the computer science department having this weird
craving for doing computer physics, it took considerable time to build up the necessary
skills and knowledge for performing simulations more impressive than computing the
trajectory of a thrown ball. A lot of computer science disciplines were needed to be
learned: Numerical methods, computational geometry, and operational research, as well
as trained skills in mathematics and physics.

In May 2001, a study of rigid body simulation methods ended up as my Master
Thesis. Written as an introductory textbook in simple rigid body simulation, the main
contribution of this work was a unifying modular concept for building rigid body sim-
ulators. Simultaneously while writing my Master Thesis, I was working in the industry
(3DFacto ApS) developing simulation tools similar to virtual prototyping for a configu-
ration software application. Thus, when starting on my Ph.D. study in November 2001,
a solid theoretical foundation in physics-based simulation was already formed together
with real-life practical experience. With this background in mind, it is no surprise that
during my Ph.D. study the topics have spaned widely. A small list follows below with
topics and references for my publications.

• Approximating Heterogeneous Bounding Volume Hierarchies [46].

• An Improved Modular Design for Rigid Body Simulation [56].

• Scripted Bodies using Kinematical Splines [54].

• Contact Graphs in Multibody Dynamics Simulation [48, 49].

• Multi-Scale Singularity Bounding Volume Hierarchy [133, 134].

i

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” ii

• Thin Shell Tetrahedral Meshes [50, 51].

• Balance Strategies [116].

• Collision Detection of Deformable Volumetric Objects [55].

• A Simple Plane Patcher Algorithm [47].

To put this dissertation in perspective, it should be mentioned that the work on multi-
scale singularity bounding volume hierarchies and balance strategies are based on earlier
research co-published with Kerawit Somchaipeng and Camilla Pedersen.

Being a Ph.D. student at DIKU, there has been a multitude of collaborations and
initiatives going on in parallel with my studies. During the first year of my Ph.D.,
the Dynamics Network was formed as a contact network for people in Denmark doing
physics-based animation. Later, collaboration with 3DLab, Anybody Technology, and
IO-Interactive was started, and this collaboration has resulted in multiple discussions on
simulation methods, physics modeling, et cetera. Especially the first two have motivated
my increasing interest in simulating deformable objects, such as the soft tissue of humans.
The Graphics Group at IMM, DTU has always been supportive and helpful. Lately, they
have contributed to the OpenTissue project, an Open Source project started at DIKU.
Most recently, DIKU has co-chaired the 45th Conference on Simulation and Modeling1,
where I was a member of the national organizing committee. During the last three months
of my Ph.D. study I visited David Stewart at the Department of Mathematics, University
of Iowa.

Besides my Ph.D. dissertation the two other major results of my labor are:

The OpenTissue Project: An Open-source Library for Physics-based Animation [113].
A low level application programming interface (API) and a playground for future
technologies in middle-ware physics for games and surgical simulation.

Physics-based Animation Textbook: An advanced textbook for graduate students
in computer science. This book is the first of its kind, and we, the authors: K.
Erleben, J. sporring, K. Henriksen, and H. Dohlmann, feel it fills a gap in the
graphics community for a textbook specific for this topic.

Although my study has taken me on quite a round trip topic-wise, my research has focused
on three main problems in physics-based animation:

Collision Detection:

• Better methods for building spatial data structures for collision detection of
rigid bodies.

• Reducing the computational disadvantages of working with deformable ob-
jects, especially self-collision.

1The conference is organized in cooperation between Technical University of Denmark, Copenhagen
University and Aalborg University and the two organizations: Scandinavian Simulation Society and
Danish Simulation Society.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” iii

Control:

• Better methods for controlling an animation, like making a body move along
a spline in a kinematically correct way, or making an articulated figure keep
its balance.

Efficiency, Performance, and Robustness:

• Better data structures for caching and exploiting previously computed results.

• Evaluation of various speed-up ideas. It is interesting to see how performance
and simulation quality behaves when a short-cut is used for getting better
running time.

• Pitfalls in time-stepping schemes, error-correction, numerical methods for solv-
ing LCPs, object design for multibody constraints, new simulator paradigms
for obtaining better performance, and robustness towards faulty input and
simulation failures.

Traditionally, these three problems have been claimed to be the major bottlenecks by just
about every researcher in the field, as can be seen by the ACM SIGGRAPH proceedings
in the period from 1987 and up to today 2004. Lately, the field has put much attention
towards solving these problems.

Due to time and space limitations I have chosen to limit myself to only present results
of my work with multibody dynamics during the course of my Ph.D. study. Thus no work
prior to my Ph.D. is published in this dissertation. Some of the presented results have
been published over the duration of my Ph.D. study. Here follows a small list of topics in
this dissertation:

• Kinematical spline driven scripted bodies.

• A new concept-based module design for building rigid body simulators.

• A introduction to velocity based complementarity formulations of multibody dy-
namics.

• An object oriented design for constraints in multibody dynamics.

• A formal presentation of usage of contact graphs in multibody dynamics.

• Using first order world simulation to handle simulation errors by projection.

• A presentation of the theory behind an effective iterative LCP solver for Multibody
dynamics simulation.

• Combining velocity based complementarity formulation with shock-propagation.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” iv

Figure 1: 128 balls falling through a funnel using a velocity based complementarity
formulation using constraint stabilization. Complementarity problems were solved
with Path [115]. Rendering was done using Maya r©.

Figure 2: A robot assembles itself during simulation using constraint stabilization.
Simulation was done using a velocity based complementarity formulation. Comple-
mentarity problems were solved with Path [115]. Rendering was done using Maya r©.

As far as I know, these topics are novel and unique contributions in the field of physics-
based animation.

I consider this dissertation to be an advanced text in physics-based animation of
multibody dynamics. Therefore, I assume that the reader is familiar with the field, and
is familiar with physics and mathematics at a graduate level. To give the reader an idea
of the required level of background knowledge, the following works should be considered
basic knowledge by the reader: [19, 16, 100, 140]. A textbook or two on classical mechanics
will also not hurt, for instance [85, 65]. If the reader has no idea of what these references
are then there is little chance of fully understanding every part of this dissertation. I
hope that with this dissertation the reader will gain skills and knowledge for producing
high-quality and complex animations of multibody dynamics. If the reader has tried
to implement the methods in the cited background work, it will be no surprise that
these methods are difficult to implement in a general setting. Sometimes one is even left
wondering if the methods work at all. This dissertation fills the gap. If the reader applies
the theory presented, a simulator producing the images in Figures 1-3 can be implemented
within a reasonable amount of time.

Thanks to family and friends for support and love. Thanks to colleagues,
collaborators, and students for creating a motivating and inspiring working

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” v

Figure 3: 10 Jacks thrown into a motorized ventilator. Simulation was done us-
ing a velocity based complementarity formulation. Complementarity problems were
solved with Path [115]. Rendering was done using Maya r©.

environment. Thanks to Stig Skelboe, Matthias Teschner and Robert Brid-
son for serving on my defense commitee. Thanks to Dan Erik Petersen for
proofreading.

April 2005
Kenny Erleben

Chapter 1

Introduction to Physics-based
Animation

For a long period of time people in computer graphics have been trying to increase realism
and believability in computer generated animations and pictures. Some of the original
work includes [10, 144, 106, 71, 23, 118, 11, 22].

The general belief is that as we get better and better at rendering images, the lack
of physical realism and believability will be more obvious and therefore more annoying
to the common observer. The main argument in achieving the goal of more realism has
been to use physics to model the behavior and movement of computer models. Today,
these efforts have accumulated in what is usually referred to as physics-based animation
or modeling.

The field was first named in a course in the 1987 ACM SIGGRAPH (the Association
for Computing Machinery’s Special Interest Group on Computer Graphics) conference,
“Topics in Physically-Based Modeling” organized by Alan H. Barr.

Physics-based animation is a highly interdisciplinary field, based on theory from engi-
neering [156, 140, 117, 44], physics [18], and mathematics. Most noticeable are simulation
models based on traditional engineering methods used in robotics [39, 59] and solid me-
chanics [73, 143]. The use of forward dynamics in this field is a way of life, and a popular
one too, but not all feel that this is the answer to all our problems.

In a movie production pipeline, it is generally believed that using physics inhibits the
creativity and esthetics of an animator. The reason for this is quite obvious. It is hard
to be true towards a physical model, while at the same time using every aspect of the
“Principles of Animation” [91, 63]. The simple fact that animators do not respect the laws
of physics and have no shame in putting their characters in unnatural poses underlines
the desire for not being 100% physically correct.

In recent years a new field, maned “plausible simulation” [25], has manifested it-
self. Techniques, like sampling the entire range of possible simulations using forward
dynamics [78], and optimization of physical constraints [153, 120, 119, 57, 95] have been
proposed. Animating physically realistic human characters is especially challenging. One
might think that this is much simpler than chaotic simulations of natural phenomena like
water [62] and smoke [60]. However, human observers are fine tuned to recognize human
cues from motion patterns such as e.g. emotions and gender. Any new effort toward im-
proving the physical realism of animating human characters is therefore valuable both to

1

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 2

Figure 1.1: Schematic overview of physics-based animation and simulation. Yellow
arrows are known from traditional engineering, blue arrows depict typical extra steps
taken in computer graphics, green arrows show steps common to both engineering
and computer graphics.

the application and the research.
This dissertation is not concerned with “Principles of Animation”, nor does it at-

tempt to qualify or quantify believability or plausibility of the presented methods and
algorithms. It is not concerned with the rendering process, nor animation systems. In-
stead, this dissertation is firstly devoted to give the reader a firm and solid foundation for
understanding how the mathematical models are derived from physical and mathematical
principles, and secondly, how the mathematical models are solved in a efficient, robust,
and stable manner on a computer.

Physics-based animation is a highly inter-disciplinary field, making it difficult to draw
sharp lines/borders between it and other fields such as engineering and scientific comput-
ing. In the following, a rough outline of the differences in these fields are sketched.

One way to look at physics-based animation is that we take a lot of theory from
physics and mathematics, add some geometry to it, and mix it all together to obtain a
mathematical model of our real world. Once this model is obtained, it can be remodeled
into a numerical model which can be implemented on a computer. Predictions about the
real world can now be computed using the computer. These predictions can say something
about where we expect things to move (forward kinematics and dynamics), or it can tell
us something about how we should affect an object in order to obtain some desired
movement (inverse kinematics and dynamics). This view of the world is schematized in
Figure 1.1. This view of the world is often taken in engineering disciplines. The goal is
often to say something about what we can expect to happen in the real world over a long
duration of time and with high accuracy.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 3

There is a wide range of techniques used to obtain the numerical model. These tech-
niques have been developed with great care such that the numerical results converge
towards the “results” of the mathematical model in the limit of very small time-steps
and small spatial discretizations.

However, it is often the case that neither the mathematical model nor the numer-
ical techniques known from engineering are useful for computer animation. Computer
animation favors high visual detail, high performance, and low memory consumption.
The engineering approach is often not interested in momentary visual details, since their
problems often involve answering what happens over 100 years. In order to accurately
predict these events, computation time or memory consumption is often high compared to
those used in computer graphics. If an engineering application should compute whether a
bridge would hold for 100 years, it would be justified to have tens or hundreds of comput-
ers produce the result over days or weeks. In contrast, in computer animation we would
rather be able to visualize the crashing bridge on our laptop in real-time.

Due to these differences between engineering and computer graphics, computer scien-
tists remodel the mathematical models to favor visual details and choose numerical tech-
niques favoring speed, robustness, and stability over accuracy and convergence. These
tradeoffs result in a “computer graphics model”. Of course, a lot of the work and models
in computer graphics are based on models and methods used in engineering.

The remodeling and extra steps typically done by computer graphics scientists are
depicted in Figure 1.1 with blue arrows. The arrows are not unique to computer graphics.
There are examples in scientific computing where visualization is just as important, but
in many cases there are differences. For instance, in some cases in engineering flow fields
may be visualized by arrows or particle traces instead of real smoke, which is what we
want to see in computer graphics.

1.1 Scientific Computing Versus Computer Graphics

in Practice

The engineering methods are dominated by the field of scientific computing . Looking at
some of the applications, it becomes clear that the diversity is large.

The numerical wind tunnel at RISOE www.risoe.dk/vea-aed/numwind/ uses a hy-
perbolic grid generator for both two-dimensional and three-dimensional domains. Navier-
Stokes fluid-flow equations are solved using EllipSys2D/3D code which is an incompress-
ible finite volume code. The computation of a stationary wind mill rotor takes roughly
50 CPU hours. Using 14 CPUs (3.2GHz Pentium M, 2GB RAM) in a cluster, makes
the simulation take about 4 hours. Non-stationary computations take three to four times
longer [80].

In atomic-scale materials, physical simulations of plastic deformation in nano crys-
talline copper are done on a cluster (Niflheim, 2.1 Teraflops) of everyday PCs. A sim-
ulation involves 100 nodes running in parallel and often takes weeks to complete (www.
dcsc.dk).

Fluid mechanics involves a wide range of flow problems. Three-dimensional non-
stationary flows typically requires 10 − 100 × 106 grid nodes and uses up to 1000 CPU
hours per simulation (www.dcsc.dk).

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 4

Solid mechanics are also simulated (www.dcsc.sdu.dk/) but often not visualized [149].
In quantum chemistry, problems often involve 109 variables and simulations can take

up to 10 days or more to complete [128].
Computational astrophysics (http://www.nbi.ku.dk/side22730.htm) involves sim-

ulations of galaxy, star and planet formations. Smoothed particle hydrodynamics and
adaptive mesh refinement are some of the methods used. Computations often take weeks
or months to complete [110].

Weather reports are simulated continuously and saved to disk regularly at DMI (www.
dmi.dk) and information is saved every 3 hours. 48-hour predictions are computed on 2.5
grid nodes using a time-step size of two minutes. The total number of computations are
on the order of 1012 and solved on very large super computers [127].

Real-time is often not a very useful term in scientific computing. For instance, in
chemistry, simulated time is on the order of pico seconds but the computation takes days
to complete. The main idea of the simulations is often to see a chemical process in slow
motion in order to observe what is happening. This is something that is not doable in
a laboratory. In contrast, astrophysics and sea simulations are on slower time scales and
are therefore simulated at higher rates. In sea flow simulations, a couple of hundred years
are simulated per day. In conclusion, turn-around time is often of the order of 24 hours
to 30 days [149].

From this short survey of scientific computing it seems that large super computers
and clusters are often used. The amount of data is astronomical and computation times
cover a wide range from minutes to hours, from hours to days, and weeks and months
are not unheard of. Visualization ranges from simple arrow illustrations of flow fields to
quite advanced scientific visualization.

Looking at physics-based animation in the graphics literature, a slightly different
picture is shown than the one seen in scientific computing.

Smoke simulations for large scale phenomena [121] using half a million particles takes
2-10 secs. of simulation time per frame, while the rendering time takes 5-10 minutes per
frame (2.2 GHz Pentium 4). In [95], key frame control of smoke simulations takes between
2-24 hours to perform on a 2GHz Pentium 4. Target driven smoke simulations [58] on a
2.4 GHz Pentium 4 in 2D on a 2562 grid takes 50 secs.. It takes 35 minutes for a 1 second
animation in 3D on a 1283 grid.

In [61] suspended particle explosions are animated. The simulation time ranges from
4-6 secs. per frame on a 3GHz Pentium 4. With render times included, a simulated second
is on the order of minutes. Animation of viscoelastic fluids ([64]) using a 403 grid runs
at half an hour per second of animation on a 3GHz Pentium 4. Animation of two way
interaction between rigid objects and fluid [34] using a 64 × 68 × 84 grid on a 3GHz
Pentium 4 with 1 GB RAM takes 401 simulation steps for one second of animation with
average CPU time per simulation step of 27.5 secs.

Robust cloth simulation without penetrations [28] of a 150× 150 node piece of cloth
runs at 2 minutes per frame on a 1.2 GHz Pentium 3. Untangling of cloth [20] for a cloth
model with 14K vertices yields an additional cost of 0.5 secs simulation time per frame
on a 2GHz Pentium 4. Changing mesh topology [105] during simulation for 1K triangles
runs at 5-20 minutes per frame, and for 380K tetrahedra, runs at 20 minutes per frame.
Stacked rigid body simulation [70] with simulations of 500-1000 objects takes 3-7 minutes
per frame on average.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 5

Finally, there is the entire field of interactive and real-time applications such as virtual
reality, virtual prototyping and computer games. These distinguish themselves in two
ways: Turn-around time is instant and end-users are interacting with the world.

In contrast to computers used in scientific computing, game consoles such as the Play
Station 2, only has 32 MB RAM and 6.2 GFLOPS (www.playstation.com) and everyday
living room PCs are for the most part inferior to those PCs used by computer graphics
researchers. This has called for some creative thinking in computer game development to
reach stringent performance requirements. Furthermore, there must be set time aside for
other tasks in such applications as computer games. For instance, in the Hitman game
from IO-Interactive, only 5-10% of the frame time is used for physics simulation [79]

The future may change these hardware limitations. For instance, recent GPUs do not
suffer from latency problems and promise 60 GFLOPS (www.nvidia.com). Also PPUs
(www.ageia.com) seems to be an emerging technology. Finally, Cell chips (www.ibm.com/
news/us/en/2005/02/2005_02_08.html) are also promising.

From this short literature survey of recent work on physics-based animation in com-
puter graphics, it is quite clear that methods are used which have frame times ranging
from the order of seconds to hours running on single PCs. In conclusion, design work
both in computer graphics and scientific computing requires reasonable low turn-around
times.

This dissertation is mainly concerned with the demands of interactive and real-time
applications, and not scientific computing nor special effects creation.

1.2 Classification

At the highest level, the field of physics-based animation and simulation can roughly be
subdivided into two large groups called kinematics and dynamics. Kinematics is:

The study of motion without considerations of mass or forces.

Dynamics is:

The study of motion taking mass and forces into consideration.

But the story does not end here, because kinematics and dynamics come in two flavors
or subgroups:

• Inverse.

• Forward.

In the first subgroup, one typically knows where to go, but needs to figure out how to do
it. As an example, one might know the end position of a tool frame of a robot manipulator,
without knowing what forces and torques to apply at the actuators in order to get to the
final destination. In other words, inverse kinematics and dynamics computes the motion
“backwards”. Forward kinematics and dynamics work exactly in the opposite way. Using
the same example as before, one typically knows the starting position of the tool frame
and the forces and torques acting through the actuators. The goal is then to predict
the final destination. The difference between inverse and forward kinematics/dynamics is
illustrated in Figure 1.2.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 6

t

t+dt

Inverse

t

t+dt

Forw
ard

Figure 1.2: Example showing the difference in forward and inverse kinemat-
ics/dynamics. In the inverse case, the starting and ending positions of the tool
frame (yellow) is known, whereas in the forward case, the end position must be
predicted.

1.3 Examples

There are numerous techniques and methods in physics-based animation and simulation,
and you have probably already heard several buzz-words. In the table below, we have
tried to classify some of the most popular techniques and methods according to the four
subgroups introduced in the previous sections:

Inverse Forward

Kinematics • Cyclic Coordinate
Descent

• Jacobian Method

• Spline Driven Animation

• Key Frame Animation (Interpola-
tion)

• Closed Form Solutions

• Free Form Deformation

Dynamics • Recursive Newton
Euler Method

• Optimization Prob-
lems

• Featherstone’s Method (The
Articulated-Body Method)

• Composite-Rigid-Body Method

• Particle Systems, Mass-Spring Sys-
tems

• Finite Element Method

• Constraint Based Simulation

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 7

1.4 Introduction to Multibody Dynamics

Multibody dynamics deals with simulating multiple rigid bodies possibly connected to
each other through joints. Sometimes the term rigid body simulation is used to distinguish
between simulators handling jointed mechanism or not.

Particles and rigid bodies are often the first concepts introduced in physics, and they
are regarded as the basic theoretical building blocks. The same view is also often applied
in physics-based animation: Rigid body simulation is considered the basic starting ground
for many practitioners.

Many consider multibody dynamics to be more simple to simulate than chaotic and
turbulent natural phenomena such as water, smoke, or fire. In our opinion, this is a
misconception, and although the free motion of a single rigid body floating in empty
space is embarrassingly simple to simulate, rigid bodies are ideal models of the world.
However, in the real world everything will deform. For rigid bodies, this idealization result
in difficult discontinuities, causing the numerics to become ill-conditioned and sometimes
even unsolvable.

The dynamics and mathematics of rigid bodies have been known since Newton. Never-
theless, nearly 400 years later, it is still a topic of active interest and scientific publication,
and since the 80’s there have been papers on rigid body simulation in nearly every ACM
Siggraph Proceedings. The explanation is that even though the physics and mathematics
is well-established, it is not easily solved on a computer, and there is a constant demand
to simulate more and more rigid bodies faster and faster. Furthermore, in animation we
often want to simulate unreal things that should appear plausible. Hence, methods are
needed that are incredibly fast, stable and robust, and tolerant for faulty configurations.
None of these goals are the main focus in classical mechanics.

The traditional approach for analyzing systems in classical mechanics often deals with
system in equilibrium. This is of little interest in animation, where we want to see objects
in motion and colliding with each other. At equilibrium, the animation is usually over. In
contrast, robotics has a long tradition for simulating mechanics. A state of equilibrium is
often the goal in this field. Furthermore, problems are more concerned with kinematics of
a single mechanism, controlling, planning or computing the motion trajectory in a known
and controlled environment. In animation nothing is known about what should happen,
and often only animation of several mechanisms is interesting. Besides, robotics tends to
be aimed at only simulating the joints of a mechanism and not the contact forces with
the environment or other mechanisms.

The quest for bigger and faster simulators seems endless and is mainly driven forward
by the computer gaming industry and the movie industry: Rigid bodies are attractive in
computer games, since they fit in nicely with the level of realism, and they are fairly easy
to use to plan game events and build game levels. Basically, the industry knows how to
use rigid bodies to create interesting game effects. The movie industry has moved beyond
rigid body simulation to deformable objects, natural phenomena, humans et cetera.

This dissertation is a thorough treatment of state-of-the art in multibody dynamics.
The theory and methods we present are highly biased towards our own work in the field,
and the reader should not expect a complete, in depth, and detailed walk-through of
every method and paradigm in this field.

Our contribution on multibody dynamics in this dissertation will begin with a formal,

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 8

conceptual modular design. The modular design is useful for explaining many details
of rigid body simulators, such as interaction with the collision detection engine or the
time-stepping strategies.

Hereafter, a method for creating arbitrary moving scripted bodies is presented. A
scripted body is an object fully under the control of an animator. However, all other
bodies in the simulation should interact in a physically plausible way with the scripted
body.

Following this, a thorough introduction to constraint based simulation using com-
plementarity formulations is given. Constraint based methods is probably the kind of
method that resembles a physicist’s view of the world. Constraint based methods set up
the equations of motion, and solve explicitly for the contact and constraint forces, using
the fact that Newton’s second law can be integrated to calculate the complete motion
of the objects. Our treatment of constraint based simulation contains insights on how to
deal with error correction, time-stepping and managing a wide range of constraints in an
object oriented manner.

Next, we will treat and present contact graphs. The contribution is twofold: A for-
mal presentation of contact graphs and various speed-up techniques based on exploiting
contact graphs.

The final contribution in this dissertation consists of the construction of a new kind of
simulator combing velocity based complementarity formulations with shock propagation.
Several techniques such as iterative LCP solvers and error correction are used to yield
a fast, stable and robust rigid body simulator. A little insight is given into some of the
collision detection problems encountered in the construction of this new simulator.

The aim with the multibody dynamics theory presented in this dissertation is to equip
the reader with the skills for building stable and robust multibody simulators. That is
to say, simulators capable of simulating large configurations without breaking down or
giving up on unexpected errors or faulty starting conditions. We have put some focus on
high performance, but this is more from an algorithmic point of view and not our most
important concern. Due to space considerations we have left out recursive coordinate
methods (also called minimal coordinate methods). For the interested reader we refer to
the work of Mirtich [100] and Featherstone [59].

Chapter 2

A Modular Approach to Rigid Body
Simulators

It is widely accepted that implementing a rigid body simulator is both difficult and time
consuming with a steep learning curve due to the massive amount of theory. Possible
reasons may be that:

• Dynamic simulation covers a wide range of research fields in computer science:
Algorithms, computer graphics, computational geometry, numerical methods, et
cetera.

• The literature of the field often presents a single algorithm or data structure and
usually only in the context of a specific paradigm.

In the following, we are going to look at the “big picture,” that is to say the glue which
binds all the smaller pieces into a large simulator.

A rigid body simulator is often broken down into smaller pieces, each responsible for
handling a specific task in the simulator, e.g. computing a collision impulse, determining
the time of impact, and so on. We call such small pieces modules. In the following a
unified, general purpose modular design for rigid body simulators is presented. A benefit
of the modular design is its generality that allows for understanding and comparing the
following simulator paradigms:

• Constraint-based Methods

• Penalty-based Methods

• Impulse-based Methods

• Collision Synchronization

• Hybrids

The modular design was originally developed for educational reasons [45], and has been
used as the framework for a course in rigid body simulation [2]. It was a rapid develop-
ment tool, allowing students to build their rigid body simulators within a few weeks. The
modular design has also been used commercially in an application for visual configura-
tion [3].

9

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 10

Find new
 positions

Detect Collisions
Respond to
Collisions

CBA

Figure 2.1: The Simulation Loop.

It is possible to implement a general application programmers interface (API) based
on the modular design presented here. However, much performance and efficiency is lost
if full support for all simulator paradigms is kept. Therefore, we recommend using the
modular design as a concept from which a tailoring may be made for the particular
simulator chosen.

The following chapter is organized into two parts. Firstly, the reader is taken on a
detailed tour through a simulation loop by which a frame is computed. Secondly, the
variations on the modular design for the various simulator paradigms is discussed.

2.1 A Modular Design

This section outlines the general purpose modular design by walking through the com-
putation of a single frame in the simulator, and we will henceforth call this a simulation.

A frame is a single picture in a movie. In rigid body simulation, we are simulating
a configuration which is a collection of user specified objects. At any given time the
configuration has a state which is simply the concatenation of the states of all the objects
in the configuration. The state of an object is typically given by its position and velocity.
A frame is therefore equivalent to a snapshot of the configuration state at a given point
in time. The time between two consecutive frames is called the frame-time, and a typical
value is 1/25 secs. The state of the configuration at the start of the simulation is called
the initial configuration and the configuration state at the end of the simulation is called
the final configuration. The corresponding points in time are likewise referred to as the
initial and final time. If the simulator computes a configuration state between the initial
and final time, then the state is referred to as an in between or intermediate state.

The Simulation Loop [104] is a simple, three state iterative loop, shown in Figure 2.1.
State A computes new positions, State B runs the collision detection, and State C, applies
forces and/or impulses to avoid penetration.

At the highest level, the simulator design is split into two components: A collision
detection component and a simulation component. This is shown in Figure 2.2. This
particular bisection is convenient for two reasons: Firstly, collision detection may easily
be the single most computationally complex element of the simulator, and secondly, the
collision detection is a purely geometric problem, while the simulation mostly concerns
physically inspired partial differential equations of motion. In terms of The Simulation
Loop, States A and C are seen to belong to the simulation component and State B be-
longs to the collision detection component. The usage of the word collision can be a little
confusing. When talking about collision detection, collision refers to a pure geometric

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 11

Simulation
Collision

Detection

Figure 2.2: At the top level a simulator consist of two components.

problem: does object geometry penetrate or not? Collision detection comes in two fla-
vors: the discrete case, where one tests for interference at a single point in time and the
continuous case, where one tests for any collision over a time-interval [122, 123, 125, 126].
On the other hand collision response deals with the physical aspect: how to alter motion
of objects such that they do not fly into/through each other. Dealing with the physi-
cal aspect, geometrically colliding objects are divided into physically colliding objects or
resting objects.

2.2 The Simulation Component

The simulation component is responsible for computing the physical motion of the objects
in the system, and the design consists of four modules:

• Time-Control Module

• Motion Solver Module

• Constraint Solver Module

• Collision Solver Module

These modules are illustrated in Figure 2.3 and will be described in the following sections.

2.2.1 The Time-Control Module

The time-control module is the central part of the simulator, controlling when and how
all other modules in the simulator are invoked. The simulation loop is initiated by a
request to the time-control module for a simulation of the configuration from the initial
time to the final time. After completion, the resulting configuration state is returned
(see Figure 2.3). The time-control module may use fixed and/or adaptive time-stepping
algorithms to simulate forwardly, where adaptive algorithms are either backtracking or

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 12

Penetration
Signal

Broad Phase

STC Analysis

Contact
Determination

Narrow Phase

Collision Solver

Time Control

Motion Solver

Constraint Solver

End User

Interaction

State

Contact Groups

Simulate

Next Frame

State

Contact
Points

Proximity
Info

Close
Pairs

Resolve
Contacts

Inbetween
State

Constraint
Forces

Move Forward
or Backward

Enforce
Constraints

Discontinuity
Signal

Collision Detection Simulation

Figure 2.3: Complete General Purpose Modular Design. Red arrows show invoca-
tion, blue arrows show returned results, and green arrows are special cases. Dashed
lines indicate computations by modules. Analogous to humans, the time-control is
the heart, red arrows are the aorta, blue arrows the veins, and green arrows the
nerves.

one-sided. These are also known as retroactive detection (RD) or conservative advance-
ment (CA) [130] algorithms.

The present modular design is known to work for many simulator paradigms, and
the chosen paradigm strongly influences the interaction of the time-control with both the
motion solver and the collision solver. It is our experience that the modular design works
for all paradigms discussed in Section 2.4, but the implications of the chosen paradigm
will be postponed for discussion in that section. Instead, the main ideas of the three
algorithm types will be reviewed in the time-control module.

With fixed time-stepping algorithms [106, 144, 118, 23], the time-control module asks
the motion solver module to simulate forward by a fixed step size until the final frame is
reached. The fixed step size is typically an order of magnitude smaller than the frame-time
requested by the user. Nevertheless, both deep penetrations and overshooting (also called
tunneling, i.e. objects flying through each other without detecting a collision) can happen
if the fixed step-size is chosen to be large when compared to object sizes and velocities.
Methods that overcome these drawbacks are for example Stewart’s method [140], which
can take bigger time-steps without causing penetrations. Another example is collision
synchronization [96], also known as optimization-based animation, which is capable of
taking steps of the same size as the frame-time.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 13

Collision

Detection

Time Control

Motion Solver

Constraint Solver

Collision Solver

Figure 2.4: The Timewarp Algorithm. The object motion is desynchronized and
global simulation time is synchronized in the time-control.

Adaptive time-stepping algorithms originate from traditional root search algorithms.
These algorithms search for the first point in time, when the objects in the configuration
are in touching contact. Both the backtracking and one-sided approach algorithms use
the collision detection to do this.

The backtracking time-stepping algorithm [12, 101] asks the motion solver to simu-
late forward some time-step, followed by a query to the collision detection for possible
penetrations. In the case of a penetration, the time-control will ask the motion solver to
backtrack to the last known “good” state. The forward step will now be repeated with a
smaller time-step, and the process is repeated until the objects either are separated or in
touching contact. In the latter case, the collision solver is asked to handle any collisions,
and the process repeats until the end of the simulation is reached.

The one-sided algorithm [100, 42, 76, 31] never allows for penetrations. Instead, an
estimate for the earliest time of impact (TOI) is computed, and the estimate is used to
simulate forward. The time of impact is calculated by first asking the collision detection
for the smallest distances between all pairs of objects in close proximity, and secondly
using the velocities and accelerations of the objects to calculate a conservative estimate
for the time of impact between each pair of objects. The time-control picks the smallest
time of impact and asks the motion solver to simulate forward to the time of impact.
Afterwards, the collision solver is invoked to handle any collisions, and the pattern repeats
itself until the end of the simulation is reached. As objects move closer and closer, and
times of impact are recomputed, the estimates become increasingly accurate until the
estimate is considered exact within some given precision.

Hybrid time-control algorithms exist [12] that actively choose the appropriate algo-
rithm depending on various criteria. Finally, an alternative approach has been suggested
which is reminiscent of distributed algorithms [103], see Figure 2.4, where object motion
is desynchronized by applying separate instances of the collision solver, motion solver,
and constraint solver modules on each contact group. The global simulation time is syn-
chronized in the time-control.

To conclude, it is emphasized that the computation of a frame is typically the result

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 14

Symbol Description
Y (t) The state function
~r The position of center of mass
q The orientation as a quaternion
~P The linear momentum
~L The angular momentum w.r.t. center of mass
~v The linear velocity of the center of mass
[0, ~ω] The angular velocity as a quaternion
~F The total force
~τ The total torque w.r.t. center of mass
~a The linear acceleration of the center of mass
~α The angular acceleration

Table 2.1: Notation used in typical ODEs.

of several iterations of the time-control. Figure 2.3 illustrates the interaction between the
time-control module and the other parts of the simulator.

2.2.2 The Motion Solver Module

The motion solver module is frequently called from the time-control module, and it is
responsible for the continuous movement of all objects in the configuration according
to the equations of motion. These equations are either given as ordinary differential
equations (ODE) [18] or as scripted motion [100, 53, 54]. The ODE for the motion of an
object is typically given as:

d

dt

~r
q
~P
~L

=

~v
1
2
[0, ~ω] q

~F
~τ

,

where the notation is described in Table 2.1. Scripted motion is typically given as:

Y (t) = {~r, q, ~v, ~ω,~a, ~α} .

Both equations describe the state of a single object, and typical configurations contain
both objects governed by ODEs and objects governed by scripted motion.

The ODE typically depends on constraints and external forces, and in contrast the
scripted motion is independent on any forces in the configuration. This leads to a specific
order in which the motion is solved for mixed configurations. The motion solver will use
an ODE solver to compute the new state for those objects governed by ODEs. However,
for each integration step in the ODE solver, the motion solver will first compute the new
state of the scripted bodies, then all external forces, and finally any constraint forces
acting on the objects. To compute the constraint forces, the motion solver sends the
current intermediate state of the configuration to the constraint solver. The constraint
solver then computes any constraint forces and returns them to the motion solver which
finally applies them to the ODEs.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 15

Typically, the motion solver will record all the intermediate states [100] for backtrack-
ing purposes or as valuable information for the time-control module. To our knowledge,
there does not exist a method for computing conservative time of impacts for articulated
bodies, and the time-control may therefore verify previously computed estimates of time
of impacts by using the state tracking information.

From the above description, it is apparent that there is a two-loop structure in a
single computation of a frame: The outer loop in the time-control module and the inner
loop in the ODE integration steps of the motion solver. The size of the integration step
depends on the object configuration, the desired accuracy, and the numerical stability of
the system. To our experience, integration time steps are typically of size 0.01−0.001 secs.,
and in some difficult cases such as stacked environments the time step can be extremely
small: 10−6 secs. or lower. For real-time simulation, the inner loop should run at a rate of a
thousand of times or more per second, and this is thus a natural performance bottleneck.
The collision synchronization [96, 130] paradigm is specifically designed to attack the
problem of small integration steps in rigid body simulation. Figure 2.3 shows how the
motion solver module interacts with other modules in the simulator.

2.2.3 The Constraint Solver Module

The motion solver invokes the constraint solver to retrieve the constraint forces which are
used by the ODEs to compute the continuous motion of objects. Constraint forces are
imposed in order to prevent objects from penetrating each other. Constraint forces are
often distinguished as either bilateral (“=”) or unilateral (“≥”) constraints. For instance,
joint forces act as constraints on the links of articulated figures and are therefore bilateral,
whereas contact forces are unilateral constraints arising from resting contact between
objects. The total interaction of the constraint solver module with the remainder of the
simulator is shown in Figure 2.3.

To compute the contact forces [29, 145, 9, 8, 7, 6, 38, 59, 4, 117, 101, 16, 138, 18],
the constraint solver queries the collision detection for the contact regions between the
objects. For constraint forces there exist essentially two different computing approaches:
Analytical or penalty-based. Analytical approaches use a system of equations and solves
the constraints analytically. Conversely, penalty-based approaches allow for penetrations
and add penalty forces at points of penetration.

There are numerous variations on how and when the constraint solver is invoked in
the inner ODE loop:

Eager: Invoke collision detection and recompute constraint forces for each step in the
loop.

Moderate: Run collision detection for the first ODE integration step, and reuse the
contact regions for the rest of the loop.

Lazy: Compute constraint forces for the first step in the ODE integration, and reuse
them for the rest of the loop.

The correct choice depends on the accuracy needed versus the speed of the simulator. The
eager strategy gives highly accurate simulation but requires many calls to the collision

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 16

detection module which implies that the simulator will be slow. Conversely, the lazy
strategy will be fast but imprecise.

The other variations are computationally more tractable but also more likely to pro-
duce wrong simulation results because the contact regions can change tremendously dur-
ing the continuous movement of an object. As an example, consider a high speed ball
rolling off a table top in a standard gravity field. For the lazy strategy, the normal force
from the table top is applied to the ball even when it no longer touches the table top
(this was coined road-runner physics by Baraff [17]). In contrast, the eager strategy will
register that the contact region has changed, and the ball will drop under gravity as it
leaves the table top. Many people favor speed over precision and thus choose the lazy
strategy [38].

The constraint solver invokes the collision detection with a much higher rate than
the time-control module. Therefore it might happen that a penetration which the time-
control module has overlooked is detected in the constraint solver. If this happens, the
constraint solver should notify the time-control about the penetration in order for the
time-control to be able to take appropriate action.

2.2.4 The Collision Solver Module

The collision solver module is called from the constraint solver, and it computes collision
impulses and applies the impulses to all the colliding objects in the configuration, as shown
in Figure 2.3. The application of an impulse to an object causes a discontinuous change
of the object’s motion, and the motion solver should be notified of such discontinuous
change, in order for it to be able to update any state information it might store. Recall
that the motion solver only handles the continuous movement of the objects, i.e the
smooth movement. A collision is like a bump in the smooth motion. Alternatively, rigid
body collisions may be solved by compliant contact models [87], where the rigid body
assumption is eased and wave- and time propagation in the collisions can be modeled.
Compliant contact models will not be treated further in this dissertation.

Computing impulses can be done by using either an algebraic law, an incremental
law, or a full deformation law [35]. Algebraic laws solve a system of equations and are
usually very fast to compute. They describe the net collisional interaction by relations
between pre- and post-collision quantities. Incremental laws use a microscopic collision
model which is integrated over the collision. Incremental laws are computationally more
intensive than algebraic laws. A full deformation law solves a partial differential equation
describing how the physical quantities change during a collision. Full deformation laws are
not seen in real-time rigid body simulation for two reasons. Firstly, it is almost impossible
to determine the starting conditions for the partial differential equations, and secondly,
the partial differential equations are very computationally demanding.

Impulses can be applied to the objects either through simultaneous impulses or by
sequential (also called propagating) impulses [11, 35, 100]. In simultaneous impulse re-
sponse, all impulses are computed in a single step and applied at the same time. In
contrast, for sequential impulses the impulses are computed and applied one by one.

It is noticed that the contact regions where the impulses should be applied have
already been computed when the collision detection is invoked by the time-control, and
thus the contact regions may conveniently be given as arguments to the collision solver.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 17

A

C

B

C

B

A

Figure 2.5: The states of The Simulation Loop (see Figure 2.1) shown at the
corresponding places in the modular design of the simulation component (right
part of Figure 2.3).

Thus there is no reason for invoking the collision detection in the collision solver.

2.2.5 The Simulation Loop

The time-control, the motion solver, the constraint solver, and the collision solver module
complete the simulation component of the simulator, as shown in Figure 2.3. If we com-
pare the flow in the modular design with the states described in The Simulation Loop in
Figure 2.1, the states may be rediscovered as an integrated part of the simulation compo-
nent as shown in Figure 2.5. It is seen that the modular design has a loop similar to The
Simulation Loop, nevertheless, it is also clear that more details are to be found in the
modular design: the collision response is separated into a continuous and discontinuous
part, and the loop starts by handling discontinuous collision response.

2.3 The Collision Detection Component

Collision detection is a purely geometrical problem of intersecting objects, and it is also
the computationally most intensive part of a simulation. Most collision detection al-
gorithms concern inter-object collisions [106, 37, 77, 32, 155, 88, 102, 86, 148, 90, 67,
18, 43, 147, 28, 83, 68, 84, 70]. Other algorithms are concerned with first point of con-
tact [31, 42, 136, 126, 125, 123, 122]. This is termed continuous collision detection.

The collision detection component is called when the simulation component has com-
puted the positions of all objects in the system. The collision detection then examines
the geometry of all the objects in order to find touching and penetrating objects. The
modules of the collision detection component are:

• The Broad Phase Collision Detection Module

• The Narrow Phase Collision Detection Module

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 18

• The Contact Determination Module

• The Spatial-Temporal Coherence (STC) Analysis Module

These modules are shown in the left part of Figure 2.3 and will be discussed in the
following sections.

2.3.1 The Broad Phase Collision Detection Module

The näıve collision detection algorithm compares the possible intersection of all objects
with all objects, implying n(n−1)/2 intersections for n objects. The purpose of the broad
phase collision detection module [75, 76, 74, 77] is to prune the number of comparisons
by a coarse scale analysis of the system, such that only object pairs in close proximity are
tested by the narrow phase collision detection. The implication is that the computational
burden of the collision detection component is considerably reduced.

Typical algorithms used for broad phase collision detection use exhaustive search,
sweep and prune [37, 18] (also called coordinate sorting), or (multilevel) grids [100, 38]
(also known as hierarchical hash-tables).

To determine close proximity, objects are often approximated by bounding volumes,
and in some cases, the broad phase collision detection algorithm might benefit from
using information about the motion of the objects. The object motion can be used to
construct sweeping volumes which act as bounding volumes enclosing the motion of the
objects in the near future [100]. Alternatively, space-time bounds [31, 76] may be used
instead. The sweeping volumes or space-time bounds are usually delimited in time by
a look-ahead time-step argument to the broad phase collision detection module (not
shown in Figure 2.3). The use of sweeping volumes or space-time bounds gives near
collision information about objects, which is especially useful for one-sided time-control
approaches.

2.3.2 The Narrow Phase Collision Detection Module

The narrow phase collision detection module examines pairs of objects in order to dis-
cover if the objects are colliding or not. The algorithms used by the narrow phase colli-
sion detection module are usually capable of returning more information than a yes-no
answer. Often contact points, penetrating features and other proximity information is
returned [106, 37, 77, 32, 155, 88, 102, 86, 148, 90, 67, 18, 43].

There is a large number of narrow phase collision detection algorithms reported in the
literature, and it is out of the scope of this dissertation to report all of them, and since
there are only minor implications on the modular design of the choice of narrow phase
collision detection algorithm, we refer the reader to the references for further details.
Nevertheless, the choice of algorithm does influence the contact determination module to
be described in the following section.

2.3.3 The Contact Determination Module

The proximity information returned from the narrow phase collision detection module
can be used with great advantage in the contact determination module [101, 81, 142, 18].

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 19

The contact determination module computes the contact regions between touching or
penetrating objects.

In mathematical terms, the contact region is the intersection of the two object sur-
faces in touching or penetrating contact. For polygonal objects, contact regions are often
represented as contact formations (CF), consisting of principal contacts (PC), i.e. pairs
of geometric features, one from each object. The contact determination is a pure geo-
metric problem of determining the contact region. However the problem is non-trivial
considering uncertainties and non-uniqueness of representation.

For physics-based simulation, the computed contact regions can be recomputed as
support regions [26, 29], also known as contact analysis [26]. Typically, there exists mul-
tiple solutions for the contact forces of a contact region. However, by computing the
support region, the contact forces may be uniquely determined. This implies that there
are fever constraints to solve for, making the computation faster.

It has been discussed [26] whether the computation of support regions should be
placed in the collision detection or in the simulation components, since support regions
are more related to physics than geometry. We prefer to associate the computation of
support regions with the collision detection component, thus collecting all the geometry
computations in one component.

2.3.4 The Spatial-Temporal Coherence Analysis Module

The final module in the collision detection is the spatial-temporal coherence (STC) analy-
sis module. This module analyzes the configuration, detects independent contact groups,
and exploits caching for computational efficiency.

Contact groups are groups of objects which are in either direct or indirect touching
or penetrating contact. The groups may be used both by the constraint solver and the
collision solver, since impulses and constraint forces can be computed for the objects in
each group independently from objects in other groups.

The usage of contact groups can be taken even further by applying time warping
to the simulator [103]. This means that each group is simulated independently of other
groups, and synchronization between groups is only needed when objects from different
groups interact. This is illustrated in Figure 2.4.

The contact group computation need not be postponed to the very last minute in the
collision detection, but it is useful to have a constantly up-to-date contact graph with
relevant information from the broad phase, narrow phase, and contact determination
modules. This implies that Figure 2.3 is a little misguiding with respect to the contact
group computation, but we have omitted the details for clarity.

It should be noted that some simulators [112, 150] do not compute contact groups
in the collision detection component, but keep the contact groups in their time-control
modules.

For an in depth treatment of spatial temporal coherence analysis we refer the reader
to Chapter 5.

The simulation and collision detection components described above with their various
modules completes the description of the general purpose modular design. The entire
modular design is shown in Figure 2.3. There is no reason why the modular design is not
applicable to other types of simulators such as particle systems and soft body simulators.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 20

These differ mainly from the present description in the collision detection algorithms. We
will now turn the attention to variations of the general purpose modular design due to
the chosen simulator paradigms.

2.4 Simulator Paradigms

In rigid body simulation there exists five different kinds of simulator paradigms: Impulse-
based, constraint-based, penalty-based, collision synchronization, and hybrids. In the fol-
lowing sections each paradigm will be discussed in detail.

2.4.1 Constraint-based Methods

A constraint-based simulator [59, 11, 14, 16, 129, 29, 117, 8, 154, 40, 146] is a very complex
simulator paradigm utilizing all the modules of the general modular design, and as such,
this paradigm has been treated in detail in Section 2.1. Constraint-based simulators do
not allow for penetrations and are typically very good at handling complex configurations
with static contacts.

One approach to the constraint-based simulator is based on Differential Algebraic
Equations (DAEs) [33], where different constraints are used depending on the state.
Recently, complementary formulations [94] have received much attention [11, 12, 13, 14,
15, 16, 18, 139, 145, 6, 7, 140, 4, 129, 29, 92, 154, 146]. For a more detailed insight into
these methods and their historical development we refer the reader to [138].

2.4.2 Penalty Methods

Penalty-based simulators [14, 106] are simpler than constraint-based, and are preferred
by many due to the simplicity of the modeling of physical interactions and since they
may easily be extended to handle soft bodies.

The fixed time-stepping algorithm is often chosen, since the penalty methods allow for
penetration of the objects. One major challenge for penalty methods is the collision de-
tection, since both penetration depth and penetration points must be computed. Penalty
forces are computed as the negative gradient of an energy function, and are used to con-
travene penetration. Hook’s law for springs is a popular choice. Deep penetrations may
cause stiff ODEs, and numerical stability is therefore of major concern with penalty meth-
ods. Figure 2.6 shows a typical penalty-based simulator. It should be noted that there is
no collision solver, since collisions are handled when penetrations occur by the constraint
solver which will add penalty forces to reduce but not necessarily remove penetrations.

Both numerical stability and minimal penetrations require small time-steps in the
time-control module which is why some people [106] have tried to increase time-steps by
augmenting the penalty-based simulator with a collision solver.

2.4.3 Impulse-based methods

Impulse-based simulators [71, 100] simulate all physical interactions between the objects
in the configuration as collision impulses. Impulse-based simulators do not allow for pen-
etrations. Static contacts such as one object resting on another is modeled as a series

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 21

Broad Phase

STC Analysis

Contact

Determination

Narrow Phase Time Control

Motion Solver

Constraint Solver

State

Contact Groups

Simulate

Next Frame

Contact Points

Proximity Info

Close Pairs

Inbetween

State

Constraint

Forces

Move Forward or

Backward

Enforce

Constraints

Figure 2.6: A typical penalty-based simulator.

of small micro-collisions occurring at a very high frequency. Except for static contacts,
impulse-based simulators are computationally effective for systems having many objects
moving at high speeds, and impulse-based simulators are therefore a good choice for
real-time simulation.

As Figure 2.7 indicates, this kind of paradigm is particularly simple to implement.
Typically a one-sided-approach is used together with sequential impulses based on some
sort of incremental law. Impulses need only be applied at the closest points between two
objects, and contact determination or spatial-temporal coherence analysis may therefore
be omitted.

Alternatively to simulating static contacts as an impulse-train of impacts, the impulse
may be computed as the time integral of the contact forces [140], in which case the
modular design more resembles the constraint-based method, except that a nonlinear
complementary problem for the contact impulses is solved in the constraint solver.

Recently, a new approach to impulse-based simulation has been suggested [70], in
which a new time-stepping method is proposed, where collision resolution and contact
handling are calculated in between the position and velocity updates. This is illustrated
in Figure 2.8. Firstly, it should be noted that the new time-stepping approach completely
changes the internal workings of the motion solver. Secondly, the collision resolving and
contact handling is slightly changed, since for each iteration the predicted object positions
are recomputed and used for the collision detection in a eager strategy. Thirdly, pene-
tration constraints are not strictly enforced, and small penetrations are allowed. Finally,
contact and collision handling are only done once per time-step, producing a plausible
motion, while allowing for larger time-steps.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 22

Broad Phase

Narrow Phase

Collision Solver

Time Control

Motion Solver

State

Simulate

Next Frame

StateClose Pairs Resolve

Contacts

Inbetween

State

Move Forward or

Backward

Discontinuity

Signal

Proximity Info

Figure 2.7: An impulse-based simulator using Mirtich’s approach.

Uniform Grid

Signed Distance Maps
and Triangle Meshes

Sequential Newton
Law

Fixed Time Stepping
(Velocity Bounds)

Sequential Newton
Law

A B

Figure 2.8: An impulse-based simulator using Guendelmann’s approach. Velocity
update occurs at the circled A, the position update occurs at the circled B, and
both the collision resolving and the contact handling iterates several times with the
collision detection. A contact graph is only used in the constraint solver.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 23

2.4.4 Collision Synchronization

Collision synchronization also known as Optimization-based Animation [96, 130] extends
position-based physics [97] and aggressively attacks the problem of small time-steps which
all of the paradigms mentioned in the previous sections suffer from. Larger time-steps is
achieved by synchronizing collision at the end of each frame with a so-called position-
update method which sets up and solves a quadratic programming (QP) problem. The
solution to the quadratic programming problem gives optimal non-penetrating positions
for all objects at the end of the frame, and plausible motion is generated by finding a
plausible physical motion agreeing with the solution. According to [96, 130] the paradigm
may be used directly in any modularized simulator that mimics The Simulation Loop
(see Figure 2.1).

2.4.5 Hybrids

Hybrid simulators [99, 100] attempt to combine several of the mentioned paradigms such
that the weakness of one paradigm can be handled by another. The paradigms mentioned
above may be programmed in the modular design, and hybrids thereof can naturally also
be handled by the general purpose modular design.

2.5 Comparison With Existing Simulators

In this section we will review some widely available commercial and open-source rigid
body simulators in terms of the modular design. The inner workings of many commercial
simulators are naturally protected by their owners, in which case we may only guess at
their implementation. Here we will discuss Open Dynamics Engine (ODE) [112], and
Vortex [150].

2.5.1 Open Dynamics Engine

The Open Dynamics Engine [112] is a free, industrial quality library for simulating artic-
ulated rigid body dynamics developed by Russell Smith. In Figure 2.9 we have expressed
Open Dynamics Engine version 0.035 in terms of the modular design presented here.

The user interfaces to Open Dynamics Engine by supplying a time-control mechanism
that invokes the collision detection system. The collision detection then returns an array
of contact points which the user must convert into so-called “joint contacts,” before the
motion solver can be invoked by calling “dWorldStep.” This stepping method start by
detecting “islands” equivalent to contact groups. Contact forces are computed indepen-
dently for each contact group with a method similar to Stewart’s [139, 140] on the entire
group.

The source code of Open Dynamics Engine does not appear to be split into a motion
solver and constraint solver, since the same function “dInternalStepIsland xx” computes
the constraint impulses and the position update. Drifting and penetration problems are
handled by using an error reduction parameter (ERP) for controlling the amount of
correction force based on a penetration depth penalty principle. Constraint force mixing

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 24

Exhaustive Search
and/or Hashtables

Hierarchies of
volumes

Fixed Time Stepping

Position Update

Stewart Method

Figure 2.9: The Open Dynamics Engine version 0.035.

(CFM) allows for non-hard constraints by adding positive constants to the diagonal of
the system matrix.

The Open Dynamics Engine may be implemented in the modular design, although
it does not require the full complexity of the modular design. It should be noted that
the Open Dynamics Engine detects contact groups in the simulation part rather than in
the collision detection engine. However, this is of little significance and could easily be
changed to accommodate the modular design.

2.5.2 Vortex

Vortex [150] is a commercial physics engine for real-time visualization and simulation
developed by CMLabs. It is a constraint-based simulator based on a linear complementary
formulation, and it provides two models of friction: A box-type and a scaled box-type.
The box-type uses two tangential directions with upper limits on the friction force along
the tangents, implying that friction does not scale with the magnitude of the normal
force. The scaled box-type is identical to the box-type except it uses an extra iteration.

Vortex uses two algorithms for time-control: A fixed time-stepping algorithm and a
time-of-impact algorithm. Fixed time-stepping comes in two flavors: an original mode
ignoring collisions, and a so called stable stepper which resolves collisions before the
system is stepped forward. Drift in joint constraints is handled by relaxation which is back-
projection by a gamma factor. Non-singular configurations can be helped by increasing an
epsilon parameter. The epsilon parameter is used to alter the system matrix so constraints
appear more springy.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 25

?

Primitives, Mesh etc.

?

Fixed Time Stepping
and TOI

First Order Semi-
Implicit Integrator

Force-based Linear
Complementarity

Formulation

Figure 2.10: The Vortex Simulation Kit version 2.01.

The ODEs describing the equations of motion are solved by a first order semi-implicit
integrator. Vortex appears to be using eager-evaluation of contact forces.

Broad phase collision detection is based on axis-aligned bounding-boxes (AABBs),
and it is possible to control the number of axes used to determine overlap. We have not
been able to discover what kind of algorithms are used for broad-phase collision detection
or resolving collisions. Vortex contains a large number of algorithms for narrow phase
collision detection between various types of geometries. There is no explicit concept of
contact determination. Instead, it seems to be part of the narrow-phase algorithms. Like
the Open Dynamics Engine, contact groups are not determined in the collision detection
module, but instead they are determined in the stepper routine.

Vortex may be implemented using the modular design as illustrated in Figure 2.10.

2.6 Discussion

There is no such thing as a general purpose simulator capable of simulating everything,
but it might be possible to explain and examine a wide spectrum of simulator types in a
common framework.

The modular design is an attempt at such a framework. It can handle rigid body sim-
ulators regardless of the choice of simulator paradigm. However, we believe the modular
design is much more versatile, and in the future we hope to show how widely applicable
the modular design is.

Our experience is that it is possible to implement a general application program-
mers interface (API). However much performance and efficiency is lost if full support

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 26

for all paradigms is kept. Therefore, we often prefer to use the modular design and its
eight modules as the right concept from which a tailoring may be made for a particular
simulator.

Some of the interaction we have shown in the modular design was added for perfor-
mance reasons. For instance, the green signal lines are meant to be used for lazy copying
of state information. To give a specific example in the motion solver one would often
communicate with an ODE solver by copying state information from bodies to arrays
and then pass these arrays along to an ODE solver routine. But why not re-use the state
information that was already present in an array in the last invocation of the motion
solver? This way one can save time by avoiding to have to set up the arrays from scratch
at the next invocation of the motion solver. The green signal line could be used to initiate
an update of the part of an array containing state information about a body, where the
state has changed. The simulators we have seen do not bother with this lazy copying.
Instead, all state information is retrieved and copied to state arrays on every invocation
of the ODE solver.

Likewise, the penetration signaling is often ignored. We usually implement this sig-
naling by returning appropriate error codes from our methods, and not as a kind of
distributed mechanism as Figure 2.3 might indicate.

The simulators we have reviewed do not explicitly use a time-control and a motion
solver module. Instead, all the functionality is typically implemented in a single stepper
routine on the simulator component level. The simulators do not even have a constraint
solver module. Instead, matrices are often set up in the stepper routine and a LCP solver
or something similar is invoked directly. In short, it is difficult to find an existing simulator
where the modules we have outlined exist as independent objects.

In our opinion, there is no right or wrong modular design. Nevertheless, the modular
design has been successfully used for education, commercial usage and research. In these
settings, the design has two major benefits. Firstly, it handles all simulator paradigms in
the same unified framework. Secondly, it provides modularity and overview.

Chapter 3

Spline Driven Scripted Motion

In this chapter, we present some ideas and theory for extending classical spline driven
animation such that it can be applied in a rigid body simulator. The need for this rather
specialized behavior arises due to what is called scripted bodies in dynamic simulation.

This work was done in collaboration with Knud Henriksen, and an early version of
the work can be found in [54]. Here, a more detailed and elaborate version is presented.

In dynamic simulation a scripted body is used to avoid simulating the physically
correct trajectories of the body. This is computationally favorable, and if one knows
that the body is practically unaffected by the physical interactions of the other bodies
in the configuration then the error is negligible. Consider for instance a vibratory part
singulator which shakes small parts into recesses for automated assembly. The trajectory
of the vibrator is unaffected by the physical interaction with the smaller parts. When
dynamic simulation is used in animation we imagine that scripted bodies would be even
more interesting, because they provide the animator with the means of constraining a
body to move in a physically unexpected or exaggerated way, but still all other bodies
will interact in a physically meaningful way with the scripted body.

Scripted bodies move very much like traditional objects known in animation. One
specifies a trajectory by defining some key-positions at certain points in time, and the
objects have to move along this trajectory “hitting” the key positions at the exact point
in time where they are defined.

Generally speaking the problem is to determine the velocities and accelerations of the
scripted bodies. These are needed in order to compute the physical interactions with the
physically simulated bodies. In Chapter 4, velocity based complementarity formulations
are discussed. These types of simulation do not require information about accelerations.
However, to keep things general, we will here consider both velocity and acceleration.

People often use finite differences at key positions to estimate velocities and acceler-
ations of the scripted bodies. This method is not well described in the literature and is
mostly due to its trivial simplicity. Finite differencing is a successful technique for a wide
range of applications, but there are some drawbacks.

The storage usage is linear in the number of key positions. In interactive and real-time
applications there is often only a limited amount of storage available which means that
there is a limit on how long motions and how many scripted bodies that can be simulated
at the same time. A spline offers a more compact description of the trajectory of a
scripted body than the equivalent key positions and the spline is therefore attractive from

27

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 28

a storage viewpoint. Furthermore, the spline offers a continuous description of the entire
trajectory. On the other hand, using finite differences on key-positions naturally suffers
from sampling artifacts if key-positions are not sampled densely enough. Furthermore, the
spline representation offers a smooth description of the motion. Key-positions may have
unwanted discontinuouties if too low-order differences are used although such artifacts
would hardly be noticed in real-time applications. Finally, the spline driven approach
decouples the actually geometry of the path traveled by a scripted body from the speed
along the path. This provides an animator with an extra degree of freedom.

There are mainly two difficulties that arise. Firstly, there is the general problem of
re-parameterization of the splines into their natural parameters (this is a general problem
in spline driven animation and not specific for dynamic simulation). Secondly, scripted
bodies can interact with physical bodies in a simulator and therefore there is a need
for knowing something about their motion and not just their positions and orientations.
The interactions typically involve computation of “time of impact”, sweeping volumes,
collision impulses and contact- and constraint forces. What we need are several different
time derivatives specifying the motion of the object. These are:

~v(t),~a(t), ~ω(t) and ~α(t) (3.1)

That is, the linear velocity ~v(t), the angular velocity ~ω(t), the linear acceleration ~a(t),
and the angular acceleration ~α(t). Putting it all together we are actually looking for a

function ~Y (t) which specifies the scripted motion, i.e. the position ~r(t) and orientation
q(t), of a scripted body in a simulator, such that.

~Y (t) 7→ {~r(t), ~v(t),~a(t), q(t), ~ω(t), ~α(t)} . (3.2)

Here q(t) denotes a quaternion representation of the orientation. In correspondence with

rigid bodies the function ~Y (t) can be seen as the state function of a scripted body. We

define the scripted motion problem as finding a solution for the ~Y -function. In this chapter
we have concentrated on handling the linear motion only. However, with small changes
the techniques can be applied to handle the rotational part as we discuss in Section 3.5.

This chapter is not about how to handle interactions with scripted bodies in a dynamic
simulator nor is it about dynamic simulation as such. The reader is not required to know
anything about dynamic simulation, but it would probably give a better picture of why
we have stated our problem as we have.

Much of the theory and definitions concerning splines and spline driven animation is
presented in a rather compact form to save space. The reader should refer to our references
for more details if they are needed.

We have organized the chapter in such a way that we start by presenting our moti-
vation for solving the scripted motion problem. Then we will outline the basic idea in
spline driven animation and the problems with computing the derivatives of the motion.
Hereafter, we present solutions for all the technicalities in the scripted motion problem.
Finally, we discuss degenerate cases and future work before we draw our conclusions.

We have been working with dynamic simulation for a little while and when we began
to embark upon the task of adding scripted bodies to our simulator we were surprised to
see that most textbooks and papers on the subject simplified the problem by assuming
that the state functions are known. Other approaches used implicit functions and such.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 29

In either case we felt that the theory we encountered was not very easy for an animator
to use compared to systems such as 3DS MAX, Rhino, Maya r©et cetera. We think that
dynamic simulation has a potentially huge application area in animation and it would be
a shame not to pursue this. So we wanted to extend the traditional animation techniques
which are intuitive to use and well known by most animators, such that they can be used
in a dynamic simulator.

Another benefit which arises from our work is a unification of scripted body motion
and dynamic simulation. Typical simulators have specialized algorithms and implemen-
tations to take care of each kind of scripted motion type: Implicit functions, sinusoidal
waves, polynomials et cetera. Applying spline driven animation means that a wide range
of motion specification and applicability can be done with the same type of scripted mo-
tion. When implementing a simulator it basically justifies looking on scripted motion as
a black box making use of an unknow state function ~Y (t) and as such it makes life a little
more easy for those people that implement simulators. Let us summarize:

• The work we present allows animators to use dynamic simulation with traditionally
well known animation techniques.

• The solution we present allows a dynamic simulator developer to look at the motion
of scripted bodies as though it were a (not needed to know) state function ~Y (t).

3.1 The Basic Idea

Systems such as 3DS MAX, Rhino, and Maya r©offer a wide range of different splines and
curves for key-frame animation. However, we will restrict ourselves to cubic splines.

Cubic splines are a good choice for specifying the trajectory of the linear motion be-
cause they are twice differentiable. It means that the motion along the spline is “smooth”.
It also means that the velocity and acceleration can be found by direct differentiation of
the cubic spline. Our preferred choice is cubic nonuniform B-splines. This class of splines
is easily converted into a composition of cubic curve segments (such as cubic Bezier curves
see[52] for details) and they support nonuniform key positions.

Assume we have a trajectory given by a space spline ~C(u) parameterized by the global
parameter u. We use the space spline to find points in space given a value u that is

~C(u) 7→ (x, y, z) (3.3)

However, the parameter u is not an intuitive parameter for humans to use. It is quite
difficult for a human to predict exactly which point on a spline corresponds to a given
value u. Humans are much better at thinking in terms of the arc length, s, instead of the
spline parameter u. Therefore we would like to use a re-parameterization like

U(s) 7→ u (3.4)

Such that we have
~C(U(s)) 7→ (x, y, z) (3.5)

This re-parameterization makes sense since there is a one to one mapping between the
parameter u and the arc length parameter s. This is due to the fact that if

u1 < u2 (3.6)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 30

then
s(u1) < s(u2) (3.7)

A difficulty occurs if an animator uses a space spline. In this case, he would be interested
in specifying how fast an object moves along the space spline. In other words, he might
not want the object to move as the parameter u would dictate. Instead, he wants to
specify a set of (t, s)-pairs, such that when the animation arrives at the time t then the
object would have traveled the distance s along the space spline. These pairs of time
and distance are usually represented by a so called velocity spline (The term velocity is
historical and perhaps a little confusing in the context of dynamic simulation. A better
word would probably be “traveled distance”)

~V (v) 7→ (t, s) (3.8)

Looking at equation (3.4) we see that equation (3.8) isn’t really usable. We are interested
in changing the equation such that we can find an arc length function which maps from
the time domain to the arc length.

s(v(t)) ≈ s(t), (3.9)

The details of this will be shown later. The velocity curve has to fulfill the property that
there exists exactly one s-value for every possible t-value. Otherwise the motion that is
dictated by the velocity curve would be impossible. It would require an object to be at
two positions at the same time. This means that the graph of ~V must be a function of
t. Putting it all together we see that the ~C-function has been re-parameterized in the
following way:

~C(U(s(t))) 7→ (x, y, z) (3.10)

This final re-parameterization allows an animator to work intuitively with the space curve
in terms of its arc length and he can specify movements in terms of the animation time
parameter, t, totally independent of the global parameter u.

Until now things seem pretty easy, however, we can not derive analytical functions for
equations (3.4) and (3.9), at least not in the framework where ~C and ~V are both cubic
splines. We have to look for a numerical solution of equation (3.10). It is not hard to
imagine that things get even worse when we look for the first and second derivatives of
equation (3.10). By applying the chain rule and product rule we get

d ~C(U(s(t)))

dt
=

d ~C

du

dU

ds

ds

dt
(3.11)

and

d2 ~C(U(s(t)))

dt2
=

d2 ~C

du2

(
dU

ds

)2(
ds

dt

)2

+
d ~C

du

dU

ds

d2s

dt2
+

d ~C

du

d2U

ds2

(
ds

dt

)2

(3.12)

Knowing that we work with cubic nonuniform B-splines or cubic curve segments the
terms:

dj ~C(u)

duj
for j = 0, 1, 2 (3.13)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 31

are easily computed, but the remaining terms in equations (3.11) and (3.12) are somewhat
more difficult to compute since we can not find analytical representations for the U - and
S-functions. That is the difficult terms are

d2U

ds2
,

dU

ds
,

d2s

dt2
and

ds

dt
. (3.14)

3.2 The Linear Scripted Motion Function

Now let us attack the problem of determining the values of the functions U(s) and s(t)
given s- and t-values and the difficulties in computing their derivatives.

3.2.1 The Arc Length Function

If we have a cubic curve, such as a cubic Bezier curve, in 3-dimensional space

~C(u) =

x(u)
y(u)
z(u)

 =

axu
3 + bxu

2 + cxu + dx

ayu
3 + byu

2 + cyu + dy

azu
3 + bzu

2 + czu + dz

 (3.15)

Or in matrix notation

~C(u) =

u3

u2

u
1

T

M = UT M. (3.16)

The arc length function of the cubic curve is defined by the following function

S(u) =

∫ u

0

| d ~C(u)

du
| du (3.17)

=

∫ u

0

(
Au4 + Bu3 + Cu4 + Du + E

)1/2
du, (3.18)

where

A = 9(axax + ayay + azaz), (3.19a)

B = 12(axbx + ayby + azbz), (3.19b)

C = 6(axcx + aycy + azcz) + 4(bxbx + byby + bzbz), (3.19c)

D = 4(bxcx + bycy + bzcz), (3.19d)

E = (cxcx + cycy + czcz). (3.19e)

Unfortunately, we can not find an analytical expression for this integral so we have to do
a numerical integration in order to find the value of S(u) given a u-value. The function

| d ~C(u)

du
|=
(
Au4 + Bu3 + Cu4 + Du + E

)1/2
(3.20)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 32

P
0

P
1

P
2

P
3

S
est

=||P
3
-P

2
||+||P

2
-P

1
||+||P

1
-P

0
||

e
1

e
2

e=max(e
1
,e

2
)

Figure 3.1: The arc length estimate of a Bezier curve and the flatness measure.

is the arc length integrand. By applying Horner’s rule for factoring polynomials we can
rewrite the equation into a more computationally friendly form

| d ~C(u)

du
|=
√

(((Au + B)u + C)u + D)u + E. (3.21)

With the theory we have developed so far, we can pick any numerical integration routine
which fulfills our requirements to performance and accuracy and then apply it in order
to compute the arc length.

If one uses cubic Bezier curves then there is another approach to evaluate the arc
length which is based on the convex hull property of Bezier curves and the de Casteljau
algorithm [69]. The algorithm is quite simple and easily explained. Let the control points

of a Bezier curve segment be ~P0, ~P1, ~P2 and ~P3. Now an estimate for the arc length is
computed by

Sest =
2∑

i=0

|~Pi+1 − ~Pi| (3.22)

If the Bezier curve is sufficiently flat then this estimate would be very close to the real
value of the arc length. In order to determine if the Bezier curve is flat enough we measure
the orthogonal distance, ε, of the two control points which are not the end points, to the
line between the two end control points.

ε = max
(

dist(~P1, P0P3), dist(~P2, P0P3)
)

. (3.23)

This is illustrated in Figure 3.2. If ε is greater than some threshold value, then the curve is
not flat enough. To handle the problem one uses the de Casteljau algorithm to subdivide
the Bezier curve into two smaller Bezier curves. By the convex hull property of Bezier
curves, we know that their convex hulls are smaller and tighter fitting, so we simply
repeat the algorithm on each of these new Bezier segments. Every time we find a Bezier

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 33

Algorithm recursiveArcLength(B,eps)

for i=0 to 2

est += dist(B.P[i+1],B.P[i])

next i

L = line(B.P[0],B.P[3])

err = max(dist(B.P[1],L),dist(B.P[2],L))

if err > eps then

(B1,B2) = subdivide(B)

est = 0

est += recursiveArcLength(B1,eps)

est += recursiveArcLength(B2,eps)

end if

return est

End algorithm

Figure 3.2: Recursive computation of the arc length of a Bezier curve.

Algorithm recursiveArcLengthAt(u,B,eps)

(B1,B2) = subdivideAt(u,B)

return recursiveArcLength(B1,eps)

End algorithm

Figure 3.3: Recursive computation of arc length at given parameter value.

curve which is flat enough, we halt the recursive subdivision and add the estimated arc
length to the total computed arc length so far. A pseudo code version of the algorithm
can be seen in Figure 3.2. The beauty of the algorithm is that it computes the arc length
adaptively, unlike some numerical integration routines like the extended Simpson which
have a fixed step size. Furthermore, unlike those integration routines which can integrate
with adaptive step size, the algorithm is far simpler to implement and quite fast.

There is one subtlety we have overlooked. The algorithm given above computes the
arc length of the entire Bezier curve segment. We are interested in finding the arc length
of the segment of the Bezier curve running from 0 to some value u. So we should do an
initial subdivision to get the segment corresponding to the parameter interval we want
to compute the arc length of. Figure 3.3 illustrates the idea.

In our case of cubic Bezier curves, the de Casteljau algorithm takes the form

~Pk,i(u) = (1 − u)~Pk−1,i(u) + u~Pk−1,i+1(u) (3.24)

Where

k = 1, . . . , 3 (3.25a)

i = 0, . . . , 3 − k (3.25b)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 34

And
~P0,i(u) = ~Pi (3.26)

Actually, de Casteljau can be used to compute a point on the cubic Bezier curve because
B(u) = P3,0(u). However we are going to use it for computing the new control points for
the subdivided Bezier curves. The new control points for the Bezier curve representing
the first half of the subdivision are

~Pk,0 for k = 0, . . . , 3 (3.27)

and the control points for the Bezier curve representing the last half are

~P3−i,i for i = 0, . . . , 3 (3.28)

3.2.2 Arc Length Re-parameterization

In this section we want to attack the problem of determining the re-parameterization
function U , such that

~C(U(s)) 7→ (x(s), y(s), z(s)) (3.29)

The function U(s) is obviously the inverse function of the arc length function S(u). That
is

U(s) = S(u)−1 (3.30)

In the last section we saw that S(u) could only be solved numerically. Therefore it is
impossible to invert it in order to obtain the function U(s). Fortunately, we can compute
S(u), so we can turn our problem into a root search problem. Given a value s, we search
for a value of u such that

|s − S(u)| < ε. (3.31)

If we find such a u-value then we have actually found U(s) within the numerical tolerance
ε. Recall that we have a one to one monotonic relation between the parameter u and the
arc length s. This property ensures that exactly one root exists and our problem has a
solution. Figure 3.4 shows a schematic overview of the process.

3.2.3 Time Re-parameterization

In an animation one usually knows a t-value and wants to find the corresponding s-value.
As we have explained previously this sort of information is typically described by using
a so called velocity spline. That is

~V (v) 7→ (t(v), s(v)) (3.32)

From this we need to find a function

s(v(t)). (3.33)

The problem is very similar to the arc length parameterization problem. The main differ-
ence is that this time we are looking for a corresponding coordinate and not a “measure”

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 35

Root Search

compute C(u)

s-value

u-value

C(s)-value

S(u)

C(u)

Figure 3.4: Schematic drawing of the method for arc length re-parameterization.

Root Search

compute s(v)

t-value

v-value

s(t)-value

t(v)

s(v)

Figure 3.5: Schematic drawing of the method for time re-parameterization.

of the spline. However, the problem can still be solved in a similar fashion. That is, as a
root search problem. Given a t-value we search for a v-value such that

|t − t(v)| < ε (3.34)

When we find such a v-value then we have actually found the value of v(t) and we can
compute the s-value directly as s(v). The time of the animation is a strictly increasing
function as the animation evolves, so our root problem is guaranteed to have exactly one
unique solution. This means our problem is solvable. Notice that the velocity spline has
to be physically meaningful as we have explained earlier. This guarantees that we can
always find an unique value for s given a t-value. Figure 3.5 illustrates the numerical
process.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 36

3.2.4 Computing the Derivatives

From equations (3.11) and (3.12) we see that we need to compute the following values

d2 ~C

du2
,

d ~C

du
,

d2U

ds2
,

dU

ds
,

d2s

dt2
and

ds

dt
(3.35)

We already know how to handle the derivatives of ~C with respect to u. This leaves us
with the remaining four derivatives

d2U

ds2
,

dU

ds
,

d2s

dt2
and

ds

dt
(3.36)

We already know that we can not solve the S and U functions analytically. Fortunately,
it turns out that we can solve their derivatives analytically.

Let us start by equation (3.17). We can rewrite the integrand as the dot product of
the derivative of the space spline that is

S(u) =

∫ u

0

√

d ~C(u)

du
· d ~C(u)

du
du (3.37)

This is a bit more convenient to work with. Now, let us differentiate the arc length
function. That is, we need to differentiate the integral as a function of its limits. By
doing this we get the following expression.

dS(u)

du
=

√

d ~C(u)

du
· d ~C(u)

du
(3.38)

If we look at the inverse mapping then we will get

dU(s)

ds
=

1
√

d~C(U(s))
du

· d~C(U(s))
du

(3.39)

Recall that we already know the value of U(s). This was computed during the arc length
re-parameterization phase of the space spline and the gradient of the space spline was
easily computed. All in all, we have an analytic expression for the first derivative of U
with respect to s. Now, let us differentiate this derivative with respect to s.

d2U(s)

ds2
=

d

ds

1

√
d~C(U(s))

du
· d~C(U(s))

du

 (3.40a)

= −
d
ds

(
d~C(U(s))

du
· d~C(U(s))

du

)

2
(

d~C(U(s))
du

· d~C(U(s))
du

)3/2
(3.40b)

= −

(
d2 ~C(U(s))

du2 · d~C(U(s))
du

+ d~C(U(s))
du

· d2 ~C(U(s))
du2

)
dU(s)

ds

2
(

d~C(U(s))
du

· d~C(U(s))
du

)3/2
(3.40c)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 37

Cleaning up a bit we finally get

d2U(s)

ds2
= −

d~C(U(s))
du

· d2 ~C(U(s))
du2

(
d~C(U(s))

du
· d~C(U(s))

du

)2 (3.41)

Again we notice that this is an analytic expression since we already know the value of
U(s). Now, let us turn our attention towards the computation of the derivatives of the
arc length function with respect to t. From equation (3.8) we already know that.

~V (v) 7→ (t(v), s(v)) (3.42)

Since ~V (t) is a cubic spline so is each of its coordinate functions. This means that we can
find an analytic expression for

dt(v)

dv
(3.43)

by straightforward computations. In fact, this would be a second order polynomial. Like-
wise, we can compute

ds(v)

dv
(3.44)

We also know that
ds(v(t))

dt
=

ds(v(t))

dv

dv(t)

dt
(3.45)

Looking at the last term we see that this is in fact the inverse mapping of equation (3.43),
so we end up having

ds(v(t))

dt
=

ds(v(t))

dv

1
dt(v(t))

dv

(3.46)

The value of v(t) is already known. It was found by the root search that we performed
in the time re-parameterization phase of the space spline. Now let us look at the second
derivative with respect to t. From equation (3.46) we get

d2s(v(t))

dt2
=

d2s(v(t))

dv2

dv(t)

dt

1
dt(v(t))

dv

+
ds(v(t))

dv

−1
(

dt(v(t))
dv

)2

d

dt

(
dt(v(t))

dv

)

(3.47a)

=
d2s(v(t))

dv2

(
dt(v(t))

dv

)2 −
ds(v(t))

dv
(

dt(v(t))
dv

)2

d2t(v(t))

dv2

dv(t)

dt
(3.47b)

=
d2s(v(t))

dv2

(
dt(v(t))

dv

)2 −
ds(v(t))

dv
d2t(v(t))

dv2

(
dt(v(t))

dv

)3 (3.47c)

Again we see that we have an analytic expression. Looking at all our equations for the
derivatives we see that we can get into trouble if we ever have

d ~C(U(s))

du
= 0 or

dt(v(t))

dv
= 0 (3.48)

As it turns out, these degenerate cases do not cause any difficulties in practice and we
have devoted the next section to discuss it.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 38

3.3 Degenerate Cases

There are two ways to handle the degenerate cases. The first one is by repairing and the
second one is by prevention.

If the first derivative of a spline vanishes, it will occur at a single parameter value [52].
That is, in any small neighborhood around this parameter value the first derivative would
be non-zero. This suggests that we can remove the discontinuity by interpolating the
velocities and accelerations of the scripted motion in a small neighborhood around the
time value that caused the first derivative of the space spline (or the velocity spline for
that matter) to become zero. Alternatively, one could also use a Taylor expansion around
a nearby point in time to extrapolate the values of the scripted motion function.

This method will work fine as long as we are not having a cusp. Fortunately, in
most cases cusps are easy to see with the naked eye and are therefore easily removed by
remodeling the spline.

From an animators viewpoint, this may be very prohibitive if a cusp is what he really
wants. One possible solution would be to model the motion by two separated space splines
meeting at the cusp.

The second way of handling the degenerate cases implies that the splines are con-
structed in such a way that their first derivative never becomes zero. These kinds of
splines are called regular splines [52].

This is a rather tedious approach. Luckily, we do have some pointers from spline
theory which can help us to avoid most of the difficult cases. For instance, we could
make sure that we do not have any knot values with a multiplicity greater than 1, or any
succeeding control points that coincide or any sequence of three or more control points
being collinear. This would definitely guarantee that the first derivative is always non-zero
at any knot value. However, it does not eliminate problems in between the knot values
– here cusps could occur. These cusps could be removed by either adjusting the control
points or changing the interval size of the two knot values in question.

The drawback of this method is that it requires some assistance on behalf of an
animator to iteratively manipulate the splines. An automated spline interpolation which
guarantees that the first order derivative does not become zero would be preferable.

3.4 Testing

We have implemented a small framework for testing our theory. In this section we will
outline our strategy and present our first results.

Four open nonuniform cubic B-splines were used in our test. Two three-dimensional
space splines and two two-dimensional velocity splines. We did construct a simple and an
advanced space spline, and the two velocity splines were a constant-velocity spline and
an exaggerated ease-in-ease-out velocity spline. See Figure 3.6.

We have combined both space splines with both velocity splines and plotted the
scripted motion position (red balls), velocity (green arrows) and acceleration (blue arrows)
at equidistant time intervals. In the plots we have scaled the velocity and acceleration
vectors to 1/12’th of their true magnitude to make it more easy for the viewer to verify
the correctness of our visualizations.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 39

ease-in-ease-out constant

Figure 3.6: Numerical evidence of the correctness of a spline driven scripted mo-
tion.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 40

It can be hard to see if the accelerations really are correct, because the blue arrows
do tend to grow very rapidly. So in order to prove that our accelerations really are
physically correct, i.e. they “produce” the motion we want, we came up with the following
test strategy. We used the scripted motion to construct a coupled first order differential
equation like

d

dt

[
~r(t)
~v(t)

]

=

[
~v(t)
~a(t)

]

(3.49)

We then used a fourth order Runge Kutta ODE solver with adaptive step size to solve
for the positions (yellow balls). The idea was to compare the positions computed by the
ODE solver with the positions computed by the scripted motion function (red balls). If
these positions are close to each other then in our opinion it would indicate that the
accelerations are computed correctly.

In our opinion, the results seen in Figure 3.6 show two problems. The first problem
is best seen on those plots having constant velocity. Positions appear to be equidistant
everywhere except at the endpoints of the space splines. Our investigations revealed that
the problem is dependent on the choice of the numerical integrator which is used to solve
the arc length integrand. The problem also depends on the required numerical accuracy in
the “root search” re-parameterizations. We are therefore lead to believe that this problem
is caused by numerical imprecision and numerical instability of the arc length integrand
integration.

The second problem is much more obvious. If we compare the yellow balls to the
red balls then it appears as though we keep the shape of the space spline, but we get
somewhat off track. It is also seen that we get most off track when the space spline bends
rapidly. If we look at the corresponding acceleration vectors at the places where we get
the most off track, we see that at these places the vectors change rapidly both in direction
and magnitude. This gives us the clue that the off track problem is due to the fact that
the accelerations are forming a stiff differential equation. This actually makes perfect
sense since any physical real world force which could cause the acceleration changes we
see must be similar to that from a very stiff spring.

Our solution works but is influenced by numerical imprecision and instability, or at
least our implementation is. The first problem we encountered is unpleasant, but can be
dealt with by extending the space spline beyond the ending position one really wants.
This ensures that the velocity spline will not overshoot the maximum traveling distance
of the space spline.

The second problem is actually an advantage to us. If scripted bodies are used in a
simulator and their scripted motion actually corresponds to stiff differential equations
then it is much more tractable to have an analytical function computing the state of the
scripted body instead of using an ODE solver.

Figures 3.7-3.10 show spline driven scripted motion used in a rigid body simulator.
In all simulations friction was 0.25, restitution was 0.25, and simulation time step was
0.01 seconds. Black dots denote key frame positions along space splines at 0.01 seconds
in between. The simulator from Chapter 6 was used to generate all the figures.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 41

(a) 2.0 secs. (b) 3.0 secs. (c) 4.0 secs.

(d) 5.0 secs. (e) 6.0 secs. (f) 7.0 secs.

(g) 8.0 secs. (h) 9.0 secs.

Figure 3.7: A spline driven scripted object moves into 125 balls organized into a
regular cube stack. Real world clock time per frame 0.01 seconds.

3.5 The Rotational Motion

We have not implemented rotational motion, but, theoretically, the machinery can be
extended from linear motion to rotational motion. For completeness, we shortly present
the basic idea here. In the following, the orientation of a scripted body is given by the
quaternion q(t), and the corresponding rotation matrix is written as R(q).

Let us assume that we can compute q′ ≡ dR
dt

and q′′ ≡ d2R
dt2

by using some rotational-
spline representation. Our problem is to determine the physical quantities ~ω and ~α, i.e.
the angular velocity and angular acceleration. From physics, we know that if a body
rotates with angular velocity ~ω then its change of orientation would be

dq

dt
=

1

2
[0, ~ω] q (3.50)

From this, we derive
d2q

dt2
=

1

2
[0, ~α] q +

1

2
[0, ~ω]

(
1

2
[0, ~ω] q

)

(3.51)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 42

(a) 2.0 secs. (b) 3.0 secs (c) 4.0 secs.

(d) 5.0 secs. (e) 6.0 secs. (f) 7.0 secs.

(g) 8.0 secs. (h) 9.0 secs.

Figure 3.8: A spline driven scripted object moves inward in a spiral motion while
interacting with 2000 Balls on a table. Real world clock time per frame 0.2-0.3
seconds.

That is

q′ =
1

2
[0, ~ω] q (3.52a)

q′′ =
1

2
[0, ~α] q +

1

4
[0, ~ω]2 q (3.52b)

Since we know q, q′, and q′′ we can easily isolate ~ω and ~α as follows

[0, ~ω] = 2q′q∗ (3.53a)

[0, ~α] = 2

(

q′′ − 1

4
[0, ~ω] q′

)

q∗ (3.53b)

In other words, if we can compute up to the second derivative of the rotational “spline”
motion, then we can compute the physical quantities we are looking for.

3.6 Discussion

In this chapter we have presented a method for computing the first and second derivatives
of traditional spline driven motion in the time domain of the animation/simulation. We

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 43

(a) 2.0 secs. (b) 3.0 secs. (c) 4.0 secs.

(d) 5.0 secs. (e) 6.0 secs. (f) 7.0 secs.

(g) 8.0 secs. (h) 9.0 secs.

Figure 3.9: A spline driven scripted object is colliding with a 200 brick wall. Real
world clock time per frame 0.02-0.03 seconds

have clearly shown how the method is applicable to handle the linear motion part of the
scripted motion problem and we suggested how the method could be used to handle the
rotational motion part as well.

The degenerate cases did not cause great problems in practice, but it sure would be
nice to have a spline interpolation method which could guarantee that the first derivative
never becomes zero. To our knowledge, no such interpolation method exists today.

The work we have presented in this chapter focuses on the linear motion part of the
scripted motion problem. It appears to us that with very little effort the work could be
extended to handle the rotational motion part as well, by, for instance, letting each of
the Euler angles be described by a one dimensional space spline, or setting up a “center
of interest” space spline and/or a “view-up” space spline. The latter cases do, however,
pose some minor difficulties in the computation of the derivatives i.e. angular velocity
and acceleration. We have presented ideas for handling these difficulties, as explained in
Section 3.5.

However, we feel that it would be much more interesting to look at an interpolation
method which uses quaternions, like a squad spline. Unfortunately, the squad spline can
not be used. It has only C1 continuity at its break points and we clearly require C2 in
order to be able to work with angular acceleration. To our knowledge, there does not
exist a quaternion interpolation method with C2 continuity everywhere.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 44

(a) 2.0 secs. (b) 3.0 secs. (c) 4.0 secs.

(d) 5.0 secs. (e) 6.0 secs. (f) 7.0 secs.

(g) 8.0 secs. (h) 9.0 secs.

Figure 3.10: A spline driven scripted object interacts with a 320 brick tower. Real
world clock time per frame 0.03-0.04 seconds.

Chapter 4

Constraint-Based Rigid Body
Simulation

4.1 Introduction

Two formulations are mainly used for constraint based simulation: acceleration-based and
velocity-based formulations. Although, formulations based on kinetic energy [96, 130] and
motion space [124] exist.

In acceleration-based formulations, the exact contact force at a given time is found
and then used in an ordinary differential equation describing the motion of the bodies in
the scene. In a sense, an acceleration-based formulation sees the instantaneous picture of
the configuration, while on the other hand a velocity-based formulation sees the effect of
the dynamics over an entire time interval. Imagine that the true physical contact force,
~ftrue(t), is known. The impulse ~J in the time interval ∆t is then given as

~J =

∫ ∆t

0

~ftrue(t)dt. (4.1)

and with Newton’s second law of motion one can solve for the velocity, ~v∆t, as follows
∫ ∆t

0

m
d~v

dt
dt =

∫ ∆t

0

~ftrue(t) (4.2)

m
(
~v∆t − ~v0

)
= ~J, (4.3)

here, superscripts denote time, i.e. ~v∆t = ~v(∆t). A new position can now be found by

integrating the velocity. The “force”, ~f , which we try to solve for in a velocity-based
formulation can be interpreted as

~J = ∆t ~f , (4.4)

which, numerically, will produce the same movement as if we had known the true contact
force and computed the time integral. Since velocity-based formulations solve for impulses,
they are also called impulse-based formulations, not to be mistaken with impulse-based
simulation which is an entirely different simulation paradigm discussed in Chapter 2.

On the other hand, an acceleration-based formulation would try to compute the force,
~ftrue(t). Therefore, acceleration-based formulations are often also termed force-based for-
mulations. The force will be used to solve for the acceleration of the motion, which is
then integrated once to yield velocities and integrated twice to yield a new position.

45

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 46

Acceleration-based formulations cannot handle collisions and one must stop at the
point of collision and switch to an impulse-momentum law [11, 8, 117, 35]. Furthermore,
acceleration-based formulations suffer from indeterminacy and inconsistency [13, 138].
The velocity-based formulations suffer from none of these drawbacks. Another advantage
of the velocity-based formulation is that it does not suffer from the small time-step
problem to the same extent as the acceleration-based formulation, meaning that larger
time-steps can be taken during the simulation. The small time-step problem is described
by Milenkovic and Schmidl [96, 130].

Velocity-based formulations in constraint-based methods are widely popular and used,
e.g. Open Dynamics Engine [112], Karma from MathEngine [82], and Vortex from Critical
Mass Labs [150]. In the following, we will present the classical velocity-based constraint
formulation [140, 141], give a possible object oriented implementation design, and discuss
various practical issues.

Many papers and books written on velocity-based formulations use a rather high and
abstract level of mathematical notation together with a great amount of “long forgotten”
analytical mechanics. There is a widespread notation and many small variations. In the
following, we will follow the work presented in [4, 129, 141, 112].

4.2 Previous Work

Impulse-based simulation was introduced by Hahn [71], where time integrals of contact
forces were used to model the interactions. In recent years, Mirtich [100] worked with
impulse-based simulation using a slightly different approach, where contact forces were
modeled as collision impulse trains. Hahn’s and Mirtich’s work represent two different
ways of thinking of impulse-based simulation: as a time integral and as a sum of delta
functions approximating the corresponding time integral. Mirtich’s work led to a new
simulation paradigm. Hahn’s work could be interpreted as an early predecessor to the
velocity-based formulation.

Stewart and Trinkle [140, 141, 138] made a new impulse-based method. Their method
later became known as “Stewart’s Method”. Like Hahn’s method, Stewart’s method also
computes the time integrals of the contact forces. It has since inspired many: Anitescu
and Potra [4], which extended the method to guarantee solution existence, Sauer and
Schömer [129] extended it with a linearized contact condition, Song, Pang, and Ku-
mar [135] used a semi-implicit time-stepping model for frictional compliant contact, and
most recently, an implicit time-stepping method for stiff multi-body dynamics by An-
itescu and Potra [5], and Hart and Anitescu introduced a constraint stabilization [72]
method.

Even though Stewart’s method is an impulse-based method, it looks and feels like
a typical constraint-based method, such as the one formulated by Baraff [16, 18], Trin-
kle, Pang, Sudarsky and Lo [145], Trinkle, Tzitzoutis and Pang [146], and Pfeiffer and
Glocker [117]. These are termed acceleration-based formulations.

Stewart and Trinkle originally used position constraints in their formulation. These
position constraints ensure non-penetration, but suffer from existence problems unless all
contact normals are linearly independent.

Anitescu and Potra’s velocity-based formulation always guarantees a solution, but

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 47

there is one drawback: penetrations might occur when the system moves along concave
boundaries of the admissible region in configuration space. Another side effect from the
velocity-based formulation is that separating contacts moving towards each other require
special attention. If these are present they will be treated as if they were in colliding
contact. This could leave objects hanging in the air. Anitescu and Potra do propose a
time-stepping algorithm that correctly handles this side effect, but other authors tend to
forget the problem.

Stewart and Trinkle suggest that simple projection can be used to eliminate this
problem. However, care must be taken to avoid losing energy in the process. However, it
is not mentioned how one should do the projection.

Stewart and Trinkle [141] suggest using contact tracking (it could be coined “retroac-
tive detection” as well) to avoid the problem of explicitly determining all potential active
contact constraints. That is, once a solution is found, the constraints at time t + ∆t
is checked and if any one is found to be violated, they are added to the set of active
contact constraints and the problem is re-solved. Of course, this increases the amount of
computations. Often, this is not desirable. For instance, in the Open Dynamics Engine,
a fixed time-stepping method is chosen and any errors that occurr are reduced by using
penalty forces. The strategy is to not to try to prevent errors, but to fix or reduce them if
they occur. Another issue which is not obvious, at least to us, is if it is possible at all to
use a retroactive detection of contact constraints when we know there is a problem with
concave boundaries of the admissible region of configuration space.

Sauer and Schömer [129] use a linearized contact condition. They claim this is for
potential contact constraints and they require the assumption that during their “fix-
point-iteration”, contact constraints do not change topologically, i.e. (E, E) 7→ (V, E) is
not allowed. However, it is not obvious to us why this is required.

In the summary section of Stewart and Trinkle’s paper [141] there are some thoughts
on how their method can be extended to handle a non-zero coefficient of restitution.
They suggest stopping at collision times, which in our opinion is not an attractive choice.
Actually, their thoughts are based on the work by Anitescu and Potra. In the Open
Dynamics Engine a slightly different approach is used similar to [11].

4.3 Equations of Motion

From classical mechanics we have the Newton-Euler equations describing the motion for
all bodies. For the i’th body, the mass of body i is given by mi, the inertia tensor by
Ii, the position of the center of mass by ~ri, and the velocity of the center of mass as ~vi.
The orientation is represented by the quaternion qi and the angular velocity by ~ωi. The
Newton-Euler equations for the i’th body look like this (summations are taken over all

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 48

B
1

B
2

B
3

B
4

p
1

p
2

p
3

p
4

n
3 n

4

n
2

n
1

r
21 r

11

r
22

r
32

r
34

r
44

r
43

r
13

r
1

r
2

r
4

r
3

Figure 4.1: Illustration of the convention and notation of the contact normals.

contact points):

~̇ri = ~vi (4.5a)

q̇i = 1
2
~ωiqi (4.5b)

v̇i = m−1
i

∑

jk=i

~fk − m−1
i

∑

ik=i

~fk + m−1
i

~f ext
i (4.5c)

~̇ωi = I−1
i

∑

jk=i

~rkj × ~fk − I−1
i

∑

ik=i

~rki × ~fk (4.5d)

− I−1
i ~ωi × Ii~ωi + I−1

i ~τ ext
i (4.5e)

The dot-notation means the time derivative d
dt

, and is used to ease readability. Observe

that ~fk denotes the contact force at the k’th contact. For the time being, we will ignore
joints and motors. The effect of all external forces on the center of mass is given by ~f ext

i

and the total torque from external forces is given by ~τ ext
i .

For notational convenience we introduce a contact table. Consider a total of K con-
tacts, and assign an unique number k to each contact. For each contact, we know the
indices ik and jk of the two incident bodies. We use the convention that ik < jk. We also
have a contact normal ~nk and a contact point ~pk, both specified in the world coordinate
system, and with the convention that the contact normal points from the body with the
smallest index to the body with the largest index. This is illustrated in Figure 4.1. Notice
that we can never have ik = jk. For each contact we can compute a vector from the center
of mass, ~ri, of an incident body with index i, to the point of contact ~pk that is

~rki = ~pk − ~ri (4.6)

The Newton-Euler equations can now be written as

~̇s = S~u (4.7a)

~̇u = M−1
(

CN~f + ~fext

)

. (4.7b)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 49

Where we have introduced some matrix notation which we will describe in the following.
The position and orientation of n bodies may be concatenated into a single generalized
position and orientation vector, ~s ∈ R

7n:

~s = [~r1, q1, ~r2, q2, · · · , ~rn, qn]T . (4.8)

Similarly, we can write the generalized velocity vector ~u ∈ R
6n as

~u = [~v1, ~ω1, ~v2, ~ω2, · · · , ~vn, ~ωn]T . (4.9)

For the time being, the frictional effects will be ignored, implying that the contact force
can be written as

~fk = fk~nk. (4.10)

This means that we only need to remember the magnitude, fk, of the normal force, and
these can now be concatenated into a single vector ~f ∈ R

K

~f = [f1, f2, · · · , fK]T . (4.11)

The external forces, torques, and velocity dependent forces can also be concatenated into
a vector, ~fext ∈ R

6n,

~fext =
[

~f ext
1 , ~τ ext

1 − ~ω1 × I1~ω1, · · · , ~f ext
n , ~τ ext

n − ~ωn × In~ωn

]T

. (4.12)

Given qi = [si, xi, yi, zi]
T ∈ R

4, we can write the rotation as a matrix Qi ∈ R
4×3 as:

Qi =
1

2

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

. (4.13)

where 1
2
~ωiqi = Qi~ωi. The rotations can now be concatenated into a matrix S ∈ R

7n×6n,

S =

1 0
Q1

. . .

1
0 Qn

, (4.14)

Matrix S is also illustrated in Figure 4.2. The generalized mass matrix M ∈ R
6n×6n is,

M =

m11 0
I1

...
mn1

0 In

(4.15)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 50

where 1 is the identity matrix. The layout of the mass matrix is illustrated in Figure 4.3.
The matrix of contact normals N ∈ R

3K×K is,

N =

~n1 0
~n2

. . .

0 ~nk

, (4.16)

as shown in Figure 4.4, and the matrix of contact conditions C ∈ R
6n×3K is,

Clk =

−1 for l = 2ik − 1

−r×kik
for l = 2ik

1 for l = 2jk − 1

r×kjk
for l = 2jk

0 otherwise

. (4.17)

Here r× ∈ R
3×3 is the skew-symmetric matrix given by

r× =

0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (4.18)

It is easy to show that r×~a = ~r × ~a. Every column of C corresponds to a single contact
and every row to a single body see Figure 4.5.

Using an Euler-scheme, we can write the discretized equations of motion as follows,

~st+∆t = ~st + ∆tS~ut+∆t, (4.19a)

~ut+∆t = ~ut + ∆tM−1
(

CN~f t+∆t + ~fext

)

. (4.19b)

Here, superscripts denote the time at which a quantity is computed. Notice that the
matrices depend on time. If they are evaluated at time t, then we have a semi-implicit
method, and if they are evaluated at time t + ∆t we have an implicit method.

Equation (4.19a) is called the position update. It is a good idea to renormalize the
quaternions stored in ~st+∆t. A modified position update is outlined in Section 4.14. Equa-
tion (4.19b) is called the velocity update.

4.4 The Contact Condition

The projection matrix, Pk ∈ R
3K×3 will be needed for further analysis of the k’th contact

point. It is defined as

PT
k =

0 0 0
0 0 0
0 0 0

 , . . . ,

0 0 0
0 0 0
0 0 0

 ,

1 0 0
0 1 0
0 0 1

 ,

0 0 0
0 0 0
0 0 0

 , . . . ,

0 0 0
0 0 0
0 0 0

 . (4.20)

That is, the k’th 3 × 3 sub matrix is set to the identity matrix. The normal component
of the relative contact velocity of the k’th contact point is given by

~nT
k PT

k CT~u = ~nT
k (~vjk

+ ~ωjk
× ~rkjk

) − ~nT
k (~vik + ~ωik × ~rkik) . (4.21)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 51

7n

6n

S =

3

3

4

3

1

Q
1

1

Q
2

1

Q
n

Figure 4.2: The S matrix layout.

m
1

I
1

m
2

I
2

m
n

I
n

6n

6n

M =

3

3

3

3

Figure 4.3: The M matrix layout.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 52

1

N = 3K

K

2

K

3

1

Figure 4.4: The N matrix layout.

6n

3K

-1

-r
kik

1

r
kjk

k

i
k

j
k

6

6

3

C =

Figure 4.5: The C matrix layout.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 53

Notice that multiplying by the projection matrix will mask out the k’th contact condi-
tions. If body Bik and Bjk

touch at contact point ~pk at time t, then the complementarity
condition for the velocities must hold,

~nT
k PT

k CT~ut+∆t ≥ 0 compl. to fk ≥ 0. (4.22)

A complementarity condition means that if we have two conditions, then one is non-
zero and the other is zero or vice versa. Stewart and Trinkle [140] originally used a
complementarity condition on position. Anitescu and Potra [4] discovered that using the
velocity complementarity problem formulation guarantees solution existence. Sauer and
Schömer [129] expanded the velocity formulation further by handling future potential
contact points.

If there is no contact at the potential contact point ~pk at time t, the following linearized
complementarity condition holds,

~nT
k PT

k CT~ut+∆t ≥ νk

∆t
compl. to fk ≥ 0. (4.23)

Later, we will go into details on the linearization. If we use νk = 0 for all touching contacts
then we can formulate a complementarity condition for all contacts, both touching and
potential ones as

NTCT~ut+∆t ≥ ~ν

∆t
compl. to ~f ≥ 0, (4.24)

with ~ν = [ν1, . . . , νK]T ∈ R
K . Inserting (4.19b) into (4.24) gives

NTCT
(

~ut + ∆tM−1
(

CN~f t+∆t + ~fext

))

− ~ν

∆t
≥ 0. (4.25)

Rearranging yields,

NTCTM−1CN
︸ ︷︷ ︸

A

∆t ~f t+∆t

︸ ︷︷ ︸

~x

+NTCT
(

~ut + ∆tM−1 ~fext

)

− ~ν

∆t
︸ ︷︷ ︸

~b

≥ 0, (4.26)

which results in a linear complementarity problem (LCP) of the form,

A~x +~b ≥ 0 compl. to ~x ≥ 0, (4.27)

where A ∈ R
K×K and ~x,~b ∈ R

K . Entry l, k of A looks like

Alk = δilik~n
T
l

(
1

mik

1 − r×lilI
−1
ik

r×kik

)

~nk

− δiljk
~nT

l

(
1

mjk

1 − r×lilI
−1
jk

r×kjk

)

~nk

− δjlik~n
T
l

(
1

mik

1 − r×ljl
I−1
ik

r×kik

)

~nk

+ δjljk
~nT

l

(
1

mjk

1 − r×ljl
I−1
jk

r×kjk

)

~nk, (4.28)

with the Kronecker-symbol being,

δij =

{

1 for i = j,

0 for i 6= j.
(4.29)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 54

4.5 Linearization

Sauer and Schömer [129] use a linearized contact condition in equation (4.24). In the
following, we will derive the linearized contact condition. The linearization serves as a
measure of when a potential contact constraint should be switched on. This allows bigger
time-steps to be taken while keeping the error low. Taking the same time-step size without
the linearization will imply a larger approximation error,

The k’th potential contact point may be represented by the closest points ~pik and ~pjk

between two bodies, Bik and Bjk
, that eventually meet and form the k’th contact point.

The closest points depend on the position and orientation of the bodies. If we let the
vector ~sk ∈ R

14 be the generalized position vector of the two bodies, where the function
~sk’s dependency of time has been omitted for readability,

~sk = [~rik , qik , ~rjk
, qjk

] , (4.30)

the minimal distance between the two bodies, dk(~sk), is

dk(~sk) = ~nT
k (~sk) (~pjk

− ~pik) ≥ 0, (4.31)

where ~nk is a unit vector pointing from ~pik to ~pjk
. A first order Taylor-expansion of dk(~sk)

at ~s ′
k is,

dk(~sk) = dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T
(~sk − ~s ′

k) + O(∆t2). (4.32)

Notice that ∇~sk
is the functional derivative. If we look at the backward difference of the

time derivative of the generalized position vector we find,

d

dt

(
~s t+∆t

k

)
=

~s t+∆t
k − ~s t

k

∆t
+ O(∆t). (4.33)

Rearranging yields,

~s t+∆t
k = ~s t

k +
d

dt

(
~s t+∆t

k

)
∆t + O(∆t2) (4.34)

Again we approximate ∇~sk
dk(~s

′
k) at ~s t+∆t

k using Taylor’s theorem by taking the zeroth
order expansion to get,

∇~sk
dk(~s

′
k) = ∇~sk

dk(~s
t+∆t

k) + O(∆t). (4.35)

Substituting (4.34) for ~sk in (4.32) gives,

dk(~s
t+∆t

k) ≈ dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T

(

~s t
k +

d

dt

(
~s t+∆t

k

)
∆t − ~s ′

k

)

(4.36)

= dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

)

+ ∆t (∇~sk
dk(~s

′
k))

T d

dt

(
~s t+∆t

k

)
. (4.37)

Now we insert (4.35) in the last term and get

dk(~s
t+∆t

k) ≈ dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

)

+ ∆t
(
∇~sk

dk(~s
t+∆t

k)
)T d

dt

(
~s t+∆t

k

)
.

(4.38)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 55

Recall that the distance function is actually a function of time, dk(~sk(t)), so by the chain
rule we have

d

dt

(
dk(~s

t+∆t
k)

)
=
(
∇dk(~s

t+∆t
k)

)T d

dt

(
~s t+∆t

k

)
. (4.39)

Inserting (4.39) into (4.38) yields

dk(~s
t+∆t

k) ≈ dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

)

+ ∆t
d

dt

(
dk(~s

t+∆t
k)

)
.

(4.40)

From past work such as [18, 16] we know,

d

dt
(dk(t)) = ~nT

k ((~vjk
+ ~ωjk

× ~rjk
) − (~vik + ~ωik × ~rik)) . (4.41)

Using this in (4.40) together with (4.31) we derive

dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

)

+ ∆t~nT
k

((
~v t+∆t

jk
+ ~ω t+∆t

jk
× ~r t+∆t

jk

)

−
(
~v t+∆t

ik
+ ~ω t+∆t

ik
× ~r t+∆t

ik

))
≥ 0.

(4.42)

Rearranging we have,

~nT
k

((
~v t+∆t

jk
+ ~ω t+∆t

jk
× ~r t+∆t

jk

)
−
(
~v t+∆t

ik
+ ~ω t+∆t

ik
× ~r t+∆t

ik

))

≥ − 1

∆t

(

dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

))

.
(4.43)

Recall that the left side of this equation is in fact ~nT
k PT

k CT~u t+∆t. It now follows that

~nT
k PT

k CT~u t+∆t ≥ − 1

∆t

(

dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

))

. (4.44)

Comparing with (4.23) we write,

νk = −
(

dk(~s
′

k) + (∇~sk
dk(~s

′
k))

T (
~s t

k − ~s ′
k

))

. (4.45)

All curvature information is lost with the linearized constraints which implies that a step
of length O(∆t) introduces errors of O(∆t2). Hence, the approach of Sauer and Schömer
prevents the penetration of increasing by more than O(∆t2).

4.6 The Frictional Case

In this section, we will expand the formulation given in (4.27) to include friction. For
each contact, we use two orthogonal unit vectors ~t1k

and ~t2k
which span the tangential

plane at the k’th contact. Together with the normal vector ~nk the three vectors form an
orthogonal coordinate system. The friction cone at the k’th contact is approximated by
a discretized version having η direction vectors ~dhk

with h = 1, . . . , η, where η = 2i for
all i ∈ N and i ≥ 2. The direction vectors are concatenated into a matrix Dk ∈ R

3×η,

Dk =
[

~d1k
, . . . , ~dηk

]

, (4.46)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 56

Figure 4.6: The friction pyramid approximation for η = 6. Observe that the vectors
~dhk

positively span the friction pyramid.

where

~dhk
= cos

(
2(h − 1)π

η

)

~t1k
+ sin

(
2(h − 1)π

η

)

~t2k
. (4.47)

We have transformed the spatial cone limiting the friction force due to Coulomb’s friction
law, called the friction cone into a friction pyramid with η facets, illustrated in Figure 4.6.
For each direction vector we will use βhk

for the magnitude of the component of friction

force in the direction of ~dhk
. Like before we can build up a vector of all friction components

~βk ∈ R
η,

~βk = [β1k
, . . . , βηk

]T . (4.48)

The modification of the equations of motion (4.7) is the definition of contact force ~fk

from (4.10) which we now write as,

~fk = fk~nk + Dk
~βk. (4.49)

As before we use matrix notation which will allow us to write the equations of motion in
a single matrix equation. The generalized acceleration is again described by the Newton-
Euler equations

~̇u = M−1
(

C
(

N~f + Dβ
)

+ ~fext

)

. (4.50)

We need a vector, ~β ∈ R
ηK

~β =
[

~βT
1 , . . . , ~βT

K ,
]T

(4.51)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 57

1

2

K

3K

eta K

eta

3

D =

Figure 4.7: The D matrix layout.

That is, the concatenation of the ~βk-vectors. We also need the matrix D ∈ R
3K×ηK

D =

D1 0
D2

...
0 DK

(4.52)

Figure 4.7 illustrates the D matrix layout. Using an Euler-Scheme gives us the discretized
approximation,

~u t+∆t = ~u t + ∆tM−1
(

C
(

N~f + Dβ
)

+ ~fext

)

. (4.53)

In order to model the relationship between the normal force and the friction, known as
Coulomb’s Friction Law, we need to add two complementarity conditions for the friction
forces in addition to the previous complementarity condition for the normal force. We
have a total of three complementarity conditions for the k’th contact

λk~ek + DT
k PT

k CT~u t+∆t ≥ 0 compl. to ~βk ≥ 0, (4.54a)

µkfk − ~eT
k
~βk ≥ 0 compl. to λk ≥ 0, (4.54b)

~nT
k PT

k CT~u t+∆t − νk

∆t
≥ 0 compl. to fk ≥ 0. (4.54c)

Where µk is the friction coefficient at the k’th contact point, and ~ek = [1, . . . , 1]T ∈ R
η.

The symbol λk is a Lagrange multiplier with no real physical meaning, but it is an
approximation to the magnitude of the relative tangential contact velocity. We will now
list the possible contact states modeled by (4.54).

Separation: In this case ~nT
k PT

k CT~u t+∆t − νk

∆t
> 0, and (4.54c) implies that fk = 0.

Substitution of this into (4.54b), implies that ~βk = 0, i.e. there is no friction force.
From (4.54a) we see that λk can take on any value without violating the conditions.

Sliding: For sliding, DT
k PT

k CT~u t+∆t is non-zero, since the columns of Dk positively
span the entire contact plane. There must be at least one direction vector such that
~dT
hk

PT
k CT~u t+∆t < 0, and since the corresponding βhk

> 0, we must have λk > 0 for
(4.54a) to hold, and (4.54b) implies that βhk

= µkfk.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 58

Rolling: In this case DT
k PT

k CT~u t+∆t is zero, and (4.54a) implies that λk ≥ 0. There are
two interesting cases:

Case 1: Choosing λk = 0 (4.54a) implies that ~βk ≥ 0. This means that the contact
impulse can range over the interior and the surface of the discretized friction
cone.

Case 2: Choosing λk > 0 (4.54a) implies that ~βk = 0. Then (4.54b) will only be
fulfilled if µkfk = 0. This is a non-generic case that occurs by chance in the
absence of a frictional impulse that is when µk = 0.

We can now proceed analogous to the frictionless case and try to insert (4.53) into (4.54a)
and (4.54c):

λk~ek + DT
k PT

k CT
(

~u t + ∆tM−1
(

C
(

N~f + Dβ
)

+ ~fext

))

≥ 0

compl. to ~βk ≥ 0, (4.55a)

~nT
k PT

k CT
(

~u t + ∆tM−1
(

C
(

N~f + Dβ
)

+ ~fext

))

− νk

∆t
≥ 0

compl. to ~fk ≥ 0. (4.55b)

Rearranging provides us with two new complementarity conditions which replace those
in (4.54a) and (4.54c):

∆tDT
k PT

k CTM−1CN~f + ∆tDT
k PT

k CTM−1CDβ

+λk~ek + DT
k PT

k CT~u t + ∆tDT
k PT

k CTM−1 ~fext ≥ 0

compl. to ~βk ≥ 0, (4.56a)

∆t~nT
k PT

k CTM−1CN~f + ∆t~nT
k PT

k CTM−1CDβ

+~nT
k PT

k CT~u t + ∆t~nT
k PT

k CTM−1 ~fext −
νk

∆t
≥ 0

compl. to ~fk ≥ 0. (4.56b)

By rearranging the complementarity conditions (4.54b), (4.56a), and (4.56b) we can for-
mulate the LCP-formulation in matrix from as,

DTCTM−1CD DTCTM−1CN E
NTCTM−1CD NTCTM−1CN 0

−ET µ 0

 ·

∆t~β

∆t ~f
~λaux

+

DTCT
(

~u t + ∆tM−1 ~fext

)

NTCT
(

~u t + ∆tM−1 ~fext

)

− ~ν
∆t

0

≥ 0

compl. to

∆t~β

∆t ~f
~λaux

 ≥ 0, (4.57a)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 59

Figure 4.8: The E matrix layout.

where the diagonal matrix µ ∈ R
K×K is given as,

µ =

µ1 0
µ2

...
0 µK

, (4.58)

and the matrix e ∈ R
ηK×K is given by,

E =

~e1 0
~e2

...
0 ~eK

. (4.59)

That is, E consists of η×1 dimensional sub matrices, and all sub matrices on the diagonal
consist of ones and off diagonal sub matrices are 0, see Figure 4.8. Finally, the vector
~λaux ∈ R

K is given as,
~λaux = [λ1, . . . , λK]T . (4.60)

Let the matrix A ∈ R
(η+2)K×(η+2)K be defined as,

A =

DTCTM−1CD DTCTM−1CN E
NTCTM−1CD NTCTM−1CN 0

−ET µ 0

 , (4.61)

and the vector ~x ∈ R
(η+2)K as,

~x =

∆t~β

∆t ~f
~λaux

 , (4.62)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 60

and the vector b ∈ R
(η+2)K as,

~b =

DTCT
(

~u t + ∆tM−1 ~fext

)

NTCT
(

~u t + ∆tM−1 ~fext

)

− ~ν
∆t

0

(4.63)

then we see that we have a typical LCP formulation of the form

A~x +~b ≥ 0 compl. to ~x ≥ 0. (4.64)

The above formulation can be further extended to include torsional friction [146].
Because of real-time demands, a scalable friction model for time-critical computing is

of importance. The constraint-based method is easily adopted to a scalable friction model
by controlling the number of facets, η, used in the friction pyramid approximation.

Several methods could be used for setting the value of η. A global control could be
used based on the amount of computation time or the total number of variables in the
LCP problem. If either of these exceed some given limits, η is decreased correspondingly.

However, local control could also be used. Often, only visualization is important,
therefore accurate friction is only needed for objects seen by a user. In such cases it is
reasonable to use a low η for all objects outside the view-frustum, and for those objects
inside the view-frustum, a higher η-value is used.

4.7 Joints

In the previous sections we have treated the problem of contact mechanics using classical
mechanics taught in first year undergraduate physics and linear algebra. The approach is
straightforward and easy to understand even though there is a lot of symbols and notation.
Until now, we have treated what is known as unilateral contacts, where unilateral refers
to the “≥”-constraints on the contact forces. In this section, we will try to generalize our
formulation and include bilateral-constraints. Here bilateral refers to a “=”-constraint
on the constraint forces. Bilateral constraints are used for modeling joints between the
bodies such as hinges and ball-in-socket connections.

In this section, we will show how we can go from the formulation based on “classical
mechanics” to a formulation based on “analytical mechanics”. To achieve a more abstract
and general formulation, we need to introduce concepts of: holonomic and non-holonomic
constraints, and Jacobians.

There exists many papers which takes the analytical mechanics approach for formu-
lating their complementarity problems, e.g. [117, 8, 4, 5]. A useful reference for further
reading on analytical mechanics is [65].

4.7.1 Holonomic Constraints

Working with constraints, we are particularly interested in the number of degrees of
freedom (DOF) that is the minimum set of parameters needed to describe the motion
of our system. For instance, a free moving body has 6 DOFs, because we need at least
three parameters to describe its position, and at least three parameters to describe its

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 61

orientation. For two free floating rigid bodies we have 12 DOFs, from which we conclude
that the smallest possible generalized position vector we can find will have 12 entries.

Following the conventions from previous sections, the spatial position vector ~sl =∈ R
14

for the l’th joint between the two bodies Bil and Bjl
can be written as,

~sl = [~ril, qil, ~rjl
, qjl

]T . (4.65)

To ease notation we will not bother with writing the subscript indicating the joint number
or the contact number in the following sections, so we simply write,

~s = [~ri, qi, ~rj , qj]
T . (4.66)

The position vector ~s is not the minimum set of parameters, since we use quaternions
for the representation of the orientations, and thus use four parameters instead of the
minimal three for each orientation. For describing velocities and accelerations we could
use time derivatives of the quaternions, but this is tedious, since the laws of physics use
angular velocities ~ω. Instead, we need a transformation like the one we introduced in
Section 4.3,

~̇s = S~u, (4.67)

where
~u = [~vi, ~ωi, ~vj , ~ωj]

T , (4.68)

and

S =

1 0
Qi

1
0 Qj

. (4.69)

We write the position vector ~r ∈ R
12 associated with the integrals of ~u as

~r =
[

~ri, ~θi, ~rj, ~θj

]T

, (4.70a)

= [xi, yi, zi, αi, βi, γi, xj , yj, zj , αj, βj , γj]
T . (4.70b)

Here ~θi is the integral quantities of ~ωi, i.e.,

~u =
d

dt
~r. (4.71)

In general, the quantities ~θi and ~θj in ~r do not give meaning as finite quantities, and
in plain computer graphics language you can not use them like Euler angles to make a
rotation matrix. Nevertheless, ~r is a minimum spatial position vector.

When we link two rigid bodies together by a joint, we are removing DOFs from
the system, and we can therefore find an even smaller generalized position vector. For
instance, if we make a rigid connection between two free floating bodies then we can
remove 6 DOFs, because we only need to describe the movement of one of the bodies,
and the movement of the other body will follow immediately from the movement of the
first body. This means that the smallest possible generalized position vector has 6 entries.
From the example, we see that we can at most remove 6 DOFs from any joint.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 62

By definition, a holonomic constraint1 between two bodies Bi and Bj can be written
as a function Φ of time and a spatial position vector ~s =∈ R

14, such that we always have,

Φ(t, ~s) = 0. (4.72)

All joint types presented in this dissertation can be modeled by time-independent holo-
nomic constraints, meaning that for the l’th joint we have m holonomic constraints

Φ1(~s) = 0, (4.73a)

Φ2(~s) = 0, (4.73b)

...

Φm(~s) = 0, (4.73c)

where m is the number of degrees of freedom removed by the constraints. This type of
holonomic constraint is called a scleronomous constraint.

Assume that the l’th joint is a ball-in-socket joint between the two bodies Bi and Bj .
A ball-in-socket joint is characterized by the fact that two points, one from each body,
is always connected to each other, meaning that we have one constraint saying the x
coordinates of the two points must be equal, another constraint requiring equality of the
y-coordinates and a third one for equality of the z-coordinates. That is if we let the two
points be specified by two fixed vectors ~r i

anc and ~r j
anc in the respective body frames of the

two bodies as shown in Figure 4.9, then we can formulate the geometric constraint as
follows

[(
~ri + R(qi)~r

i
anc

)
−
(
~rj + R(qj)~r

j
anc

)]

x
︸ ︷︷ ︸

Φ1

= 0, (4.74a)

[(
~ri + R(qi)~r

i
anc

)
−
(
~rj + R(qj)~r

j
anc

)]

y
︸ ︷︷ ︸

Φ2

= 0, (4.74b)

[(
~ri + R(qi)~r

i
anc

)
−
(
~rj + R(qj)~r

j
anc

)]

z
︸ ︷︷ ︸

Φ3

= 0, (4.74c)

where R(q) is the corresponding rotation matrix of the quaternion q. From the equations
above, it is clear that the geometric constraint characterizing the ball-in-socket joint can
be expressed as three holonomic constraints on vector form as,

~Φ(~s) =

Φ1(~s)
Φ2(~s)
Φ3(~s)

 = 0. (4.75)

Notice that the small example is not only illustrative. It actually provides us with a recipe
for deriving different joint types. In conclusion, a holonomic constraint is equivalent to
removing a degree of freedom from the system, which means that we can find a generalized
position vector with one entry less than the spatial position vector.

1Holonomic (holos in Greek = integer in Latin = integrable) is synonymous with completely integrable.
A holonomic constraint is exact and often understood as being independent of the generalized velocities.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 63

B
i

B
j

l'th Joint

r
anc

i r
anc

j

Figure 4.9: A 2D illustration of a ball in a socket joint.

By differentiation with respect to time, we can derive a kinematic constraint from
each holonomic constraint,

d

dt
~Φl(~s) =

∂~Φ

∂~s

d~s

dt
(4.76a)

=
∂~Φ

∂~s
S

︸ ︷︷ ︸

JΦ

~u (4.76b)

= 0. (4.76c)

The matrices ∂~Φ
∂~s

∈ R
m×14 and JΦ ∈ R

m×12 are called Jacobians, and they describe
relations between velocities in different coordinate representations. Finally, we have the
kinematic constraint,

JΦ~ul = 0. (4.77)

Performing another differentiation wrt. time leads to the acceleration constraint,

d2

dt2
~Φ(~s(t)) =

d

dt
(JΦ~u) (4.78a)

=
d

dt
(JΦ) ~u + JΦ

d

dt
(~u) (4.78b)

= 0, (4.78c)

from which we conclude that
JΦ~̇u = −J̇Φ~u. (4.79)

For our velocity-based formulation we have no use of the acceleration constraint. However,
if we were to setup an acceleration-based formulation, we would need to augment the
Newton-Euler equations with these acceleration constraints.

From classical mechanics it is well known that the generalized constraint force exerted
by a holonomic constraint can be written as,

~FΦ = J T
Φ
~λΦ. (4.80)

This follows from the principle of virtual work. The ~λΦ ∈ R
m is a vector of Lagrange

multipliers. They account for the reaction forces coming from the joint bearings, and the
Lagrange multipliers can take any real value, both positive and negative. Observe that
the dimension of ~λΦ depends on the number of constraints on the joint. Thus we conclude
that we have as many independent reaction forces as there are constraints.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 64

4.7.2 Non-holonomic Constraints

A non-holonomic constraint2 is a differential constraint that cannot be integrated, how-
ever in this context we define a non-holonomic constraint as constraint that cannot be
put into the form of a holonomic constraint (4.72). There are many different kinds of
non-holonomic constraints, and we will restrict ourselves to a certain kind, namely those
called unilateral constraints.

A non-holonomic constraint between two bodies Bi and Bj can by definition be written
as a function Ψ of time and generalized position vector ~s ∈ R

14, such that we always have,

Ψ(t, ~s) ≥ 0. (4.81)

The condition for a contact can be modeled by (1 + η) time-independent non-holonomic
constraints. That is

~Ψ(~s) ≥ 0. (4.82)

This looks very different from the contact conditions we have seen previously, but do not
despair. The connection with our previous derivations will be made clear later on. Taking
the time derivative gives us a kinematic contact constraint,

d

dt
~Ψ(~s) =

∂~Ψ

∂~s

d~s

dt
(4.83a)

=
∂~Ψ

∂~s
S

︸ ︷︷ ︸

JΨ

~u (4.83b)

= JΨ~u (4.83c)

≥ 0, (4.83d)

where JΨ ∈ R
(1+η)×12 is the Jacobian of the contact constraint. Taking the time derivative

one more time yields an acceleration constraint,

d2

dt2
~Ψ(~s(t)) =

d

dt
(JΨ~u) (4.84a)

= J̇Ψ~u + JΨ~̇u (4.84b)

≥ 0. (4.84c)

The generalized constraint force exerted by the contact constraint can be written as,

~FΨ = J T
Ψ
~λΨ, (4.85)

where ~λΨ ∈ R
1+η is the vector of Lagrange multipliers. Unlike the Lagrange multipliers

used for the joint reaction forces, the Lagrange multipliers for the contacts can only take
nonnegative values, i.e.

~λΨ ≥ 0. (4.86)

2Nonintegrable is synonymous with non-holonomic. A non-holonomic constraint can not be integrated
to become a strictly algebraic expression. In the field of robotic manipulation this is sometimes understood
as a constraint that is dependent on the generealized velocities.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 65

As pointed out in Anitescu and Potra [5], one should be careful about what the constraint
d
dt

~Ψ(~s) ≥ 0 implies. Because if we have

~Ψ(~s) > 0 (4.87)

indicating a potential future contact, this does not imply that

d

dt
~Ψ(~s) > 0. (4.88)

Only so-called “active” contacts, where

~Ψ(~s) = 0, (4.89)

requires this. This boils down to that separated contacts are allowed to move towards each
other, until they become touching contacts, and a touching contact can either continue
being a touching contact, or it can become a separated contact.

Momentarily re-introducing the subscript for the contact ordering, we can write all
the kinematic constraints and force contributions as

JΨk
~uk ≥ 0, where JΨk

∈ R
(1+η)×12, (4.90a)

~fΨk
= J T

Ψk

~λΨk
, where ~λΨk

∈ R
1+η. (4.90b)

Concatenating them into a matrix equation we have,

Jcontact~u = 0, (4.91a)

~fcontact = J T
contact

~λcontact, (4.91b)

where ~u ∈ R
6n is the generalized velocity vector introduced in Section 4.3, ~u = [~v1, ~ω1, · · · , ~vn, ~ωn]T ,

and ~λcontact ∈ R
K(1+η) is the concatenated vector of all the Lagrange multipliers,

~λcontact =
[

~λ1
Ψ1

, . . . , ~λ
(η+1)
Ψ1

, . . . , ~λ1
ΨK

, . . . , ~λ
(η+1)
ΨK

]T

. (4.92)

The Jcontact ∈ R
K(1+η)×6n is the system Jacobian for all the contacts, and it is given by,

Jcontact =

J 1
Ψ1

. J n
Ψ1

...
...

J 1
Ψk

· · · J i
Ψk

· · · J j
Ψk

· · · J n
Ψk

...
...

J 1
ΨK

. J n
ΨK

. (4.93)

This Jacobian is inherently extremely sparse, since the k’th contact only involves two
bodies i and j, meaning that the only non-zero entries in the k’th row of Jcontact is the
columns corresponding to the bodies i and j,

[
J i

Ψk
J j

Ψk

]
= JΨk

. (4.94)

We will now prove that

C
(

N~f + D~β
)

≡ J T
contact

~λcontact. (4.95)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 66

The above equation follows from straightforward computations and permutations of the
left hand side of

C
(

N~f + D~β
)

= CN~f + CD~β (4.96a)

=
[
CN CD

]

︸ ︷︷ ︸

π(JT
contact)

[
~f
~β

]

︸︷︷︸

π(~λcontact)

(4.96b)

= π
(

J T
contact

~λcontact

)

, (4.96c)

where π(·) is a permutation. Now simply swap rows and columns, such that

~λ1
Ψk

= fk, (4.97a)

~λ2
Ψk

= β1k
, (4.97b)

...
...

~λ
(η+1)
Ψk

= βηk
, (4.97c)

and the relation between the Jacobian, Jcontact, and the matrices C, N, and D is clear.

4.7.3 A Unified Notation for Unilateral and Bilateral Constraints

We now want to show that both bilateral and unilateral constraints can be added to
the governing system of equations of motion through the same notion of Jacobians and
Lagrange multipliers.

Momentarily re-introducing the subscripts on both the joint and contact ordering, we
have K contacts and L joints, and we can write all their kinematic constraints and force
contributions as,

JΦl
~ul = 0, where JΦl

∈ R
ml×12, (4.98a)

JΨk
~uk ≥ 0, where JΨk

∈ R
(1+η)×12, (4.98b)

~fΦl
= J T

Φl

~λΦl
, where ~λΦl

∈ R
ml, (4.98c)

~fΨk
= J T

Ψk

~λΨk
, where ~λΨk

∈ R
1+η. (4.98d)

Following the same recipe as in Section 4.7.2 for concatenating these into matrix notation,
we get

Jjoint~u = 0, where Jjoint ∈ R
(
∑L

l ml)×6n, (4.99a)

Jcontact~u ≥ 0, where Jcontact ∈ R
K(1+η)×6n, (4.99b)

~fjoint = J T
joint

~λjoint, where ~λjoint ∈ R

∑L
l ml, (4.99c)

~fcontact = J T
contact

~λcontact, where ~λcontact ∈ R
K(1+η). (4.99d)

The Jacobian Jcontact and the Lagrange multiplier vector ~λcontact was given in (4.93) and

(4.92). The system joint Jacobian Jjoint and the joint Lagrange multiplier vector ~λjoint

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 67

follows the same pattern and is given as,

Jjoint =

J 1
Φ1

. J n
Φ1

...
...

J 1
Φl

· · · J i
Φl

· · · J j
Φl

· · · J n
Φl

...
...

J 1
ΦL

. J n
ΦL

. (4.100)

This Jacobian is inherently extremely sparse, since the l’th joint only involves two bodies
i and j, meaning that the only non-zero entries in the l’th row of Jjoint is the columns
corresponding to the bodies i and j,

[
J i

Φl
J j

Φl

]
= JΦl

, (4.101)

and
~λjoint =

[

~λ1
Φ1

, . . . , ~λm1

Φ1
, . . . , ~λ1

ΦK
, . . . , ~λmK

ΦK

]T

. (4.102)

Using the matrix notation to write constraint forces of both bilateral and unilateral
constraint, the generalized acceleration vector can be written as,

~̇u = M−1
(

~fcontact + ~fjoint + ~fext

)

(4.103a)

= M−1
(

J T
contact

~λcontact + J T
joint

~λjoint + ~fext

)

. (4.103b)

This is a completely general way to add constraints, and it will be further explored in
the remainder of this chapter, and in the end it will also lead to a general and efficient
implementation framework.

4.8 Joint Modeling

In this section, we will derive the machinery for modeling joints and later joint limits as
well as joint motors. We will start by introducing a sub matrix pattern of the Jacobian
matrix. Hereafter, we will describe joint error, connectivity and error reduction.

For the l′th joint constraint we can write the kinematic constraint, as

Jl~ul = 0. (4.104)

Since we will focus on joint types, we will omit writing the subscript indicating the joint
“ordering”. That is, for a given joint type we simply write the kinematic constraint as,
J~u = 0. There is a remarkable sub matrix pattern of the Jacobians which we will make
extensive use of, because later on it will make the assembly of the system matrix easier.
Writing the generalized velocity vector with its sub vectors as,

J~u = 0, (4.105a)

[
Ji

lin Ji
ang Jj

lin Jj
ang

]

~vi

~ωi

~vj

~ωj

= 0. (4.105b)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 68

Observe that there is a part of the Jacobian matrix that is only multiplied with the linear
velocity of body i which is denoted Ji

lin, a part that is only multiplied by the angular part
of body i, Ji

ang, and so on. In fact, we can interpret

Ji
lin~vi + Ji

ang~ωi, (4.106)

as the velocity of the joint bearings on body i, and

Jj
lin~vj + Jj

ang~ωj, (4.107)

as the velocity of the joint bearing on body j. It is now obvious, that in order to keep
the joint bearings together, the bearings must move with the same velocity, and the sum
must therefore be zero. This observation provides us with a strategy for designing the
Jacobians: given the body velocities, set up a matrix equation, such that the relative
velocity in the direction of the joint bearings is always zero.

4.8.1 Joint Error

By now, it should be clear that the kinematic constraints are constraints on the velocities,
not the positions. This means that both numerical errors and errors stemming from in-
ternal approximations can sneak into the computations of the positions as the simulation
proceeds. Here, we will outline the general idea of using stabilization for error correction
and in Section 4.16 we will go into details of a projection based error correction method.
Imagine that some positional error has occurred, such that there is a positional displace-
ment of the joint bearings and/or a misalignment of the joint bearings. This error could
be reduced by adjusting the velocities of the joint bearings, such that the error is smaller
in the next simulation step. Therefore, we augment our kinematic constraints with a
velocity error correction term, ~b,

J~u = ~b. (4.108)

To illustrate this, we will present a simple one-dimensional example: Imagine two particles
that can move along a line, where the particles are jointed together, such that their
positions always should be equal. Their kinematic constraint will then be,

~vi − ~vj = 0. (4.109)

Now imagine that some error is present,

~rerr = ~rj − ~ri, (4.110)

with | ~rerr |> 0. To adjust the velocities such that this error is eliminated within some
time ∆t, we require that

~vi − ~vj
︸ ︷︷ ︸

J~u

=
~rerr

∆t
︸︷︷︸

~b

, (4.111a)

J~u = ~b. (4.111b)

If joints or limits are subject to an initial error, and incident links are at rest, then
error terms will accelerate the links. So not only will the error be corrected, but bodies will

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 69

continue to move afterward. This is obviously an unwanted effect! The error correction
should not add kinetic energy to the system, otherwise the links connected by the joint will
seem to start to accelerate unexpectedly. In fact, the error correction has the same effect
as using Newton’s collision law for solving simultaneous collisions [11]. An acceptable and
practical workaround is to use an error reduction parameter to control the rate of error
correction, which will be discussed in Section 4.8.3.

4.8.2 Connectivity

We will describe the connectivity and movements of all joints by using anchor points and
joint axes. An anchor point is a point in space where two points, one from each incident
body, are always perfectly aligned. The placement of an anchor point relative to a body,
i, is given by a body frame vector, ~r i

anc. The position of the anchor point in the world
coordinate system (WCS) wrt. to body i is given by,

~r wcs
anc = ~ri + R(qi)~r

i
anc. (4.112)

A joint axis describes an allowed direction of movement, such as an axis of rotation
or a direction of sliding. The joint axis is given by a 3-dimensional unit vector, ~s wcs

axis . In
Section 4.9 we will explain the details in describing different joint types using the notation
of anchor points and joint axes.

This way of describing the connectivity is very similar to the “paired joint coordinate
frames” described in Featherstone [59]. In comparison, anchor points correspond to the
placement of the origin of the joint frames, and joint axes correspond to the orientation
of the joint frames such as the z-axis of the joint coordinate frame. Alternative notations
for describing the connectivity of jointed mechanisms is used in some literature [59, 39].

4.8.3 Error Reduction Parameter

The kind of approach for simulating joints that we outline in this dissertation belongs
to a class of algorithms referred to as Full-Coordinate methods, because every body in a
jointed mechanism is described by the full set of rigid body motion coordinates.

An alternative approach are the Reduced Coordinate methods, where a good example
is Featherstone’s algorithm [59]. The central idea is that only the relative motion of bodies
between joints needs to be described. Therefore only the relative coordinates of the joints
is needed.

The main difference between the two approaches is that Reduced Coordinate methods
explicitly work with joint parameters, and that the position and placement of the links
are derived from these joint parameters. On the other hand, with a Full-Coordinate
method, we work explicitly on the links, and instead, we need to derive joint parameters
if needed. There are some benefits and disadvantages of these methods which we will
describe shortly.

The Reduced Coordinate methods are often computationally faster, since they have
fewer variables to work on, and since they are often implemented by recursive algorithms
like Armstrong and Featherstone [10, 59]. These recursive algorithms are often limited to
tree-like mechanisms. Only by very difficult and computationally intractable extensions
can these recursive algorithms handle closed loops and contacts.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 70

The Full Coordinate methods are not limited by any kind of topology, but they are
often more computationally demanding because they must describe all the constraints on
each links rigid body motion. The Reduced Coordinate methods only need to describe
the free movement which is often of smaller dimension.

Many people prefer the Full Coordinate methods, because they think the notation is
easier to read and work with, while Reduced Coordinate methods appear to have long
and difficult terms representing Coriolis and centripetal accelerations.

From a computer animation viewpoint, numerical errors in a Full Coordinate method
seem to be much more noticeable than in a Reduced Coordinate method. The reason
being that errors in the body coordinates, will split joints apart and introduce an effect
called drifting, because links that are supposed to be jointed together drift apart. Re-
duced Coordinate methods do not suffer from the drifting problem, since no matter how
big numerical errors one will obtain, the simulation will always show bodies connected
properly.

In conclusion, with Full Coordinate methods we can expect drifting problems, and
there are two ways these can arise in a working simulator:

• The user interacts with a mechanism, and forgets to set the correct position or
orientation of all the links in a mechanism.

• During the simulation, errors can creep in that result in the links drifting away from
their joints.

In Section 4.9 we describe the kinematic constraints of different joint types, and we will
introduce some error correcting terms. These are all multiplied by a coefficient, kcor which
denotes a measure of the rate of error correction. The idea is as follows: for each joint we
will have an error reduction parameter, kerp,

0 ≤ kerp ≤ 1. (4.113)

Its value is a measure of how much error reduction that should occur in the next simulation
step. A value of zero means that there is no error correction at all, and a value of 1 means
that the error should be totally eliminated.

If we let the duration of time in the next simulation step be denoted by a characteristic
time-step, ∆t, then the following constant is a measure of rate of change,

kfps =
1

∆t
. (4.114)

The coefficient kcor can now be determined as,

kcor = kerpkfps. (4.115)

Setting kerp = 1 is not recommended, since various internal approximations can cause
the errors not to be completely fixed. The Open Dynamics Engine [112] uses the same
approach for correcting errors, and they recommend to use a value around 0.8.

In the following, we are only concerned with error correction based on stabilization.
Projection based error correction are discussed in Section 4.12 and Section 4.16.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 71

4.9 Joint Types

In this section we will derive the Jacobians for several different kinds of joint types, needed
for the kinematic constraints explained in the previous sections.

4.9.1 Ball-in-Socket Joint

A ball-in-socket joint allows arbitrary rotation between two bodies as illustrated in Fig-
ure 4.10. We already know that a ball-in-socket joint removes 3 DOFs, so we conclude

Figure 4.10: A ball-in-socket joint example.

that the Jacobian, Jball, for the ball is a 3-by-12 matrix. From our previous example in
Section 4.7.1 it should not come as a surprise that the sub matrix of the Jacobian is given
by,

Jball =
[
Ji

lin,J
j
lin,J

i
ang,J

j
ang

]
, (4.116)

where

Ji
lin =

1 0 0
0 1 0
0 0 1

 , (4.117a)

Jj
lin =

−1 0 0
0 −1 0
0 0 −1

 , (4.117b)

Ji
ang = −

(
R(qi)r̃

i
anc

)×
, (4.117c)

Jj
ang =

(
R(qj)r̃

j
anc

)×
, (4.117d)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 72

and where Ji
lin ∈ R

3×3, Ji
ang ∈ R

3×3, Jj
lin ∈ R

3×3, Jj
ang ∈ R

3×3, and the velocity error

correcting term, ~bball ∈ R
3, is given by,

~bball = kcor

(
~rj + R(qj)~r

j
anc − ~ri − R(qi)~r

i
anc

)
. (4.118)

4.9.2 Hinge Joint

A hinge joint, also called a revolute joint, only allows relative rotation around a specified
joint axis as illustrated in Figure 4.11. We describe the joint by an anchor point placed on

Figure 4.11: A hinge joint example.

the axis of rotation and a joint axis, ~s wcs
axis , given by a unit vector in the world coordinate

system. We only have 1 DOF, meaning that the hinge-joint places 5 constraints on the
relative movement and hence the Jacobian, Jhinge, is a 5-by-12 matrix,

Jhinge =
[
Ji

lin Ji
ang Jj

lin Jj
ang

]
, (4.119)

where Ji
lin ∈ R

5×3, Ji
ang ∈ R

5×3, Jj
lin ∈ R

5×3, Jj
ang ∈ R

5×3, and ~bhinge ∈ R
5. A hinge

joint has the same kind of positional constraints as the ball-in-socket joint, so we can
immediately borrow the 3 first rows of the ball-in-socket Jacobian and the error measure,
and we only have to extend the hinge Jacobian with two more rows which will constrain
the rotational freedom from the ball-in-socket joint to only one axis of rotation.

The strategy for adding the two rotational constraints is as follows: since we only
want to allow rotations around the joint axis, only the relative angular velocity of the
two bodies with respect to the joint axis is allowed to be nonzero, that is,

~saxis · (~ωi − ~ωj) 6= 0. (4.120)

The relative angular velocity with any other axis orthogonal to ~saxis must be zero.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 73

In particular, if we let the two vectors ~t wcs
1 ,~t wcs

2 ∈ R
3 be two orthogonal unit vectors,

and require them to be orthogonal to the joint axis ~s wcs
axis , then

~t wcs
1 · (~ωi − ~ωj) = 0, (4.121a)

~t wcs
2 · (~ωi − ~ωj) = 0. (4.121b)

From these two equations we have the two needed kinematic constraints, and we can
write the hinge Jacobian as follows,

Ji
lin =

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

, (4.122a)

Jj
lin =

−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0

, (4.122b)

Ji
ang =

−
(
R(qi)r̃

i
anc

)×

(
~t wcs
1

)T

(
~t wcs
2

)T

 , (4.122c)

Jj
ang =

(
R(qj)r̃

j
anc

)×

−
(
~t wcs
1

)T

−
(
~t wcs
2

)T

 . (4.122d)

For the error-measure term, we already have the first three error measures from the ball-
in-socket joint taking care of positional errors. Two further error measures are needed for
rotational misalignment around any non-joint axes.

If we store the joint axis with respect to both body frames, ~s i
axis and ~s j

axis, and then
compute the joint axis directions in the world coordinate system with respect to each of
the incident bodies, we get,

~s wcs
i = R(qi)~s

i
axis, (4.123a)

~s wcs
j = R(qj)~s

j
axis. (4.123b)

If ~s wcs
i = ~s wcs

j , then there is obviously no error in the relative hinge orientation between
the bodies. If there is an error, then the bodies must be rotated such that ~s wcs

i and ~s wcs
j

are equal. This can be done as follows: imagine the angle between the two vectors is θerr.
Then we can fix the relative error by rotation of θerr radians around the axis,

~u = ~s wcs
i × ~s wcs

j . (4.124)

Let us say that we want to correct the error by the angle θcor within the time ∆t which
could be the size of the time-step in some time-stepping algorithm. Then we would need

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 74

a relative angular velocity of magnitude,

||~ωcor|| =
θcor

∆t
(4.125a)

=
kerpθerr

∆t
(4.125b)

= kerp
1

∆t
θerr (4.125c)

= kerpkfpsθerr (4.125d)

= kcorθerr. (4.125e)

The direction of this correcting angular velocity is dictated by the ~u-vector, since

~ωcor = ||~ωcor||
~u

||~u|| (4.126a)

= kcorθerr
~u

||~u|| (4.126b)

= kcorθerr
~u

sin θerr
. (4.126c)

In the last step we used that ~s wcs
i and ~s wcs

j are unit vectors, such that

||~u|| = ||~s wcs
i × ~s wcs

j || = sin θerr. (4.127)

We expect the error to be small, so it is reasonable to use the small angle approximation,
where θerr ≈ sin θerr, i.e.

~ωcor = kcor~u. (4.128)

We know that ~u is orthogonal to ~s wcs
axis so we project it onto the vectors ~t wcs

1 and ~t wcs
2 ,

and we end up with the error measure,

~bhinge = kcor

(~rj + R(qj)~r
j

anc − ~ri −R(qi)~r
i

anc)
~t wcs
1 · ~u

~t wcs
2 · ~u

 . (4.129)

4.9.3 Slider Joint

The slider joint only allows translation in a single direction as shown in Figure 4.12.
Hence, there is only 1 DOF, and the Jacobian of the slider joint, Jslider, must be a 5-by-12
matrix,

Jslider =
[
Ji

lin Ji
ang Jj

lin Jj
ang

]
, (4.130)

where Ji
lin ∈ R

5×3, Ji
ang ∈ R

5×3, Jj
lin ∈ R

5×3, and Jj
ang ∈ R

5×3. We will use the first three
rows of the Jacobian to ensure that the two bodies connected by the slider joint do not
rotate relative to each other. Hence, we require that they have identical angular velocity.

The last two rows of the Jacobian are used to make sure that the bodies only move
relatively in the direction of the joint axis, ~s wcs

axis . This is done as follows: first we note
the following relation between the bodies’ linear velocities

~vj = ~vi + ~ωi × ~c + ~vslider, (4.131)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 75

Figure 4.12: A slider joint example.

where ~c = ~rj − ~ri, and ~vslider is the joint velocity along the slider axis. Recalling that
~ωi = ~ωj, we can rewrite the velocity relation as follows,

~vj = ~vi + ~ωi × ~c + ~vslider, (4.132a)

−~vslider = ~vi − ~vj + ~ωi × ~c, (4.132b)

−~vslider = ~vi − ~vj +
~ωi + ~ωj

2
× ~c. (4.132c)

From the joint axis, ~s wcs
axis , we can compute two orthogonal vectors ~t wcs

1 , and ~t wcs
2 . By

the workings of a slider joint, we know that we may never have any relative velocities in
the directions of the two vectors ~t wcs

1 and ~t wcs
2 . That is,

0 = ~t wcs
1 · (−~vslider) , (4.133a)

0 = ~t wcs
2 · (−~vslider) . (4.133b)

From these two equations we can derive the remaining two rows in the Jacobian slider

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 76

matrix, and we find,

Ji
lin =

0 0 0
0 0 0
0 0 0
(
~t wcs
1

)T

(
~t wcs
2

)T

, (4.134a)

Jj
lin =

0 0 0
0 0 0
0 0 0

−
(
~t wcs
1

)T

−
(
~t wcs
2

)T

, (4.134b)

Ji
ang =

1 0 0
0 1 0
0 0 1
1
2
~c × ~t wcs

1
1
2
~c × ~t wcs

2

, (4.134c)

Jj
ang =

−1 0 0
0 −1 0
0 0 −1

1
2
~c × ~t wcs

1
1
2
~c × ~t wcs

2

. (4.134d)

Now we will look at the error term, ~bslider ∈ R
5. The first three entries are used for

rotational misalignment between the two links, such as sliding along a bend axis. The
last two will be used for fixing parallel positional displacement of the joint axis.

As for the hinge-joint, we derived an angular velocity to correct the misalignment
error of θerr radians. The magnitude of this correcting angular velocity is as before,

||~ωcor|| =
θcor

∆t
(4.135a)

=
kerpθerr

∆t
(4.135b)

= kerp
1

∆t
θerr (4.135c)

= kerpkfpsθerr (4.135d)

= kcorθerr. (4.135e)

As before, the direction of this correcting angular velocity is dictated by a rotation axis
given by some unit ~u-vector,

~ωcor = ||~ωcor||~u (4.136a)

= kcorθerr~u. (4.136b)

However, unlike previously, the correcting angular velocity will be derived as follows: let

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 77

the rotational misalignment be given by the quaternion, qerr, then we have

qerr = [s, ~v] , (4.137a)

qerr =

[

cos

(
θerr

2

)

, sin

(
θerr

2

)

~u

]

. (4.137b)

The error is expected to be small, so the small angle approximation is reasonable, and
we find,

θerr

2
~u ≈ sin

(
θerr

2

)

~u = ~v. (4.138)

Using this in our formula for the correcting angular velocity, we get

~ωcor = kcor2~v. (4.139)

This will be the first three entries in the ~bslider-vector.
We can describe the current joint position by an offset vector, ~r wcs

off which indicates
the initial difference between the body centers that is

~r j
off = R(qj)

T (~rj − ~ri) . (4.140)

Observe that this offset vector is computed when the joint was set up initially, and it is
constant. The corresponding offset in the world coordinate system is then simply found
as,

~r wcs
off = R(qj)~r

j
off. (4.141)

If there is no parallel displacement of the joint axis, then the vector, ~c − ~r wcs
off , will have

no components orthogonal to the joint axis. From this observation we have the last two
entries in the vector ~bslider,

~bslider = kcor

2~v
~t wcs
1 · (~c − ~r wcs

off)
~t wcs
2 · (~c − ~r wcs

off)

 . (4.142)

4.9.4 Hinge-2 Joint

This kind of joint is also called a wheel-joint, because its motion resembles that of a
turning front wheel on a car. We will therefore explain the workings of this joint type by
the example of a car-wheel as shown in Figure 4.13.

The wheel-joint is the same as a series of two hinge joints. Its motion is described by
a rotation axis, ~s i

axis1
, given by a unit vector in the body frame of body i, and another

rotation axis, ~s j
axis2

, given as a unit vector in the body frame of body j.
In the following, we will implicitly assume that body i is the car and body j is the

wheel. Using this convention, the axes are referred to as the steering axis or suspension
axis and the motor axis.

We will also use an anchor point like before, where both axes go through this anchor
point. We will assume that the axes do not lie along the same line, and that they are
always separated by the initial angle, θ, between them.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 78

Figure 4.13: A car wheel joint example.

From the description it is clear that the joint has 2 DOFs, from which we know that
the wheel-joint Jacobian must have dimension 4-by-12,

Jwheel =
[
Ji

lin Ji
ang Jj

lin Jj
ang

]
, (4.143)

where Ji
lin ∈ R

4×3, Ji
ang ∈ R

4×3, Jj
lin ∈ R

4×3, and Jj
ang ∈ R

4×3.
Following the same recipe as previously, we re-use the ball-in-socket joint for the

positional constraints, and we are now only left with the fourth row in the Jacobian
matrix.

Let us compute the joint axis in the world coordinate system,

~s wcs
i = R(qi)~s

i
axis, (4.144a)

~s wcs
j = R(qj)~s

j
axis, (4.144b)

then the constrained rotational DOF is dictated by a rotational axis orthogonal to the
two rotation axes. That is,

~u = ~s wcs
i × ~s wcs

j . (4.145)

For the hinge to keep its alignment, we must ensure that there is no relative rotation
around this axis,

~u · ~ωi − ~u · ~ωj = 0. (4.146)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 79

This gives us the missing fourth row of the Jacobian matrix,

Ji
lin =

1 0 0
0 1 0
0 0 1
0 0 0

, (4.147a)

Jj
lin =

−1 0 0
0 −1 0
0 0 −1
0 0 0

, (4.147b)

Ji
ang =

[(
R(qi)r̃

i
anc

)×

~uT

]

, (4.147c)

Jj
ang = −

[(
R(qj)r̃

j
anc

)×

~uT

]

. (4.147d)

From the ball-in-socket joint we also have the first three entries of the error term, ~bwheel ∈
R

4. Therefore, we only need to come up with the fourth entry to re-establish the angle
θ between the two joint axes. Let us say that the current angle is given by φ. Then we
need a correcting angular velocity of magnitude,

||~ωcor|| =
θcor

∆t
(4.148a)

=
kerp (θ − φ)

∆t
(4.148b)

= kerp
1

∆t
(θ − φ) (4.148c)

= kerpkfps (θ − φ) (4.148d)

= kcor (θ − φ) . (4.148e)

We can now write the error-term vector as,

~bwheel = kcor

[
~bball

(θ − φ)

]

. (4.149)

Finally, two more tricks are possible: firstly, one rotates the axes of the ball-in-socket
joints, such that the first constraining axis is along the suspension axis. This allows one
to model suspension by modulating the translational error in the ball-in-socket joint along
its first axis. Secondly, a small angle approximation for the fourth entry in the error term
vector may be used. We refer to the source code of the Open Dynamics Engine [112] for
further details.

4.9.5 Universal Joint

The universal joint is in some sense similar to the wheel-joint, and is described similarly
by two joint axes,

~s i
axis1

, (4.150a)

~s j
axis2

, (4.150b)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 80

and an anchor point which the two axes run through. The difference from the wheel joint
is that it is further required that axis 2 makes an angle of π/2 with axis 1. An example
of an universal joint is shown in Figure 4.14.

Figure 4.14: A universal joint example.

We notice that we have 2 DOFs, and the Jacobian matrix of the universal joint,
Juniversal, must be a 4-by-12 matrix,

Juniversal =
[
Ji

lin Ji
ang Jj

lin Jj
ang

]
. (4.151)

Since this joint type has derivations almost identical to previous types, we will ease on
notation and go through the steps faster. We start out by reusing the ball-in-socket joint
for the positional constraints, and then we compute the constrained rotation axis,

~u = ~s wcs
i × ~s wcs

j , (4.152)

along which we know there must be no relative angular velocity. We can now write the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 81

Jacobian matrix for the universal joint as,

Ji
lin =

1 0 0
0 1 0
0 0 1
0 0 0

, (4.153a)

Jj
lin =

−1 0 0
0 −1 0
0 0 −1
0 0 0

, (4.153b)

Ji
ang =

[(
R(qi)r̃

i
anc

)×

~uT

]

, (4.153c)

Jj
ang = −

[(
R(qj)r̃

j
anc

)×

~uT

]

. (4.153d)

We already have the first three entries of the vector,~buniversal, and we must find the fourth.
We do this by first looking at the magnitude of the correcting angular velocity,

||~ωcor|| =
θcor

∆t
(4.154a)

=
kerp

(
φ − π

2

)

∆t
(4.154b)

= kcor

(

φ − π

2

)

, (4.154c)

where φ denotes the current angle between the two joint axes. If φ is close to π/2, then

φ − π

2
≈ cos (φ) (4.155a)

= ~s wcs
i · ~s wcs

j . (4.155b)

We can now write the error term vector as,

~buniversal = kcor

[
~bball

−~s wcs
i · ~s wcs

j

]

. (4.156)

4.9.6 Fixed Joint

For fixed joints, we know that it constrains two bodies completely from any relative
movement, and therefore it has 0 DOFs, from which we know that the Jacobian matrix,
Jfixed ∈ R

6×12,
Juniversal =

[
Ji

lin Ji
ang Jj

lin Jj
ang

]
. (4.157)

The fixed joint is described by an anchor point, and initially we compute an offset vector,
and store it in the body frame of body i,

~r i
off = ~ri − ~rj . (4.158)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 82

Observe that this offset vector is computed when the joint was set up initially, and it is
a constant. The corresponding offset in the world coordinate system is then found by,

~r wcs
off = R(qi)~r

i
off. (4.159)

Since we have a fixed joint, both incident bodies must be rotating with the same angular
velocity, and the linear velocities must obey the relation,

~vj = ~vi + ~ωi × ~r wcs
off . (4.160)

From all this we can now set up the Jacobian matrix as,

Ji
lin =

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

, (4.161a)

Jj
lin =

−1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0
0 0 0

, (4.161b)

Ji
ang =

−(r̃ wcs
off)×

1 0 0
0 1 0
0 0 1

, (4.161c)

Jj
ang =

0 0 0
0 0 0
0 0 0
−1 0 0
0 −1 0
0 0 −1

. (4.161d)

Similarly, the error term is straightforward. To correct the positional error we use the
first three entries from the ball-in-socket joint, ~bball. From the slider joint, ~bslider, we may
re-use the first three entries to take care of any rotational errors. We can now write the
~bfixed vector as,

~bfixed = kcor

[
(~ri + R(qi)~r

i
anc − ~rj −R(qj)~r

j
anc)

2~v

]

, (4.162)

where ~v comes from the quaternion representing the rotational error,

qerr = [s, ~v] . (4.163)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 83

4.9.7 Contact Point

As we have explained, contact constraints are completely different from joint constraints,
but they too are described by a Jacobian matrix. We will show that this Jacobian matrix,
Jcontact, can be expressed in the same sub matrix pattern as the joint Jacobians, and one
can even construct an error correcting term.

From previously we know that the contact Jacobian has 1 + η constraints, so it is a
(1 + η)-by-12 dimensional matrix,

Jcontact =
[
Ji

lin Ji
ang Jj

lin Jj
ang

]
. (4.164)

The first row corresponds to the normal force constraints and the remaining η rows
correspond to the tangential friction constraints, i.e.

Ji
lin =

[
−~nt

−DT
k

]

, (4.165a)

Jj
lin =

[
~nt

DT
k

]

, (4.165b)

Ji
ang =

[

−
(
r̃×i ~n

)T

−
(
r̃×i Dk

)T

]

, (4.165c)

Jj
ang =

[(
r̃×j ~n

)T

(
r̃×j Dk

)T

]

. (4.165d)

If the penetration constraints are violated then an error correcting vector, ~bcontact ∈ R
1+η,

can be used as,

~bcontact = kcor

[
dpenetration

~0

]

. (4.166)

where dpenetration is the penetration depth. These observations regarding the sub matrix
patterns of the Jacobians of both the contact and joint constraints, allow us to implement
these kind of constraints using almost the same kind of data structure.

4.10 Joint Limits

It is not always enough just to setup a joint: even though the relative motion is constrained
to only move in a consistent manner wrt. the joint, other constraints need our attention.
For instance, in the real world we can not find a jointed mechanism with a sliding joint
that has an infinitely long joint axis. In other words, we need some way to model the
extent of a sliding joint. We will do this modeling by setting up joint limits. To be specific,
we will treat joint limits on a sliding joint and a hinge joint.

The general approach we will take here for introducing joint limits is very similar to
the way we use unilateral constraints for enforcing normal non-penetration constraints
at the contact points. In a sense, setting joint limits this way is nothing more than a
slightly exotic way of computing contact points for normal force constraints disguised as
joint limits.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 84

4.10.1 Slider Joint Limits

Recall that in specifying the slider joint we used an offset vector, which was the initial
difference between the origin of the body frames. That is, at time t = 0, we compute

~r j
off = R(qj)

T (~rj − ~ri) . (4.167)

As before, the initial offset wrt. the bodies’ current location in the world coordinate
system is computed as,

~r wcs
off = R(qj)~r

j
off. (4.168)

Now letting ~c = ~rj − ~ri, we can compute the current displacement, ~rdis, along the joint
axis as,

~rdis = ~c − ~r wcs
off . (4.169)

Taking the dot-product with the joint axis, ~s wcs
axis , gives a signed distance measure of the

displacement along the joint axis,

ddis = ~s wcs
axis · ~rdis. (4.170)

When the joint limits are imposed on the slider joint, we want to be able to specify a
lower distance limit, dlo, and and upper distance limit, dhi. If one of these are violated,
for instance

ddis ≤ dlo, (4.171)

then we will add a new unilateral constraint. This constraint specifies that the relative
velocity of the joint along the joint axis must be such that the displacement does not
move beyond the limit. For a slider joint that means we require,

~s wcs
axis · (~vj − ~vi) ≥ 0. (4.172)

We immediately see that this is equivalent to a 1-by-12 dimensional Jacobian matrix,
J lo

slider, where

Ji
lin = − (~s wcs

axis)T , (4.173a)

Jj
lin = (~s wcs

axis)T , (4.173b)

Ji
ang = ~0, (4.173c)

Jj
ang = ~0. (4.173d)

However, this would be the wrong Jacobian to use, because when we look at the reaction
forces from the joint limit, this Jacobian will not model the torques coming from the
limiting force because only the linear contribution is included.

We will now remodel the Jacobian to include all the force and torque contributions.
Let us say that the position of the joint limit is given by the vectors ~r wcs

limi
and ~r wcs

limj
.

These vectors are specified in the world coordinate system and go from their respective
body centers to the position of the joint limit. Now, say that some force, ~F , is acting
on body i at the joint limit. Then the force is required to be parallel with the joint axis
~s wcs

axis . The force contribution to body j is −~F according to Newton’s third law of motion.
The limit force also results in a torque on body i,

~τlimi
= ~r wcs

limi
× ~F , (4.174)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 85

and a torque on body j,
~τlimj

= −~r wcs
limj

× ~F . (4.175)

For a slider joint, we must also require that these torques do not induce a relative angular
velocity of the two bodies, meaning that angular momentum should remain unchanged.
From Euler’s equation we get,

~τlimi
+ ~τlimj

= 0. (4.176)

Recalling that the corresponding reaction force is given by,

~F lo
slider =

(
J lo

slider

)T
λlo, (4.177)

where λlo is a non-negative Lagrange multiplier. This suggests that the Jacobian should
look like,

Ji
lin = − (~s wcs

axis)T , (4.178a)

Jj
lin = (~s wcs

axis)T , (4.178b)

Ji
ang =

(
~r wcs

limi
× ~s wcs

axis

)T
, (4.178c)

Jj
ang = −

(

~r wcs
limj

× ~s wcs
axis

)T

. (4.178d)

However, it is not obvious that Ji
ang~ωi + Jj

ang~ωj = 0. Further, to avoid computing the
vectors ~r wcs

limi
and ~r wcs

limj
during simulation, it would be nice to remove them from the

expressions.
Observe that the vector, ~c = ~rj −~ri, can be written as, ~c = ~r wcs

limi
−~r wcs

limj
. We will now

show that with the ~c-vector we can obtain:

~r wcs
limi

× ~F =
1

2
~c × ~F =

1

2

(

~r wcs
limi

− ~r wcs
limj

)

× ~F , (4.179a)

~r wcs
limj

× ~F = −1

2
~c × ~F = −1

2

(

~r wcs
limi

− ~r wcs
limj

)

× ~F . (4.179b)

From the second equation we have

~r wcs
limj

× ~F = −1

2
~r wcs
limi

× ~F +
1

2
~r wcs
limj

× ~F , (4.180)

which yields
1

2
~r wcs
limj

× ~F = −1

2
~r wcs
limi

× ~F , (4.181)

and substituting this into the first equation yields

~r wcs
limi

× ~F =
1

2

(

~r wcs
limi

− ~r wcs
limj

)

× ~F (4.182a)

=
1

2
~r wcs
limi

× ~F − 1

2
~r wcs

limj
× ~F (4.182b)

=
1

2
~r wcs
limi

× ~F −
(

−1

2
~r wcs
limi

× ~F

)

, (4.182c)

~r wcs
limi

× ~F = ~r wcs
limi

× ~F . (4.182d)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 86

This proves (4.179a). Repeating the steps but interchanging equations easily derives
(4.179b). Observe also that the sum of the two equations is equal to zero as required
by Euler’s equation. We can now rewrite the angular parts of the Jacobian as,

Ji
lin = − (~s wcs

axis)T , (4.183a)

Jj
lin = (~s wcs

axis)T , (4.183b)

Ji
ang =

1

2
(~c × ~s wcs

axis)T , (4.183c)

Jj
ang = −1

2
(~c × ~s wcs

axis)T . (4.183d)

To verify that Ji
ang~ωi + Jj

ang~ωj = 0, we insert (4.183c) and (4.183d) and find,

1

2
(~c × ~s wcs

axis)T ~ωi −
1

2
(~c × ~s wcs

axis)T ~ωj = 0, (4.184a)

⇒ 1

2
(~c × ~s wcs

axis)T (~ωi − ~ωj) = 0, (4.184b)

and because we have a slider joint ~ωi = ~ωj. In conclusion, we see that with the Jacobian
in (4.184) both the kinematic constraint are satisfied, and the reaction forces are proper.

Putting it all together we have the complementarity constraint,

J lo
slider~u ≥ 0, compl. to λlo ≥ 0. (4.185)

An error correcting term,~b lo
slider is easily added to the right side of the kinematic constraint

as,

~b lo
slider = kerp

dlo − ddis

∆t
(4.186a)

= kcorderr, (4.186b)

where we have set derr = dlo − ddis.
In conclusion, we have derived a single linear complementarity constraint for the

lower joint limit of a slider joint. The same approach can be used to derive a single linear
complementarity constraint for the upper limit. It should be apparent that all that is
really needed is to negate the Jacobian, i.e.

J hi
slider = −J lo

slider, (4.187)

and for the error term

~b hi
slider = kerp

dhi − ddis

∆t
(4.188a)

= kcorderr. (4.188b)

4.10.2 Hinge Joint Limits

There is not much difference between setting limits on a slider joint and a hinge joint.
The major difference is that the joint axis now describes a rotation axis, and instead of
distances we use angle measures.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 87

If we store the initial relative rotation of two bodies in the quaternion, qini, then we
can compute the current relative rotation of the two bodies as,

qrel = q∗j qiq
∗
ini. (4.189)

This quaternion corresponds to a rotation of θ radians around the unit axis, ~v, i.e. the
angle measured from i to j around the joint axis,

qrel =

[

cos

(
θ

2

)

, sin

(
θ

2

)

~v

]

. (4.190)

Using standard trigonometry and taking care of the double representation of rotations
by picking the smallest angle solution, one can extract the angle from the quaternion of
relative rotation. Specifically taking the dot product of the vector part of the quaternion
with itself, sin θ

2
, is obtained, since ~v · ~v = 1, and arctan can be used to obtain θ

2
.

As we did in the case of the slider joint, we want to impose a low and high joint limit,
θlo and θhi. If, for instance, the lower limit is violated as,

θ ≤ θlo, (4.191)

then we will add a new unilateral constraint which specifies that the relative angular
velocity of the joint around the joint axis must be such that the angle does not move
beyond the limit. For a hinge joint this means that we must require,

~s wcs
axis · (~ωj − ~ωi) ≥ 0. (4.192)

We see immediately that this is equivalent to a 1-by-12 dimensional Jacobian matrix,
J lo

hinge, where

Ji
lin = ~0, (4.193a)

Jj
lin = ~0, (4.193b)

Ji
ang = − (~s wcs

axis)T , (4.193c)

Jj
ang = (~s wcs

axis)T . (4.193d)

The corresponding reaction force from the joint limit is given by,

~F lo
hinge =

(
J lo

hinge

)T
λlo, (4.194)

where λlo is a non-negative Lagrange multiplier. We see that we have the complementarity
constraint,

J lo
hinge~u ≥ 0, compl. to λlo ≥ 0. (4.195)

An error correcting term, ~b lo
hinge, is added to the right side of the kinematic constraint as,

~b lo
hinge = kerp

θlo − θ

∆t
(4.196a)

= kcorθerr, (4.196b)

where θerr = θlo − θ.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 88

The constraints for the high limit of the hinge joint is obtained by negating the
Jacobian,

J hi
hinge = −J lo

hinge, (4.197)

and the error term is given by,

~b hi
hinge = kerp

θhi − θ

∆t
(4.198a)

= kcorθerr. (4.198b)

4.10.3 Generalization of Joint Limits

In the previous sections we derived constraint equations specific for low and high joint
limits on slider and hinge joints. Fortunately, it is possible to extend these ideas to a more
general framework. For instance, the concept of a reach cone, i.e. multiple angular joint
limits, is often used in biomechanics to describe the limited movement of the shoulder or
hip joints in the human skeleton [152].

In fact, we could formulate the allowable configuration space or the reachable region
for a joint by an implicit function, C(. . .) ∈ R, of the joint parameters. For the slider
and hinge joints, the joint parameters are the displacement and the angle which we will
specify with the generalized joint parameter vector, ~q, as a function of the generalized
position vector, ~s. Furthermore, the implicit function has the following characteristics,

C(~q(~s)) < 0 Outside, (4.199a)

C(~q(~s)) = 0 On the boundary, (4.199b)

C(~q(~s)) > 0 Inside. (4.199c)

We can now reformulate positional constraints as,

C(~q(~s)) ≥ 0. (4.200)

Differentiation wrt. time leads to the kinematic constraint,

d

dt
C(~q(~s)) =

dC(~q(~s))

d~q

d~q

d~s
︸ ︷︷ ︸

JC

d~s

dt
︸︷︷︸

~u

(4.201a)

= JC~u (4.201b)

≥ 0, (4.201c)

which could be augmented with an error reduction term,

JC~u ≥ ~bC . (4.202)

The reaction forces are determined by,

~F C
reaction = J T

C
~λC , (4.203)

where ~λC is a vector of non-negative Lagrange multipliers. Finally, we have the comple-
mentarity constraints,

JC~u −~bC ≥ 0, compl. to ~λC ≥ 0. (4.204)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 89

The constraints in terms of the Jacobian and the error term should be added to
the system equations whenever a joint limit has been violated or its boundary has been
reached. This is completely analogous to collision detection, and enforcing joint limits in
this manner is therefore not much different from finding contacts and computing normal
forces.

Observe that in an acceleration-based formulation, the kinematic joint limit con-
straints should be differentiated wrt. time to get the acceleration constraints needed
for augmenting the system equations.

4.11 Joint Motors

With joints and joint limits we are capable of modeling the range of relative motion
between two bodies, and we will now look at one way to control the motion that is taking
place.

A joint motor applies torque or force to a joint’s degrees of freedom to induce move-
ment. The joint motor model uses two parameters for this: A desired speed, vdesired, and
the maximum torque or force, λmax, that can be applied to reach the desired speed.

From past sections we have seen that the error correcting term can be used to adjust
velocities. The same principle can be used to drive a joint towards a desired speed by,

Jmotor~u ≥ ~bmotor, (4.205a)

[
Ji

lin Ji
ang Jj

lin Jj
ang

]

~vi

~ωi

~vj

~ωj

≥ ~bmotor. (4.205b)

For a 1 DOF joint like a slider and a hinge joint, the motor Jacobian will have dimension
1-by-12, and the right hand side will be a scalar. In fact:

~bmotor = vdesired. (4.206)

The Jacobian is also easy to derive for these two cases

J slider
motor =

[

~s wcs
axis ,~0,−~s wcs

axis ,~0
]

, (4.207a)

J hinge
motor =

[

~0,−~s wcs
axis ,~0, ~s wcs

axis

]

. (4.207b)

The motor force is given by the relation,

~Fmotor = J T
motorλmotor, (4.208)

where λmotor is a Lagrange multiplier that can be interpreted as a measure of the mag-
nitude of the joint force along the degrees of freedom in the joint. By setting upper and
lower limits on λmotor we can model the aspect of the maximum available force, that is,

− λmax ≤ λmotor ≤ λmax. (4.209)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 90

Finally, we require the force and the desired velocity term to be complementary to each
other, i.e.

Jmotor~u ≥ ~bmotor, compl. to |λmotor| ≤ λmax. (4.210)

The basic idea behind this is that if the velocity exceeds the desired velocity then the
motor force should work at its maximum to bring the velocity back to the desired speed.

On the other hand, if the desired speed has been reached, then the motor force can
assume any value between 0 and |λmax| to keep the desired speed.

In conclusion, we have developed linear complementarity constraints with both upper
and lower limits for joint motors. The theory we have outlined can be extended to more
complex joint types in a straightforward manner, simply by formulating Jacobians for
their degree of freedom.

Another aspect of joint motors which comes in handy, is that they can be used to
model friction in joints. This is done by setting the desired velocity to zero and the
maximum force to some constant value. Then all joint motion will be slowed down by the
“frictional” motor force.

To drive the joints to a specified position, a positional joint motor would simply be a
hybrid of the joint limit model and the joint motor models we have outlined. The trick
lies in setting the lower and upper joint limits equal to the wanted position, and then
limiting the motor force as we did in this section.

In contrast to real life motors and engines, the presented motor controls do capture
the essential idea of limited power and the need for controlling the speed. Higher level
controllers could be added to a simulator (motor programs) for manipulating the joint
motors, but this is out of the scope of this dissertation.

4.12 Time-Stepping Methods

In order to calculate the movement of rigid bodies, the simulation loop needs to ad-
vance the simulation time. This process is called a time-stepping method or time control.
Knowing how to compute contact and constraint forces or impulses at collisions, the
time-stepping method sets up a scheme that integrates the forces in order to obtain the
motion of the rigid bodies. In the following, we will mainly discuss fixed time-stepping
methods.

The matrices M, C, N, and D depend on the generalized position vector ~s which
itself is dependent on time.

In some simulators the time dependency is ignored and the simulator uses a fixed
time-stepping routine such as the Open Dynamics Engine does [112]. The general idea is
illustrated in Figure 4.15, and the main advantage is that only a single LCP problem is
solved per time-step. Unfortunately, it also leads to penetrations and drifting problems.
In the Open Dynamics Engine several heuristics are used to overcome these problems:
Constraint Force Mixing, Error Reduction Parameter, and a specialized position update.
These heuristics will be discussed later.

We will now discuss the detection of contacts. There are several ways to approach
this for the the pseudo-code in Figure 4.15. One way is to invoke the collision detection
at time t and hope for the best, but new contacts might develop during the time from t
to t + ∆t. The future contacts that are overlooked at time t could potentially end up as

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 91

Algorithm fixed-time-step(~s t, ~u t, ∆t)
~s ′ = ~s t + ∆tS~u t

~λ = LCP (~s ′, ~u t)

~u t+∆t = ~u t + M−1
(

J
T~λ + ∆t ~fext

)

~s t+∆t = ~s t + ∆tS~u t+∆t

return ~s t+∆t

End algorithm

Figure 4.15: Fixed time-stepping.

g

time t time t+dt

g

Figure 4.16: 2D illustration of the problem with violated contacts in a fixed
time stepping due to overlooking potential furture contact. Small white circles show
valid contacts, small black circles show violated contacts. Notice that contacts not
detected at time t will be detected as violated contacts at time t + dt.

violated contacts at time t + ∆t. That is, deeply penetrating contacts. This is illustrated
in Figure 4.16.

Stewart and Trinkle [140] propose a retroactive detection approach to detecting over-
looked future contacts. First, all contacts are detected at time t then a fixed time-step is
taken, and finally all contacts at time t+∆t are detected. If any new and violated contacts
are found, then these contacts are added to the set of contacts found at time t, and the
simulation is then rewound to time t, and a new fixed time-step is taken. These steps are
repeated until all the necessary contacts have been found. Pseudo-code can be found in
Figure 4.17. Although it is obvious that only a finite number of contacts exist, and that
the algorithm sooner or later will have detected all contacts necessary for preventing pen-
etration, it is however not obvious how many iterations the algorithm will take, and it is
therefore difficult to say anything meaningful about the time-complexity. The retroactive
detection of contacts is similar to the contact tracking algorithm described in [101].

Detecting a future contact at an early stage can have a undesirable effect. In essence,
a contact that appears at time t + ∆t is resolved at time t. This would make objects
appear to have a force field or envelope surrounding them preventing other objects from
actually touching them. Most noticeably, this could cause object hanging in the air as
shown in Figure 4.18. If we are simulating fast moving and bouncing objects, it is unlikely
that an observer would ever notice the visual artifacts, but if the time-step is big enough
the artifacts illustrated in Figure 4.18 may annoy an observer. To remedy this effect one

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 92

Algorithm retroactive-1(~s t, ~u t, ∆t)
repeat

Scontacts = collision detection(~s t)
~s t+∆t = fixed-time-step(~s t, ~u t, ∆t)
S′

contacts = collision detection(~s t+∆t)
if violated contacts in S ′

contacts then

for all contacts c ∈ S ′

contacts do

if c violated and c /∈ Scontacts then

add c to Scontacts

next c
else

return ~s t+∆t

end if

until forever

End algorithm

Figure 4.17: Retroactive detection of contacts in a fixed time-stepping method.

g inelastic ballelastic ball

Figure 4.18: 2D example showing visual artifacts of resolving future contacts at
time t. The elastic ball never touches the fixed box before it bounces, while the
inelastic ball is hanging in the air after its impact.

could either lower the size of the time-step, which causes a performance degradation, or
one could remodel the error terms to take into account that a contact does not exist at
time t. This approach was elaborated on in Section 4.5.

Another issue with time-stepping methods is that penetrations might occur when
the system moves along concave boundaries of the admissible region in configuration
space [4, 138]. Configuration space is the vector space consisting of the concatenation of
the generalized position and velocity vectors. The admissible region is the subspace of
states that make physical sense, like states that do not cause a penetration. A simple
example is illustrated in Figure 4.19. As it can be seen in Figure 4.19, the dotted line
indicates the normal constraint, and the box is therefore allowed to move along this line.
Furthermore, since the lower fixed object is concave at the touching contact point, then
a penetration will always occur no matter how small a step the box moves along the
dotted line. This indicates that situations will arise where all necessary contacts have
been detected. But still, the algorithm will find violated contacts and enter an infinite
loop since the if -statement in the pseudo-code of Figure 4.17 will always be true. This
seems to be an unsolved problem in the literature.

Stewart and Trinkle [138] suggest that simple projection can be used to eliminate the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 93

g

Figure 4.19: A system moving along a concave boundary of the admissible region
in configuration space.

problem of penetrations as a result of moving along concave boundaries in configuration
space. However they state that care must be taken to avoid losing energy in the process.
In [17] a displacement is computed by using a first order system A~f = ~b, where A only
contains normal and bilateral constraints. In our notation this corresponds to,

A =

[
NTCTM−1CN NTCTM−1JΦ

J T
Φ M−1CN J T

Φ M−1JΦ

]

. (4.211)

The ~b-vector contains the signed constraint errors. From the solution, ~f , and the deriva-
tive, ~̇s, can be computed as described in Section 4.16. Now using ∆s = ~̇s, a displacement
can be obtained as ~st+∆t = ~st+∆t + ∆s, see [17] for more details.

Solving penetration errors by projection can change the potential energy of the system,
thus changing the total energy in the system.

In some cases energy may be added to the system, which is a problem if energy
conservation is important. During subsequent simulation, the potential energy may be
transformed into kinetic energy. Thus during simulation it will be observed that objects
gain speed unexplainedly. In conclusion, these artifacts are either unwanted from a physi-
cal viewpoint or an animation viewpoint. Figure 4.20 illustrates the energy problem with
the projection method. In the figure, three possible projections of the box are shown as
dashed boxes. Due to the gravitational field ~g, both the vertical and the inclined pro-
jections will increase the energy of the system, while only the horizontal projection will
maintain the same energy level. If the geometries are mirrored in the vertical direction,
then the vertical and inclined projections will result in a loss of energy. In other words,
projection must be done in such a way that the potential energy remains unchanged. It
is not obvious to us how a general method of projection could be designed to fulfill this.

Another approach for handling penetration errors is to use constraint stabilization.
Intuitively, this can be explained as inserting small damped virtual springs in between
objects at those places where penetration errors are detected. In Section 4.8 and 4.9
the constraint based method was extended with error correcting terms that stabilized
the constraints. An error reduction parameter was used to control the amount of error

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 94

g

Figure 4.20: Different ways to project a violated contact back into a valid contact.
The horizontal projection does not change the potential energy of the box, while
both the vertical and the inclined projections increase the potential energy. In the
following time-step, the added potential energy is transformed into kinetic energy,
resulting in a more violent collision between the two objects.

Stabilization

Collision Artefact

Resting Box

Figure 4.21: An example of constraint stabilization on a violated contact of a
resting box causing the box to bounce off the resting surface.

correction. In case of large errors or over-eager error reduction, stabilization can cause
severe alterations of the simulated motion because the stabilization accelerates objects
apart in order to fix the error. Thus, the stabilization adds kinetic energy to the system.
In severe cases, the stabilization can cause a shock-like effect on constraints with large
errors. The artifact of stabilization is illustrated in Figure 4.21. Several approaches exist
for minimizing the problem, but none of them completely remove it. By lowering the time-
step size, the magnitude of constraint errors would also be lowered, thus decreasing the
chance of large constraint errors, all with a performance hit. Lowering the error reduction
parameter minimizes the chance of stabilization being too eager. The drawback is that
error correction will take longer, thus increasing the chance of an observer noticing deep
penetration of objects. Finally, constraints can be made softer by using Constraint Force
Mixing as described in Section 4.15. This have the same drawbacks as lowering the error
reduction parameter. Furthermore, it removes kinetic energy from the system. Thus, if
used too aggressively, objects appear more lazy than they should be.

The matrices M, C, N, and D depend on time and the constraint based method
should be formulated as a nonlinear complementarity problem (NCP). An NCP can be
solved iteratively by using a fix-point algorithm as e.g. shown in Figure 4.22.

In [4], an explicit time-stepping method is used together with retroactive detection

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 95

Algorithm fixpoint(~s t, ~u t, ∆t)
~s ′ = ~s t + ∆tS~u t

repeat
~λ = LCP (~s ′, ~u t)

~u ′ = ~u t + M−1
(

J
T~λ + ∆t ~fext

)

~s ′′ = ~s ′

~s ′ = ~s t + ∆tS~u ′

until |~s ′ − ~s ′′| < ǫfix

~s t+∆t = ~s ′

return ~s t+∆t

End algorithm

Figure 4.22: Fix-point-iteration algorithm, Typical values according to [129] are
∆t ≤ 10−3 and ǫfix ≤ 10−4.

Algorithm retroactive-2(~s t, ~u t, ∆t)
~s ′ = ~s t

~u ′ = ~u t

h = ∆t/nsteps

t = 0
while t < ∆t do

~s ′′ = ~s ′ + hS~u ′

~λ = LCP (~s ′′, ~u ′)
if no collision then

t = t + h
~s ′ = ~s ′′

~u ′ = ~u t + M−1
(

(J T~λ + ∆t ~fext

)

else

let ttoi be time of impact

apply collision model

...

t = ttoi

end if

end while

~s t+∆t = ~s ′

return ~s t+∆t

End algorithm

Figure 4.23: Explicit time-stepping with retroactive detection of colliding contacts.

of collisions. We have outlined the general control flow in Figure 4.23. The main idea
is to halt the simulation at the time of an impact, and then handle the impact before
proceeding with simulation. In [4] two LCP problems are set up and used to solve for
post-velocities of the impact. This is done using Poisson’s Hypotheses for handling the
compression and decompression phases of an impact. In [11], a simpler approach is used
based on Newton’s Impact Law. This leads to nearly the same kind of LCP problem we
have outlined. Later, in [5], an even simpler collision model is used, which only supports
completely inelastic collisions. The methods in [4, 11, 5] are termed simultaneous collision

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 96

methods. We will not treat these further. However, another possibility is to use a so-called
sequential collision method.

In [5], the same control flow is used in an implicit-time-stepping method. The major
difference there being the way the LCP is formed. We have chosen to omit the implicit
version, since it is out of scope for the kind of applications we have in mind.

4.12.1 Numerical Issues with Retroactive Time Control

Due to numerical truncation and roundoff errors, thresholding is a necessary evil in order
to determine the type of contact between two objects A and B. Using a threshold value
ε, an often used rule of thumb for determining the contact state is as follows:

• if A and B are separated by ε, there is no contact.

• if the distance between A and B is less than ε, there is contact.

• if penetration between A and B is no more than ε, there is contact.

• if penetration between A and B is more than ε, A and B are intersecting.

Now let us review a typical retroactive advancement of the simulation. That is, if time
control is handled in a root searching manner, the general idea is to watch out for pene-
trations, and then back track the simulation to the time of impact. This is illustrated in
Figure 4.24. Of course, more elaborate and intelligent root search schemes could be used,

dt = T_target - T

do

simulate-forward(dt)

if intersection

rewind-simulation()

dt = dt/2

else if contact

collision-resolving()

T = T + dt

dt = T_target - T

end if

while T<T_target

Figure 4.24: Example of retroactive advancement based on a bisection root search
algorithm.

but the bisection scheme in Figure 4.24 suffice for our discussion in this section.
Suppose A and B are in resting contact and penetrate each other with a penetration

of ε, and imagine that during the forward simulation a small numerical drift causes A and
B to inter-penetrate with a depth greater than ε. As can be seen from the pseudo-code,
the root searching algorithm will be fooled to think that a collision has occurred, even
though no collision occurred. Consequently, the root searching algorithm will begin to
backtrack in order to search for the time of impact. The result will be a never ending
search for a non-existent root. Even if a root is determined within a threshold value, the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 97

subsequent attempt to advance the simulation is doomed to repeat a new root search for
the same non-existent root. In other words, the simulation will either go into an infinite
loop, never advancing the simulation, or, alternatively, the system will end up in a faulty
state with penetrations greater than ε.

One possible strategy to avoid the above mentioned problems would be to adapt a
more advanced thresholding method, using one threshold for the root searching algorithm,
and another threshold value for determining the type of contact [17]. However, it is
extremely difficult to get such an approach to work efficiently and robustly in practice.
Another way out would be to penalize penetrations by a force-feedback term. However,
what you get is all the trouble of penalty methods, and there is no guarantee that the
“error” will be within a certain limit, since a penalty force, like a spring, does not impose
a hard constraint.

If your simulator is already based on a penalty method, you have nothing to worry
about. However, retroactive advancement is really a bad choice for a penalty based sim-
ulator, and instead, fixed time-stepping is often the preferred choice. On the other hand,
if your simulator is a constraint based simulator, it seems daunting to add penalty forces
to it, since it essentially will turn your simulator into a hybrid simulator. Not only do
you get the advantages from both types of simulator, but you could also inherit all the
problems.

In our opinion, a far better approach for resolving the problem is to displace objects
when their penetration depth is greater than a certain tolerance correction value. E.g. set
the tolerance correction to,

δ =
3

4
ε, (4.212)

whenever the penetration depth increases beyond δ. Then objects are displaced to reduce
or remove penetrations. This resolution technique will guarantee that you never will get
into problems with your main simulation loop. However, there are some drawbacks. A
displacement could change the potential energy of an object. If the energy is increased, the
subsequent simulation might transform the potential energy into kinetic energy, causing
objects to begin jittering and jumping around. In our opinion, it is more pleasing to look
at a simulation where potential energy vanishes. Our main point is that displacements
should occur such that the potential energy is non-increasing.

4.12.2 Unavoidable Penetrations

In some cases, penetrations are simply unavoidable due to the discrete time-stepping.
This can be hard to grasp, so we will present a small example originally presented in [93],
illustrating how penetrations can occur. The example uses the fixed semi-implicit time-
stepping method given in Figure 4.15. In the initial state, the rod is moving to the right
and the box is fixed as seen in Figure 4.25. The time-stepping method first tries to guess
the next position by doing a fake position update, t′ = t + ∆t. This fake position is first
used to determine contact points shown as small solid circles, and then the velocities
are updated at the fake position. As shown in the figure, the velocity update predicts a
tipping movement of the rod at the fake position. Now the time-stepping method will
use the velocities computed at the fake position to update the real position. However,
the tipping movement will now cause an unwanted penetration of the rod and the box.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 98

t = 0

t' = t + dt
t' = t + dt

t = t + dt

Fake P
ositi

on U
pdate

Compute Velocities

Real P
ositi

on U
pdate

Figure 4.25: Illustration of how penetrations can occur with fixed semi-implicit
time-stepping.

A rule of thumb is that penetrations can occur of the same order as the order of the
time stepping method used. To be specific the fixed semi-implicit time stepping method
introduced in Section 4.12 is of first order, i.e. O(h), where h denotes the step-size. The
errors accumulate linearly with the number of steps n, such that the error after n steps
is proportional to nh. This might appear to be bad. However, from a convergence theory
point of view, lowering h will guarantee better accuracy, and in the limit h 7→ 0 a perfect
solution will be found. In practice, this is not feasible, since the limiting case can not be
reached on a computer with finite precision arithmetic, and even if the limiting cases were
possible, it would take far to long to compute. Therefore, a better practical approach is
to pick a step size such that errors never grow large enough for an end-user to notice
them.

Another example of unavoidable penetration is the configuration shown in Figure 4.19.
Here, the problem is that we have a linear discretization but a higher order surface. The
“numerics” can not “see” the higher order and do not care about it.

In cloth simulation, there exists a fixed-time-stepping scheme [28] which guarantees

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 99

non-penetration. It is, however not obvious to us how this can migrated to rigid body
dynamics. Besides, it relies on continuous collision detection to detect proximities, making
it a less attractive choice for interactive and real-time applications.

4.13 A unified Object Oriented Constraint Design

From previous sections we have learned that four types of constraints could be expressed
by use of Jacobians. These were joint constraints, contacts, joint limits, and joint motors.
For these types of constraints we derived the following kinematic constraints,

Jjoint~u = ~bjoint, (4.213a)

Jcontact~u ≥ ~bcontact, (4.213b)

Jlimit~u ≥ ~blimit, (4.213c)

Jmotor~u ≥ ~bmotor. (4.213d)

Adding the “reaction” forces to the equations of motion result in the generalized accel-
eration vector,

~̇u = M−1
(

J T
joint

~λjoint + J T
contact

~λcontact + J T
limit

~λlimit + J T
motor

~λmotor + ~fext

)

, (4.214)

with the following limits on the Lagrange multipliers,

−∞ ≤~λjoint ≤ ∞, (4.215a)

0 ≤~λcontact ≤ ∞, (4.215b)

0 ≤~λlimit ≤ ∞, (4.215c)

−~λmax ≤~λmotor ≤ ~λmax. (4.215d)

Performing the usual discretization steps and substitutions we derive the following com-
plementarity formulation,

JjointM
−1J T

joint JjointM
−1J T

contact JjointM
−1J T

limit JjointM
−1J T

motor

JcontactM
−1J T

joint JcontactM
−1J T

contact JcontactM
−1J T

limit JcontactM
−1J T

motor

JlimitM
−1J T

joint JlimitM
−1J T

contact JlimitM
−1J T

limit JlimitM
−1J T

motor

JmotorM
−1J T

joint JmotorM
−1J T

contact JmotorM
−1J T

limit JmotorM
−1J T

motor

Aaux

Aaux Aaux

~λjoint

~λcontact

~λlimit

~λmotor

~λaux

+

Jjoint

(

~u + ∆tM−1 ~fext

)

−~bjoint

Jcontact

(

~u + ∆tM−1 ~fext

)

−~bcontact

Jlimit

(

~u + ∆tM−1 ~fext

)

−~blimit

Jmotor

(

~u + ∆tM−1 ~fext

)

−~bmotor

~baux

≥ ~0,

(4.216)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 100

which is complementary to,

−∞
0
0

−~λmax

0

≤

~λjoint

~λcontact

~λlimit

~λmotor

~λaux

≤

∞
∞
∞

~λmax

∞

. (4.217)

Here Aaux and ~baux correspond to a permutation of the third row and column in (4.61),
which are the auxiliary constraints needed to model the frictional force.

We may concatenate all the Jacobians into a single matrix,

J =

Jjoint

Jcontact

Jlimit

Jmotor

. (4.218)

Similarly, we may concatenate all the error correcting terms,

~berror =

~bjoint

~bcontact

~blimit

~bmotor

, (4.219)

and the Lagrange multipliers,

~λ =

~λjoint

~λcontact

~λlimit

~λmotor

~λaux

, (4.220)

and we may thus write,
[
JM−1J T Aaux

Aaux Aaux

]

︸ ︷︷ ︸

A

~λ +

[

J
(

~u + ∆tM−1 ~fext

)

−~berror

~baux

]

︸ ︷︷ ︸

~b

≥ ~0 (4.221)

complementary to

−∞
0
0

−~λmax

0

︸ ︷︷ ︸

~λlow

≤ ~λ ≤

∞
∞
∞

~λmax

∞

︸ ︷︷ ︸

~λhigh

. (4.222)

Rewriting the complementarity formulation into this form will allow us to compute the
system matrix very efficiently. Notice also how easy we can write the generalized accel-
eration vector with the new notation,

~̇u = M−1
(

J T~λ + ~fext

)

. (4.223)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 101

When assembling the system matrix, we must first allocate space for all matrices involved,
and then setup the sub-block structure for each individual constraint. For each constraint
we evaluate it, i.e. compute joint axes, joint positions, joint errors and so on. That is all
the information needed in the Jacobian matrix and the corresponding error term for each
constraint, including any auxiliary constraints.

In the evaluation, care must be taken since joint limits and motors depend on the
joints they are attached to, and joint motors and limits must therefore not be evaluated
before the joints they are attached to are.

Having performed the evaluation, we can determine which constraints are currently
active and which are non-active. The non-active constraints can simply be dropped from
further consideration in the current assembly. As an example, the joint limits is non-active
whenever the joint has not reached its “outer” limit.

Knowing how many active constraints there are, we can compute the dimensions of the
matrices involved. For each constraint we will query how many rows its Jacobian matrix
contains, and we will query how many auxiliary variables there are. Summing these up,
we are able to determine the total dimensions of the matrices and vectors needed in the
assembly.

During these summations, it is also possible to assign indices for the sub-blocks for each
and every constraint, i.e. where its Jacobian matrix, error term and the auxiliary variable
data should be mapped to. Figure 4.26 shows the pseudo-code. Observe that substantial
memory savings can be achieved by using a simple sparse matrix representation of the
matrices M−1 and J , as shown in the pseudo-code as well. We can now start filling in data
in the matrices M−1 and J , and the vector berror, together with the parts of the system
matrix A and the right hand side ~b containing the auxiliary data. Also, external forces,
limits and the generalized velocity vector are easily dealt with as shown in Figure 4.27.
Using these matrices, it is quite easy to compute (4.221) in a straightforward manner.
The only real difficulty is that one must be careful about the sparse representation of the
matrices M−1 and J−1.

We have completed what we set out to do in this section. A unified framework for
handling both contact point constraints with friction and joint constraints with both
motors and limit has been derived.

The framework allows a modular and object oriented design of all the constraints in
a simulator. This object oriented design is outlined in Figure 4.28. In the figure we have
omitted details regarding assembly of the jointed mechanism (linking bodies together
with joints, and adding limits and motors).

4.14 Modified Position Update

When the new generalized position vector is computed as,

~s t+∆t = ~s t + ∆tS~u t+∆t, (4.224)

then we call it a position update. In the position update written above, an “infinitesimal”
orientation update is used. This is fast to compute, but can occasionally cause inaccuracies
for bodies that are rotating at high speed, and especially when they are joined to other
bodies.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 102

Algorithm allocate(...)

C = set of all constraints

njacobian = 0
for each constaint c ∈ C do

c.evaluate()

if not c.active() then

remove c from C

end if

c.setJacobianIndex(njacobian)

njacobian+ = c.getNumberOfJacobianRows()

next c

nauxiliary = 0
for each constaint c ∈ C do

c.setAuxiliaryIndex(njacobian + nauxiliary)

nauxiliary+ = c.getNumberOfAuxiliaryVars()

next c

J = matrix(njacobian, 12)
~berror = vector(njacobian)
ntotal = njacobian + nauxiliary

A = matrix(ntotal, ntotal)
~b = vector(ntotal)
~λ = vector(ntotal)
~λlow = vector(ntotal)
~λhigh = vector(ntotal)

B = set of all bodies

nbody = B.size()

Minv = matrix(3, 6nbody)
~u = vector(6nbody)
~fext = vector(6nbody)

End algorithm

Figure 4.26: Allocate system matrix and setup sub-block structure for constraints.

For instance, in a car simulation, four wheels might be attached to a chassis with
a wheel joint. When driving the car, the wheels may rotate in incorrect directions, as
though the joints were somehow becoming ineffective. The problem is observed, when the
car is moving fast and turning. The wheels appear to rotate off their proper constraints
as though the wheel axes have been bent. If the wheels are rotating slowly, or the turn is
made slowly, the problem is less apparent. The problem is that the high rotation speed
of the wheels is causing numerical errors. A “finite” orientation update can be used to
reduce such inaccuracies. This is more costly to compute, but will be more accurate
for high speed rotations. High speed rotations can result in many types of error in a
simulation, and a “finite” orientation update will only fix one of those sources of error.

We will now outline a modified position update like the one used in the Open Dynamics
Engine [112]. For each body Bi we want to be able to set a kind of bit flag indicating
whether the body should be updated using the infinitesimal or finite update method, and

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 103

Algorithm fillIn(...)

C = set of all active constraints

for each constaint c ∈ C do

i = c.getJacobianIndex()

j = i + c.getNumberOfJacobianRows()

J
i
lin = J(i..j),(0..2)

J
j
lin = J(i..j),(3..5)

J
i
ang = J(i..j),(6..8)

J
j
ang = J(i..j),(9..11)

c.getLinearJacobian_i(J i
lin)

c.getLinearJacobian_j(J
j
lin)

c.getAngularJacobian_i(J i
ang)

c.getAngularJacobian_j(J j
ang)

c.getErrorTerm(~berror,(i..j))

c.getJacobianLowLimit(~λlow,(i..j))

c.getJacobianHighLimit(~λhigh,(i..j))

next c

for each constaint c ∈ C do

i = c.getAuxiliaryIndex()

j = i + c.getNumberOfAuxiliaryVars()

Arows = A(i..j),(0..ntotal−1)

Acols = A(0..ntotal−1),(i..j)

c.getAuxiliaryRowsAndColumns(Arows,Acols)

c.getAuxiliaryLowLimit(~λlow,(i..j))

c.getAuxiliaryHighLimit(~λhigh,(i..j))

c.getAuxiliaryRightHandSide(~b(i..j))

next c

B = set of all bodies

for each body b ∈ B do

i = 6 b.getIndex()

j = i + 6

b.getMassInvMatrix(Minv,(i..i+3,0..2))

b.getInertiaInvMatrix(Minv,(i+3..i+5,3..5))

b.getLinearVelocity(~u i..i+2)

b.getAngularVelocity(~u i+3..i+5)

b.getExternalForce(~fext,(i..i+2))

b.getExternalTorque(~fext,(i+3..i+5))

b.getInertiaMatrix(I)

b.getAngularVelocity(~ω)
fext,(i+3..i+5)− = ~ω × I~ω

next b

End algorithm

Figure 4.27: Fill-in data in sub-block structure for constraints and bodies.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 104

JointContact

Constraint

index body_i
index body_,j

void evaluate()
bool isActive()

int getNumberOfJacobianRows()
void setJacobianIndex(int)
int getJacobianIndex()
void getLinearJacobian_i(matrix)

void getLinearJacobian_j(matrix)
void getAngularJacobian_i(matrix)
void getAngularJacobian_j(matrix)
void getErrorTerm(vector)

int getNumberOfAuxiliaryVars()
void setAuxiliaryIndex()
int getAuxiliaryIndex()
void getAuxiliaryRowsAndCols(rows,cols)
void getRightHandSide(vector)

SliderHinge BallInSocket Universal

JointLimitsJointMotor

FixedWheel

LinearMotor AngularMotor LinearLimit AngularLimit

Figure 4.28: The constraints design. Observe the unification of contacts and joints.

that should be done at configuration design time. In case of the finite update we want to
compute a rotation, q, corresponding to the radians traveled around the rotation axis in
the time interval ∆t. That is, the rotation angle θ is given by,

θ = ∆t||~ωi||, (4.225)

where the rotation axis is,

~u =
~ωi

||~ωi||
. (4.226)

The corresponding quaternion q is then given as,

q =

[

cos

(
θ

2

)

, ~u sin

(
θ

2

)]

. (4.227)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 105

This can be rewritten as follows,

q =

[

cos

(
θ

2

)

, ~u sin

(
θ

2

)]

(4.228a)

=

[

cos

(
θ

2

)

,
~ωi

||~ωi||
sin

(
∆t||~ωi||

2

)]

(4.228b)

=

cos

(
θ

2

)

, ~ωi

sin
(

∆t||~ωi||
2

)

||~ωi||

 (4.228c)

=

cos

(
θ

2

)

,
∆t

2
~ωi

sin
(

∆t||~ωi||
2

)

∆t||~ωi||
2

 (4.228d)

=

[

cos

(
∆t||~ωi||

2

)

,
∆t

2
~ωisinc

(
∆t||~ωi||

2

)]

. (4.228e)

Introducing the notation h = ∆t/2, and θ = ||~ωi||h, we end up with,

q = [cos (θ) , ~ωisinc (θ) h] , (4.229)

where

sinc (x) =

{

1 − x2

6
if |x| < ε,

sin(x)
x

otherwise.
(4.230)

In order to avoid division by zero, we have patched the sinc-function around 0 by using a
Taylor expansion for small values ε = 10−4. Furthermore, we want to be able to do both
a full finite orientation update and a partial finite orientation update. We have already
taken care of the full finite orientation update, and for the partial finite orientation update
we split the angular velocity vector into a component ~ωfinite along a specified finite rotation
axis ~raxis, and a component ~ωinfinitesimal orthogonal to it, i.e.,

~ωfinite = (~raxis · ~ωi)~raxis, (4.231a)

~ωinfinitesimal = ~ωi − ~ωfinite. (4.231b)

First, a finite update is done with ~ωfinite followed by an infinitesimal update done with
~ωinfinitesimal,

qi = qqi, (4.232a)

qi = qi + ∆tQi~ωinfinitesimal. (4.232b)

A partial finite orientation update can be useful in a situation like the previously men-
tioned wheel problem. Simply set the finite rotation axis equal to the hinge axis. Fig-
ure 4.29 shows the pseudo-code for the position update on body Bi.

4.15 Constraint Force Mixing

The constraint equation for a joint has the form,

J~u = ~b, (4.233)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 106

Algorithm position-update (i, ∆t)
~ri = ~ri + ∆t~vi

if finite rotation on i then
if finite rotation axis on i then

~ωfinite = (~raxis · ~ωi)~raxis

~ωinfinite = ~ωi − ~ωfinite

∆t = ∆t/2
θ = (~raxis · ~ωi)∆t
qs = cos(θ)
q~v = (sinc(θ)∆t) ~ωfinite

else

∆t = ∆t/2
θ = ||~ωi|| ∗ ∆t
qs = cos(θ)
q~v = (sinc(θ)∆t) ~ωi

end if

q = [qs, q~v]
qi = qqi

if finite rotation axis on i then
qi = qi + ∆tQi~ωinfinite

end if

else

qi = qi + ∆tQi~ωi

end if

normlize(qi)

End Algorithm

Figure 4.29: Position update on i’th body.

where ~u is a velocity vector for the bodies involved, J is the Jacobian matrix with one
row for every degree of freedom the joint removes from the system, and ~b is the error
correcting term.

The constraint forces, i.e. the reaction forces, from the joint bearings are computed
by,

~F = J T~λ, (4.234)

where ~λ is a vector of Lagrange multipliers and has the same dimension as ~b. The Open
Dynamics Engine [112] adds a new twist to these equations by reformulating the con-
straint equation as,

J~u = ~b − Kcmf
~λ, (4.235)

Where Kcmf is a square diagonal matrix. The matrix Kcmf mixes the resulting constraint
force in with the constraint. A nonzero (positive) value of a diagonal entry of Kcmf allows
the original constraint equation to be violated by an amount proportional to Kcmf times
the restoring force ~λ. The equations of motion give,

M~̈u = M
~u ∆t+t − ~u

∆t
= J T~λ, (4.236)

from which we isolate ~u ∆t+t as,

~u ∆t+t = ~u + ∆tM−1J T~λ. (4.237)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 107

Assuming that the constraint equation holds at time t+∆t and substituting the expression
for ~u ∆t+t into the constraint equation we get,

J~u ∆t+t = ~b −Kcmf
~λ, (4.238a)

J~u + ∆tJM−1J T~λ = ~b −Kcmf
~λ. (4.238b)

Collecting ~λ terms on the left side we get

(

JM−1J T +
1

∆t
Kcmf

)

~λ =
1

∆t

(

~b − J~u
)

, (4.239)

from which it is clear that the Kcmf matrix is added to the diagonal of the original system
matrix.

According to [112], using only positive values in the diagonal of Kcmf has the benefit
of moving the system away from singularities and improve factorization accuracy.

This twist of the constraint equations is known as constraint force mixing, and the
diagonal entries of the matrix Kcmf controls the amount of mixing that is done.

4.16 First Order World

First order world simulation is greatly inspired by the way Aristotle saw and described
the world in his time. These misconceptions were later rectified by Newton in his 3 laws
of motion. Regardless, a first order world is useful in animation for error correction and
precise positioning of objects. Aristotle’s basic views were,

1. Heavier objects fall faster.

2. To keep an object in motion at constant velocity, a constant force is needed.

The problem with this second statement was in not realizing that, in addition to the
pulling or pushing force, there are other forces involved, typically friction and air or
water resistance. Fortunately, these misconceptions are of great practical use in computer
animation and also in more serious applications such as virtual prototyping e.g. [124].

A first order world is useful due to its controllability. In Newtonian mechanics, objects
keep moving or sliding after a user interaction, making it hard to accurately position
objects interactively in a virtual world. Contrary, in a first order world an object would
stop immediately after a user stops pushing it.

Ease of interaction can be obtained by merely translating objects, but such an ap-
proach will not take care of the rotational movement induced by collision et cetera. In a
first order world, misalignments between objects are taken care of through simulation.

For instance, if a light misaligned object is pushed against a heavy perfectly aligned
object, the simulation will automatically align the two objects wrt. each other. Further-
more, the light object will be aligned more than the heavier object. Figure 4.30 and 4.31
show a few frames of a first order world simulation where two objects are automatically
aligned. As seen in Figure 4.30 and 4.31 a first order world simulation is well suited for
aligning objects and it respects their mass and inertia. This smooth alignment is very

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 108

Figure 4.30: A sequence in a first order world simulation where two identical
objects are aligned. The left box is pulled to the right. Observe that both the left
and right boxes are equally affected.

Figure 4.31: A sequence in a first order world simulation where two objects of
different mass are aligned. The left box has less mass than the right box. The left
box is pulled to the right. Observe that the heavier box on the right is less affected
than the light box on the left in comparison with Figure 4.30.

attractive in many virtual environments, and this also makes a first order world simu-
lation an ideal tool for correcting simulation errors [17]. An example of this is shown in
Figure 4.32.

In a second order system we have a state function, ~s(t), for a rigid body,

~s(t) =

~r
q
~P
~L

, and ~̇s(t) =

~v
1
2
~ωq
~F
~τ

, (4.240)

Figure 4.32: First order world simulation used to correct penetration error. The
left figure shows initial state, while the right shows the corrected state. Observe
that when corrected, the upper box is both translated and rotated.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 109

where

~v =
~P

m
, and ~ω = I−1~L, (4.241)

or equivalently we have,

~s(t) =

~r
q
~v
~ω

, and ~̇s(t) =

~v
1
2
~ωq
~F
m

I−1 (~τ − ~ω × L)

. (4.242)

In a first order system the state function for a rigid body simplifies to,

~s(t) =

[
~r
q

]

, and ~̇s(t) =

[~F
m

1
2
I−1~τq

]

. (4.243)

Observe that the difference is that force relates directly to velocity, i.e.,

~F = m~v, (4.244)

~τ = I~ω. (4.245)

These are the first order world equivalents to the Newton-Euler equations of motion.
Thus, in a first order world, there is velocity but no acceleration, and first order worlds
are therefore very useful for evaluating system kinematics. In a first order system the
dynamics equation ~F = m~v dictates that objects have no intrinsic velocity of their own.
Equivalently, the velocity at any given instant depends completely on the forces acting at
that instant. This means that velocity based damping and friction are non-existent in a
first order world, and that inertial forces due to velocity are absent. As we will see later,
these consequences greatly simplifies the contact modeling compared to a second order
world obeying the Newton-Euler equations of motion.

4.16.1 Single Point of Contact

Now let us study a single point of contact, ~pk, between two bodies i and j. Let ~ri and ~rj

be the position of the center of mass of the bodies. Then the two vectors from the center
of mass to the point of contact are found as

~rki = ~pk − ~ri, (4.246)

~rkj = ~pk − ~rj . (4.247)

The change in velocity of the contact point with respect to each body are,

∆~ui = ∆~vi + ∆~ωi × ~rki, (4.248)

∆~uj = ∆~vj + ∆~ωj × ~rkj. (4.249)

In a first order world, a change in velocity corresponds to a change in force. For the
time being, we will ignore all other forces in the system, except for the forces acting at

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 110

the contact point. This means that the change in force is simply the force acting at the
contact point, and for body j we have

∆~vj =
~F

mj
, (4.250)

∆~ωj = I−1
j

(

~rkj × ~F
)

, (4.251)

where ~F is the force acting on body j. Assuming the law of reaction equals action, we
must have that the force on body i is given by −~F , yielding the following equations for
body i,

∆~vi = −
~F

mi
, (4.252)

∆~ωi = −I−1
i

(

~rki × ~F
)

. (4.253)

Now, let us compute the relative change in contact velocity as,

~u = (∆~uj − ∆~ui) . (4.254)

Substituting in previous results yield

~u =
((

∆~vj + ~∆ωj × ~rkj

)

−
(

∆~vi + ~∆ωi × ~rki

))

, (4.255a)

~u =

((
~F

mj
+
(

I−1
j

(

~rkj × ~F
))

× ~rkj

)

−
(

−
~F

mi
+
(

−I−1
i

(

~rki × ~F
))

× ~rki

))

(4.255b)

Using the cross matrix notation for the cross products we can isolate ~F as,

~u =

((
~F

mj
+
(

I−1
j

(

rkj
× ~F
))

rkj
×

)

−
(

−
~F

mi
+
(

−I−1
i

(

rki
× ~F
))

rki
×

))

(4.256a)

=

(
1

mj
+

1

mi

)

~F −
(
rkj

×I−1
j rkj

×
)

~F −
(
rki

×I−1
i rki

×
)

~F (4.256b)

=

(
1

mj
+

1

mi

)

~F −
(
rkj

×I−1
j rkj

× + rki
×I−1

i rki
×
)

~F (4.256c)

=

((
1

mj

+
1

mi

)

1 −
(
rkj

×I−1
j rkj

× + rki
×I−1

i rki
×
)
)

︸ ︷︷ ︸

K

~F (4.256d)

~u = K~F . (4.256e)

The matrix K is the familiar collision matrix [100]. Thus, we have derived the same
relationship between force and contact point velocity in a first order world as for collision
impulses and contact point velocities in a second order world. Measuring the relative
contact velocity in only the normal direction, ~n, yields

un = ~nT~u = ~nT
(

K~F
)

, (4.257)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 111

and restricting the contact force ~F , to be parallel to the normal direction is simply

un =
(
~nTK~n

)
f, (4.258)

where f is a scalar denoting the magnitude of the force ~F , and likewise un is a scalar
denoting the magnitude of relative contact velocity in the normal direction.

4.16.1.1 Penetration Correction

The previously derived relation (4.258) provides a convenient way for projecting pene-
trating bodies out of each other. The idea is as follows: setup (4.258) such that you solve

for the force ~F , which will yield a change in the relative contact velocity ~u that will
correct the penetration during the next time-step h.

Let the penetration depth be given by the distance d. Then the correcting velocity at
the contact points must be,

un =
d

h
, (4.259)

and solving for the correcting force yields,

f =

~d
h

~nTK~n
. (4.260)

Now use, ~F = ~nf , in the state function (4.243) to perform a single forward Euler step.
This yields a position update, which will correct the penetration between the two objects,
i.e.

~r t+1
i = ~r t

i + h

(

−~F
)

mi
, (4.261)

qt+1
i = qt

i + h
1

2

(

I−1
i

(

~rki ×
(

−~F
)))

qt
i , (4.262)

~r t+1
j = ~r t

j + h
~F

mj
, (4.263)

qt+1
j = qt

j + h
1

2

(

I−1
j

(

~rkj × ~F
))

qt
j . (4.264)

In the above, we have applied a forward Euler scheme, meaning that we have linearized
the sought displacements. The correction is therefore only correct to within first order,
but in practice this is seldom a problem, since most simulation paradigms try to prevent
penetrations. This indicates that penetration errors are likely to be small and only require
small corrections.

4.16.1.2 Continuous Motion

The constraint forces needed in a first order world simulation can also be derived from
(4.256e). Taking external forces into account, say forces ~F i

ext and ~F j
ext and torques ~τ i

ext

and ~τ j
ext acting on bodies i and j respectively, then it is seen by substituting the forces

into (4.255a) that (4.256e) changes into the form,

~u = K~F +~b, (4.265)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 112

where ~b is given by,

~b =
~F j

ext

mj
−

~F i
ext

mi
+ I−1

j ~τ j
ext × ~rkj − I−1

i ~τ i
ext × ~rki. (4.266)

Here, ~F denotes the constraint force at the contact point, which must prevent penetration
from occurring. This implies that the relative contact velocity in the normal direction
must be non-negative, since a first order world is frictionless. According to the principle
of virtual work, it makes sense to require that the constraint force is parallel to the normal
direction. Also, the bodies are allowed to separate, which means that the constraint force
can only be repulsive. To summarize, we have

un ≥ 0, and f ≥ 0. (4.267)

Furthermore, un and f must be complementary, meaning that if un initially is greater
than zero, there is no need for a constraint force, i.e.

un > 0 ⇒ f = 0. (4.268)

On the other hand, if we have a constraint force acting at the contact point, the normal
velocity must be zero. That is,

f > 0 ⇒ un = 0. (4.269)

In conclusion, we discover a linear complementarity condition similar to (4.22).

4.16.2 Multiple Contact Points

In this section, we will extend the machinery for a two body problem to handle a n-body
system.

Let ~uk denote the change in relative contact velocity and at the k’th contact, then

~uk = ∆~ujk
− ∆~uik . (4.270)

As previously we also have,

∆~uik = ∆~vik + ∆~ωik × ~rkik, (4.271)

∆~ujk
= ∆~vjk

+ ∆~ωjk
× ~rkjk

. (4.272)

However, this time we do not have a single contact force contributing to the k’th contact.
To get the total force and torque contributing to the k’th contact, we have to sum over
all forces and torques. Using the indexing introduced in Section 4.3 we write,

∆~vjk
=

~F jk

ext +
∑

h,jh=jk

~Fh −
∑

h,ih=ik
~Fh

mjk

, (4.273)

∆~ωjk
= I−1

jk

(

~τ jk

ext +

(
∑

h,jh=jk

~rhjh
× ~Fh

)

−
(
∑

h,ih=jk

~rhih × ~Fh

))

, (4.274)

where ~Fh is the contact force at the h’th contact point. If we perform the same substi-
tutions as done in the case of a single point of contact (4.265), the contributions from

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 113

the external forces and torques can be collected in a single vector ~bk. The contribution
stemming from the contact forces can then be written as a linear combination,

~uk =

(
∑

h

Kkh
~Fh

)

+~bk, (4.275)

where

Kkh =

(
1

mjk

+ 1
mik

)

1 −
(
rkjk

×I−1
jk

rhjk
× + rkik

×I−1
ik

rhik
×
)

if ih = ik and jh = jk,
(

−1
mik

)

1 +
(
rkik

×I−1
ik

rhih
×
)

if ih = ik and jh 6= jk,
(

−1
mjk

)

1 +
(
rkjk

×I−1
jk

rhih
×
)

if ih = jk and jh 6= ik,
(

1
mik

)

1 −
(
rkik

×I−1
ik

rhjh
×
)

if jh = ik and ih 6= jk,
(

1
mjk

)

1 −
(
rkjk

×I−1
jk

rhjh
×
)

if jh = jk and ih 6= ik,

0 otherwise.

(4.276)
If we only consider relative contact velocity in the normal direction and only allow contact
forces to be parallel with the contact normals, it is easily seen that the equation transforms
into

unk = ~nT
k ~uk =

(
∑

h

~nT
k Kkh~nhfh

)

+~bk, (4.277)

where fh denotes the magnitude of the h’th contact force. The equations for all the
relative normal contact velocities can now be written as in a single matrix equation,

un0
...

unK−1

︸ ︷︷ ︸

~a

=

~nT
0 K00~n0 . . . ~nT

0 K0K−1~nK−1
...

...
~nT

K−1KK−10~n0 . . . ~nT
K−1KK−1K−1~nK−1

︸ ︷︷ ︸

A

f0
...

fK−1

︸ ︷︷ ︸

~x

+

~nT
0
~b0
...

~nT
K−1

~bK−1

︸ ︷︷ ︸

~b

,

(4.278)

⇒ ~a = A~f +~b. (4.279)

This equation is similar to (4.26), and recalling the definition of the contact Jacobian in
Section 4.9.7 and the assembly process in Section 4.13, we immediately generalize,

A = JcontactM
−1J T

contact, (4.280)

~b = JcontactM
−1 ~fext. (4.281)

Notice that in a first order world ~fext does not contain inertial forces. An LCP can now
be formulated for the continuous movement of a first order world, as

~a ≥ 0, ~f ≥ 0, and ~fT~a = 0. (4.282)

A penetration correcting force can be computed by redefining the ~b-vector,

~b =
1

h

−d0
...

−dK−1

 , (4.283)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 114

and then solving the same LCP as we formulated above. For the case of a single point
contact, we could solve the linear system, but for multiple contact points the projection
of a penetration of one contact point might fix the penetration of another, and this
induces a complementarity condition where there can be no correcting force if there is
no penetration. On the other hand, if there is a correcting force, the penetration depth
must be zero.

Chapter 5

Contact Graphs in Multibody
Dynamics Simulation

Historically, contact graphs are used for splitting objects into disjoint groups that can
be simulated independently. Contact graphs are frequently mentioned between people
working with rigid body simulation, as can be seen by searching through the archives
of [1], but they are often not formally described in the literature. For instance, [101]
uses the word “contact group”, but nowhere is it explained. Most of the time people just
mention the idea of using contact groups to break down contact force computations into
smaller independent problems [9, 38]. The benefit of doing this is obvious that not many
people would spend a lot of time explaining it. To our knowledge, [103] is the first advanced
attempt to use contact groups for other things than contact force computations, and the
first use of the word “graph” appeared in [71], where a contact graph is used to properly
back-up penetrating objects in the simulation. In our opinion, this is the first example
of a primitive time-control algorithm using contact graphs. Recently, [70] developed a
shock propagation algorithm for the efficient handling of stacked objects which uses a
contact graph. The contact graph in [70] is constructed in a different manner than the
one described here.

Today, simulators exploit contact groups for breaking down the computations into
smaller independent problems. For instance, Open Dynamics Engine (ODE) (v 0.035)
and Vortex (v 2.0.1) from CMLabs compute contact groups which they call islands and
partitions respectively. However, they do not store an actual graph data structure as the
one we propose in this chapter.

Not very surprisingly, alternatives to contact graphs are neither mentioned nor ex-
plained. The closest thing to an alternative appears to be putting the contact-matrix
into block-form as briefly described in [24]. As far as we know this is another idea that
is not well described in the computer graphics literature. In comparison with the con-
tact graph approach, the “block-form” matrix approach is limited to contact force and
collision impulse computations, and can not be used for anything else in a simulator.

Lastly, we feel that contact graphs are a good companion for our rigid body simulator
modular design, see [45, 56], and as such they are a step further in the direction towards
a more standardized and powerful framework.

The contact graph algorithm we present in this section is part of the Spatial-Temporal
Coherence (STC) analysis module. The algorithm shows that STC analysis is scattered

115

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 116

throughout the other phases of the collision detection engine. We use contact graphs
for caching information, such as contact points. The cached information can be used to
improve the run time performance of a rigid body simulator.

5.1 The Contact Graph

A contact graph consists of a set of nodes, where a node is an entity in the configuration,
such as a rigid body or a fixed body. However, a node can also be a virtual entity. That is,
something which does not have a physical influence on other entities in the configuration.
For instance, trigger volumes, i.e. volumes placed in the physical world, raise events when
other “physical” objects move in and out of them. Nodes could also be something without
a shape, for instance a timer event. Another example of a shapeless node could be logical
rules, such as grouping of configuration objects and/or filters.

The node types are easily divided into three categories: Physical nodes, Container
nodes, and Logical nodes. Table 5.1 shows the node types and their respective categories
together with the symbolic notation we use. The physical nodes are those nodes repre-

Category Type Symbol
Physical Rigid Bodies (R)

Fixed Bodies (F)
Link Bodies (L)
Scripted Bodies (S)

Container Composite bodies (C)
Multibodies (M)

Logical Logical Rules (A)
Trigger Volumes (V)
Timers (T)

Table 5.1: Node types.

senting entities which can physically interact with each other. Rigid bodies, fixed bodies,
scripted bodies (see Chapter 3) and link bodies are all physical objects. Rigid bodies can
be rigidly attached to each other to form a composite body. Therefore a composite body
is therefore a “container” type. Link bodies and joints can form a jointed mechanism
which is called a multibody or articulated figure, therefore a multibody is also a “con-
tainer” type. Logical rules, trigger volumes and timers are all nodes which do not have a
physical meaning. They are used for generating events which have logical consequences
in the sense that an end user reacts to them, and constraining physical interactions to a
specified set of objects. We call all such kind of nodes logical nodes.

When objects interact with each other, contact information is usually computed and
cached. It is particularly easy to use the edges in the contact graph for storing information
of interactions between objects. Edges are also useful for keeping structural and proximity
information.

All the edge types are listed in Table 5.2. An edge between a logical rule and a physical
object means that the logical rule applies to the physical object. This sort of edge is static
in the sense that it is defined by an end user prior to the simulation.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 117

Category Type
Logical Rule vs. Rigid

Rule vs. Fixed
Rule vs. Scripted
Rule vs. Link

Structural Rigid vs. Composite
Link vs. Multi

Geometrical Trigger vs. Rigid
Trigger vs. Fixed
Trigger vs. Scripted
Trigger vs. Link

Physical Rigid vs. Rigid
Rigid vs. Fixed
Rigid vs. Scripted
Rigid vs. Link
Fixed vs. Link
Scripted vs. Link
Link vs. Link

Table 5.2: Edge types.

An edge between a composite body and a rigid body tells that the rigid body is part
of a composite body. This kind of edge gives us structural information about how the
composite body is built, and it is a static edge, i.e. defined prior to simulation by an end
user.

An edge between a multibody and a link indicates that the link is part of the multi-
body. Again, the edges are static, giving us structural information about a multibody.

An edge between a physical object and a trigger volume indicates that the physical
object has moved inside the trigger volume. Therefore, this kind of edge can be used to
generate trigger volume event notifications. This type of edge is a dynamic edge, meaning
that it is inserted and removed dynamically by the collision detection engine during the
simulation.

The last type of edge we can encounter are those which tell us something about how
the objects in the configuration interact with each other at this moment in time. For
instance, if two rigid bodies come into contact then an edge is created between them.
There are some combinations of edges which do not make sense, such as an edge between
two fixed bodies.

In order to access cached information unambiguously and fast, nodes and edges must
be found in constant time, and edges are bidirectionally and uniquely determined by the
two nodes they connect. These properties can be obtained by letting every entity in the
configuration have a unique index, and letting edges refer to these indices, such that the
smallest indexed entity is always known as A and the other as B.

Figure 5.1 contains a pseudo-code outline of the contact graph data structure. All
objects should be inherited from the Node class such that they can be inserted directly
into the contact graph.

It is fairly easy to visualize a contact graph. Figure 5.2 shows a small complex example

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 118

Class Node

int idx

Enum {...} type

List<Edge> edges

Class Edge

int idxA

int idxB

Class ContactGraph

Hashtable<Node> nodes

Hashtable<Edge> edges

Figure 5.1: Contact graph data structures.

of a contact graph.

R
3

R
1

R
2

R
4

R
5

F
1

R
8

C
1

S
1

L
1

R
6

L
3

L
2

M
1

V
1

R
7

F
2

T
1

Figure 5.2: A contact graph example. The symbolic notation is listed in Table 5.1.

5.2 The Contact Graph Algorithm

We will now outline how a contact graph can be used in the collision detection pipeline.
Notice, that although we claim a contact graph to be a higher order contact analysis
phase, it is not a phase that is isolated to a single place in the pipeline. Instead, it is
spread out to all the other phases, i.e. in between the broad phase, narrow phase and
contact determination modules.

In the following subsections we will walk through what happens in the collision de-
tection pipeline step by step.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 119

5.2.1 Edge Insertion and Removal

The first step in our algorithm is to update the edges in the contact graph, which is done
by looking at the results of the broad phase collision detection algorithm. The result of
the broad phase collision detection algorithm is an unsorted list of pairs of nodes, where
each pair denotes a detected overlap according to the broad phase algorithm. Observe
that each pair is equivalent to a contact graph edge. Therefore, we can insert new edges
into the contact graph which we have not seen before. At the same time, we can handle
all close proximity information. That is, detection of vanished, persistent, and new close
proximity contacts. This is done by comparing the state of edges with their old state.
The pseudo-code in Figure 5.3 outlines the general idea. The notation eold in Figure 5.3

O = BroadPhase.getOverlaps()

for all edges e /∈ O do

mark e as vansihed close proximity

if touching(eold) then
mark e as vansihed touching contact

end if

if obselete(e) then
remove e from graph

end if

next e

for all e ∈ O and e ∈ graph do

mark e as persistent close proximity

next e
for all e ∈ O and e /∈ graph do

create edge e in graph
mark e as new close proximity

next e

Figure 5.3: Edge insertion and removal.

refers to the “state” of the edge in the previous iteration. It is not a new instance.
The main idea behind removing edges is to avoid the case of edges accumulating to

O(n2) size. So when the nodes between an edge are far apart, and it is unlikely that they
come close in the near future, it is “safe” to remove the corresponding edge. We call this
“obsolete testing”.

In our simulator we apply a heuristic approach to obsolete testing by simply requiring
that the orthogonal distance along the axes between the AABBs of the corresponding
nodes be twice the maximum edge size of the AABBs. The test is based on the idea that
edges which exist for a long period of time correspond to close objects. Of course one
could use more sophisticated tests which, for instance, used information about time-step
and velocities. We favor the simple test, because it is computationally inexpensive, since
it only uses a couple of subtractions and comparisons. Notice, that if a bad test is chosen,
it will result in the same edge being removed and inserted over and over again. The test
is thus related only to performance.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 120

5.2.2 Logical and Coherence Testing

We can perform logical testing and exploit caching by scanning through all the reported
overlaps and remove those overlaps we do not have or want to treat any further. In
this phase logical rules are applied. Any kind of logical construct could be used such as:
“Ignore all interactions between objects in group X and/or group Y ”.

Overlaps with passive objects are also removed. Passive objects do not really exist in
the configuration. They are merely objects kept in memory in case they should become
active later on. In this way, objects can be preallocated, and there is no penalty in real-
locating objects that dynamically enter and leave the configuration during runtime. We
refer to objects using the passive/active scheme as being light weighted. The opposite is
called heavy weighted, and it means that objects are explicitly deallocated and reallo-
cated whenever they are added or removed from the configuration. One drawback of light
weighted objects is that there is a penalty in the broad phase collision detection algo-
rithm. Fortunately, broad phase collision detection algorithms often have linear running
time with very low constants, so the penalty is negligible.

The last screening test is for change in relative placement. Every edge stores a trans-
form, xform(·), indicating the relative placement of the end node objects. If the transform
is unchanged then there is no need to run narrow phase collision detection nor contact
determination, because these algorithms would return the exact same results as in the
previous iteration. This is illustrated in Figure 5.4. Notice that when the relative place-

N = empty set

for each e ∈ O do

if not rule(e) then
continue

else if A(e) and B(e) are triggers then

continue

else if A(e) or B(e) is passive then

continue

else if not xform(e) is changed then

if touching(e) then
mark e as persistent

end if

if penetration(e) and ShotCircuit then
terminate

end if

continue

end if

add e to N
next e

Figure 5.4: Logical and coherence testing.

ment of objects is unchanged, it is then tested if objects are in a persistent touching
contact.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 121

5.2.3 Narrow Phase and Short Circuiting

We are now ready for doing narrow phase collision detection and contact determination
on the remaining overlaps. Output from these algorithms are typically a set of feature
pairs forming principal contacts, PCs, and a penetration state. The edges of the contact
graph provide a good place for storing this kind of information. The output of the narrow
phase should of course also be cached in the edge, because most narrow phase collision
detection algorithms reuse their results from the previous iteration to run in constant
time. Sometimes, the closest principal contact is needed. For instance when using impulse
based simulation or estimating time of impact. At this stage it is therefore possible to
search the output of the narrow phase for the the closest principal contact. Next, it is
tested if any contact state changes occurred, such as if touching or penetrating contacts
vanish or persist. That is, if a contact was also present in the last iteration. If one of
the nodes is a trigger volume then we do not mark touching contact, but rather in-
and out- events of the trigger volume. The same applies to the marking that took place
earlier. The pseudo-code is shown in Figure 5.5. As it can be seen in Figure 5.5 the

for each e ∈ N do

NarrowPhase.run(e, PCs(e))
if penetration(e) and ShotCircuit then
terminate

end if

if not only proximity info then

ContactDetermination.addSeed(e, PCs(e))
end if

minPC(e) = min {PCs(e)}

if not separation(eold) then
if not separation(e) then

mark e as persistent touching contact

else

mark e as vanishing touching contact

end if

else

if not separation(e) then
mark e as new touching contact

end if

end if

next e

Figure 5.5: Narrow phase and short circuiting.

output from the narrow phase collision detection, PCs(e), are often used as a seed for
the contact determination. This is why the method addSeed() is invoked after the narrow
phase collision detection has been run. The meaning of the surrounding if-statement will
be explained in the next section.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 122

5.2.4 Contact Determination

Finally, we can run the contact determination for all those edges, where their end node
objects are not separated. The pseudo-code is shown in Figure 5.6. Observe the out-most

if not only proximity info then

for each e ∈ N do

if A(e) and B(e) are physical then

if not separated(e) then
ContactDetermination.run(e)

end if

end if

next e
end if

Figure 5.6: Contact determination.

if-statement in the pseudo-code. In an impulse based simulator it is often not necessary
to do a full contact determination. Only the closest points are actually needed [100], so
an end user might want to turn off contact determination completely.

In the pseudo-code we have chosen to skip contact determination on nodes represent-
ing things like trigger volumes. Such entities are merely used for event notification, so
there is no need for contact determination.

5.2.5 The Contact Groups

Now that we have completed exploiting the logical and caching benefits we can gain from
a contact graph, we are now ready to use the contact graph for its intended purpose:
determining contact groups. The actual contact groups are found by a traditional con-
nected components search algorithm, restricted to the union of the list N introduced in
Figure 5.4, and the structural edges. The algorithm works by first marking all edges that
should be traversed as “white”. Afterwards, edges are treated one by one until no more
white edges exist. The pseudo-code is shown in Figure 5.7 and 5.8. In Figure 5.7 we have

if should compute groups then

for all edges, e ∈ N do

color(e) = white
next e
for all edges, e ∈ N do

if color(e) = white then

let G be an empty group

traverseGroup(e, G)

end if

next e
end if

Figure 5.7: Connected components search.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 123

once more placed a surrounding if-statement in order to provide the most flexibility for
an end user. Fixed and scripted bodies are rather special, and they behave as if they

algorithm traverseGroup(e:Edge,G:Group)

color(e) = grey
add e to G
for end nodes, n ∈ e do

if not n is fixed or scripted body then

for all edges, w ∈ n do

if color(w) = white then

traverseGroup(w, G)

end if

next e
end if

next n
color(e) = black

end algorithm

Figure 5.8: Traverse group

had infinite mass, such that they can support any number of bodies without ever getting
affected themselves. They work like an insulator, which is why we ignore edges from these
nodes when we search for contact groups.

Let us look at the contact groups of the example from Figure 5.2. As it can be seen
in Figure 5.9, we have four contact groups A, B, C, and D.

R
3

R
1

R
2

R
4

R
5

F
1

R
8

C
1

S
1

L
1

R
6

L
3

L
2

M
1

R
7

F
2

A

AA

A

A

A

A

D

B

B

B

B

B
B

B

C

C

C

Figure 5.9: Example contact groups.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 124

5.3 The Event Handling

In the pseudo-code we have outlined so far, we have not explicitly stated when events
get propagated back to an end user. Instead, we have very clearly shown when and how
the events should be detected. Table 5.3 summarizes the types of events we have talked
about. We can traverse the edges of the graph, and simply generate the respective event

In Trigger Volume
Out Trigger Volume
New Touching Contact
Persistent Touching Contact
Vanishing Touching Contact
New Proximity
Persistent Proximity
Vanishing Proximity
Timer Tick

Table 5.3: Event types.

notifications for all those edges that have been marked with an event. This is shown in
Figure 5.10. The only problem is those edges we removed due to the obsolete testing.

for each edge e ∈ graph do

if marked(e) then
for each mark m ∈ e do

generateEvent(m, e)
marked(eold) = marked(e)

next m
end if

next e

Figure 5.10: Event handling.

However, this can be handled gracefully by only allowing edges to become obsolete if
they were at least marked as vanishing close proximities last time the collision detection
query was run.

There is one major subtlety to event handling: some simulators are based on back-
tracking algorithms, also called retroactive detection, meaning that they keep on running
forward until something goes wrong, and then they backtrack, correct things, and then
go forward once again. This behavior could occur many times during the simulation of a
single frame, and the consequences are that we might detect events which are disregarded.

The problem of backtracking can be handled in two ways. In the first solution, events
can be queued during the simulation together with a time-stamp indicating the simulation
time at which they were detected. During backtracking, one simply dequeues all events
with a time-stamp greater than the time the simulator backtracks to. After having de-
queued the events, one would have to reestablish the “marked” state of the edges at that
time which can be done by scanning through the queue. In the second solution, events

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 125

are restricted to only be generated when it is “safe”, i.e. whenever a backtrack cannot
occur or on completion of the frame computation. Therefore the eold state should only be
updated at these places, such that the events that are generated reflect the changes since
the last time events were generated.

The second solution would clearly miss events which the first method might catch,
and as the time between event generation gets bigger, it will probably miss even more
events. This is not because the events that are returned, indicate a faulty picture of what
has occurred, they merely show the same picture but with less detail. On the other hand,
the first solution is capable of catching more details at the cost of dynamic memory
allocation, something we really would like to avoid.

We favor the second solution, because event notifications are most likely to be used in
a gaming context, and in such a context a backtracking algorithm would not be favorable.
In predicting motion or validating offline simulation, event notifications might not even
be used, so fever details might not be an issue in such contexts.

As a final remark, we should note that overshooting and missing contact transitions
will occur with both solutions, due to the fact that the collision detection is only invoked
at discrete times during a simulation. From this viewpoint, the second solution can be
made just as detailed as one wants, by lowering the time-step of the simulator at an
added performance degradation.

5.4 The Spatial-Temporal Coherence Analysis Mod-

ule

Having outlined how the contact graph should be used in the collision detection pipeline,
we can now sketch how a STC analysis module that works together with the three other
modules in a collision detection engine. That is, the broad phase collision detection mod-
ule, the narrow phase collision detection module, and the contact determination module.
Figure 5.11 illustrates the interaction, from which we see that the STC analysis occurs in
three phases, post-broad-phase, post-narrow-phase, and post-contact-determination. We
have not used a pre-broad-phase in the STC analysis, but if any initialization is supposed
to take place, then a pre-broad-phase analysis would be a good place for doing this.

We have treated the narrow phase collision detection in an one-by-one approach. Other
narrow phase collision detection algorithms handles all pairs of overlap at the same time,
see e.g. [77, 114]. However, it is rather straightforward to modify the pseudo-code we
have outlined to accommodate this behavior. Simply rewrite the for -loop in Figure 5.5,
such that invocation of the narrow phase collision detection algorithm occurs before the
for -loop and works simultaneously on all overlaps.

5.5 Using Contact Groups

In our opinion, there are basically three different ways to exploit the contact groups in
rigid body simulation. We will briefly talk about them in the following.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 126

Collision Detection Engine

STC Analysis

Narrow Phase

Broad Phase

Contact
Determination

proximity only testing

Contact Group
Detection

Edge Insertion and
removeable

Logial and Cache
Testing

Event Notification

Figure 5.11: Spatial-temporal coherence analysis module.

Time Warping Traditionally, one would backtrack the entire configuration when an
illegal state is found, such as the penetration of two objects.

This is very inefficient, since there might be a lot of objects in the scene, whose
motion is completely independent of the two violating objects. The result of backtracking
them is simply that one would have to repeat the previous computations, thus wasting
computation time.

Knowing the contact groups, one could only backtrack those contact groups, where
the violating objects belong to, and leave all other contact groups alone. The reader
should refer to [103] for more details.

Subdivision of Contact Force Computation Constraint-based methods for com-
puting contact forces are often NP -hard, so it is intractable to solve large problems.
However, the contact forces needed in one contact group is totally independent of all the
other contact groups. This knowledge can be exploited, and instead of computing the
contact forces for all contact groups, the problem is broken down into smaller problems
by solving for the contact forces of each contact group separately [9, 38].

Caching Contact Forces If contact forces from the previous iteration are cached in
the contact graph edges then these forces can be used as initial guesses for the contact
force computation in the current iteration [14].

The contact graph also holds information about change of relative placement. This
can also be exploited, because this means that the contact forces are the same as in the
previous iteration, so these can simply be reused. Of course, contact forces are dependent
on external forces, so one could only exploit this idea if the current absolute placement and
external forces “physically” agree with the previous absolute placement. As an example,
think of a stack of books on a table: the books do not change placement at all. Similarly, for

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 127

a block sliding down an inclined plane: The total external force on the block is independent
of the blocks motion down the plane. An example where this does not hold could be a
block sliding down an inclined plane, where the inclination angle decreases as the block
slides down the plane.

5.6 Results

We will elaborate on several speed up methods that relies on, or relates to contact graphs.
The speed up methods are generally applicable to any kind of rigid body simulator.
In order to show the effects we have chosen to extend our own multibody simulator
with the speed ups. The multibody simulator used is a velocity based complementarity
formulation [140] using distance fields for collision detection. Example code is available
from the OpenTissue Project [113]. Our simulator was originally developed for medical
applications to simulate skeleton bone movements. Performance was not a concern but
accuracy was. In this section, we will focus on performance speed up only. For this reason
we have chosen a semi-implicit fixed time-stepping scheme with a rather large time-step,
0.01 second. For a medical application we would have used a fix-point time-stepping
scheme and done a convergence analysis to determine the time-step.

Using distance fields for collision detection and the above mentioned time-stepping
scheme has one major drawback. During the “fake” position update, objects tend to be
deeply penetrating. In these cases a large number of contact points will be generated, and
the consequence will be a performance degradation due to the large number of variables
that must be resolved. Performance improvements are therefore particularly important,
even if real-time simulation is out of our grasp.

We have done several performance measurements and statistics on 120 spheres falling
onto an inclined plane with the word “DIKU” engraved. The configuration is shown in
Figure 5.12. The total duration of the simulation is 10 seconds. In Figure 5.13, measure-

Figure 5.12: 120 falling spheres onto inclined plane with engravings.

ments of the brute force method is shown, i.e. without using a contact graph. Observe
that the number of variables and real-life time per iteration are increasing until the point
when the spheres settle down to rest, and the curves then flatten out.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 128

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Brute Force Method

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Brute Force Method

min
max
mean

Figure 5.13: The brute force method. In this case there is only one large contact
group.

In comparison, Figure 5.14 shows how the curves from Figure 5.13 change when a
contact graph is used. Notice that the number of variables per contact group is much
smaller than in the brute force method. Also observe the impact on the real-life duration
curves. Table 5.4 shows how the total real-life running time in seconds is affected by using
a contact graph to divide a simulation into independent contact groups. However, one

Time (secs.)
Brute Force Method 28424
Contact Graph 1011,4

Table 5.4: The performance effect of dividing simulation into independent contact
groups.

can do even better. In the following we will explain 7 more speed up methods we have
used successfully.

An obvious improvement comes from ignoring contact groups where all objects appear
to be at rest. We call such objects sleepy objects, and we compute them by tracking their

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 129

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Using Contact Graph

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Using Contact Graph

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Using Contact Graph

min
max
mean

Figure 5.14: The performance impact of using a contact graph to determine inde-
pendent contact groups.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 130

kinetic energy. An object is flagged as sleepy whenever its kinetic energy has been zero
within a numerical threshold over a number of iterations specified by a user. If a contact
group only contains sleepy objects the group is completely ignored. Contact graph nodes
provide the means for tracking the kinetic energy. Since this speed up is computationally
inexpensive, we have invoked it in all of the measurements given in Table 5.5. The speed
up could have a potentially disastrous effect on a simulation if the scheme for tagging
sleepy objects is not well-designed. Too greedy an approach could leave objects hanging in
the air, and too lazy an approach would result in no performance gain. Detailed treatment
of sleepy objects are given in Section 6.5.

We exploit contact graph edges for caching contact points and contact forces. Cached
contact points are used to skip narrow phase and contact determination, whenever two
incident objects of a contact edge are at absolute rest. Cached contact forces are used
to warm-start the LCP solver, where we use Path from CPNET [115]. Hopefully, the
LCP solver is able to converge much more rapidly. From here on we call this speed up
“caching”.

A further speed up can sometimes be obtained by limiting the number of times the
LCP solver is allowed to iterate. Currently, we change the limit from the default value of
500 to 15. As a consequence, the motion is altered but still looks plausible. The speed up
has nothing to do with contact graphs, but it is interesting to examine in combination
with the other speed ups we apply, see Table 5.5. We refer to this speed up as “tweaking”.

Another speed up we use is to reduce the number of contacts between two objects
in contact. The reduction is applied to objects that are deeply penetrating. During the
reduction, all contacts are pruned except the single contact of deepest penetration. Again,
the edges of the contact graph provide a convenient storage. We have named this speed
up “reduction”. Reduction has an effect on the motion of the objects we believe that
is actually more correct, because intuitively, the deepest point of penetration better re-
sembles the idea of using the minimum translational distance as a separation measure.
Besides, theoretical reduction should give a decrease in the number of variables used in
the complementarity formulation.

Inspired by the speed up of detecting independent contact groups, further subdivision
into groups that could be simulated independently seems feasible. An idea to further
subdivide is to prune away sleepy objects from those contact groups containing both
non-sleepy and sleepy objects. We refer to this speed up as “subgrouping”. The idea is
to think of the sleepy object as a fixed object during the computation of the contact
groups. Of course, this speed up will have a drastic impact on the motion of the objects.
However, from a convergence theory point of view the effect should vanish as the time-
step goes to zero. What we have done is to interleave the simulation of subgroups by
one frame. Other subgrouping/sleepy object schemes can be found in [24, 130]. To help
objects settle down and become sleepy faster, intuitively, it seems to be a good idea to
let the coefficient of restitution drop to zero the more sleepy an object gets, meaning that
sleepy objects are sticky objects. Currently, we simply set the coefficient of restitution to
zero whenever at least one of the incident objects is sleepy. The speed up is referred to
as “zeroing”. In the same spirit, a linear viscous damping term is added to the motion
of all objects in the simulation. The intention is to slow down objects, making them less
willing to become non-sleepy. We call this “damping”. The contact graph is used for the
subgrouping and zeroing. For instance, subgrouping is done by setting the edge color to

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 131

black in the pseudo-code of Figure 5.7 whenever the incident objects both are sleepy.
The last method we have applied consists of setting the inverse mass and inertia

tensor to zero for all sleepy objects. The main intuition behind this is to “force” sleepy
objects to stay sleepy. We have named this “fixation”, and it has a dramatic impact on
the simulation. Object motion is visually altered as it can be seen from ♠ in Figure 5.15.
Applying fixation only makes sense when subgrouping is used. Otherwise, the LCP solver
has to solve for contacts between two fixated objects.

Table 5.5 contains performance measurements of all sensible combinations of the speed
up methods mentioned previously. Figure 5.15 shows motion results of four selected com-
binations: ♦,♥,♣, and ♠ from Table 5.4. These are compared to the motion of the brute
force method. The four combinations were picked because they resemble the best perfor-
mance whenever a new speed up was used. Observe that the resulting motion diverges
more and more from the brute force method the more speed ups are used. Especially ♠
is different. During the last seconds, objects actually fly up in the air. This is due to the
constraint stabilization which corrects large errors in the simulation. Using error correc-
tion by projection instead would not cause the object to fly up in the air. In Figure 5.16 a
comparison is done between the performance statistics of the four selected combinations
♦,♥,♣, and ♠. Observe that the plots of the first three combinations, ♦, ♥, and ♣,
are similar to those shown in Figure 5.14. The fourth combination, ♠, has very different
plots for the real-life duration and variables per group plots. These appear to be nearly
asymptotically constant.

5.7 Discussion

It is obvious from Table 5.5 that the proper combination of the speed ups is capable of
producing a speed up factor of 28424

135
≈ 210, but it is difficult to describe the impact on the

resulting motion. However, it is clear that using Contact Graphs, Caching Contact Forces
and Sleepy Groups does not change the motion of the brute force method, but all other
speed ups we presented changed the physical properties and as a consequence motion
is altered, as can be seen in Figure 5.15. Especially, the reduction and the subgrouping
speed ups has great impacts on the motion. However, the motion still looks plausible in
the author’s opinion.

The tagging of sleepy objects can have a rather drastic impact on the simulation,
such as leaving objects hanging when they should not. For instance, in the simulation
shown in Figure 5.17, near the K-letter, a bunch of spheres land on top of each other.
While the top-most spheres rumble off the top, the bottom-most spheres are kept in place
and prohibited from gaining kinetic energy. At the end of the simulation, a single sticky
sleepy sphere can be seen on the inclined plane. We have to be careful not to make general
conclusions based on the measurements in this chapter, since only one configuration has
been examined.

It is clear that contact graphs are a valuable extension to a multibody simulator.
They can be used for more than finding independent groups of objects. Even in the realm
of physical accurate simulation, a speed up factor of the order of 20-30 is not unlikely.
Disregarding accuracy completely, the speed up factor can be increased by an order of
magnitude.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 132

Cache Tweak Reduce Zero Damp Subgroup Fixate Time

+ - - - - - - 658,499

- + - - - - - 589,523

+ + - - - - - 952,519

- - + - - - - 712,567

+ - + - - - - ♦ 624,274

- + + - - - - 895,157

+ + + - - - - 1157,27

- - - + - - - 840,673

+ - - + - - - 771,285

- + - + - - - 1205,34

+ + - + - - - 575,343

- - + + - - - 1246,65

+ - + + - - - 965,894

- + + + - - - 599,258

+ + + + - - - 688,454

- - - - + - - 578,171

+ - - - + - - 578,339

- + - - + - - ♥ 528,633

+ + - - + - - 533,934

- - + - + - - 788,291

+ - + - + - - 890,056

- + + - + - - 789,72

+ + + - + - - 1093,42

- - - + + - - 766,438

+ - - + + - - 627,623

- + - + + - - 736,771

+ + - + + - - 663,246

- - + + + - - 608,286

+ - + + + - - 956,992

- + + + + - - 1273,16

+ + + + + - - 730,885

- - - - - + - 700,215

+ - - - - + - 541,854

- + - - - + - 785,367

+ + - - - + - 561,064

- - + - - + - 855,264

+ - + - - + - 569,153

- + + - - + - 523,856

+ + + - - + - 618,052

- - - + - + - 1077,2

+ - - + - + - 761,245

- + - + - + - 760,623

+ + - + - + - 903,259

- - + + - + - 767,546

+ - + + - + - 1329,69

- + + + - + - 949,809

+ + + + - + - 535,479

- - - - + + - 515,74

+ - - - + + - ♣ 460,561

- + - - + + - 703,067

+ + - - + + - 578,634

- - + - + + - 863,636

+ - + - + + - 576,862

- + + - + + - 612,122

+ + + - + + - 502,618

- - - + + + - 625,918

+ - - + + + - 569,84

- + - + + + - 550,011

+ + - + + + - 702,223

- - + + + + - 958,467

+ - + + + + - 871,314

- + + + + + - 958,066

+ + + + + + - 643,04

- - - - - + + 253,577

+ - - - - + + 222,027

- + - - - + + 747,439

+ + - - - + + 176,69

- - + - - + + 383,162

+ - + - - + + 264,526

- + + - - + + 134,679

+ + + - - + + 147,884

- - - + - + + 259,678

+ - - + - + + 313,898

- + - + - + + 171,455

+ + - + - + + 172,426

- - + + - + + 410,996

+ - + + - + + 306,881

- + + + - + + 1115,21

+ + + + - + + 174,302

- - - - + + + 191,925

+ - - - + + + 273,825

- + - - + + + 176,747

+ + - - + + + 168,905

- - + - + + + 186,134

+ - + - + + + 311,081

- + + - + + + 179,803

+ + + - + + + ♠ 134,721

- - - + + + + 363,336

+ - - + + + + 296,197

- + - + + + + 704,94

+ + - + + + + 176,358

- - + + + + + 222,81

+ - + + + + + 276,723

- + + + + + + 181,782

+ + + + + + + 137,757

Table 5.5: Comparison of various combinations of performance speed-up methods.
“+” means enabled, “-” means disabled.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 133

Brute Force ♦ ♥ ♣ ♠

0.04s

0.87s

1.70s

2.54s

3.37s

4.20s

5.04s

5.87s

6.70s

7.54s

8.37s

9.20s

Figure 5.15: Motion results of selected combinations of speed up.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 134

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Caching and Reduction

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Caching and Reduction

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Caching and Reduction
min
max
mean

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Tweaking and Damping

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Simulated Time (seconds)

#g
ro

up
s

Tweaking and Damping

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Tweaking and Damping
min
max
mean

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Caching, Damping, and Subgroup

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Simulated Time (seconds)

#g
ro

up
s

Caching, Damping, and Subgroup

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Caching, Damping, and Subgroup
min
max
mean

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulated Time (seconds)

R
ea

l−
Li

fe
 d

ur
at

io
n

(s
ec

on
ds

)

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Simulated Time (seconds)

#g
ro

up
s

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Simulated Time (seconds)

#v
ar

ia
bl

es
/g

ro
up

Cache, Tweak, Reduce, Damp, Subgroup, and Fixate
min
max
mean

Figure 5.16: Performance measurements on the four selected combinations of speed
ups.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 135

Figure 5.17: Figure showing sleepy object hanging in the air. Purple means sleepy,
red moving, blue absolute rest, and green fixed. Frame grabs of simulation at time
9.8 secs and 9.87 secs using zeroing, damping, subgrouping and fixation.

Using more speed ups does not always imply better performance. In some cases, one
speed up cancels the effect of another. For instance, using caching seems to make tweaking
needless, since the cached solutions result in fast convergence. Only seldom is the upper
iteration limit dictated by the “tweaking” reached.

Our experiments indicate that a promising avenue for high-performance simulations
is a combination of subgrouping and fixation. However, from the resulting motions shown
in Figure 5.15 it is also clear that this is far from trivial to device such a scheme.

We believe that contact graphs can also be exploited to determine when a paradigm
switch should occur in a hybrid simulation as described in [99, 100]. In [99] it is suggested
to track the contact state, i.e. the relative contact velocity, and use this information to
determine when a contact should be solved by a constraint based method or by an impulse
based method. Contact edges provide a perfect place for storing this tracking information,
because they also provide one with the possibility of taking neighboring contacts into
consideration. In [100], large stacks of objects are shown to be infeasible to simulate with
an impulse based method. Examining the size of contact groups and their structure might
give a clue to switch from an impulse based method to a constraint based method when
lots of objects settle into resting contact upon each other.

Our numerical experiments clearly indicate that sleepy objects are a promising strat-
egy. Therefore, it seems promising to look into better methods for more quickly making
objects become sleepy and stay sleepy. For instance, to pre-process the complementarity
formulation with a sequential collision method one can truncate impulses [35]. This was
successfully applied to sequential collision resolving [70]. The novelty would be to extend
the ideas to simultaneous contact resolving.

Chapter 6

Velocity Based Shock-Propagation

In this chapter we will present a time-stepping scheme combining a velocity based com-
plementarity formulation with shock-propagation. Several techniques and methods are
combined together to yield a stable, robust, versatile and high performance simulator,
capable of dealing with dense stacking of objects.

In Section 6.1 we address the issue of implementing a fast iterative LCP solver for
solving velocity based complementarity formulations, and convergence results are pre-
sented and discussed. Hereafter, in Section 6.2 we develop a re-sampling strategy for
signed distance maps and a convenient sphere-tree for accelerating collision queries with
signed distance maps. To overcome the performance cost of using signed-distance maps
we analyze and modify a traditional box-box primitive contact generation algorithm in
Section 6.3, showing that improvements in contact generation yield better quality of
the simulation results. To overcome the disadvantages of simulation errors introduced
by the use of iterative solvers, we extend complementarity based simulation with shock-
propagation in Section 6.4. Finally, in Section 6.5 we present an improved approach for
determining the sleepy state of objects together with a discussion of how to use a sleepy
policy with the new simulator presented in this chapter.

An implementation of the theory presented in this chapter can be obtained from [113].
It is part of a multibody framework called “Retro”.

6.1 Iterative Methods for solving LCPs in Multibody

Dynamics

We will now look into numerically efficient algorithms for multibody dynamics. That is,
efficient numerical methods for solving linear complementarity problems (LCPs). The
theory presented is based on [109, 16, 21, 30, 112].

The name of the game is iterative methods. To be explained briefly, these have been
around for a long time, and are often rejected because they converge very slowly towards
an accurate, high precision solution. However, for animation purposes our major concern
is not high precision. Therefore, we just need a method that in very few iterations produces
a crude solution not too far from an accurate solution to our problem.

The concerned reader might fear that this will never work. The crude solution will
obviously result in small simulation errors, such as small penetrations and/or too weak

136

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 137

contact forces. There can exist a cause for concern, however, Computer Animation or
Computer Gaming requires fixed time-stepping algorithms to set a limit on the maximum
time spent on computing a simulation update. These time-stepping schemes are often first
order, meaning they will introduce errors of order O(∆t), where ∆t is the time-step size.
Such errors are countered with stabilization [36] or projection methods [17] to reduce
the errors. To recapitulate, the crude solution is not a problem in Computer Animation,
since we need error correction anyway to counter numerical artifacts from the simulation
method.

In short, an iterative method can be described as a method which iteratively improves
a possible solution until an acceptable answer is found. In mathematical terms this can
be stated as

~x k+1 = f(~x k), (6.1)

where the superscript k denotes the iteration. As it can be seen from the equation, a
solution to the iterative method is actually a fix point for the function f(·),

~x ∗ = f(~x ∗). (6.2)

Here ~x ∗ is a solution which the sequence
{
~x 0, ~x 1, . . . , ~x k

}
converges to in the limit as k

goes to infinity, see Definition 6.1.2 for a definition of convergence.
Looking at equation (6.1) and equation (6.2), they appear to have very little in com-

mon with LCPs. We will begin our voyage towards formulating an LCP problem as a
fix-point problem/iterative method, by examining iterative matrix solvers.

6.1.1 Iterative Matrix Solvers

Historically, iterative methods have been known to be very effective for solving large
sparse matrix systems, such as

A~x = ~b, (6.3)

where

A =

A0,0 . . . A0,n−1
...

...
An−1,0 . . . An−1,n−1

 . (6.4)

At first glance, this matrix system appears to be nothing like equation (6.1) or equa-
tion (6.2). However, reworking the equation will reveal the basic idea. First we decompose
A into a sum of three matrices, a strictly lower triangular matrix L, a diagonal matrix
D, and a strictly upper triangular matrix U:

A = L + D + U. (6.5)

Now the matrix equation (6.3) can be written

A~x = ~b

(L + D + U) ~x = ~b

D~x = ~b − (L + U) ~x

~x = D−1~b − D−1 (L + U) ~x. (6.6)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 138

Defining

T = −D−1 (L + U) , (6.7)

~c = D−1~b, (6.8)

and
f(~x) = T~x + ~c. (6.9)

From equation (6.6) we now have
~x = f(~x), (6.10)

which is exactly the same as equation (6.2). All iterative methods which can be written in
the form of equation (6.9) are called stationary iterative methods if neither the matrix T
nor the vector ~c depend on the iteration count k. An example of a non-stationary iterative
method is the Conjugate Gradient method [132]. Non-stationary iterative methods are
characterized by computations that involve information which changes at each iteration.
Implementing an iterative scheme using the mathematical formulation like equation (6.6)
would be very inefficient for large matrix systems. To achieve a better implementation,
we see that the i’th variable can be written as

~xi =

(

~bi −
∑i−1

j=0 Li,j~xj −
∑n−1

j=i+1 Ui,j~xj

)

Ai,i

. (6.11)

Thus, the iterative scheme is

~x k+1
i =

(

~bi −
∑i−1

j=0 Li,j~x
k

j −
∑n−1

j=i+1 Ui,j~x
k

j

)

Ai,i
. (6.12)

This scheme is called the Jacobi method, and a pseudo-code version is shown in Figure 6.1.
From the pseudo-code it can be seen that the algorithm iterates indefinitely until a
convergence test succeeds. This test is also called a stopping criteria. This is discussed in
detail in Section 6.1.2.

Looking closely at equation (6.12), we see that when we update ~x k+1
i we have already

computed ~x k+1
j for all j < i. It appears to be a better idea to use the most recent values

in the computation of ~x k+1
i , in the hope that this aggressive approach yields a solution

faster. Applying this idea equation (6.12) now becomes

~x k+1
i =

(

~bi −
∑i−1

j=0 Li,j~x
k+1

j −∑n−1
j=i+1 Ui,j~x

k
j

)

Ai,i
. (6.13)

This new iterative update scheme is called the Gauss-Seidel method.
From a computational viewpoint, the major difference between the Jacobi method

and the Gauss-Seidel method is that in the Jacobi method all variables can be updated
simultaneously, since each variable only depends on the solution from the previous iter-
ation. This is not the case in the Gauss-Seidel method. Here, the computation is partly
dependent on both the previous and the current solution. Thus, the Gauss-Seidel method
is sequential in nature, whereas the Jacobi method is parallel.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 139

algorithm Jacobi(A,x,b)

x = initial guess

for k=0,1,2,3,... do

for i=0 to n-1 do

delta = 0

for j=0 to i-1 do

delta += A(i,j)*x(j)

next j

for j=i+1 to n-1 do

delta += A(i,j)*x(j)

next j

y(i) = (b(i) - delta)/A(i,i)

next i

x = y

check convergence, continue if necessary

next k

end algorithm

Figure 6.1: The Jacobi method.

Another point to be made here is that the Gauss-Seidel method is dependent on the
order in which the variables are updated. This implies that if we compute the solution,
~x k, and then repeat the computation with a reordering, π(·), of the variables to obtain
the solution , π(~x) k, then it is very likely that we find

~x k 6= π(~x) k. (6.14)

Thus, reordering can affect the rate of convergence of the Gauss-Seidel method. This fact
can be exploited in order to try to find a reordering that will enhance convergence rate.

In Figure 6.2 a pseudo-code version of the Gauss-Seidel method is listed. To write the
Gauss-Seidel method in matrix form, multiply both sides of equation (6.13) by Ai,i and
collect all k + 1’th terms on the left hand side,

Ai,i~x
k+1

i +
i−1∑

j=0

Li,j~x
k+1

j = ~bi −
n−1∑

j=i+1

Ui,j~x
k

j , (6.15)

from which it follows that

(D + L) ~x k+1 = ~b − U~x k

~x k+1 = (D + L)−1
(

~b − U~x k
)

. (6.16)

Letting T = − (D + L)−1 U and ~c = (D + L)−1~b we can write the Gauss-Seidel method
in the form

~x k+1 = T~x k + ~c. (6.17)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 140

algorithm Gauss-Seidel(A,x,b)

x = initial guess

for k=0,1,2,3,... do

for i=0 to n-1 do

delta = 0

for j=0 to i-1 do

delta += A(i,j)*x(j)

next j

for j=i+1 to n-1 do

delta += A(i,j)*x(j)

next j

x(i) = (b(i) - delta)/A(i,i)

next i

check convergence, continue if necessary

next r

end algorithm

Figure 6.2: The Gauss-Seidel method.

From this it is evident that in order to study the convergence of both the Jacobi method
and the Gauss-Seidel method, it is enough to study the iterative scheme given by the
above equation. We refer the interested reader to [30] for details.

In general, the Gauss-Seidel method is considered superior to the Jacobi method.
However, there are systems where one converges and the other does not, and vice versa.

For the next and last iterative matrix solver method we will present, we need the
definition of a residual vector.

Definition 6.1.1 (The Residual Vector). Suppose x̃ ∈ R
n is an approximation to the

linear system A~x = ~b. The residual vector for x̃ with respect to this system is

~r = Ax̃ −~b. (6.18)

Let
{
~r k

i

}
denote the sequence of residual vectors for the Gauss-Seidel method, corre-

sponding to the sequence of solutions
{
~x k

i

}
. The subscript might appear confusing, but

it refers to currently known solution in the k’th iteration, just before updating the i’th
variable. By definition we see that the m’th coordinate of ~r k+1

i is given by

~r k+1
mi = ~bm −

i−1∑

j=0

Am,j~x
k+1

j −
n−1∑

j=i+1

Am,j~x
k

j − Am,i~x
k

m

= ~bm −
i−1∑

j=0

Am,j~x
k+1

j −
n−1∑

j=i

Am,j~x
k

j . (6.19)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 141

If we look at the i’th coordinate we have

~r k+1
ii = ~bi −

i−1∑

j=0

Ai,j~x
k+1

j −
n−1∑

j=i+1

Ai,j~x
k

j − Ai,i~x
k

i (6.20)

Ai,i~x
k

i + ~r k+1
ii = ~bi −

i−1∑

j=0

Ai,j~x
k+1

j −
n−1∑

j=i+1

Ai,j~x
k

j .

Looking at the left hand side and comparing with equation (6.13), we see that it is equal
to Ai,i~x

k+1
i , so we have

Ai,i~x
k

i + ~r k+1
ii = Ai,i~x

k+1
i , (6.21)

or if we rearrange terms we get

~x k+1
i = ~x k

i +
~r k+1

ii

Ai,i
. (6.22)

Up to now we have only rewritten the update step for the i’th variable of the Gauss-
Seidel method in terms of the residual vector. We can gain some more insight into the
Gauss-Seidel method by repeating the above steps for the i + 1’th variable. We have

~r k+1
i,i+1 = ~bi −

i∑

j=0

Ai,j~x
k+1

j −
n−1∑

j=i+1

Ai,j~x
k

j (6.23)

= ~bi −
i−1∑

j=0

Ai,j~x
k+1

j −
n−1∑

j=i+1

Ai,j~x
k

j

︸ ︷︷ ︸

Ai,i~x
k+1

i

−Ai,i~x
k+1

i (6.24)

= 0. (6.25)

The last step follows from equation (6.13). Thus, the Gauss-Seidel method is characterized
by choosing ~x k+1

i in such a way that the i’th component of ~r k+1
i+1 is zero. Reducing one

coordinate of the residual vector to zero is not generally the most efficient way to reduce
the overall size of the vector ~r k+1

i+1 . We need to choose ~x k+1
i to make ||~r k+1

i+1 || small. Let
us modify equation (6.22) to

~x k+1
i = ~x k

i + ω
~r k+1

ii

Ai,i
, (6.26)

where ω > 0. For certain values of ω the norm of the residual vector is reduced and this
leads to faster convergence. The ω parameter is a relaxation of the Gauss-Seidel method.
The new iterative scheme is called successive over relaxation (SOR). Whenever 0 < ω < 1
we call it under-relaxation, and when 1 < ω we call it over-relaxation. Notice that when
ω = 1 the method is simply the Gauss-Seidel method.

If we insert equation (6.20) into equation (6.26) we can reformulate the SOR method
into a more implementation-friendly formula

~x k+1
i = ~x k

i + ω
~bi −

∑i−1
j=0 Ai,j~x

k+1
j −

∑n−1
j=i+1 Ai,j~x

k
j −Ai,i~x

k
i

Ai,i

= (1 − ω) ~x k
i +

ω

Ai,i

(

~bi −
i−1∑

j=0

Ai,j~x
k+1

j −
n−1∑

j=i+1

Ai,j~x
k

j

)

. (6.27)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 142

algorithm SOR(A,x,b)

x = initial guess

for k=0,1,2,3,... do

for i=0 to n-1 do

delta = 0

for j=0 to i-1 do

delta += A(i,j)*x(j)

next j

for j=i+1 to n-1 do

delta += A(i,j)*x(j)

next j

delta = (b(i) - delta)/A(i,i)

x(i) = x(i) + w(delta - x(i))

next i

check convergence, continue if necessary

next k

end algorithm

Figure 6.3: The SOR method.

The pseudo-code of the SOR method can be seen in Figure 6.3. To determine the matrix-
form of the SOR method, we rewrite equation (6.27) as

Ai,i~x
k+1

i + ω
i−1∑

j=0

Ai,j~x
k+1

j = (1 − ω)Ai,i~x
k

i + ω~bi − ω
n−1∑

j=i+1

Ai,j~x
k

j . (6.28)

From which we see that

(D + ωL) ~x k+1 = ((1 − ω)D − ωU)~x k + ω~b, (6.29)

or
~x k+1 = (D + ωL)−1 ((1 − ω)D − ωU) ~x k + ω (D + ωL)−1~b. (6.30)

If we let T = (D + ωL)−1 ((1 − ω)D − ωU) and ~c = ω (D + ωL)−1~b then we see that
the SOR method can be written in the form

~x k+1 = T~x k + ~c. (6.31)

In short, the SOR method has the same form as the Jacobi and the Gauss-Seidel methods.
To summarize, in this section we have derived three iterative matrix solver methods

built on top of each other. The purpose of this is twofold. Firstly, we want to familiarize
the reader with some basic matrix concepts and elementary methods, which will show
up again later. Secondly, we want to give the reader an impression of how these kinds of
matrix problems relate to the well-known fix-point problem.

We end this section by listing the matrix-forms of the three iterative matrix solver
methods in Table 6.1.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 143

~x k+1 = D−1
(

~b − (L + U) ~x k
)

~x k+1 = D−1
(

~b − L~x k+1 − U~x k
)

~x k+1 = ~x k + ω
(

D−1
(

~b − L~x k+1 −U~x k
)

− ~x k
)

Table 6.1: Matrix forms of iterative matrix solver methods. Top is Jacobi method,
middle is Gauss-Seidel method, bottom is SOR method.

6.1.2 Convergence Testing and Stopping Criteria

A convergence test is a test for how close the vector ~x r+1 is to a fix point (see equa-
tion (6.2)). To formalize this we need a definition of convergence.

Definition 6.1.2 (Convergence). An infinite sequence
{
~x k
}∞

k=0
= {~x 0, ~x 1, ~x 2, . . .} of

vectors in R
n is said to converge to ~x ∗ wrt. the vector norm || · || if and only if, for any

ε > 0, there exists an integer N(ε) such that

||~x k − ~x ∗|| < ε for all k ≥ N(ε). (6.32)

The vector ~x ∗ is called the limit point or accumulation point.

As is seen from Definition 6.1.2 the concept of a vector norm is vital in order to define
convergence.

Definition 6.1.3 (Vector Norm). A vector norm on R
n is a function || · ||, from R

n

into R with the following properties:

(i) ||~x|| > 0 for all ~x ∈ R
n,

(ii) ||~x|| = 0 if and only if ~x = ~0,

(iii) ||α~x|| = |α|||~x|| for all ~x ∈ R
n and α ∈ R,

(iv) ||~x + ~y|| ≤ ||~x|| + ||~y|| for all ~x, ~y ∈ R
n.

In theory, any vector norm can be used. However, we will only consider two specific
vector norms.

Definition 6.1.4 (The l2 and l∞ norms). The l2 and l∞ norms for the vector ~x =
[x0, x1, . . . , xn−1]

T are defined by

||~x||2 =

√
√
√
√

(
n−1∑

i=0

x2
i

)

and ||~x||∞ = max
0≤i≤n−1

|xi|. (6.33)

The l2 norm is called the Euclidean norm of the vector ~x. For a vector ~x ∈ R
n the

norms are related by
||~x||∞ ≤ ||~x||2 ≤

√
n||~x||∞. (6.34)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 144

Often, the convergence test does not consist of a single stopping criteria, and several are
used in combination. An absolute estimate for the error can be taken by measuring the
difference between the solutions of two succeeding iterations, ~x k+1 and ~x k. Only if the
distance between these are below a user specified threshold, ε, the sequence is considered
to converge. That is, if

||~x k+1 − ~x k|| < ε, (6.35)

then the iterative method converges. By comparison with Definition 6.1.2 it is evident
that the test will succeed in case the iterative method converges. However, the test can
be fooled if convergence is too slow. Even worse, there exist sequences with the property
that the difference ~x k+1 − ~x k converges to zero while the sequence itself diverges, as the
following example illustrates.

Example 6.1.5. Let the sequence
{
x k
}∞

k=1
of real numbers be defined by

x k =

k∑

r=1

1

r
. (6.36)

Now, the limit of the difference is

lim
k→∞

(
x k − x k−1

)
= lim

k→∞

(
k∑

r=1

1

r
−

k−1∑

r=1

1

r

)

= lim
k→∞

(
1

k

)

= 0. (6.37)

However,

lim
k→∞

x k = lim
k→∞

(
k∑

r=1

1

r

)

= ∞. (6.38)

Meaning that the sequence is divergent.

Thus, to overcome the difficulties with the absolute error measure, a measure of rela-
tive error is sometimes applied instead,

||~x k+1 − ~x k||
||~x k+1|| < ε. (6.39)

Observe that the k+1’th solution must be non-zero in order for the relative test to work.
As mentioned before, any convenient norm can be used. The usual being the l∞ norm,
since it is cheap to compute. Also, it is much more robust towards numerical deficiencies,
such as overflow and underflow, which could occur with the l2 norm. Let us formalize our
formulas into the following definitions.

Definition 6.1.6 (The Absolute Convergence Test). Let the solutions of two suc-
ceeding iterations be ~x k+1 and ~x k, and given ε > 0. Then, if

||~x k+1 − ~x k|| < ε, (6.40)

the sequence is considered to converge.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 145

Definition 6.1.7 (The Relative Convergence Test). Let the solutions of two suc-
ceeding iterations be ~x k+1 and ~x k, where ~x k+1 6= ~0, and given ε > 0. Then if

||~x k+1 − ~x k||
||~x k+1|| < ε, (6.41)

the sequence is considered to converge.

It is often a good idea to specify a maximum limit on the number of iterations that one
is willing to use in an iterative method. There are mainly two good reasons for this. In a
time critical computation one wants to control how much time is spent on a computation.
A maximum limit can help enforce this. In case the problem is unsolvable, i.e. it diverges,
an iterative method would loop for ever. A maximum limit helps avoid infinite loops.

For sequences of real numbers, we can define the rate of convergence as follows:

Definition 6.1.8 (Rate of Convergence). Assume the sequence
{
x k
}∞

k=0
with x k ∈ R

converges to α, and the sequence
{
β k
}∞

k=0
with β k ∈ R converges to zero. If a positive

constant K exists with

|x k − α| ≤ K|β k| for large k. (6.42)

then we say that x k converges to α with rate of convergence O(β k). This can be written

x k = α + O(β k). (6.43)

In many cases the sequence
{
β k
}

has the form

β k =
1

kp
, (6.44)

for some number p > 0. We consider the largest value of p such that x k = α + O(1/kp)
to describe the rate at which x k converges to α.

We have given this formal presentation of rate of convergence, because iterative meth-
ods might reorder the variables such that variables with slowest rate of convergence are
updated before variables with faster rate of convergence. In practice Definition 6.1.8 is
not used. Instead the magnitudes of absolute error of the individual variables are used as
an ad hoc measure of rate of convergence. That is, if

|~x k+1
i − ~x k

i | < |~x k+1
j − ~x k

j |, (6.45)

then the i’th variable is considered to converge faster than the j’th variable. This ad-
hoc way of measuring rate of convergence allows a simple approach in practice, where
variables are reordered in decreasing order wrt. the absolute error.

6.1.3 Iterative Methods For Solving LCPs

Let us briefly restate the linear complementarity problem (LCP) we want to solve,

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 146

x
i

w
i

0 hi
i

lo
i

0

Figure 6.4: Illustration of the complementarity condition on the i’th variable.

Definition 6.1.9 (The Linear Complementarity Problem). Given a symmetric

matrix A ∈ R
n×n, a vector ~b ∈ R

n, a vector of lower limits, lo ≤ 0, and upper limits
hi ≥ 0, where lo, hi ∈ R

n. Find ~x ∈ R
n and ~w ∈ R

n such that

~w = A~x −~b, (6.46a)

lo ≤ ~x ≤ hi, (6.46b)

and for all i = 0, . . . , n − 1, one of the three conditions below holds

~xi = loi, ~wi ≥ 0, (6.47a)

~xi = hii, ~wi ≤ 0, (6.47b)

loi < ~xi < hii, ~wi = 0. (6.47c)

Figure 6.4 helps illustrate the complementarity conditions in equation (6.47). Notice
that as long as ~xi is within its lower and upper bounds, ~wi is forced to zero. Only at
the lower and upper bounds is ~wi non-zero. Usually, the general LCP is formulated with
lo = ~0 and hi = ~∞, in which case the above definition reduces to

~w = A~x −~b ≥ 0, (6.48a)

~x ≥ ~0, (6.48b)

~xT ~w. (6.48c)

In multibody dynamics problems the A-matrix is often symmetric, unless a linearized
friction cone is used, where auxiliary variables are used to couple the normal force to the
tangential force at a contact point. The A-matrix is often PSD or sometimes PD. Even
if it is PSD, tricks such as constraint force mixing can be applied to make it PD. To
make a long story short, the A-matrix can be made numerically more pleasant, such that
we know a solution exists to the LCP problem.

Theorem 6.1.10 (Unified Matrix Notation). All iterative matrix solvers presented
in Section 6.1.1, can be written in the iterative matrix-form,

~x k+1 = λ
(

~x k − ωEk
(

A~x k −~b + Kk
(
~x k+1 − ~x k

)))

+ (1 − λ) ~x k, (6.49)

where Ek is a diagonal matrix with positive diagonal elements. Kk is either a strictly
lower or strictly upper matrix, λ and ω are parameters satisfying 0 < λ ≤ 1, ω > 0.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 147

Proof. In all cases pick λ = 1. Thus we have the more simple matrix form

~x k+1 =
(

~x k − ωEk
(

A~x k −~b + Kk
(
~x k+1 − ~x k

)))

. (6.50)

In case of the Jacobi method, choose Ek = D−1, ω = 1, and Kk = 0, and we have,

~x k+1 =
(

~x k −D−1
(

A~x k −~b
))

. (6.51)

Now exploit that A = D + L + U

~x k+1 =
(

~x k −D−1
(

(D + L + U) ~x k −~b
))

=
(

~x k −D−1
(

D~x k + (L + U) ~x k −~b
))

=
(

~x k −D−1D~xk + D−1
(

(L + U) ~x k −~b
))

= D−1
(

~b − (L + U) ~x k
)

. (6.52)

By comparison of the first equation in Table 6.1 we conclude that the Jacobi method can
be written in the form of equation (6.49). For the Gauss-Seidel method we pick: λ, ω = 1,
Kk = L, and Ek = D−1. Substituting into equation (6.49) yields

~x k+1 =
(

~x k − D−1
(

(D + L + U) ~x k −~b + L
(
~x k+1 − ~x k

)))

=
(

~x k − D−1
(

D~x k + (L + U) ~x k −~b + L~x k+1 − L~x k
))

= D−1
(

~b − U~x k − L~x k+1
)

. (6.53)

By comparison with the second equation in Table 6.1, we conclude that the Gauss-Seidel
method can be written in the form of equation (6.49). The SOR method follows from the
last derivation if ω is left unspecified.

Definition 6.1.11 (Clamping). Given a vector ~x ∈ R
n, a vector of lower limits, lo ≤ 0,

and upper limits hi ≥ 0, where lo, hi ∈ R
n, the clamping operation on ~x is written (~x) +,

and means, for each j = 0 to n − 1

~x +
j = max

(
min

(
~xj , hij

)
, loj

)
. (6.54)

As it can be seen from Definition 6.1.11 it works element-wise. If a coordinate exceeds
a lower or upper bound it is projected back onto the violated limit.

We can now write the general iterative LCP scheme.

Definition 6.1.12 (The General Iterative LCP Method). Given an iterative scheme
as in Theorem 6.1.10, an iterative solver to the LCP problem in Definition 6.1.9 is given
by

~x k+1 = λ
(

~x k − ωEk
(

A~x k −~b + Kk
(
~x k+1 − ~x k

)))+

+ (1 − λ)~x k. (6.55)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 148

According to [109] the only requirement is that A is symmetric. If so, it can be proven
that if the sequence of solutions converges to a limit point, that point will be a solution
of the LCP (see Theorem 9.9 pp. 369 in [109]). Furthermore, it can be shown that if A is
also PD then the sequence will converge to a solution of the LCP (see Corollary 9.3, pp.
372 in [109]). This is often enough for our purpose. We refer the interested reader to [109]
for detailed proofs regarding the general iterative scheme.

However, in our specific case where all iterative matrix solver methods take the form
of Theorem 6.1.10, we can use the simpler form.

Corollary 6.1.13 (The Specific Iterative LCP Scheme). Given an iterative scheme,
as in Table 6.1, an iterative solver to the LCP problem in Definition 6.1.9 is given by

~x k+1 =
(

~x k − ωD−1
(

A~x k −~b + K
(
~x k+1 − ~x k

)))+

, (6.56)

where K is either zero or L.

It is worth noticing that the iterative scheme used in [112] can be written in matrix
form as

~x k+1 =
(

~x k + ωD−1
(

~b − (U + D) ~x k − L~x k+1 − Ecfm~x k
))+

(6.57)

This is a different matrix form than equation (6.49). Thus solution existence and conver-
gence proofs do not follow from the theorems in [109].

6.1.4 Implementation of an iterative LCP solver

In this section we will outline an efficient and practical implementation of an iterative
LCP solver. We will use the SOR method as our working example, since it is the most
complex of the iterative methods we have presented.

Using the SOR-method with a given upper iteration bound kmax, a straightforward
implementation of the iterative LCP scheme would look like the pseudo-code sketched in
Figure 6.5. As it can be seen, all we have done is to clamp the i’th variable after it has been
updated by a classical SOR method. Next, we can try to permute the variables before each
iteration, Figure 6.6 illustrates where the permutation should be done. Permutation could
be done at random. For instance, whenever a certain number of interleaved iterations have
been performed. Or, variables could be reordered according to their rate of convergence.
As an example, in [112] a random permutation is used by default, but only every 7’th
iteration. In practice, permutation is done much more efficiently by using an index array,
and only entries in this index-array need be swapped instead of reordering the actual
A-matrix, ~b-vector et cetera.

Next, we can make the limits of the variables depend upon the value of some other
variable, like friction forces are depend on normal forces. This idea was introduced to the
Graphics Community by [16] and is used in [112]. Before updating an variable, its upper
and lower limits are re-evaluated. Thus, we need to make sure that during permutation
the independent variables come before the dependent variables i.e. normal force variables
comes before friction variables. To keep track of the dependency, the index-array can be
extended with an entry keeping information about any dependency. Figure 6.7 illustrates
how the extensions should be applied. Yet another trick would be to warm-start the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 149

Algorithm SOR-LCP-1(A,x,b,hi,lo,w,k_max)

set x to initial guess

for k = 1 to k_max do

for i=0 to n-1 do

delta = 0

for j=0 to i-1 do

delta += A(i,j)*x(j)

next j

for j=i+1 to n-1 do

delta += A(i,j)*x(j)

next j

delta = (b(i) - delta)/A(i,i)

x(i) = x(i) + w*(delta - x(i))

if(x(i)>hi(i)) x(i) = hi(i)

if(x(i)<lo(i)) x(i) = lo(i)

next i

next k

End algorithm

Figure 6.5: LCP SOR method, with upper iteration bound.

Algorithm SOR-LCP-2(A,x,b,hi,lo,w,k_max)

set x to initial guess

for k = 1 to k_max do

permute(A,x,b,hi,lo)

for i=0 to n-1 do

...same as SOR-LCP-1...

next i

next k

End algorithm

Figure 6.6: SOR LCP method with permutation of variables and fixed iteration
limit.

iterative solver by feeding it the solution of the previous invocation as the initial solution
guess. This is done in the hope that the previous solution is close to the current solution.
Imagine a stack of resting boxes. If they are left untouched then it is unlikely that the
contact forces between the boxes would change over time, indicating that the LCP solver
would find the same solution whenever it is invoked. In [112] warm-starting is supplied by
a down scaling of the last solution. This is performed to avoid jerkiness in motor driven
joints, that is

x =
9

10
xlast. (6.58)

However, it should be noted that this has more to do with the specific “dynamics” model
used in [112] than with solving an LCP. Having stored the solution from the last iteration,
it is possible to estimate the absolute or relative error for each variable. These estimates

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 150

Algorithm SOR-LCP-3(A,x,b,hi,lo,w,k_max,idx_array)

set x to initial guess

for k = 1 to k_max do

permute(idx_array)

for i=0 to n-1 do

idx = index_array(i).idx

dep_idx = index_array(i).dependency

if dep_idx then

hi(idx) = new_hi(x(dep_idx))

lo(idx) = new_lo(x(dep_idx))

end if

delta = 0

for j=0 to idx-1 do

delta += A(idx,j)*x(j)

next j

for j=idx+1 to n-1 do

delta += A(idx,j)*x(j)

next j

delta = (b(idx) - delta)/A(idx,idx)

x(idx) = x(idx) + w*(delta - x(idx))

if(x(idx)>hi(idx)) x(idx) = hi(idx)

if(x(idx)<lo(idx)) x(idx) = lo(idx)

next i

next k

End algorithm

Figure 6.7: Linear dependent limits and index array.

can be used to guide the permutation order of the variables, but it can also be used to yield
an early exit. In case a solution is found, this is shown in Figure 6.8. Observe that early
exit is only allowed after a certain minimum iteration count, kmin, where 1 ≤ kmin < kmax.
This is so one can force the LCP solver to improve upon the solution in case warm starting
is used.

In Figure 6.8 the absolute error measure is used. This is sensible if one wants to use
the error measure as an indication of the rate of convergence as described in Section 6.1.2.
If this is not needed, a relative measure could be used.

6.1.5 Optimization by Precomputation

Finally, we will explain a more optimal way to compute the update of the ~xi variable
specific to the “typical” matrix products in multibody dynamics. To recap the typical

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 151

Algorithm SOR-LCP-4(A,x,b,hi,lo,w,k_min,k_max,idx_array,last_x,threshold)

set x to last_x

for k = 1 to k_max do

if k>k_min then

error = |x-last_x|

if max(error)<threshold then

exit

end if

permute(idx_array,error)

last_x = x

for i=0 to n-1 do

...same as SOR-LCP-3...

next i

next k

End algorithm

Figure 6.8: Warm-starting with early exiting.

velocity based complementarity formulation, it can be stated as

A = JM−1JT + Kcfm∆t (6.59a)

~b = J
(

~u + ∆tM−1 ~fext

)

−~berror (6.59b)

~fT
ext,i = [mi~g

T , (~ωi × Ii~ωi)
T]T (6.59c)

~berror = . . . constraint stabilization . . . (6.59d)

Solving it using SOR-LCP yields

~w = A~x −~b compl. lo ≤ ~x ≤ hi. (6.60)

Also, constraint forces are often wanted as output, i.e.

~F = JT~x. (6.61)

Thus, we regard the ~b-vector as a single entity, and constraint force mixing is given as a
diagonal matrix in vector form, ~kcfm, pre-multiplied by the time-step. Thus, our matrix-
products have the following structure

A = JM−1JT + diag(~kcfm), (6.62)

~F = JT~x. (6.63)

Now, the question is: “given the special matrix products of the A-matrix, how do we
efficiently solve the computations in the inner loop of the iterative SOR LCP method?”.
For convenience, these are refreshed in Figure 6.9. Let

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 152

delta = 0

for j=0 to idx-1 do

delta += A(idx,j)*x(j)

next j

for j=idx+1 to n-1 do

delta += A(idx,j)*x(j)

next j

delta = (b(idx) - delta)/A(idx,idx)

x(idx) = x(idx) + w*(delta - x(idx))

Figure 6.9: Inner loop of iterative SOR LCP method.

delta = b(idx) - d(idx)*x(idx)

for j=0 to idx-1

delta -= J(idx,j) * F’(j)

next j

for j=idx+1 to n-1

delta -= J(idx,j) * F’(j)

next j

x(i) = x(i) + delta

F’ += J’(idx,.)*delta

Figure 6.10: Improved inner loop of the iterative SOR LCP method.

~di =
ω

Ai,i
, (6.64)

~bi =
ω~bi

Ai,i

= ~bi
~di, (6.65)

~F ′ = M−1JT~x 0, (6.66)

J′ = M−1JT , (6.67)

Ji,· = ~diJi,·. (6.68)

Here, the prime notation indicates a pre-multiplication by the inverse generalized mass-
matrix. Observe that the last equation means that all elements in the i’th row of the
Jacobian matrix are multiplied by the i’th element of the ~d-vector. Using these precom-
puted values, the inner loop can be rewritten as shown in Figure 6.10. The benefits of
this new loop is that it saves space since one does not have to compute all of A, only its
diagonal. By doing divisions in the preprocessing stage, they are taken out of the loop,
thus lowering the cost, since divisions are typically more expensive than other operations.

By incrementally updating ~F ′, one avoids the matrix multiplication: ~F ′ = M−1JT~x k.
Thus, it is far more inexpensive to perform this part. Another nice thing is that when
computing delta and having ~F ′, one does not need to compute all of A. There is no
penalty in this, because the number of multiplications in the two terms are the same.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 153

M-1 ith column of JT

zero mask

zero mask

Reduced System

Full System

Figure 6.11: Using zero entries of the i’th column of JT to reduce computations of
the i’th column of M−1JT . Entries marked with blue correspond to the k’th body,
and entries marked in red corresponds to the l’th body. White entries are zero.

6.1.6 Optimization of Matrix Computations

First, we will look into the computation of the matrix
(
M−1JT

)
. Notice that the di-

mensions of the matrix
(
M−1JT

)
is the same as the matrix JT , since M−1 is a square

symmetric matrix.
Let us try to compute the i’th column of the matrix

(
M−1JT

)
. This column is com-

puted by taking the dot-product of each row in the M−1 with the the i’th column of the
matrix JT . However, the matrix JT is the transpose of J. Thus the i’th column of JT has
identical entries with the i’th row in the matrix J. The i’th row of J have a rather special
form. Recall from theory that it describes a relationship between two bodies. We denote
these bodies by the labels k and l

Ji,· =
[
0 . . . 0 k1 k2 k3 k4 k5 k6 0 . . .

. . . 0 l1 l2 l3 l4 l5 l6 0 . . . 0
]
. (6.69)

That is, it has a total of 12 non-zero entries. The first six entries are related to the k’th
body, and the last six to the l’th body. Each block of six non-zero entries can be further
divided into three entries relating to translational motion, and the following three to the
rotational motion. From this special form of the i’th row of the J-matrix we see that
the zero entries will mask out all the corresponding columns of the M−1-matrix. This
is illustrated in Figure 6.11. Next, we will exploit the structure of the M−1-matrix. As
can be seen from the figure, in the reduced system only mass-elements of the k’th body

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 154

are multiplied by the k-entries of the column of JT , and similarly for the l’th body. In
fact, we see that the translational parts are simply multiplied by the inverse mass of the
respective bodies. The rotational parts are a little more difficult since these are multiplied
by the inverse inertia matrix of the respective bodies. Hence, the computations needed
for computing the i’th column of the matrix M−1JT is reduced to

(
M−1JT

)

k1,i
=

1

mk

JT
k1,i, (6.70a)

(
M−1JT

)

k2,i
=

1

mk
JT

k2,i, (6.70b)

(
M−1JT

)

k3,i
=

1

mk
JT

k3,i, (6.70c)
(
M−1JT

)

k4..k6,i
= I−1

k JT
k4..k6,i, (6.70d)

(
M−1JT

)

l1,i
=

1

ml

JT
l1,i, (6.70e)

(
M−1JT

)

l2,i
=

1

ml

JT
l2,i, (6.70f)

(
M−1JT

)

l3,i
=

1

ml
JT

l3,i, (6.70g)
(
M−1JT

)

l4..l6,i
= I−1

l JT
l4..l6,i, (6.70h)

where mk and ml are the respective masses of the bodies, and I−1
k and I−1

l are the respec-
tive inverse inertia tensors. All other entries in the i’th column are zero. Furthermore, we
see that the matrix

(
M−1JT

)
have the exact same pattern of zero-entries as the matrix

JT .
Now, let us try to compute the (i, i) entry of the matrix A consisting of the matrix

product J and
(
M−1JT

)
. This entry corresponds to the dot-product between the i’th

row of the J-matrix and the i’th column of the
(
M−1JT

)
-matrix. However, as we saw in

the computation of the
(
M−1JT

)
-matrix, it has the same pattern of zero entries as the

JT -matrix. This means that it is particularly easy to compute the dot-product

Ai,i = Ji,·

(
M−1JT

)

·,i

= Ji,k1

(
M−1JT

)

k1,i
+ Ji,k2

(
M−1JT

)

k2,i
+

Ji,k3

(
M−1JT

)

k3,i
+ Ji,k4

(
M−1JT

)

k4,i
+

Ji,k5

(
M−1JT

)

k5,i
+ Ji,k6

(
M−1JT

)

k6,i
+

Ji,l1

(
M−1JT

)

l1,i
+ Ji,l2

(
M−1JT

)

l2,i
+

Ji,l3

(
M−1JT

)

l3,i
+ Ji,l4

(
M−1JT

)

l4,i
+

Ji,l5

(
M−1JT

)

l5,i
+ Ji,l6

(
M−1JT

)

l6,i
. (6.71)

When applying the matrix optimizations, a neat little trick can be used to make
the inner loop of the iterative scheme really tight. For instance, the usual Gauss-Seidel
iterative LCP solver is given by the scheme

~x k+1 = D−1
(

~b − L~x k+1 − U~x k
)

, (6.72)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 155

Using the factorization implementation trick, the update would be

~x k+1 = D−1
(

~b − L~x k+1 − U~x k − D~x k
)

, (6.73)

since there is no way to separate the i’th variable from the term M−1JT~x. This is not
the iterative scheme we want. However, if we multiply through by the inverse diagonal
matrix, we notice that the last term is simply a subtraction of the solution vector. Thus,
we can get the equivalent to the original Gauss-Seidel iterative scheme by adding the
solution vector, i.e.

~x k+1 = D−1
(

~b − L~x k+1 − U~x k − D~x k
)

+ ~x k. (6.74)

The benefit is that we still have a tight inner loop of the iterative method, where we do
not need to compute the big A-matrix, nor worry about index values of the variables.

6.1.7 Applying an iterative LCP solver.

It turns out that SOR is really not worth the effort in practice. Instead a lean and
mean Gauss-Seidel implementation works the best. The best approach is to just run a
fixed number of iterations and simply drop all other convergence test and setting up
more advanced stopping criteria. The inner loop of the Gauss Seidel implementation is
so tight and efficient that the extra computations involved in evaluating convergence is
a waste of time. The same can be said about permutation or reordering of variables.
These observations are connected to the fact that we usually only use 10 iterations in the
iterative LCP solver. The number 10 was chosen because it gave reasonable performance
results.

Warm-starting the LCP solver is actually not as beneficial as it may sound. It turns
out that when the contact state changes, like an object sliding over a ridge, then the LCP
solution can change dramatically. In these cases, warm-starting means that one can start
with a previous solution far from the current true solution. Convergence is thus worse
by warm-starting in these cases. In Computer Animation it is interesting to see objects
move around. Changing contact states is therefore very common.

According to [107] iterative methods are characterized by

• Iterative methods tend to pick a mean solution when there are multiple solutions.

• Gauss-Seidel, linear convergence at best, but can be much worse.

• Conjugate Gradient, fastest convergence, but requires restart when the “active” set
changes.

• SOR: Possible energy gain.

• Jacobi: Terrible convergence.

• Less than 10 iterations to be competitive.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 156

(a) 2 secs. (b) 2.5 secs. (c) 3 secs. (d) 3.5 secs.

(e) 4 secs.

Figure 6.12: A grid stack of 125 balls, using, 10 iterations with Gauss Seidel.

(a) 2 secs. (b) 2.5 secs. (c) 3 secs. (d) 3.5 secs.

(e) 4 secs.

Figure 6.13: A grid stack of 125 balls, using, 100 iterations with Gauss Seidel.

All simulations in this section were done using an explicit time-stepping scheme,
and a velocity based complementarity formulation, implemented using the friction model
described in Section 6.1.4. The time-step was set to 0.01 seconds. The coefficient of friction
was 0.25 and coefficient of restitution was 0.25, in order to mimic typical real-world values.

Figures 6.12-6.13 show a stack of 125 balls placed in a grid formation. The balls
have a density of 10Kg

m3 and a radius of 1
2
m. As the figures show, even with 10 iterations

it takes 2.5 seconds before the simulation error accumulates to a size where the ball
stack collapses. With 100 iterations the accuracy of the simulation is good enough for
maintaining the grid structure for long simulation times.

Clearly, Figures 6.12-6.13 show that the quality of the simulation results can be im-
proved simply by increasing the number of iterations. From a time-critical computation
view-point this is an attractive property of the simulation.

We have a mathematical model, which is well posed in the sense that it guarantees
solution existence and convergence towards a solution. The numerical method has a single
parameter, the maximum number of iterations, which we can turn up and down in order

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 157

(a) 0 secs. (b) 1 secs. (c) 2 secs. (d) 3 secs.

(e) 4 secs. (f) 5 secs. (g) 6 secs. (h) 7 secs.

Figure 6.14: A stack of 25 boxes on top of each other, using 10 iterations with
Gauss Seidel.

(a) 0 secs. (b) 1 secs. (c) 2 secs. (d) 3 secs.

(e) 4 secs. (f) 5 secs. (g) 6 secs. (h) 7 secs.

Figure 6.15: A stack of 25 boxes on top of each other, using 100 iterations with
Gauss Seidel.

to obtain either a fast plausible motion or an accurate motion that agrees completely
with the mathematical model, all depending on the amount of computation time we have
available.

Figures 6.14-6.15 show a numerically more challenging configuration. Here, 25 boxes,
all with a density of 10Kg

m3 and edge lengths of 1m, are placed on top of each other.
The figures clearly show that the simulations using 10 and 100 iterations fail miserably.
However, it is seen that using more iterations do improve the simulation quality, since
the stack structure is destroyed at a slower rate.

With the box stack configuration it becomes interesting to see what happens when
we increase the number of iterations further. This is done in Figures 6.16-6.17. As can
be seen, the boxes behave more and more rigidly as the iterations are increased. How-
ever, even for these faulty simulation results the iteration count has exceeded far beyond
the computational burden we are willing to pay in a computer graphics application. In

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 158

(a) 0 secs. (b) 1 secs. (c) 2 secs. (d) 3 secs.

(e) 4 secs. (f) 5 secs. (g) 6 secs.

Figure 6.16: A stack of 25 boxes on top of each other, using 1000 iterations with
Gauss Seidel.

(a) 0 secs. (b) 1 secs. (c) 2 secs. (d) 3 secs.

(e) 4 secs. (f) 5 secs. (g) 6 secs.

Figure 6.17: A stack of 25 boxes on top of each other, using 10000 iterations with
Gauss Seidel.

Section 6.4 we will present a solution for handling the bad convergence property of this
box-stack configuration. The proposed solution will not exceed more than the order of 10
iterations.

We believe that the problem with the slow convergence rate of the box stack configu-
ration is related to the fact that the stress distribution caused by the top-most boxes only
has one direction to go. That is directly downwards. To support this claim we have tried
to simulate a brick wall with 200 bricks. The results of these simulations can be seen in
Figures 6.18-6.19. The bricks have the same physical properties as the boxes in the box
stack. However, this time a noticeable stability is seen when the number of iterations is
increased to 100.

The structure of the wall appears a little rubber-like near the bottom, and given
enough simulation time (close to 10 seconds), the wall will break into two pieces at
the middle. Added error correction by projection to the simulation further improves the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 159

(a) 1 secs. (b) 2 secs. (c) 3 secs.

(d) 4 secs.

Figure 6.18: A wall of 200 bricks, using 10 iterations with Gauss Seidel.

Method Convergence (iterations)
Jacobi O(N2 log(1

ε
))

Gauss-Seidel O(N2 log(1
ε
))

SOR (with optimal w) O(N3/2 log(1
ε
))

Conjugate Gradient (w/o. pre-cond.) O(N3/2 log(1
ε
))

Table 6.2: Convergence rates of iterative LCP solvers. N is number of variables, ε
is wanted accuracy.

simulation results, as can be seen from Figures 6.19(d)-6.19(e).
The simulation results of the wall are very promising. However, even more complex

structures can be simulated with only 100 iterations. In Figure 6.20 a brick tower simula-
tion is performed. The bricks have dimension of 1.5m× .5m× .5m and a density of 10Kg

m3 .
Notice the bulge shape near the bottom of the tower. All-though the simulation looks
nice, it is not the physical behavior we expect from a brick tower. Figure 6.21 shows what
happens when we increase the number of iterations to 100. Notice that after 8 seconds of
simulation a very small bulge can be seen. Adding correction almost completely removes
this bulge.

As our simulation results presented in this section indicate, quite complex and chal-
lenging simulations can be done with an iterative LCP solver. However the results also
show that large scale stacking is numerically challenging for an iterative LCP solver.
The convergence rate is a particular interesting topic. The bad behavior of the box-stack
compared to the good behavior of the three other simulations suggests that a stacking
configuration can have different numerical properties depending on the exact structure
of the stacking.

Generally speaking, the convergence rates for a Gauss-Seidel method applied to multi-
body dynamics is of order kO(N2), where N is the number of contact points and k is
a constant dependent on the accuracy of the solution. Table 6.2 contains more detailed
complexities due to [137].

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 160

(a) Initial position 0 secs.

(b) 100 iterations after 4 secs. (c) 100 iterations after 8 secs.

(d) 100 iterations with error correc-
tion after 4 secs.

(e) 100 iterations with error correc-
tion after 8 secs.

Figure 6.19: A wall of 200 bricks, using Gauss Seidel with and without error
correction by projection.

The convergence rates from Table 6.2 do not say anything about the constants in-
volved. Obviously, the box-stack have high constants compared to the other configura-
tions. A possible direction for further work is to investigate the effect of using precon-
ditioners to speed the convergence rate or possibly use other iterative solvers or even
multigrid solvers.

In Table 6.3 we have listed the minimum, mean, and maximum frame times for the
first 500 time-steps of the ball grid, wall, and tower configurations. Notice that even with
100 iterations, these complex configurations are simulated in reasonable time. Only the
ball grid and the wall are done at interactive rates. Clearly, we could increase the number
of iterations noticeably and still be within the domain of computer graphics. For instance,
[70] reports frame times of 5-7 minutes for configurations of similar complexity to our
tower configuration.

Figure 6.22 shows how the frame time changes as we increase the number of iterations

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 161

(a) 1 secs. (b) 2 secs. (c) 3 secs.

(d) 4 secs.

Figure 6.20: A tower of 320 bricks, using 10 iterations with Gauss Seidel.

configuration min (secs.) mean (secs.) max (secs.)
ball 10 0,0100 0,0168 0,0210
wall 10 0,0100 0,0268 0,0700
tower 10 0,0300 0,0513 0,1000
ball 100 0,0200 0,0229 0,0310
wall 100 0,1000 0,1172 0,1600
tower 100 0,2100 0,2179 0,2410

Table 6.3: Frame timings for the first 500 frames of the ball grid, wall, and tower
simulations.

used in the box-stack configuration. Notice that the plots scale linearly wrt. the number
of iterations as expected. Thus, we can apply this knowledge to estimate how long it will
take to run a simulation given the number of iterations used in the iterative LCP solver.

Finally, we have done some convergence testing with a model of an idealized box-
stack configuration. Our results are shown in Figure 6.23. The configuration consists of
two balls resting on top of each other on a fixed support plane. The radius of the lower
ball is 1

2
m, and the radius of the upper ball is 1m. The density of the lower ball is set to

1Kg
m3 and the density of the upper ball is 1000Kg

m3 . There is no friction and the coefficient
of restitution is zero between all objects except between the two balls where it is set to
1. This configuration is the most simple example illustrating that large mass ratios can
cause bad convergence for the iterative LCP solver. The two ball configuration is related
to the box-stack configuration in the sense that the upper ball represents the same effect
as the weight of the 24 topmost boxes.

The two ball configuration actually only contains two variables in the LCP problem,
but still it requires roughly 64000 iterations in the iterative Gauss-Seidel to converge
towards a solution that is accurate enough for a stable visual result. The box stack
contains at most 8 × 24 × 3 = 576 variables. It is not a pleasing thought to think of
how many iterations there might be needed for such a large problem exhibiting the same

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 162

(a) Initial position 0 secs.

(b) 100 iterations after 4 secs. (c) 100 iterations after 8 secs.

(d) 100 iterations with error correc-
tion after 4 secs.

(e) 100 iterations with error correc-
tion after 8 secs.

Figure 6.21: A tower of 320 bricks, using Gauss Seidel with and without error
correction by projection.

effects as the simple 2 variable ball example.

6.2 Collision Detection using Signed Distance Maps

In our simulator we applied the signed distance map collision detection technique pre-
sented in [70]. Its simplicity and ease of use makes it very attractive. Also, it is well-suited
for contact point generation, i.e. contact point normal generation and penetration depth
measures, which is usually very difficult using traditional collision detection algorithms.

The basic idea is to keep a double representation for each object in the simulation:
a model frame signed distance map and a model frame triangle mesh. When performing
collision detection between objects, the vertices of the mesh of one object is looked up
in the signed distance map of the other object, and vice versa. All vertices lying inside

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 163

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Frame Time (seconds)

ite
ra

tio
ns

Frame time vs. iterations
min
max
mean

Figure 6.22: Frame times of the box stack configuration as a function of increasing
iterations: 10, 100, 200, 400, . . . , 1000, 2000, 10000.

iterations 3 secs 6 secs 9 secs 12 secs

6400

32000

64000

Figure 6.23: Two ball configuration with large mass ratios. For 64000 iterations
the simulation becomes visually stable. Frame times take rougly 0.01 seconds when
using 64000 iterations per time-step.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 164

or on the zero-level-set surface of the signed distance map are used to generate a contact
point. The actual value at the vertex is used as a measure of penetration depth, and the
gradient at the vertex as the contact normal. Due to space considerations, we refer the
reader to [70] for more details.

Using only the vertices of the mesh requires a very fine tessellated mesh to ensure
that possible edge-face penetration will not hurt the eye of an observer or equivalently,
edges must be subject to special treatment.

In the original paper several acceleration techniques are presented. Basically, there are
three major techniques: Octree representation of signed distance maps to reduce memory
requirements, usage of bounding volume hierarchies (BVHs) of the sampling points to
improve the speed of the collision queries, and finally storage of boolean values in the
signed distance map grid-nodes in order to avoid performance penalties from interpolation
of sampling points that clearly are far from the zero-level-set surface.

It is clear that the edge-face case is not easily dealt with using this approach. The edge-
face case is not well-described in the original paper, but from personal communications
with the corresponding author [70], it was clarified that the edge-face case was handled
by interference-query of mesh-edges against mesh faces. Thus, the actual collision testing
of edge-face cases is not performed using the signed distance map. Only the contact
generation uses the signed distance maps in case of the edge-face case.

We found the signed distance map approach attractive and have sought to implement
it. We have addressed several issues. Firstly, we want to be able to handle arbitrary
meshes, even if they are coarsely tessellated. Secondly, we want to handle the unpleasant
edge-face case without introducing special cases. Thirdly, we want to keep the number
of sampling points as low as possible to improve performance. Finally, we want to make
collision queries as fast as possible.

In order to achieve these goals, we propose to re-sample the initial mesh to produce
more attractive sample points, and further, we store the new point sampling in a sphere-
tree. The point sampling is discussed in Section 6.2.1 and sphere-threes in Section 6.2.2.

It is very attractive to handle edge-face cases using point re-sampling. This means
that the entire collision query consist of the same simple test: looking a point up in a
signed distance map. This kind of test is easy to vectorize in order to run in parallel.
Thus using special hardware or parallel machines may yield superior performance.

In the following we will study the properties of the signed distance map algorithm
using a box and a cow object as examples. The box was chosen due to its simple geom-
etry which allow us to analyze potential problems more easily. In a real application box
collisions would be more efficiently handled using primitive testing such as the one in
Section 6.3.

6.2.1 Point Sampling

We have taken a different approach to handle the unpleasant edge-face case. Instead of
keeping the mesh, we completely throw this away and work with a point sampling instead.
The mesh is only used during a pre-processing phase for generating the point sampling.

As in [70], we use the vertices as sample points. However, we prune all vertices lying
in flat regions on the mesh surface. That is, only vertices that have at least one concave
or convex incident edge are used as sample points. The remaining vertices are simply

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 165

B

A

N
o
 c

o
n
s
tr

a
in

t

B

A

Figure 6.24: An illustration showing why face re-sampling is needed. On the left
no face re-sampling is used, and box A is thus not prevented from sinking down into
box B, while on the right, a face sampling point ensures a contact point is generated
to prevent penetration.

pruned. Vertices lying in flat regions can be ignored, because if a collision occurs in these
parts, it will be due to a sampling point from another object penetrating the zero-level-set
surface.

Next, we loop over all the edges in the mesh. If an edge is encountered with non-planar
neighboring faces and a length greater than a sampling threshold then the edge is simply
uniformly sub-sampled into sampling points lying the sampling threshold distance apart
from each other. As sampling threshold we use the maximum value of a user specified
threshold and the diagonal of a grid cell in the signed distance map. This way, the user
can achieve a sampling density along edges which corresponds to the resolution of the
signed distance map simply by setting the user specified threshold equal to zero. On the
other hand, the user may want a coarse sampling density in order to lower the number of
sampling points and thereby gain performance over accuracy. Creating a point sampling
this way allows for a consistent treatment of the edge-face case, without having to switch
to another representation. Also, an end user has the means of picking accuracy over
performance or vice-versa simply by adjusting a single threshold value.

The outlined point sampling scheme is sufficient for detecting contacts. However, due
to the local nature of the contact point generation, these contacts may not always yield
the expected dynamic behavior. For instance, two boxes perfectly aligned on top of each
other, but deeply penetrating, will not generate any contact points with a normal in the
“penetration” direction. In fact, this simulation example will result in the top-box sinking
all the way down into the bottom-box. This is illustrated in Figure 6.24. To remedy this
problem, we re-insert sampling points on flat surfaces of the object. A breadth first
traversal is done over the mesh surface to collect regions of coplanar faces. For each such
region a single centroid point is computed as the average point of all the face vertices
in the region. This centroid point is then added to the point sampling. Now, in the case
of the two boxes, each of the aligned faces will have a center-sampling point that will
cause a contact point to be generated with the wanted contact normal direction. To make
sure that we do not generate too many sampling points, the area of the flat regions are
computed, and only in cases where the area is significantly larger than the area of the
maximum side of a grid cell, the center point added to the point sampling.

Figure 6.25 and Figure 6.26 show point re-samplings of a simple box object and a
complex cow object. Table 6.4 and Table 6.5 contain mesh statistics and sampling point
counts. Notice that the number of sample points is increased dramatically but only along

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 166

(a) Original mesh. (b) Vertex re-sampling.

(c) Vertex and edge re-sampling. (d) Vertex, edge and face re-sampling.

Figure 6.25: Point re-sampling of box object.

Re-sampling Type BVH nodes Sample Points
Only vertices 65 56
Edge sampling 745 536
Edge and face sampling 754 542

Table 6.4: Statistics of box object, mesh has 152 vertices, 450 edges, and 300 faces.

non-flat edges. Notice that in the cow example many faces are not re-sampled with a
sample point, due to their small size compared to the grid size of the signed distance map
used.

The effect of the point re-sampling does have some draw-backs which are illustrated
in Figure 6.27. The major problem is that the number of contact points almost explodes.
The figure also shows some of the difficulties with using signed distance maps. Notice
how the contact normals twist around at edge-edge crossings (special case of edge-face
contacts). Clearly, these normals are not what we would expect. In practice this is often
not a problem. However, if penetrations occur, the local property of the contact normals
can cause a simulation blow-up as the one shown in Figure 6.37. Our experience indicates
that aggressive oversampling of edges increases the chance of such blow-ups.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 167

(a) Original mesh. (b) Vertex re-sampling.

(c) Vertex and edge re-sampling. (d) Vertex, edge and face re-sampling.

Figure 6.26: Point re-sampling of cow object.

Re-sampling Type BVH nodes Sample Points
Only vertices 999 752
Edge sampling 15890 11995
Edge and face sampling 17836 13495

Table 6.5: Statistics of cow object, mesh has 752 vertices, 2250 edges, and 1500
faces.

Figure 6.27 also clearly suggests that contact reduction [26, 108] is unlikely to be
useful. Even though the contact region is a entirely flat polygon, contact normals are
pointing in so many different directions that any analysis for contact reduction would try
to create multiple contact regions.

6.2.2 Sphere Tree Acceleration

To speed up the testing of sample points against signed distance maps, we have tried to
use sphere-trees. These were built using an octree top-down splitting strategy [67, 41, 27].
That is, in each split, a set of points are subdivided into at most eight subsets. First, the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 168

(a) Sensible sampling.

(b) Oversampling.

Figure 6.27: The difference between sensible re-sampling and oversampling. Notice
how normals rotate when edges cross. Where they are horizontal instead of vertical
due to the local property of signed distance maps.

mean sample point is computed and used as the origin in a local axis aligned coordinate
frame. Then, each sample point is mapped into the quadrants of this local frame. Upon
completion, a subset of sample points is created, one for each non-empty quadrant. If a
sample point-set only contains 8 sample points then each sample point simply generates a
one-point large subset. This splitting scheme was chosen due to its simplicity. We did try
a splitting scheme based on a maximum covariance axis. However the generated binary
BVHs were inferior compared to the octree BVH. The actual sphere fitting was done
using the randomized algorithm of Welzl [151], yielding best fitting spheres.

Figure 6.28 and Figure 6.29 show the spheres at increasing depths in the sphere-trees
of the cow and box object. Table 6.4 and Table 6.5 contain node counts for the sphere
trees when applying different re-sampling strategies.

Spheres were chosen due to the simplicity by which they can be tested against a
signed distance map. That is, during a collision query we perform a single traversal of the
sphere BVH, testing it against the signed distance map of another object. Before testing
a sphere against the signed distance map, it is transformed into the model frame of the
signed distance map. If the sphere center lies outside the signed distance map, but the
sphere surface intersects the AABB of the signed distance map, then we descend to the
children of the sphere. If the center of the sphere lies inside the signed distance map,
then we look up the signed distance values of the eight surrounding grid nodes. If the
minimum distance of these are less than the sphere radius plus the collision envelope then
we descend the sphere. Otherwise we simply prune the sphere.

Leaf spheres are simply the sampling points, and these can be treated by doing an
interpolation of the eight surrounding distance values, if the sphere was not pruned. If

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 169

(a) Depth 0. (b) Depth 1. (c) Depth 2.

(d) Depth 3. (e) Depth 4.

Figure 6.28: Sphere tree of vertex, edge, and face point re-sampling of box object.

(a) Depth 0. (b) Depth 1. (c) Depth 2.

(d) Depth 3. (e) Depth 4. (f) Depth 5.

Figure 6.29: Sphere tree of vertex, edge, and face point re-sampling of cow object.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 170

(a) 1.5 secs. (b) 2. secs. (c) 2.5 secs.

(d) 3. secs. (e) 3.5 secs. (f) 4. secs.

(g) 4.5 secs.

Figure 6.30: The sphere pruning test has been extended to a sphere-primitive
collision detection test against the signed distance map.

the interpolated value is less than the collision envelope, a gradient can be found using
finite differences and a contact point can be generated.

In fact, the pruning test can easily be extended to provide a sphere-primitive test
against a signed distance map. We have pursued this idea. If the sphere-surface crosses
the zero-level-set surface then the closest point on the zero-level-set surface of the signed
distance map to the center of the sphere is found. This closest point is used as a contact
point, and the gradient of the signed distance map at this point is used as contact normal.
The penetration distance is simply estimated by how far the closest point lies inside the
sphere. Figure 6.30 shows still frames from an animation, where this sphere-primitive
testing was applied.

6.2.3 Results

To verify the usefulness of our point re-sampling and sphere-tree acceleration, we have
performed a total of 18 simulations, 9 simulations using the sphere-tree and 9 using the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 171

(a) 0 secs. (b) 0.5 secs. (c) 1 secs.

(d) 1.5 secs. (e) 2 secs.

Figure 6.31: Still-frames from a sliding boxes configuration using the brute force
approach.

brute force approach of simply looking up every sample point in the other object’s signed
distance map. In all simulations we used the simulator described in Section 6.4 with a
time-step of size 0.01 secs.

The first four of our test configurations was taken from [70]. The are the cases of
sliding boxes, billiard balls, see-saw and flip-over. Simulation results of these four con-
figurations can be seen in Figures 6.31-6.34. We then used a sensible point-sampled box
stack and a completely oversampled box stack. The same was done for the large scale
wall configuration. These configurations can be seen in Figure 6.35- 6.37. Our final test
case consists of piling 250 cows on a plane as shown in Figure 6.38.

For all 18 simulations we counted the total number of contact points in each frame,
and the size of the frame time, i.e. the total computation time for computing the next
frame. Table 6.6 shows minimum, mean, and maximum values for the time measurements,
and Table 6.7 shows minimum, mean, and maximum values for the contact point counts.

From Table 6.6 it can be seen that only the cow-pile configurations have a significant
benefit from using sphere-trees. In the remaining configurations, sphere-trees appear to be
comparable to the brute force approach, with some cases slightly better and others slightly
worse. Figure 6.39 shows actual plots comparing frame times of the 9 test configurations.
They clearly show what the statistics in Table 6.6 indicated.

Surprisingly, Table 6.7 shows that configurations using sphere-trees sometimes have
a different contact count. Intuition would dictate that this indicates an implementation
error in the sphere-trees. However, remember that sphere nodes in the sphere tree are
pruned based on the distance computed at the sphere centers. A sphere center may have a
very different location then the sample points contained in the sphere. Thus, the inherent
error that a signed distance map poses causes some spheres to be pruned, because the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 172

(a) 0 secs. (b) 0.1 secs. (c) 0.2 secs.

(d) 0.3 secs. (e) 0.4 secs. (f) 0.5 secs.

(g) 0.6 secs. (h) 0.7 secs. (i) 0.8 secs.

Figure 6.32: Still-frames from a billiard ball configuration using sphere-trees.

brute sphere-tree
configuration min mean max min mean max

sliding boxes 0 0,0063 0,0200 0 0,0059 0,0200
billiard balls 0 0,0114 0,0300 0 0,0029 0,0200
see saw 0 0,0018 0,0100 0 0,0017 0,0200
flip over 0 0,0024 0,0200 0 0,0019 0,0200
box stack 0 0,0075 0,0200 0 0,0071 0,0200
oversampled box stack 0,0600 0,0738 0,0900 0,0600 0,0774 0,1000
wall 0,1400 0,1594 0,1910 0,1400 0,1608 0,1910
wall blow-up 0,0300 0,3785 0,8210 0,0300 0,3888 0,6400
cow pile 1,2420 9,0709 15,9930 0,0300 0,3899 0,7510

Table 6.6: Frame time statistics for different configurations using signed distance
maps. A value of zero means that time duration were less than the timer resolution.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 173

(a) 0 secs. (b) 0.5 secs. (c) 1 secs.

(d) 1.5 secs. (e) 2 secs. (f) 2.5 secs.

(g) 3 secs. (h) 3.5 secs. (i) 4 secs.

Figure 6.33: Still-frames from a see-saw configuration using sphere-trees.

brute sphere-tree
configuration min mean max min mean max

sliding boxes 362 362 362 362 362 362
billiard balls 6 65,7 187 6 65,0 187
see saw 3 47,6 82 16 44,8 82
flip over 62 88,8 350 62 89,6 350
box stack 596 596 596 596 596 596
oversampled box stack 4517 4517 4517 4517 4517 4517
wall 7315 7410,9 7431 7303 7409,8 7431
wall blow-up 1811 16600 26416 1811 19735 27688
cow pile 862 5395 14835 784 5008 13391

Table 6.7: Statistics over the number of contacts for different configurations using
signed distance maps.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 174

(a) 0 secs. (b) 0.5 secs. (c) 1 secs.

(d) 1.5 secs. (e) 2 secs.

Figure 6.34: Still-frames from a flip-over configuration using sphere-trees.

Figure 6.35: Still-frames from a box-stack configuration using sphere-trees. The
boxes are not moving as the simulation progresses.

distance computed at the sphere center (due to interpolation error) says it, although the
more accurate distances at the contained sample points would indicate that the sphere
node should not have been pruned. The artifact becomes worse when on the coarse
grids we have used for our signed distance maps, which typically have a dimension of
128 × 128 × 128. Figure 6.40 shows plots comparing contact point counts. The figures
clearly show plots with the same asymptotic behavior, but the plots are slightly different.

6.2.4 Discussion

It might very well be that spheres and the octree top-down splitting approach do not yield
the best kind of BVH, in terms of pruning capability. However, it is simple to implement.
Spheres are the perfect generalization of points and are therefore naturally combined to
be used with signed distance map as shown in Figure 6.30.

We have observed that using a sphere-tree BVH on signed distance maps gives a very

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 175

(a) 0 secs. (b) 1 secs. (c) 2 secs.

(d) 3 secs. (e) 4 secs.

Figure 6.36: Still-frames from a wall configuration using the brute approach.

(a) 0 secs. (b) 0.1 secs. (c) 0.2 secs.

(d) 0.3 secs. (e) 0.4 secs. (f) 0.5 secs.

Figure 6.37: Still-frames from a wall configuration using the brute approach. Boxes
are initially displaced by a small distance and during the explicit time-stepping the
boxes will slightly penetrate. Due to the local property of the signed distance maps,
unfortunate contact normals are generated pointing in a horizontal direction causing
a blow-up.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 176

(a) 1 secs. (b) 2 secs. (c) 3 secs.

(d) 4 secs. (e) 5 secs. (f) 6 secs.

Figure 6.38: Still-frames from cow pile configuration using sphere-trees.

small, almost insignificant, performance benefit in most cases. There are several reasons
that causes this behavior.

In most of our test-cases, the objects are densely stacked, implying that objects are in
close proximity. Thus, by the nature of the configuration, there is a lot of contact points.
BVHs will thus traverse many paths in their hierarchy all the way down to the leaf nodes,
in order to generate these contact points, implying that the performance gain of using
BVHs is almost insignificant.

From theory [67], we obtain the following insight into the nature of the performance
of using BVHs. For close proximities, BVH queries are likely to be O(n log n), since the
number of contact points is of order n, and the depth of the tree is of order log n, the
brute force method is simply O(n). The cost of a BV overlap test is less than looking up a
sample point in the signed distance map. Thus, the BVH can beat the brute-force method
if the number of contact points is sufficiently low, and/or enough spheres containing a
good ratio of contact points can be pruned. If none of these properties are present, the
brute force method is likely to outperform the BVH approach.

As the sampling density is increased, so is the performance gain of using BVHs as in the
case of the cow pile shown in Figure 6.38. However, it is unlikely that interactive or real-
time applications would wish to increase the sampling density, since a low sampling count
is attractive due to the faster performance. On the other hand, off-line simulations such
as the ones used in movie-production could clearly benefit from increasing the sampling
density and applying sphere-trees.

The sampling density is also directly related to the accuracy of the collision detec-
tion. Theoretically speaking, if one lets the sampling resolution go to zero, the collision
detection will be exact. For plausible simulations, a coarse sampling resolution is more
than sufficient. In conclusion, implementing BVHs may be overkill for applications where

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 177

0 5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iteration

T
im

e
(s

ec
s)

Sliding Boxes
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Iteration

T
im

e
(s

ec
s)

Billiard Balls
brute
bvh

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iteration

T
im

e
(s

ec
s)

See Saw
brute
bvh

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iteration

T
im

e
(s

ec
s)

Flip Over
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iteration

T
im

e
(s

ec
s)

Box Stack
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Iteration

T
im

e
(s

ec
s)

Oversampled Box Stack
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0.14

0.15

0.16

0.17

0.18

0.19

0.2

Iteration

T
im

e
(s

ec
s)

Wall
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

T
im

e
(s

ec
s)

Wall Blow Up
brute
bvh

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

Iteration

T
im

e
(s

ec
s)

Cow
brute
bvh

Figure 6.39: Frame time plots comparison.

inaccurate plausible results are sufficient. Here, a brute force method would be a better
choice.

Besides, increasing the sampling density may not always be the best idea. If too
many contact points are generated the system becomes widely over-determined, and the
numerics can blow up the simulation. In our experience this may occur in densely stacked
environments, such as the brick-wall example in Figure 6.37.

In summary we can conclude

• Signed distance maps take up a lot of memory,

• They generate a large number of contact points,

• They are robust, fault tolerant, and capable of handling severe penetrations,

• They are easily implemented,

• They provide a local solution to handling penetrating objects.

The first two statements make signed distance maps less attractive for real-time applica-
tions. The last two statements are attractive properties for real-time applications such as
animation tools and computer games.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 178

0 5 10 15 20 25 30 35 40 45 50
361

361.2

361.4

361.6

361.8

362

362.2

362.4

362.6

362.8

363

Iteration

C
on

ta
ct

s

Sliding Boxes
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Iteration

C
on

ta
ct

s

Billiard Balls
brute
bvh

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

Iteration

C
on

ta
ct

s

See Saw
brute
bvh

0 50 100 150 200 250 300
50

100

150

200

250

300

350

Iteration

C
on

ta
ct

s

Flip Over
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
595

595.2

595.4

595.6

595.8

596

596.2

596.4

596.6

596.8

597

Iteration

C
on

ta
ct

s

Box Stack
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
4516

4516.2

4516.4

4516.6

4516.8

4517

4517.2

4517.4

4517.6

4517.8

4518

Iteration

C
on

ta
ct

s

Oversampled Box Stack
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
7300

7320

7340

7360

7380

7400

7420

7440

Iteration

C
on

ta
ct

s

Wall
brute
bvh

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

4

Iteration

C
on

ta
ct

s

Wall Blow Up
brute
bvh

100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

Iteration

C
on

ta
ct

s

Cow
brute
bvh

Figure 6.40: Contact point count plots comparison.

The fifth statement can cause severe artifacts in a simulation. For instance, if a smaller
box is initially placed inside a larger box, However these cases are not very common. Thus,
this is not prohibitive for their use.

6.3 Box Box Collision

We have shown previously how the simulation method can recover from faulty behavior
in a stable and robust manner, as described in Section 4.16.1.1. However, it was implicitly
assumed that the contact generation created ideal perfect contact points. The creation of
these contact points is termed contact determination or contact generation [26, 19, 108].
It is a purely geometrical problem, but it is far from trivial or simple. In this work, we
have tried to use signed distance maps, as described in Section 6.2, as an easy solution
for contact generation, but they failed miserably on the following accounts:

• They are computationally expensive compared to primitive geometry testing, mak-
ing them attractive for only highly complex geometries.

• They generate a huge number of contact points.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 179

• The quality of contact normals and penetration depths depend on the resolution
of the signed distance map. In fact this can cause a blow-up of the simulation (see
Figure 6.27) where contact normals go from upward to sideward for two almost
aligned boxes with over-sampled edges.

Box primitives are often the preferred choice in many respects, especially in real-time
applications such as computer games. There are several reasons for this popularity. Box
primitives or oriented bounding boxes (OBBs), as they are called in the literature, are
complex enough geometries for providing fast convergence towards the surface of an ob-
ject [67]. This is why they are often the preferred choice for bounding volume hierarchies
(BVHs). This implies that relatively complex shapes can be approximated relatively easy
with a low number of boxes. Yet, boxes are simple enough geometries to perform rea-
sonable fast collision detection. As a consequence, basically all third-person shooting
computer games on the market today allow the player to shoot or push boxes around in
a submerged world.

Following this path of thinking we will concentrate on good contact point generation
for box-box primitives. We will show how the most widely used algorithm completely
fails in certain cases and then we will repair these deficiencies to accommodate, what we
think is a better alternative for contact generation.

In our opinion there are several aspects that may cause a simple minded contact
generation algorithm to fail in the sense that the simulation yields an unwanted behavior,
or a worse faulty state.

Firstly, simulation errors tend to sneak in to the positioning of the geometry causing
small penetrations and misalignments of the geometries. Secondly, tunneling effects may
even occur, resulting in geometries being deeply penetrating or even being teleported
completely inside another geometry. Thirdly, there is the risk of an end user setting up
initially badly placed geometries. Each of these three aspects are more the common case
than the exception in everyday simulations. Thus, a usable contact generation algorithm
must be stable and robust towards penetrations of geometries and imprecision in their
positioning.

The most popular and widely used box-box overlap test is the separation axis test
method [66]. It is currently known to be the fastest method in terms of the number
of FLOPS required to determine the overlap state of two boxes. A contact generation
approach has been developed, based on using the separation axis with the largest overlap,
i.e. the axis along which the two boxes should be pushed the least in order to not penetrate
any longer. To our knowledge, this approach does not seem to be well-described in the
literature, but newsgroups [1] have touched the topic more than once. Also, some open
source projects [112] offer implementations based on this idea. There are also examples of
commercial software [111] that successfully deal with box-box testing. However, we can
only guess at the algorithms and methods used herein.

We will use the implementation in [112] as our working example, in order to study the
problems with this approach. Henceforth, we refer to the specific implementation in [112]
as the old box-box method, in order not to confuse it with our improvements. In [112]
a single contact point is generated for edge-edge cases, using the mean point of the two
closest points between the two lines running parallel with the two edges. For face-cases,
the separation axis is equal to a face normal of one of the boxes, and the closest face of
the other box is found and projected onto the box with the separation axis. A simple 2D

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 180

(a) Edge-edge case is picked instead of face-
face case, generating a faulty contact point
outside the contact region.

(b) Contact state of corners are ignored
during 2D intersection testing, causing
edge-edge crossings to generate contact
points.

(c) Missing corners, due to badly (or too lazy) 2D intersection testing.

Figure 6.41: Contact generation using the old box-box test.

intersection test is now performed between the projected face and the face corresponding
to the separation axis. Intersection points are reported as contact points.

There are mainly three problems with this approach. Firstly, in some cases an edge-
edge case is picked when a face-case should have been used. Secondly, the method exhibits
jittering of contact points, and thirdly, some cases are missing crucial contact points.
Figure 6.41 supports these statements. Here we have applied the method from [112] and
drawn the computed contact points.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 181

edge-edge projection

face-face projection

Figure 6.42: 2D projected view of two boxes illustrating when an edge-edge case
is picked over face-case.

Figure 6.43: Animated box-box collision sequence using the old box-box method.

Figure 6.42 illustrates an analysis of the cause to the faulty edge-edge case. The top
box in the figure is slightly tilted. This is shown in an exaggerated fashion. However,
notice that the corner point outside the lower box causes the face-projection distance to
become larger than the edge-edge projection distance. The scenario shown in the figure
often occurs in practice due to small precision errors in computing the relative orientation
of the two boxes. This causes the method to see boxes as being slightly tilted, and the
edge-edge case wins the projection distance race against the face cases.

We repair the faulty edge-edge case by making sure to truncate precision errors in the
rotation matrices of the two boxes. Thus, slight tilting due to imprecision is projected
back into a face-case. Secondly, we require that all the four end-points of the edges in the
edge-edge case lie outside the boxes. If not, the edge-edge case is dropped and the face-
case with minimum overlap is used instead. Figure 6.43 and Figure 6.44 show a sequence
of images from an animation sequence comparing the improvement with the old box-box
method. As seen from the figures our extensions repair the faulty edge-edge case.

We have also extended the old box-box method to deal with the problems of miss-
ing corner contact points and edge-edge crossings generating superfluous contact points.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 182

Figure 6.44: Animated box-box collision sequence using the improved box-box
method.

These problems are illustrated in Figure 6.41(c) and Figure 6.41(b). The extension is
simply to make sure that the most restrictive cases are handled before the more general
ones. This means that we first detect whether any of the corners, four from each box,
generates a contact point, and if so, the corner is flagged as a contact point. After having
taken care of the corners we proceed to the edge-edge crossings. No contact points are
generated for edge-edge intersection points if both end-points, i.e. the box corners, were
previously flagged as contact points. Further more, it is required that the end-points of
one edge must lie on opposite sides of the other edge.

To verify the usefulness of the improved box-box method, a simulation comparison has
been performed. A 30 second long simulation is done of a brick wall containing 200 brick
cubes. The simulator from Section 6.4 was used with a time-step size of 0.01 seconds.
Figure 6.45 shows still-frames from the simulation using the old box-box method, and
Figure 6.46 shows corresponding still-frames from the same simulation using the improved
box-box method.

The results obtained in Figure 6.45 are less than satisfactory, and obviously using the
old box-box method in densely stacked configurations can seriously harm the quality of
the simulation. In our opinion ideal and perfect contact points should be generated such
that:

• If one slightly moves the geometries, contact points should follow at-least “piece-
wise” continuous paths. These paths may merge or split during the movement, and
we refer to this as non-flicking contact points.

• In a similar fashion the contact normals at the contact points should not change
widely when the geometries are moved slightly. The contact normals should tend
to be continuous. We refer to this as non-flicking contact normals.

• Lastly, redundant contact points should be avoided, since they cause over-determined
systems of constraints. This may cause the numerical methods used in a simulator

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 183

(a) 1 secs. (b) 6 secs. (c) 11 secs.

(d) 16 secs. (e) 21 secs. (f) 26 secs.

Figure 6.45: Wall simulation using the old box-box method. Blue arrows show
contact points and contact normals.

(a) 1 secs. (b) 6 secs. (c) 11 secs.

(d) 16 secs. (e) 21 secs. (f) 26 secs.

Figure 6.46: Wall simulation using the improved box-box method. Blue arrows
show contact points and contact normals.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 184

to fail computing a valid solution for the constraint forces.

Clearly, the old box-box method suffers from both the flickering problems, causing boxes
to jitter slightly during simulation. The effect is similar to what happens if one were
subjecting the wall to a lot of small rapidly occurring earthquakes. Notice how the contact
points drawn in Figure 6.46 are much more regular than in Figure 6.45. This is the major
reason why the improved method works better.

The three requirements of contact point generation are based on our real-world intu-
ition. For touching contact points in the real-world both the contact point and the con-
tact normal would be continuous. Unfortunately, computer graphics geometries, boxes or
polygons have discontinuities on the surfaces. At these discontinuous surface points, con-
tact normal continuity is deemed to fail. Also, penetrations make it difficult to compute
continuous contact points. Thus, in practice we must settle for less than the ideal.

In our opinion the entire subject of contact generation lacks attention and there is a lot
to be done in this field. The subject is almost not described in existing literature. Works
in computational geometry and collision detection tends to focus more on intersection
testing than contact generation.

From our work it is clear that stable, robust and versatile contact generation is im-
portant for the quality of physical based animation. Thus, any new progress in this field
is of great practical usage.

6.4 Velocity Based Complementarity Formulation with

Shock-Propagation

For computer animation it is sufficient to use an explicit time-stepping scheme. Taking a
first order Euler step of the equations of motion yields the time-stepping scheme:

~b = J
(

~u t + hM−1 ~Fext

)

, (6.75a)

A = JM−1J T , (6.75b)

~λ = lcp
(

A,~b
)

, (6.75c)

~u t+1 = ~u t + M−1J T~λ + hM−1 ~Fext, (6.75d)

~s t+1 = ~s t + h~u t. (6.75e)

Here, we have used the notation from Chapter 4 in a little abstract way since the gener-
alized position vector, ~s, is not of the same dimension as the generalized velocity vector,
~u.

Unfortunately, this scheme is bad for taking large time-steps of stacked configurations.
Let us study a small example to see why. Imagine two balls on a plane, all in touching
contact but both balls have a downward velocity. When doing the velocity update with the
classical Euler-scheme in equation (6.75), the position update will use the un-constrained
velocities. Thus, in the next time-step the lower ball will penetrate the plane. Due to the
large time-stepping, this error can be significant. If error-correction is used, the lower ball
will be pushed up into the upper ball. The entire mess could have been avoided by using

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 185

a slightly modified version of the classical Euler-scheme with the simple difference that
the constrained velocities are used during the position update. That is,

~b = J
(

~u t + hM−1 ~Fext

)

, (6.76a)

A = JM−1J T , (6.76b)

~λ = lcp
(

A,~b
)

, (6.76c)

~u t+1 = ~u t + M−1J T~λ + hM−1 ~Fext, (6.76d)

~s t+1 = ~s t + h~u t+1. (6.76e)

The time-stepping scheme in equation (6.76) was successfully applied to all the simula-
tions shown in Figures 6.12-6.23.

The major problem with the simulations in Section 6.1 was that the iterative method
could converge too slowly, introducing significant simulation errors into the simulation. To
counter these simulation errors, error-correction by projection was applied, as described
in Section 4.16. The results showed a clear improvement, but the iterative method still
required several 100 iterations to yield visual acceptable results. In this section we will try
to do even better by adopting shock-propagation [70] to a velocity based complementarity
formulation.

6.4.1 Review of Shock-Propagation

The novelty of the work in [70] is to split the numerical integration of the equation of
motion into two separate phases causing a separation of the collision resolving from the
contact handling. That is

• Collision resolving.

• Advance the velocities by doing a velocity update.

• Contact handling.

• Advance the positions by doing a position update.

In [70] a different approach is taken to collision resolving. A fixed number of iterations is
performed over all the contact points, and the same is done for contact handling. Thus
there might still be colliding contacts after the contact handling. To correct the errors,
shock-propagation is applied before doing the position update.

In order to perform the shock-propagation, a contact graph is built and contact points
are processed in a order corresponding to their placement in the contact graph. The
contact graph is used to analyze if objects are stacked on top of each other. Afterwards,
contact points are organized into disjoint sets representing the stack layers in a stack.
These layers are processed in a bottom-to-top fashion setting lower objects in a layer to
be fixed. That is, the lower objects will act as though they have infinite mass and become
un-movable by the upper objects in the layer.

An alternative method for computing stack layers is presented in Section 6.4.2 which
can be used with the contact graph data structure described in Chapter 5. The contact

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 186

algorithm shock-propagation(algorithm A)

compute contact graph

for each stack layer in bottom up order

fixate bottom-most objects of layer

apply algorithm A to layer

un-fixate bottom-most objects of layer

next layer

end algorithm

Figure 6.47: Pseudo-code version of the general shock-propagation algorithm.

0

1

3

22

fi
x
e
d

Figure 6.48: Simple stacked objects annotated with stack height.

graph built in [70] is computed differently and the interested reader should look in the
reference for more details.

Figure 6.47 shows a pseudo-code version of our generalized shock-propagation algo-
rithm, which we will apply in Section 6.4.3.

6.4.2 Computing Stack Layers

Contact graphs are easily computed as described in Chapter 5. A contact group is a
subset of objects in the configuration, all in mutual contact with each other. Edges are
created between objects if they are in contact, and contact points are stored directly
in these edges. Thus, we want to analyze a contact group for its stack structure and if
possible compute stack layers of the contact group.

A stack is defined as a set of objects being supported by one or more fixed objects. A
cup on top of a table is in a sense a stack. The table is the fixed body and the cup is being
supported by the table. Objects in a stack can be assigned a number indicating how far
away they are from the fixed object supporting them. This number is an indication of the
height of the object in the stack. Thus, all fixed objects in a configuration have a stack
height of zero. Non-fixed objects in direct contact with the fixed objects have a stack
height of one. Non-fixed objects in direct contact with objects with stack height one, but
not in contact with any fixed objects have a stack height of two. A simple example is
shown in Figure 6.48. This definition of stack height does not give a unique sense of an
up and down direction as is commonly known from the real world. This is illustrated in

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 187

1

2

13

2

?

?

0

fixed

Figure 6.49: Non simple stacked objects annotated with stack height. Free floating
objects are marked with a question mark.

Queue Q

for each body in Group do

if body is fixed then

height(body)=0

Q.push(body)

visit(body) = true

else

height(body) = infinity

visit(body) = false

next body

Figure 6.50: Initialization of stack analysis algorithm. All bodies in a contact group
are traversed, fixed bodies are identified and are then added to a queue for further
processing.

Figure 6.49. Notice the position of the object with largest stack height. An object is said
to be closer to the bottom of the stack compared to another object if the stack height of
the object is lower than the other object. Similarly, the bottom-most objects are those
having the lowest stack height. These are the fixed objects.

A free floating object is special, since it is not in contact with any other objects.
However, one may even have an entire group of bodies, all in mutual contact with each
other, but none in contact with a fixed object. In these cases it does not make sense to
talk about assigning a stack height to the objects. Instead, the convention can be used
to assign these kind of objects an infinite stack height to distinguish them from objects
that are part of a stack. A negative value could also be used, but is not an efficient choice
for the algorithm presented in this section.

The stack height of objects is easily computed by doing a breadth-first-traversal on
each contact group. Initially, the stack height of all objects is set to infinity unless they
are fixed objects, in which case their stack height is set to zero. Also, all fixed objects
are pushed onto a queue. This queue will be used by the breadth-first-traversal. The
initialization steps are shown in Figure 6.50.

After the initialization, the breadth-first-traversal will pop an object, A, from the
queue and iterate over all incident contact graph edges to object A. For each edge, it is
tested if the object, B, at the other end of the edge has been visited by the traversal
before. If not, this object is pushed onto the queue. The height hB of the object B is also

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 188

computed as
hB = min(hB, hA + 1). (6.77)

That is, either a shorter path to object B is already known, in which case hB is left
unchanged, or it is shorter to get to B, by going from A. The cost of taking this part is
one more than the cost of getting to object A.

During the traversal, a stack layer index is computed for the edges as they are being
visited. A stack layer is defined by two succeeding stack heights, such as 0 and 1. These
two stack heights define a subset of objects in the contact group. That is, stack layer 0 is
defined as all objects with stack height 0 and stack height 1, and all edges between these
objects. Stack layer 1 is defined by all objects with stack height 1 and stack height 2, and
all edges between these objects, and so on. This means that an edge between an object
with height i and another object with height i + 1, is given stack layer index i.

Notice, there is some subtlety with edges between objects with the same object height.
As an example if we for stack layer i have an edge between two objects both with stack
height i + 1, then the edge belongs to stack layer i. Ideally, an edge between two objects
with height i should also be added to stack layer i. However, this is not done. The reason
for this is that stack layers are processed in a bottom up fashion. Thus, contact points
belonging to the edge between objects at height i have been taken care of when stack
layer i − 1 was processed.

Figure 6.51 shows pseudo-code for assigning stack heights to objects and stack layer
indices to edges.

After having assigned stack heights to objects and stack layer indices to edges, it is a
simple matter to traverse the edges and assign them to their respective layers they belong
to.

Objects are a little special. Given an object, A, at stack height i, one must traverse
the edges and examine the stack heights of the objects at the other end. If an object B
with stack height i − 1 is found, then object A is safely added to stack layer i − 1. If an
object C is found with stack height i + 1 then object A is added to stack layer i. Object
A can only belong to stack layer i−1 and i. This means that as soon as two other objects
have been found, indicating that object A should be in these two stack layers, one can
stop traversing the remaining incident edges of object A.

Figure 6.52 shows the pseudo-code for building the stack layers.

6.4.3 Adopting Shock-Propagation

The initial intention of shock propagation is to fix simulation errors. We can thus ap-
ply an algorithm such as the projection error correction explained in Section 4.12 and
Section 4.16 to each stack layer in a bottom-up fashion. This has the advantage of be-
ing able to completely fix penetration errors. In comparison with equation (6.76) the
time-stepping of the error-correction can be written as

A = JM−1J T , (6.78a)

~λ = lcp
(

A, ~dpenetration

)

, (6.78b)

~s t+1 = ~s t + M−1J T~λ, (6.78c)

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 189

List edges

timestamp = timestamp + 1

height = 0;

while Q not empty

A = pop(Q)

for each edge on A do

B = body on edge that is not A

if not visit(B) then

Q.push(B)

visit(B) = true

end if

height(B) = min(height(B), height(A) + 1)

if height(B) = height(A) and height(B) not 0 then

layer(edge) = height(B) -1

else

layer(edge) = min(height(B), height(A))

height = max(height,layer(edge))

if not timestamp(edge) = timestamp then

timestamp(edge) = timestamp

edges.push(edge)

end if

next edge

end while

Figure 6.51: A breadth-first-traversal is performed assigning a stack height to each
body equal to the number of edges on the minimum path to any fixed body. Edges
of the contact group are collected into a list for further processing.

where ~dpenetration is a vector of penetration depths. The notation is still a little abstract,
since J is not the same as the one used in equation (6.76). It only contains normal
constraints at the contact points.

Letting error-correction () denote a time-step by equations (6.78), then Figure 6.53
shows results of a simulation using error-correction () and Figure 6.54 shows sim-
ulation results using shock-propagation (error-correction ()). In both figures an
iterative Gauss-Seidel LCP solver was applied using only 5 iterations.

Comparing the results from Figure 6.53 and Figure 6.54 it is clear that shock-propagation
yields superior results. In fact, it can be seen that only 5 iterations is enough for the iter-
ative LCP solver, when using shock-propagation. Without shock-propagation the error-
correction does not even fix all penetration errors within the same number of frames. This
is not shown in Figure 6.53. However, it is seen that the final penetration free positions
will not even result in a nice stack grid of balls.

Figure 6.54 shows that shock-propagation completely corrects all penetration errors in
the first layer during the first frame-computation. In the second frame all penetration er-
rors in the second layer are corrected and so on. For the specific example used, it thus takes
5 frame computations to completely correct all penetrations errors. This property is due
to the way our collision detection engine interacts with the shock-propagation algorithm.
If, during the shock-propagation, the collision detection engine could re-evaluate all pene-
tration depths of the contact points in a stack layer prior to applying the error-correction

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 190

Group layers[height +1]

for each edge in edges do

idx = layer(edge)

add contacts(edge) to layers(idx)

next edge

for each body A in Group do

if height(A)=infinity then

continue

end if

in_lower = false

in_upper = false

for each edge on A do

B = other body on edge

if height(B) > height(A) then

in_upper = true

end if

if height(B) < height(A) then

in_lower = true

end if

if in_upper and in_lower then

break

next edge

if in_upper then

layers[height(A)].push(body)

end if

if in_lower then

layers[height(A) - 1].push(body)

end if

next body

return layers

Figure 6.52: Building stack layers by processing all edges and bodies by examining
their stack height and layer indices.

algorithm to the stack layer, then all penetration errors would have been corrected in the
first frame computation. This specific interaction with the collision detection engine can
cause spurious rippling effects during simulation as discussed in Section 6.4.5.

It should be noted that the shock-propagation that occurs from the bottom most layer
of a stack to the top, has trouble fixing errors for “cyclic” configurations as illustrated in
Figure 6.55. In fact, the simulation done in Figure 6.30 suffers from the exact problem
shown in Figure 6.55. However, it is difficult to see from the still images in Figure 6.30.
However, the problem is seen in an animation as high-frequency oscillating spheres lying
just below the top-most spheres.

This is clearly an unwanted side-effect, and definitely an area of further work. We
suggest that one should take the direction of gravity or whatever external force that is
acting on the objects into account when computing stack-heights. Thus, when a down-hill
edge is seen going to an object with larger stack-height, the stack height of the up-hill
object should be one higher than the down-hill object, regardless of whether the up-hill
object is in direct contact with a fixed object. This idea would result in the balls on the

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 191

(a) frame 1. (b) frame 2. (c) frame 3.

(d) frame 4. (e) frame 5. (f) frame 6.

Figure 6.53: A grid stack of 125 balls with severe penetrations using 5 iterations
with Gauss Seidel and no shock-propagation.

(a) frame 1. (b) frame 2. (c) frame 3.

(d) frame 4. (e) frame 5. (f) frame 6.

Figure 6.54: A grid stack of 125 balls with severe penetrations using 5 iterations
with Gauss Seidel and shock-propagation.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 192

Penetration in stack layer 2

(a) Shock propagation results in Figure 6.55(b)

Penetration in stack layer 1

(b) Shock propagation results in Figure 6.55(a)

Figure 6.55: Errors can not be corrected by shock propagation if there are cyclic
dependencies.

velocity-based-shock-propagation(f,h)

collision detection at time t

dynamics(f*h)

shock-propagration(dynamics((1-f)*h), error-correction())

t = t + h

Figure 6.56: Pseudo-code of the velocity based shock-propagation algorithm. f
denotes the weighting of the dynamics vs. the shock-propagation.

ridge of the canyon in Figure 6.55 to have a stack height four and not one. However, it
is not exactly obvious how to perform the analysis we just described in a fool-proof way,
which is why we leave the idea for future work.

The dynamics of objects described by equations (6.76) can also be used in combination
with shock-propagation. Letting a time-step taken by equations (6.76) be denoted by
dynamics (h), where h is the size of the time-step, we then propose the time-stepping

scheme shown in Figure 6.56.
We have introduced a weighting of the dynamics versus the shock-propagation, where

the weighting is given by f , where 0 ≤ f ≤ 1. The weighting is not some wild idea, but was
necessitated through experiments which indicated that the weighting was directly related
to the amount of allowed simulation error. The exact relation between the weighting factor
and simulation error is discussed in detail in Section 6.4.5 and Section 6.5. In comparison
with the new time-integration method in [70] which we have restated in Section 6.4.1 for
convenience, our scheme is similar to the new time-integration method if f is set to 1.

The scheme in Figure 6.56 has been applied to all the simulations shown in Figure 3.7,
3.8, 3.9, 3.10, 6.30, 6.31, 6.32, 6.33, 6.34, 6.35, 6.36, 6.38, 6.46, 6.67, 6.68,
6.70, 6.71, and Figure 6.72 using only 10 iterations for the iterative LCP solver solving
the dynamics and 5 iterations for the LCP solver solving the error correction. In most
cases we have used f -values in the range 0 ≤ f ≤ 0.01.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 193

6.4.4 Weight Feeling Problem

Shock-propagation was used for an impulse based method in [70]. An important step of
the time-integration method herein was to let objects feel the weight of other objects
before applying the shock-propagation algorithm. The first time-step dynamics (fh)
in our scheme is responsible for this weight-feeling aspect. In general there are two cases
for when objects need to feel the weight of each other. There is the case of an object
impacting with a stack and then there is the case of a system not in equilibrium, but
where all objects are initially in resting contact. The see-saw in Figure 6.33 is a perfect
example of the latter.

Our time-stepping scheme is capable of handling the weight-feeling of impacting ob-
jects regardless of the value of f . In practice, the ideal choice to counter simulation errors
is to set f equal to zero. In this case, the first time-step reduces to a simple simultaneous
resolving of initial impacts using Newton’s collision law. The shock-propagation works
most efficiently under these conditions, immediately eliminating any simulation errors
from the first zero-size time-step.

Unfortunately, the case of systems initially not in equilibrium can not feel the weight,
since there is no impacting objects. Increasing the f -value slightly takes care of the prob-
lem, but this comes with a cost, with the shock-propagation becoming less efficient in
eliminating simulation errors. Although large-scale simulations can be performed success-
fully and without noticeable artifacts, the small simulation errors that are not eliminated
seems to propagate through the stack severely damaging the effectiveness of a sleepy
policy. This is described in detail in Section 6.5.

Theoretically, as we let the number of iterations used in the iterative LCP solver
go to infinity, or if we exchange the iterative LCP solver with a direct solver, then the
simulation errors will diminish, reducing the need for shock-propagation. When we let the
weighting factor go towards one, we allow the simulation errors from the iterative LCP
solver in the first time-step to gain the upper hand over the shock-propagation. Of course,
we achieve the goal of being able to handle configurations initially not in equilibrium.

To counter the artifacts of the more dominant simulation errors we could increase the
number of allowed iterations in the iterative LCP solver. We have not gone down this
alley, because we wanted to stay in the realm of high performance time-stepping. Thus,
performance requirements prohibit us from wasting computation time on doing too many
iterations in the iterative LCP solver. We have thus set 10 iterations as the maximum
limit for the dynamics, and 5 iterations as the maximum limit for the error correction.
As can be seen from our results in Figure 3.7, 3.8, 3.9, 3.10, 6.30, 6.31, 6.32, 6.33,
6.34, 6.35, 6.36, 6.38, 6.46, 6.67, 6.68, 6.70, 6.71, and Figure 6.72 these aggressive
limits are sufficient for handling rather complex large scale simulations.

Another avenue for possible future work would be to apply multi-grid methods for
solving the LCPs. This may be advantageous for configurations with 10,000-100,000 ob-
jects or more.

6.4.5 Rippling Effect

During our simulation test, a rippling shock effect has been observed. At first sight, the
effect looks similar to a blow up in the simulation due to some energy that has been built

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 194

(a) 1.75 secs. (b) 1.8 secs. (c) 1.85 secs.

(d) 1.9 secs. (e) 1.95 secs.

Figure 6.57: Rippling effect seen in a 640 brick tower simulation using f = 0.025.

up. The rippling effect is related to the value of the weighting factor f . Figure 6.57 and
Figure 6.58 illustrate the rippling effect as seen with different weighting values.

The figures show that for large weight values, the rippling effect appears to start earlier
in the simulation and appears more violent. In fact, setting f = 0 causes the rippling
effect to disappear totally. The cause of this kind of rippling shown in Figure 6.57 and
Figure 6.58 is due to numerical errors from the iterative LCP solver. The error is built up
during simulation, at the point where the error-correction kicks in. However, due to the
specific way our collision detection engine interacts with the shock-propagation algorithm,
the errors become worse as they are projected upwards through the tower. This is shown
in Figure 6.59. Notice how the penetration depths increase in succeeding frames.

The rippling effect just explained is equivalent to the behavior of the error-correction,
and a possible solution to the problem would be to re-evaluate contact points during
the shock-propagation. This will prevent penetration errors accumulating. Unfortunately,
our current collision detection engine is not easily changed to support this functionality.
Instead, we have compromised with performance and added an extra error-correction
step. This means that the pseudo-code in Figure 6.56 is changed into the version shown
in Figure 6.60.

The final error-correction done in Figure 6.60 has the benefit of quickly distributing
the penetration error to nearby objects. The drawback of this is the performance penalty
in doing a second collision detection query per time-step. The range of objects that
the penetration error is distributed to depends on the number of iterations used in the
iterative LCP solver. In our simulations we have only used 5 iterations.

The rippling effect can also come from making a bad analysis of stack layers. Typically,
what happens is that some stacked configuration falls down due to some other interaction.
Thus, objects at the top-most stack height tumble down, and during their fall they

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 195

(a) 1.2 secs. (b) 1.25 secs. (c) 1.3 secs.

(d) 1.35 secs. (e) 1.4 secs.

Figure 6.58: Rippling effect seen in a 640 brick tower simulation using f = 0.05.

(a) 1.05 secs. (b) 1.1 secs. (c) 1.15 secs.

(d) 1.2 secs. (e) 1.25 secs.

Figure 6.59: Penetration errors causing a rippling effect in a 640 brick tower sim-
ulation using f = 0.05. Penetration depths are drawn as red arrows, multiplied by
a factor of 50 for better visualization.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 196

modified-velocity-based-shock-propagation(f,h)

collision detection at time t

dynamics(f*h)

shock-propagration(dynamics((1-f)*h), error-correction())

collision detection at time t + h

error-correction()

t = t + h

Figure 6.60: Pseudo-code of the modified velocity based shock-propagation algo-
rithm which adds robustness against rippling.

falling box at time t

falling box at time t+1

Fixed object

(a) High speed colliding object penetrate
lower stack layer.

Fixed object

(b) Shock-propagation causes rippling ef-
fect.

Figure 6.61: Rippling effect caused by high speed moving objects, changing their
stack height to a lower layer.

gain speed due to gravity. On their path down, they may hit other objects at lower
stack layers. Due to their high speed and the nature of the explicit time-stepping, deep
penetrations may occur at these lower stack layers. The shock-propagation sees the falling
and penetrating object as being at the same stack layer as the objects it is colliding with.
The error-correction will therefore project all objects at higher stack-layer upwards to
correct the penetration. This projection is then seen as a rippling effect in the simulation.

One way to circumvent the problem may be not to allow the stack height of an
object to decrease during a simulation. Thus, a top-most object continues to be at the
top stack-height, even though it is falling down and colliding with objects at lover stack
layers. We have not tried this solution to the rippling problem and leave this for future

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 197

(a) 1000 balls of various size
falling onto an inclined plane
with engravings.

(b) 250 cows falling into a pile. (c) Roof falling onto tower of 640
bricks, followed by a canon ball
collision.

Figure 6.62: Three test configurations simulated using the modified velocity based
shock-propagation algorithm. Simulation results of these configurations can be seen
in Figure 6.30, Figure 6.38, and Figure 6.72.

work. Notice that an implicit time-stepping method may also be able to solve the problem
since it can see the collision before the penetration occurs. We have not tried this solution
either, because the collision detection engine is not easily changed to re-evaluate generated
contact points which is necessary because the implicit method needs to detect contacts
at time t + ∆t. This is done by using predicted positions at time t + ∆t for generating
contact points. Afterwards, the generated contacts is re-evaluated at time t. We have
not implemented this option in our current collision detection engine. Another solution
would be to built the contact graphs as done in [70]. Their method will not suffer from
the rippling effect we have described here. The collision detection engine we have used
does not allow for easy adaption of the contact graph used in [70].

6.4.6 Results

We have applied the modified velocity based shock-propagation algorithm in Figure 6.60
to the test configurations shown in Figure 6.62 and Figure 6.63.

During simulation we measured the total frame time, and the time used for collision
detection and the total number of generated contact points. Detailed results are shown in
Figure 6.64. Notice the dissimilarity in the two kinds of respective curves. This indicates
that all four configurations really behave differently.

The algorithm we have described for computing the actual time-stepping, i.e. frame
time minus time used on collision detection, should be linear in the number of contact
points. Figure 6.65 shows that this is in fact the case.

For completeness we have also plotted the time spent on collision detection. This is
shown in Figure 6.66. These plots appear to have linear behavior, although in different
directions. We believe that horizontal lines or lines with negative slope is a consequence
of the caching schemes applied to the contact graph edges (see Chapter 5). The piecewise
linear curves with positive slope, is an indication that the broad-phase collision detection
algorithm quickly prunes away unnecessary tests, such that time is only spent on doing
collision detection for objects in close proximity. The scattering of the cow-plot could
indicate that the pruning capability of the sphere-trees could be improved.

It should be noted that the simulation in [70] ranges from 500-1000 objects, and

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 198

(a) 2.0 secs. (b) 2.5 secs. (c) 3.0 secs.

(d) 3.5 secs. (e) 4.0 secs.

Figure 6.63: Massive number of balls falling into a box silo, total number of objects
is 3000.

frame times go from 5 minutes to 7 minutes. Comparing our frame times of similar
sized configurations indicate a speed-up of a few hundred orders. However, there is still
room for improvement in our implementation [113]. We do lose some performance due to
the generality of the framework where-in we have implemented the algorithm shown in
Figure 6.60.

6.5 Sleepy Policy

A sleepy object is an object that does not move, nor does its current state imply that
it intends to move in the immediate future. There are various heuristics for determining
when an object is sleepy, which we will briefly review below. The benefit of a sleepy
policy is seen from the observation that if all objects in intermediate contact with each
other are sleepy then this entire group of objects is non-moving, and there is no need to
compute their motion. Thus, one can save computational resources this way, by simply
doing nothing for sleepy objects.

The most simple heuristic to determine sleepiness is to track the position and orien-
tation of an object [24]. If these are unchanged over a specified number of iterations then
the object can be turned sleepy. This approach is not very successful in practice. Since the
simulation is subject to numerical imprecision, the computed positions and orientations
are rarely exactly the same over succeeding frames, even for non-moving objects. Thus,
the approach necessitates threshold testing. This adds a scale-problem to the simulation,
because large objects might be handled correctly, but small objects of the same scale as
the threshold may be turned sleepy, even though they are moving. Another artifact comes
from really slow moving objects. These could be turned sleepy if their motion is smaller

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 199

Figure 6.64: Total frame times and generated contact points as functions of frame
number.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 200

Figure 6.65: Total time spent on time-stepping as function of the number of contact
points. That is the total frame time minus total time spent on collision detection.

Figure 6.66: Total time spent on collision detection as a function of the number
of contact points. That is to say, the total frame time minus the total time spent
on time-stepping.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 201

than the threshold. The classical example of the last artifact is a ball thrown upwards in
a gravity field. Here, it can be seen that the ball suddenly hangs still in the air, when it
reaches the top of its parabola-trajectory.

Another often used heuristic is to track the linear and angular velocities of an ob-
ject [98, 112]. If the norms of the velocities are below some user specified threshold then
an object can be turned sleepy. The major drawback of this is the need for handling
linear and angular motion separately. The method overcomes the scale-problems of the
position-based approach, but slow moving objects may still be set sleepy. To circum-
vent this problem, many people require that the velocity norms should be lower than a
threshold over a number of succeeding iterations, before an object can be set sleepy. The
number of iterations is usually determined by the order of the integration method, i.e.
the time-stepping method, used to solve the equations of motion. Generally speaking, one
wants more iterations than the order of the integration method.

Note that sometimes the positional approach will fail to set objects to sleepy if the
simulation method uses some projection method for doing error-correction. The velocity-
based approach does not suffer from this drawback.

In [96, 130, 131] the total kinetic energy was used to determine when objects should
be set to sleepy. The genius of this is that a natural kinematic weighting occurs of linear
and rotational motion, combining them into one measure. This differs from previous
approaches which use two threshold tests, one for the norm of the linear velocity and
one for the norm of the angular velocity. Using the kinetic energy allows an end-user
to set a single threshold value, implying that any object with a kinetic energy less than
this threshold is set to sleepy. Thus, the kinetic energy approach overcomes the scale-
problem, and the problem of treating linear and angular motion separately. However,
it may suffer from the problem of slow-moving objects, which necessitates tracking over
several iterations. We will suggest several extensions of the kinetic energy approach. These
are:

• Object dependent threshold values. Kinetic energy is scaled by the inertia/mass
properties of an object, so it makes sense that the absolute threshold test takes this
into account. If not, objects with different mass properties will be treated differently.
We simply scale a user specified threshold by the mass of an object.

• The use of both an absolute and a relative test. That is, we require that the ki-
netic energy of an object to be less than the absolute threshold over a number of
iterations. The number of iterations is determined by the order of the integration
method. The relative test consists of requiring that the total change in kinetic en-
ergy over the same number of iterations is non-decreasing. Only then is an object
set to be sleepy. This means that if an object picks up kinetic energy during sim-
ulation then it will definitely not stay sleepy, even though the increase in kinetic
energy is changing very slowly.

Combined, all these rules work fairly well in practice. In the limiting case of the absolute
threshold going to zero and the number of iterations going to infinity, this heuristic will
always give a correct answer to whether an object is moving or not. In practice however,
it is not usable to have a very low absolute threshold or be tracking to many iterations.
The aim is very quickly to determine sleepy objects, so the simulation method can stop

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 202

(a) 0.02 secs. (b) 0.03 secs. (c) 0.04 secs.

(d) 0.05 secs. (e) 0.06 secs.

Figure 6.67: Box-stack simulation with a low restitution coefficient of 0.1. Blue
objects indicate sleepy objects. Observe that in the fifth frame, i.e. 0.04 seconds, all
objects are sleepy.

simulating groups of sleepy objects. Due to this, the heuristic will sometimes fail for
certain configurations. A good example is the see-saw configuration from Figure 6.33.
Here the plank is moving very slowly, especially at its turn-around points. A future
direction of work may be to incorporate the rate of change in kinetic energy in the sleepy
heuristic to overcome the problems with configurations such as the see-saw.

Although it seems attractive to apply a sleepy policy in the hope of obtaining real-time
simulation, this is not a profitable approach. In real-time applications the user interacts
with the world in a dynamic way, and he may thus put everything in motion. If the real-
time performance relies on a sleepy policy to obtain its performance then the application
will come to a halt, and eventually the user will not use it.

In our opinion, sleepy policies are far better suitable for controlled animations or
off-line simulations such as those used for movie production. Of course, they can be
used in real-time applications such as computer games, but they should not be added
to ensure real-time performance of the computer game. They should be added simply
to save computations in a greedy manner, or allowing for other moving objects in the
configuration to use the computational resources saved by sleepy objects in order to get
a more accurate simulation.

The physical properties and the chosen time-stepping scheme have a great impact on
the effectiveness of the sleepy policy.

As a rule of thumb, the sleepy policy seems to work better for smaller restitution
values than for larger ones. This is seen in Figure 6.67 and Figure 6.68.

The behavior can be understood by an analogy. Think of restitution as an insulation
coefficient of simulation errors. What happens when restitution becomes large is that

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 203

(a) 0.03 secs. (b) 0.04 secs. (c) 0.05 secs.

(d) 0.06 secs. (e) 0.07 secs. (f) 0.08 secs.

(g) 0.09 secs.

Figure 6.68: Box-stack simulation with a medium restitution coefficient of 0.4. Blue
objects indicate sleepy objects. The large coefficient of restitution causes simulation
errors to be propagated between neighboring boxes. It takes 28 frames (not shown)
before all the boxes turn sleepy.

simulation errors in velocities can propagate through the configuration. A water rippling
pattern of sleepy and non-sleepy objects is often seen as the simulation progresses. The
effect can be damped by lowering the restitution. However, this will never solve the
problem.

The problem of flickering sleepy patterns is often caused by the time-stepping scheme
used, or the numerical method for dealing with the constraints, or some combination of
both. In our specific case we use a an iterative LCP solver, which initially causes errors
in the constrained velocities, i.e. the time-stepping method given by

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 204

(a) 0.5 secs. (b) 1 secs. (c) 1.5 secs.

(d) 2 secs. (e) 2.5 secs. (f) 3 secs.

Figure 6.69: Box-stack simulation with high restitution coefficient of 1.0. Blue
objects indicate sleepy objects. Notice that the combination of large restitution and
simulation errors causes the box stack to blow-up.

~b = J
(

~u t + hM−1 ~Fext

)

, (6.79a)

A = JM−1J T , (6.79b)

~λ = lcp
(

A,~b
)

, (6.79c)

~u t+1 = ~u t + M−1J T~λ + hM−1 ~Fext, (6.79d)

~s t+1 = ~s t + h~u t+1, (6.79e)

will have small errors in the constrained velocity ~u t+1. These errors will cause objects
to be colliding in the succeeding time-step. If a large restitution coefficient is used, the
simulation errors are propagated to nearby objects. This is the explanation for the rip-
pling/flicking pattern of sleeping and non-sleeping bodies. Notice that we have slightly
misused the notation in equation (6.79e), since ~s t and ~u t+1 are of different dimensions.

Here, it should be noted that large restitution coefficients can blow up the simulation
for the very same reason. Simulation errors are seen as collisions, so if errors are large
and the restitution coefficient is large, a box stack can almost explode. This is shown in
Figure 6.69.

If we could solve the problem exactly, there would not be any errors, and objects
would quickly fall to sleep. To overcome the problems of the iterative LCP solver, we have
extended the time-stepping to use error-correction by projection and shock-propagation
as described in Section 6.4. To simplify the discussion, here our time stepping method can
be described as taking a time-step weighted by some f -value, where 0 ≤ f ≤ 1, followed
by a shock-propagation weighted by a value of (1 − f).

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 205

(a) 0.02 secs. (b) 0.03 secs. (c) 0.04 secs.

(d) 0.05 secs.

Figure 6.70: Wall simulation with f = 0. Friction was 0.25 and restitution was 0.4.
Simulation time-step was 0.01 seconds. Blue objects indicate sleepy objects. Notice
that all wall bricks are quickly turned sleepy, even the upper left most brick. This
is due to using an over-aggressive sleepy threshold.

Intuitively, the shock-propagation works as a perfect “directional pre-conditioner” for
any stacked configuration. As f goes to zero, it does a better and better job of killing
simulation errors caused by the first time-step. The limiting case of f going to zero, yields
perfect behavior. Objects in large stacks quickly settle into a sleepy state as shown in
Figure 6.70.

Unfortunately, the limiting case of f going to zero has problems with systems not in
equilibrium, as described in Section 6.4.4. Thus, one wants to have f larger than zero.
As f goes to one, the simulation errors are allowed to become more dominant, causing
object velocities to oscillate more and more. Thus, objects have trouble staying sleepy
due to the relative test for the total kinetic energy change to be non-positive. In practice,
it is not difficult to pick a sensible f -value, as shown in Figure 6.71. The major drawback
is of course that this approach adds an element of parameter tuning to one’s simulation.

Figure 6.72 shows results from a more interesting simulation. Notice how objects
change their sleepy state on impact.

An alternative to the parameter tuning is to let the number of iterations used in
the iterative LCP solver become over-wildly large, or simply use a direct LCP solver
instead. Then the simulation errors will nearly vanish and f can be set to one without
any problems.

We have demonstrated the specific nature of the connection between physical prop-
erties and the simulation errors. The interaction is quite complex and it does put some
limits on what values constitute a good simulation result. Clearly, the use of iterative
LCP solvers dominate these aspects. Better methods for solving LCPs or merely iter-

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 206

(a) 0.55 secs. (b) 1.05 secs. (c) 1.55 secs.

(d) 2.05 secs. (e) 2.55 secs.

Figure 6.71: Wall simulation with f = 0.125. The wall contains 200 bricks of
dimension 1m × 1m × 1m. Friction was 0.25 and restitution was 0.4. Simulation
time-step was 0.01 seconds. Blue objects indicate sleepy objects. Notice how internal
bricks of the wall are turned sleepy, whereas the “tooth” along the side of the wall
is non-sleepy, as expected.

(a) 2.5 secs. (b) 3 secs. (c) 3.5 secs.

(d) 4 secs. (e) 4.5 secs. (f) 5 secs.

Figure 6.72: Tower simulation with f = 0.01. The tower contains 640 bricks of
dimension 1.5m × 1m × 1m. Friction was 0.25 and restitution was 0.1. Simulation
time-step was 0.01 seconds. Blue objects indicate sleepy objects. Notice how objects
change their sleepy state on impact.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 207

ative methods with better convergence would eliminate many of the problems we have
addressed both in this section and the previous section.

Chapter 7

Conclusion

This dissertation has presented state-of-the art techniques for building robust, stable, and
versatile multibody dynamics simulators, which can be used in the domain of computer
animation.

We consider the major contribution of this dissertation to be a new practical approach
for constraint based simulation. The main ingredients of this new approach are:

• A velocity based complementarity formulation.

• An iterative LCP solver using no more than 10 iterations.

• Adjustment of friction limits inside the LCP solver.

• A time-stepping scheme based on a weighting of an explicit time-stepping scheme
followed by a shock-propagation step.

• A sleepy policy using both an absolute test and a relative test to determine sleepi-
ness.

• Error correction by kinematic projection (i.e. first order physics).

All of the above fits nicely together, and a constraint based simulation is easily built,
which allows for large time-steps of the order of 0.01 seconds and tolerance towards large
penetration errors.

Shock-propagation has difficulties with feeling the weight of systems initially at rest
but not in equilibrium, and rippling error correction caused by unfortunate stack layer
analysis. The latter problem is related to our specific choice of algorithm for analyzing
stack layers, and has nothing to do with the simulation method itself as explained in
Section 6.4.5.

The first problem, however, is related to the accuracy of the numerical scheme, and a
detailed discussion is given in Section 6.4.4 on how to deal with this problem. It is not an
artifact caused by the time-stepping scheme, but a result of using iterative LCP solvers,
which will yield inaccurate solutions.

In comparison with existing methods in the literature, the new approach for constraint
based simulation is on the order of 100 times faster, and it is based on a mathematically
well-posed model, which guarantees existence of a solution. The existence of a solution

208

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 209

is not guaranteed for impulse-based simulations or acceleration based complementarity
formulations.

Penetrations are dealt with in a consistent manner with the dynamics formulation.
Previously, large time-stepping meant on the order of 0.001 seconds. The simulation
results in this dissertation clearly show that this domain has shifted an order. Today,
large time-stepping is on the order of 0.01 seconds, comparable in size to the frame-rate
of most real-time applications.

Minor contributions in this dissertation are considered to be:

• A general model for scripted bodies allowing animators to set up arbitrary paths in
a simulation.

• A conceptual module design usuable as an educational tool.

• A formal description of contact graphs and several examples of speed-up methods
relying on contact graphs.

• An elaborate presentation of constraint based simulation, and detailed discussions
on difficulties such as time-stepping and error correction.

Finally, we have presented several ideas for further work, some of these include:

• Extending spline driven scripted motion to include rotational motion.

• Improving the stability of the numerics of spline driven scripted motion, when the
derivatives vanish.

• Improving convergence rates of iterative LCP solvers, for instance, by using pre-
conditioning, or using other methods for solving the LCP such as multi-grid solvers.

• More robust contact generation for general geometries.

• Better methods for analyzing stack layers for shock propagation, especially the case
of cyclic dependencies.

7.1 The Future

Presently, we have constraint based simulators that scale linear in the number of contact
points. From a time complexity viewpoint, we cannot do much better, unless we have a
dynamical model that is stated in the object space [124]. Such a model may give hope of
a simulation method that scales linear with the number of objects. Since the number of
objects is most likely going to be less than the number of contact points, we may hope
for a faster approach for large scale simulation. Unfortunately, there does not exist object
space models that include friction.

It is our best estimate that constraint based methods such as the one presented in this
dissertation will be prevalent for a long time. The near future will most likely contain a
lot of studies of applying various numerical schemes to the specific problem of multibody
dynamics. Convergence rate is currently a very hot topic in the middle-ware physics

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 210

industry [107, 89]. The ideas range from splitting methods, pre-conditioning to multi-
grid methods.

Another avenue is to exploit the brute force computational resources of the more
and more powerful emerging graphics processing units (GPUs). 64000 iterations (see
Figure 6.23) on a GPU is really nothing to be worried about. We may even see emerging
specialized computer hardware for physics-based simulation, due to the gaming industry’s
increasing interest in applying physics-based animation. The usage of GPUs will require
a basic change in the GPU hardware to make read-backs from the GPU memory less
costly. However, if the gaming industry keep on trying to go in that direction, it may well
happen. The down-side of this aspect is that console-games probably will dominate, and
the GPU generations currently evolve faster than consoles.

In essence, the future (as the past) will be about doing even larger scale real-time
simulations.

We also feel that the future holds a keen interest for more elaborate friction models
than Coulomb friction. Anisotropic friction, rolling, and spinning friction are missing in
most of today simulators, even the one presented in this dissertation. Such a contribution
to the graphics community will definitely be welcome.

Another aspect of multibody simulation, which we have not treated in this disserta-
tion, is the question of control. We have presented a new tool for combining animated
objects with dynamic simulation. Here, the simulation is used to create secondary motion
in the animation. Techniques for creating primary motion using the multibody dynamic
simulation may be something we will see more of in the future. It is already a hot topic
in the graphics community [120], however current methods are time-consuming and not
something you want to apply real-time in for instance a computer game.

7.2 Seven Rules of Thumb

To summarize the lessons learned during our own work with multibody dynamics sim-
ulation, we will end this dissertation with some rules of thumb for building multibody
dynamics simulators in the hope that these rules will help others to avoid pitfalls:

• Use velocity based complementarity formulations, anything else is right down thought-
less. It is the only dynamical model that is well-posed regardless of the specific con-
figuration you wish to simulate. All other paradigms have flaws in the sense that
they can break or slow down given a particular configuration. It may well be that
your numerical solution adds “noise” to this nice mathematically model, but you
will still benefit from the mathematical nice properties in the end.

• Use error correction by projection. You may as well recognize that penetrations are
a way of life. So instead of trying to get rid of them, accept that they exist and fix
them instead. Don’t use stabilization. It will just add a penalty force element to
your simulator. You are better off without.

• Iterative methods may be very inaccurate, but they definitely provide you with a
performance advantage that is hard to overlook. They are also easy to implement
compared to direct methods, such as Lemke’s Algorithm [109] or Dantzig Pivot-
ing [16]. These will only give you a headache.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 211

• Watch out for bad contact point generation. Most times when your simulations
blow-up, it is due to some special case you have forgotten about in your contact
generation algorithm. Start by making sure your contact generation works in all
cases, or use simple geometries such as spheres and planes, where you really have
to make an effort not to make the contact generation work.

• Get stacking to work. This is the most difficult thing to simulate. All the fancy stuff
with things blowing up or tumbling down is easy. Almost any kind of simulator will
give you good results and performance for such kind of simulations. However stable
stacking is the challenging part. If your simulator can deal with it, it can deal
with anything. Start out by adding friction and building stacks of balls right away.
When these things work, it is childs-play to extend the simulator with more complex
geometries.

• If you want to have high performance, use fixed time-stepping and forget about
anything else. If your model can not handle fixed time-stepping, you may have the
wrong model, or you did not read the first rule of thumb.

• Finally, keep in mind that you are working on a numerical model of a mathematical
model that describes a physical model, which is a limited approximation of the
real-world1. Thus, when you see something unexpected in your simulations it may
be one of two things besides an implementation error: either you do not understand
your numerical model, and it returns the correct results you asked it about, or your
understanding or intuition of the real world is wrong. The solution to the first case
is to remodel your model, so it returns what you expect. The second case is not a
problem, but is due to your own lack of knowledge about the real-world.

1Notice that your simulator is a third generation model of the real world, each generation loses some
detail about the real world.

Bibliography

[1] comp.graphics.algorithms. Newsgroup.

[2] Rigid Body Simulation Course 2002. Department of Computer Science, University
of Copenhagen, course no. 178, http://www.diku.dk/undervisning/2002e/178.

[3] 3DFacto. Visual Configuration Software Provider. http://www.3dfacto.com/.

[4] M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body contact prob-
lems with friction as solvable linear complementary problems. Nonlinear Dynamics,
14:231–247, 1997.

[5] M. Anitescu and F.A. Potra. A time-stepping method for stiff multibody dynamics
with contact and friction. International J. Numer. Methods Engineering, 55(7):753–
784, 2002.

[6] Mihai Anitescu, James F. Cremer, and Florian A. Potra. Formulating 3d contact
dynamics problems. Reports on Computational Mathematics No 80/1995, Depart-
ment of Mathematics, The University of Iowa, 1995.

[7] Mihai Anitescu, James F. Cremer, and Florian A. Potra. Properties of complemen-
tary formulations for contact problems with friction. Reports on Computational
Mathematics No 83/1995, Department of Mathematics, The University of Iowa,
1995.

[8] Mihai Anitescu and Florian A. Potra. Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementary problems. Reports on
Computational Mathematics No 93/1996, Department of Mathematics, The Uni-
versity of Iowa, 1996.

[9] Mihai Anitescu, Florian A. Potra, and David E. Stewart. Time-stepping for three-
dimensional rigid body dynamics. Comp. Methods Appl. Mech. Engineering, 1998.

[10] William W. Armstrong and Mark W. Green. The dynamics of articulated rigid
bodies for purposes of animation. The Visual Computer, 1(4):231–240, 1985.

[11] David Baraff. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. Computer Graphics, 23(3):223–232, 1989.

[12] David Baraff. Curved surfaces and coherence for non-penetrating rigid body simu-
lation. Computer Graphics, 24(4):19–28, 1990.

212

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 213

[13] David Baraff. Coping with friction for non-penetrating rigid body simulation. Com-
puter Graphics, 25(4):31–40, 1991.

[14] David Baraff. Dynamic simulation of non-penetrating Rigid Bodies. PhD thesis,
Cornell University, 1992.

[15] David Baraff. Non-penetrating rigid body simulation. State of the Art Reports of
EUROGRAPHICS’93, Eurographics Technical Report Series, 1993.

[16] David Baraff. Fast contact force computation for nonpenetrating rigid bodies.
Computer Graphics, 28(Annual Conference Series):23–34, 1994.

[17] David Baraff. Interactive simulation of solid rigid bodies. IEEE Computer Graphics
and Applications, 15(3):63–75, May 1995.

[18] David Baraff. Physical based modeling: Rigid body simulation. ONLINE SIG-
GRAPH 2001 COURSE NOTES, Pixar Animation Studios, 2001. http://www-2.
cs.cmu.edu/~baraff/sigcourse/.

[19] David Baraff, Andrew Witkin, John Anderson, and Michael Kass. Physically based
modeling. Siggraph Course Notes, 2003.

[20] David Baraff, Andrew Witkin, and Michael Kass. Untangling cloth. ACM Trans-
actions on Graphics, 22(3):862–870, 2003.

[21] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.
http://www.netlib.org/templates/Templates.html.

[22] B.A. Barsky, N. Badler, and D. Zeltzer, editors. Making Them Move: Mechanics
Control and Animation of Articulated Figures. The Morgan Kaufmann Series in
Computer Graphics and Geometric Modeling. Morgan Kaufman Publishers, 1991.

[23] R. Barzel and A.H. Barr. A modeling system based on dynamic constraints. In
Computer Graphics, volume 22, pages 179–187, 1988.

[24] Ronen Barzel. Physically-based Modelling for Computer Graphics, a structured
approach. Academic Press, 1992.

[25] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plausible motion simulation
for computer graphics animation. In Proceedings of the Eurographics Workshop,
Computer Animation and Simulation, pages 183–197, 1996.

[26] William J. Bouma and George Vaněček, Jr. Modeling contacts in a physically based
simulation. In SMA ’93: Proceedings of the Second Symposium on Solid Modeling
and Applications, pages 409–418, 1993.

[27] Gareth Bradshaw and Carol O’Sullivan. Adaptive medial-axis approximation for
sphere-tree construction. ACM Transactions on Graphics, 23(1), January 2004.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 214

[28] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact
and friction for cloth animation. Proceedings of ACM SIGGRAPH, 21(3):594–603,
2002.

[29] M. Buck and E. Schömer. Interactive rigid body manipulation with obstacle con-
tacts. Journal of Visualization and Computer Animation, 9:243–257, 1998.

[30] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks/Cole Pub-
lishing Company, 6th edition, 1997.

[31] S. Cameron. Collision detection by four–dimensional intersection testing. IEEE
Transaction on Robotics and Automation, 6(3):291–302, 1990.

[32] Stephen Cameron. Enhancing GJK: computing minimum and penetration distances
between convex polyhedra. Int. Conf. Robotics & Automation, April 1997.

[33] S.L. Campbell, L.R. Petzold, and K.E. Brenan. Numerical Solution of Initial-
Value Problems in Differential Algebraic Equations, volume 14 of Classics in Applied
Mathematics. Society for Industrial & Applied Mathematics, 1996.

[34] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Trans. Graph., 23(3):377–384, 2004.

[35] Anindya Chatterjee and Andy Ruina. A new algebraic rigid body collision law
based on impulse space considerations. Journal of Applied Mechanics, 1998.

[36] M. B. Cline and D. K. Pai. Post-stabilization for rigid body simulation with contact
and constraints. In Proceedings of the IEEE Intl. Conf. on Robotics and Autom.,
2003.

[37] J. D. Cohen, M. K. Ponamgi, D. Manocha, and M. C. Lin. Interactive and ex-
act collision detection for large-scaled enviroments. Technical Report TR94-005,
Department of Computer Science, University of N. Carolina, Chapel Hill, 1994.
http://www.cs.unc.edu/ dm/collision.html.

[38] Murilo G. Coutinho. Dynamic Simulations of Multibody Systems. Springer-Verlag,
2001.

[39] John J. Craig. Introduction to Robotics, mechanics and control. Addision-Wesley
Publishing Company, Inc, 2nd edition, 1986.

[40] M. Damsgaard. Analysis of Rigid and Flexible Multibody Systems using Object-
Oriented Programming. PhD thesis, Institute of Mechanical Engineering Aalborg
University, September 1999. Special Report No. 41.

[41] John Dingliana and Carol O’Sullivan. Graceful degradation of collision handling in
physically based animation. Computer Graphics Forum, 19(3), 2000.

[42] David Eberly. Intersection of objects with linear and angular velocities using ori-
ented bounding boxes. Online Paper. Magic Software, Inc. http://www.magic-
software.com.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 215

[43] Stephan A. Ehmann and Ming C. Lin. Accurate and fast proximity queries between
polyhedra using convex surface decomposition. In A. Chalmers and T.-M. Rhyne,
editors, EG 2001 Proceedings, volume 20(3), pages 500–510. Blackwell Publishing,
2001.

[44] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and render-
ing of complex water surfaces. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 736–744. ACM Press, 2002.

[45] Kenny Erleben. En introducerende lærebog i dynamisk simulation af stive legemer.
Master’s thesis, Department of Computer Science, University of Copenhagen, May
2001. number 00-09-1, ftp://ftp.diku.dk/diku/image/erleben.00-09-01.pdf.

[46] Kenny Erleben. An introduction to approximating heterogeneous bounding volume
hierarchies. Technical Report DIKU 02/04, Department of Computer Science, Uni-
versity of Copenhagen, 2002. http://www.diku.dk/publikationer/tekniske.

rapporter/2002/02-04.pdf.

[47] Kenny Erleben. A simple plane patcher algorithm. (submitted to journal), 2003.

[48] Kenny Erleben. Contact graphs in multibody dynamics simulation. Technical
Report DIKU 04/06, Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark, May 2004. http://www.

diku.dk/publikationer/tekniske.rapporter/2004/04-06.pdf.

[49] Kenny Erleben and Henrik Dohlmann. Contact graphs in multibody dynamics
simulation. In Brian Elmegaard, Jon Sporring, Kenny Erleben, and Kim Sørensen,
editors, SIMS 2004, pages 307–314, September 2004.

[50] Kenny Erleben and Henrik Dohlmann. The thin shell tetrahedral mesh. In Søren In-
gvor Olsen, editor, DSAGM 2004, pages 94–102, August, 2004.

[51] Kenny Erleben, Henrik Dohlmann, and Jon Sporring. The adaptive thin shell
tetrahedral mesh. (Submitted to Conference), 2004.

[52] Kenny Erleben and Knud Henriksen. B-splines. Technical Report DIKU
02/17, Department of Computer Science, University of Copenhagen, Univer-
sitetsparken 1, DK-2100 Copenhagen, Denmark, August 2002. http://www.diku.
dk/publikationer/tekniske.rapporter/2002/02-17.pdf.

[53] Kenny Erleben and Knud Henriksen. Scripted bodies and spline-driven animation.
Technical Report DIKU 02/18, Department of Computer Science, University of
Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark, August 2002.
http://www.diku.dk/publikationer/tekniske.rapporter/2002/02-18.pdf.

[54] Kenny Erleben and Knud Henriksen. Scripted bodies and spline-driven animation.
In Jeff Lander, editor, Graphics Programming Methods, chapter 1.4, pages 37–50.
Charles River Media, Inc., 2003.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 216

[55] Kenny Erleben and Jon Sporring. Collision detection of deformable volumetric
meshes. In Jeff Landers, editor, Graphics Programming Methods, chapter 1.5, pages
51–68. Charles River Media, 2003.

[56] Kenny Erleben and Jon Sporring. Review of a general modular based design for
rigid body simulators. (unpublished paper), 2003.

[57] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically valid
human motion. ACM Transactions on Graphics (TOG), 22(3):417–426, 2003.

[58] Raanan Fattal and Dani Lischinski. Target-driven smoke animation. ACM Trans.
Graph., 23(3):441–448, 2004.

[59] Roy Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers, sec-
ond printing edition, 1998.

[60] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke.
In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages
15–22. ACM Press / ACM SIGGRAPH, 2001.

[61] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Animating suspended
particle explosions. ACM Trans. Graph., 22(3):708–715, 2003.

[62] Nick Foster and Ronald Fedkiw. Practical animations of liquids. In Eugene Fiume,
editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 23–30. ACM Press
/ ACM SIGGRAPH, 2001.

[63] Ollie Frank and Johnson Thomas. Illusion of Life: Disney Animation. Hyperion
Press, 1995.

[64] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. A method for
animating viscoelastic fluids. ACM Trans. Graph., 23(3):463–468, 2004.

[65] Herbert Goldstein, Charles P. Poole, Charles P. Jr. Poole, and John L. Safko. Clas-
sical Mechanics. Prentice Hall, 3rd edition, January 2002.

[66] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical struc-
ture for rapid interference detection. Computer Graphics, 30(Annual Conference
Series):171–180, 1996.

[67] Stefan Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD thesis,
Department of Computer Science, University of N. Carolina, Chapel Hill, 2000.

[68] N.K. Govindaraju, S. Redon, M.C. Lin, and D. Manocha. Cullide : Interactive
collision detection between complex models in large environments using graphics
hardware. ACM SIGGRAPH/Eurographics Graphics Hardware, 2003.

[69] Jens Gravesen. The length of bezier curves. Graphics Gems V, pages 199–205,
1995.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 217

[70] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with stacking.
ACM Transaction on Graphics, Proceedings of ACM SIGGRAPH, 2003.

[71] J. K. Hahn. Realistic animation of rigid bodies. In Computer Graphics, volume 22,
pages 299–308, 1988.

[72] Gary D. Hart and Mihai Anitescu. A hard-constraint time-stepping approach for
rigid multibody dynamics with joints, contact, and friction. In Proceedings of the
2003 conference on Diversity in computing, pages 34–41. ACM Press, 2003.

[73] D. H. House and D. Breen, editors. Cloth Modeling and Animation. A K Peters,
2000.

[74] P. Hubbard. Real-time collision detection and time-critical computing. Proc. 1 st
Workshop on Simulation and Interaction in Virtual Environments, July 1995.

[75] P. M. Hubbard. Interactive collision detection. In Proceedings of the IEEE Sympo-
sium on Research Frontiers in Virtual Reality, pages 24–32, 1993.

[76] Philip M. Hubbard. Collision detection for interactive graphics applications. IEEE
Transactions on Visualization and Computer Graphics, 1(3):218–230, 1995.

[77] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical colli-
sion detection. ACM Transactions on Graphics, 15(3):179–210, 1996.

[78] John Hughes and Ronen Barzel. Siggraph 2003 course, plausible simulation. SIG-
GRAPH 2003 Conference Select CD-ROM and ”Full Conference DVD, 2003.

[79] Thomas Jakobsen. IO Interactive. Personal Communication.

[80] Jeppe Johansen. Senior Researcher, M.Sc.Eng., Ph.D, Wind Energy Department,
Risøe National Laboratory. Personal Communication.

[81] A. Joukhadar, A. Scheuer, and Ch. Laugier. Fast contact detection between moving
deformable polyhedra. In IEEE-RSJ Int. Conference on Intelligent Robots and
Systems, Vol. 3, pages 1810–1815, Kyongju (KR), October 1999.

[82] Karma. Middleware Physics Software Provider. MathEngine Karma,
http://www.mathengine.com/karma/.

[83] Y.J. Kim, M.C. Lin, and D. Manocha. Deep: Dual-space expansion for estimating
penetration depth between convex polytopes. IEEE International Conference on
Robotics and Automation, May 2002.

[84] Y.J. Kim, M.C. Lin, and D. Manocha. Incremental penetration depth estimation
between convex polytopes using dual-space expansion. IEEE Transactions on Vi-
sualization and Computer Graphics, 2003.

[85] D. Kleppner and R. J. Kolenkow. An Introduction to mechanics. McGraw-Hill
Book Co., international edition, 1978.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 218

[86] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient col-
lision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36, /1998.

[87] P. R. Kraus and V. Kumar. Compliant contact models for rigid body collisions. In
IEEE International Conference on Robotics and Automation, Albuquerque, 1997.

[88] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell: A higher
order bounding volume for fast proximity queries. In Proc. of Third International
Workshop on Algorithmic Foundations of Robotics, pages 122–136, 1998.

[89] Claude Lacoursiere. Splitting methods for dry frictional contact problems in rigid
multibody systems: Preliminary performance results. In Mark Ollila, editor, The
Annual SIGRAD Conference, number 10 in Linkøping Electronic Conference Pro-
ceedings, November 2003.

[90] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, Department of
Computer Science, University of N. Carolina, Chapel Hill, 1999.

[91] John Lasseter. Principles of traditional animation applied to 3d computer ani-
mation. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 35–44. ACM Press, 1987.

[92] C. Lennerz, E. Schömer, and T. Warken. A framework for collision detection and
response. 11th European Simulation Symposium, pages 309–314, 1999.

[93] Kristoffer Møllerhøj. Simulering af rigid-body systemer med coulomb friktion ved
brug af en implicit tidsskridts metode. Master’s thesis, Department of Computer
Science, University of Copenhagen (DIKU), February 2004. NO. 03-04-17.

[94] P. Löstedt. Mecahnical systems of rigid bodies subject to unilateral constraints.
SIAM Journal of Applied Mathermatics, 42(2):281–296, 1982.

[95] Antoine McNamara, Adrien Treuille, Zoran Popovic, and Jos Stam. Keyframe
control of smoke simulations. Proceedings of SIGGRAPH 2003, 2003.

[96] Victor J. Milenkovic and Harald Schmidl. Optimization-based animation. SIG-
GRAPH Conference, 2001.

[97] V.J. Milenkovic. Rotational polygon overlap minimization and compaction. Com-
putational Geometry. Theory and Applications, 10(4):305–318, 1998.

[98] Brian Mirtich. Hybrid simulation: Combining constraints and impulses. Proceedings
of First Workshop on Simulation and Interaction in Virtual Environments, July
1995.

[99] Brian. Mirtich. Hybrid simulation: combining constraints and impulses. Tech. rep.,
Department of Computer Science, University of California, Berkeley., 1996.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 219

[100] Brian Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD
thesis, University of California, Berkeley, December 1996.

[101] Brian Mirtich. Rigid body contact: Collision detection to force computation. Tech-
nical Report TR-98-01, MERL, March 1998.

[102] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM Trans-
actions on Graphics, 17(3):177–208, July 1998.

[103] Brian Mirtich. Timewarp rigid body simulation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 193–200. ACM
Press/Addison-Wesley Publishing Co., 2000.

[104] Brian Mirtich and John F. Canny. Impulse-based simulation of rigid bodies. In
Symposium on Interactive 3D Graphics, pages 181–188, 217, 1995.

[105] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for chang-
ing mesh topology during simulation. ACM Trans. Graph., 23(3):385–392, 2004.

[106] M. Moore and J. Wilhelms. Collision detection and response for computer anima-
tion. In Computer Graphics, volume 22, pages 289–298, 1988.

[107] Adam Moravanszky. A path to practical rigid body dynamics. Talk at the Annual
CISP Workshop in Copenhagen, May 2004.

[108] Adam Moravanszky and Pierre Terdiman. Game Programming Gems 4, chapter
Fast Contact Reduction for Dynamics Simulation, pages 253–264. Charles River
Media, March 2004.

[109] Katta G. Murty. Linear Complementarity, Linear and Nonlinear Program-
ming. Helderman-Verlag, 1988. This book is now available for down-
load. http://ioe.engin.umich.edu/people/fac/books/murty/linear_

complementarity_webbook/.

[110] Åke Nordlund. Associate Professor, Niels Bohr Institute, University of Copenhagen.
Personal Communication.

[111] NovodeX. Middle-ware Physics Software Provider. NovodeX Physics SDK v2,
http://www.novodex.com/.

[112] ODE. Opensource Project, Multibody Dynamics Software. Open Dynamics Engine.

[113] OpenTissue. Opensource Project, Physical based Animation and Surgery Simula-
tion. http://www.opentissue.org.

[114] C. O’Sullivan and J. Dingliana. Real-time collision detection and response using
sphere-trees. pages 83–92, 1999.

[115] Path. PATH CPNET Software, http://www.cs.wisc.edu/cpnet/cpnetsoftware/.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 220

[116] Camilla Pedersen, Kenny Erleben, and Jon Sporring. Ballet balance strategies. In
Brian Elmegaard, Jon Sporring, Kenny Erleben, and Kim Sørensen, editors, SIMS
2004, pages 323–330, September 2004.

[117] F. Pfeiffer and M. Wösle. Dynamics of multibody systems containing dependent
unilateral constraints with friction. Journal of Vibration and Control, 2:161–192,
1996.

[118] J.C. Platt and A.H. Barr. Constraint methods for flexible bodies. In Computer
Graphics, volume 22, pages 279–288, 1988.

[119] Jovan Popovic, Steven M. Seitz, and Michael Erdmann. Motion sketching for control
of rigid-body simulations. ACM Transactions on Graphics, 22(4):1034–1054, 2003.

[120] Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew
Witkin. Interactive manipulation of rigid body simulations. Proceedings of SIG-
GRAPH 2000, pages 209–218, July 2000. ISBN 1-58113-208-5.

[121] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw. Smoke simulation for large
scale phenomena. In John Hart, editor, ACM SIGGRAPH Transactions on Graph-
ics, volume 22, July 2003.

[122] Stephane Redon. Continuous collision detection for rigid and articulated bodies.
To appear in ACM SIGGRAPH Course Notes, 2004, 2004.

[123] Stephane Redon. Fast continuous collision detection and handling for desktop
virtual prototyping. Virtual Reality Journal, 2004. Accepted for publication.

[124] Stephane Redon, Abderrahmane Kheddar, and Sabine Coquillart. Gauss least con-
straints principle and rigid body simulations. In Proceedings of IEEE International
Conference on Robotics and Automation, 2003.

[125] Stephane Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha. Fast continuous
collision detection for articulated models. Proceedings of ACM Symposium on Solid
Modeling and Applications, 2004. To appear.

[126] Stephane Redon, Young J. Kim, Ming C. Lin, Dinesh Manocha, and Jim Temple-
man. Interactive and continuous collision detection for avatars in virtual environ-
ments. IEEE International Conference on Virtual RealityProceedings, 2004.

[127] Anne Mette K. Sœrensen. Director, Research Department, Danish Meteorological
Institute. Personal Communication.

[128] Sten Rettrup. Associate Professor, Department of Chemistry, University of Copen-
hagen. Personal Communication.

[129] J. Sauer and E. Schömer. A constraint-based approach to rigid body dynamics
for virtual reality applications. ACM Symposium on Virtual Reality Software and
Technology, pages 153–161, 1998.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 221

[130] Harald Schmidl. Optimization-based animation. PhD thesis, Univeristy of Miami,
May 2002.

[131] Harald Schmidl and Victor J. Milenkovic. A fast impulsive contact suite for rigid
body simulation. IEEE Transactions on Visualization and Computer Graphics,
10(2):189–197, 2004.

[132] Jonathan R Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. Technical report, 1994.

[133] Kerawit Somchaipeng, Kenny Erleben, and Jon Sporring. A multi-scale singu-
larity bounding volume hierarchy. Technical Report DIKU-04/08, Department
of Computer Science, University of Copenhagen, 2004. http://www.diku.dk/

publikationer/tekniske.rapporter/2004/04-08.pdf.

[134] Kerawit Somchaipeng, Kenny Erleben, and Jon Sporring. A multi-scale singularity
bounding volume hierarchy. (Submitted to Conference), 2004.

[135] Peng Song, Jong-Shi Pang, and Vijay Kumar. A semi-implicit time-stepping model
for frictional compliant contact problems. Submitted to International Journal of
Numerical Methods for Engineering. Avaible at http://www.mts.jhu.edu/~pang/
dcm_kps.pdf, May 2003.

[136] Abderrahmane Kheddar Stephane Redon and Sabine Coquillart. Fast continuous
collision detection between rigid bodies. Computer Graphics Forum (Eurographics
2002 Proceedings), 21(3), 2002.

[137] David Stewart. Convergence rate of iterative LCP solvers. Personal Communica-
tion, October 2004.

[138] David E. Stewart. Rigid-body dynamics with friction and impact. SIAM Review,
42(1):3–39, 2000.

[139] D.E. Stewart and J.C. Trinkle. Dynamics, friction, and complementarity problems.
In International Conference on Complementarity Problems, Nov 1995.

[140] D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and coulomb friction. International Journal of
Numerical Methods in Engineering, 1996.

[141] D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body
dynamics with coulomb friction. IEEE International Conference on Robotics and
Automation, pages 162–169, 2000.

[142] K. Sundaraj and C. Laugier. Fast contact localisation of moving deformable poly-
hedras. In IEEE Int. Conference on Control, Automation, Robotics and Vision,
Singapore (SG), December 2000.

Erleben: “Stable, Robust, and Versatile Multibody Dynamics Animation” 222

[143] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. Finite volume methods
for the simulation of skeletal muscle. In D. Breen and M. Lin, editors, ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), pages 68–74,
2003.

[144] D. Terzopoulos, J.C. Platt, A.H. Barr, and K. Fleischer. Elastic deformable models.
In Computer Graphics, volume 21, pages 205–214, 1987.

[145] Jeff Trinkle, Jong-Shi Pang, Sandra Sudarsky, and Grace Lo. On dynamic multi-
rigid-body contact problems with coulomb friction. Technical Report TR95-003,
Texas A&M University, Department of Computer Science., 3, 1995.

[146] Jeff C. Trinkle, James Tzitzoutis, and Jong-Shi Pang. Dynamic multi-rigid-body
systems with concurrent distributed contacts: Theory and examples. Philosophical
Trans. on Mathematical, Physical, and Engineering Sciences, 359(1789):2575–2593,
December 2001.

[147] G. van den Bergen. Proximity queries and penetration depth computation on 3d
game objects. Game Developers Conference, 2001.

[148] Gino van den Bergen. A fast and robust GJK implementation for collision detection
of convex objects. Journal of Graphics Tools: JGT, 4(2):7–25, 1999.

[149] Brian Vinter. Associate Professor, Department of Mathematics and Computer
Science, University of Odense. Personal Communication.

[150] CMLabs vortex. Phsycis Simulation Software. http://www.cm-
labs.com/products/vortex/.

[151] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, LNCS. Springer, 1991.

[152] Jane Wilhelms and Allen Van Gelder. Fast and easy reach-cone joint limits. Journal
of graphics tools, 6(2):27–41, 2001.

[153] Andrew Witkin and Michael Kass. Spacetime constraints. ACM SIGGRAPH,
Computer Graphics, 22(4):159–168, 1988.

[154] M. Wösle and F. Pfeiffer. Dynamics of multibody systems with unilateral con-
straints. International Journal of Bifurcation and Chaos, 9(3):473–478, 1999.

[155] G. Zachmann. Rapid collision detection by dynamically aligned dop-trees. In Proc.
of IEEE, VRAIS’98, Atlanta, March 1998.

[156] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: The Basis, vol-
ume 1. Butterworth-Heinemann, 5th edition, 2000.

