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Abstract

Tetrahedral meshes are often used for simulation of deformable ob-
jects. Unlike engineering disciplines graphics is biased towards sta-
ble, robust and fast methods, instead of accuracy. In that spirit we
present in this paper an approach for building a thin inward shell
of the surface of an object. The goal is to device a simple and fast
algorithm yet capable of building a topologically sound tetrahedral
mesh. The tetrahedral mesh can be used with several different sim-
ulation methods, such as the finite element method (FEM).

The main contribution of this paper is a novel tetrahedral mesh
generation method, based on surface extrusion and prism tessela-
tion.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: Tetrahedral Mesh, Erosion, Extrusion, Tesselation,
Shell, Prism

1 Introduction

Given a 3D polygonal model created by a 3D artist, it is often a
challenge to create a spatial structure for simulating a deformable
object. Besides, polygonal models for visual pleasing pictures tends
to be highly tessellated. Thus, even if they do not pose any “errors”,
creating a tetrahedral mesh directly from the polygonal model,
tends to create an enormous amount of tetrahedra. To achievereal
time performance, one seeks a more coarse tetrahedral mesh.These
are the kind of problems we aim to solve in this paper.

Given a twofold boundary representation of an object, as a con-
nected triangular mesh (a watertight surface), the tetrahedral mesh
is build by extruding each triangle inward, that is in opposite di-
rection of the triangle normal. Thus, for each triangle a prism
is generated. The result is a volumetric mesh consisting of con-
nected prisms. These prisms can now be tessellated into tetrahedra,
thereby creating the first layer of the thin shell tetrahedral mesh.
Succeeding layers can be created by recursively applying this ap-
proach. Figure 1 illustrates the basic idea. Although the overall idea
is simple, the approach is not without problems. Polygonal models
are seldom twofold, but suffers from all kind of degeneracies. The
idea we have illustrated is obviously capable of handling anopen
boundary, but cases where edges share more than two neighboring
faces, or self-loop edges, are clearly unwanted, since the generated
prisms will overlap each other or degenerate into a zero-volume
prism.

The prism generation is reminiscent of an erosion operationwith
a spherical strutural element (mathematical morphology).The ra-
dius of the sphere corresponds to the extrusion length. It iswell
known that working directly on the Brep [Sethian 1999] is fast
and simple, but topological problems arises easily, such asswallow
tails.

In case the given triangle mesh is not a proper mesh, one can
apply a mesh reconstruction algorithm [Nooruddin and Turk 2003].
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Figure 1: The basic algorithm for generating a thin tetrahedral shell
from a boundary representation.

We will require the following properties of the prisms making up
a thin shell layer

• No two prisms must be intersecting each other (Neighbors are
allowed to touch each other at their common faces).

• No prism must collapse to zero volume or be turned inside out
(equivalent to signed volume is always positive).

• All prisms must be convex

Unfortunately, even if we are given a perfect connected twofold
triangle mesh, we can get into trouble if we make the inward extru-
sion too big. This is illustrated in Figure 2. Here, the largeextrusion
length causes prismsB andC to become non-convex. Furthermore,
A andD, B andD, C andA, andB andC are overlapping. Fortu-
nately, these degenerate and unwanted prisms can be avoidedif the
extrusion were made smaller. Thus, we seek an upper bound on
how far we can extrude the triangle faces inward, without causing
degenerate prisms.

A publicly available implementation of the described algorithm
can be found in [OpenTissue 2004].

Existing tetrahedral mesh generation methods create an initial,
blockified tetrahedral mesh from a voxelization or signed distance
map. Afterwards, nodes are iteratively repositioned, while sub-
sampling tetrahedra to improve mesh quality [Müller and Teschner
2003; Persson and Strang 2004; Molino et al. 2004]. Our approach
differs mainly from these in being surface-based.
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Figure 2: Degenerate prisms results from a too big inward extru-
sion.

2 Inward Extrusion

As a preprocessing step, we compute the pseudo normals for all ver-
tices (the angle-weighted normals [Aanæs and Bærentzen 2003]).
These will indicate the direction along which a vertex will be ex-
truded.

Given a triangle consisting of three vertices~p1, ~p2 and~p3, with
angle weighted normals~n1,~n2 and~n3, the inward extruded prism is
defined by the six corner points:

~p1

~p2

~p3

~q1(ε) = ~p1−~n1ε
~q2(ε) = ~p2−~n2ε
~q3(ε) = ~p3−~n3ε.

The extrusion length is given byε > 0. Notation is illustrated in
Figure 3. By requiringε to be strictly positive, all generated prisms
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Figure 3: The six corner points defining a prism, and pseudo nor-
mals yielding extrusion directions.

must have non-zero volume, as long as prism is not turned inside
out. We therefore seek a robust way to determine an upper bound
on ε, such that all generated prisms will be valid.

The direction of the normal of the extruded face,~nq, can be found
from~q1,~q2, and~q3, using the cross-product:

~nq(ε) = (~q2(ε)−~q1(ε))× (~q3(ε)−~q1(ε)) .

This is a second order polynomial inε,

~nq(ε) = (~q2(ε)−~q1(ε))× (~q3(ε)−~q1(ε))

= ((~p2−~n2ε)− (~p1−~n1ε))× ((~p3−~n3ε)− (~p1−~n1ε))

= ((~p2−~p1)+(~n1−~n2)ε)× ((~p3−~p1)+(~n1−~n3)ε)

= ((~p2−~p1)× (~p3−~p1))
︸ ︷︷ ︸

~c

+

((~p2−~p1)× (~n1−~n3)+(~n1−~n2)× (~p3−~p1))
︸ ︷︷ ︸

~b

ε+

((~n1−~n2)× (~n1−~n3))
︸ ︷︷ ︸

~a

ε2

=~aε2 +~bε +~c.

Observe that~c 6=~0, since its magnitude is equal to twice the area of
the triangle being extruded.

To ensure convexity, the dot product of the direction of the nor-
mal of the extruded face,~nq, with the pseudo normals,~n1, ~n2, and
~n3, must always be positive. That is

~n1 ·~nq(ε) > 0

~n2 ·~nq(ε) > 0

~n3 ·~nq(ε) > 0.

This yields the following system of constraints,





~n1 ·~a ~n1 ·~b ~n1 ·~c
~n2 ·~a ~n2 ·~b ~n2 ·~c
~n3 ·~a ~n3 ·~b ~n3 ·~c









ε2

ε
1



 > 0.

We solve for the smallest positiveε fulfilling the system of con-
straints. That is, each row represents the coefficient of a second
order polynomial inε, thus for each row we find the two roots of
the corresponding polynomial. The three rows yields a totalof 6
roots. If no positive root exist, thenε = ∞, otherwiseε is set equal
to the smallest positive root.

Observe that the third column of the coefficient matrix is always
positive (by the property of the angle weighted normals). The first
column can be interpreted as an indication of, whether the cor-
responding extrusion line is trying to “shrink” (< 0) or “enlarge”
(> 0) the extruded face. The middle column is difficult to interpre-
tate. As far as we can tell it resembles an indication of the skewness
of the resulting prism.

In fact, the tree convexity constraints ensure that no neighboring
prism will intersect each other, nor will the prism turn its inside out
(ie. flipping the extruded face opposite the original face).

The maximum extrusion length for the entire layer can be found
by iterating over each prism. For thei’th prism the extrusion length
ε i is computed. The maximum extrusion length of the layer is found
as

ε = min
(

ε0, . . . ,εn−1
)

.

Afterwards, it is a simple matter to compute the actual extrusion
and generating the prisms.



3 Prism Generation

The technique in the previous section guarantee that prismswill
be convex, and that no intersections occurs between neighboring
prisms. However, degenerate prisms can still occur whenever the
extruded face collapses to a line or to a point. These are shown in
Figure 4. These degenerate cases must be marked, such that the fol-
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Figure 4: Point-degenerate and line-degenerate prisms.

lowing tessellation can take them into consideration. The problem
is how to detect these degenerate cases. If no upper bound were
found on the extrusion length for a prism, we can trivially reject the
prism. However, if an upper extrusion bound were computed, the
prism might degenerate. As a first step in marking the degenerate
prisms, we iterate over all those prisms where an upper boundwere
computed. If the computed upper bound for a prism is equal to the
extrusion length, then it might be a degenerate prism. For each of
these possible degenerate prisms we first test whether

||~nq(ε)|| ≤ γ ,

whereγ is a user specified threshold to counter numerical precision
problems. If this criteria is fulfilled, we clearly know thatwe are
dealing with a degenerate prism.

The degenerate prisms can be classified as either point-
degenerate or line-degenerate, as shown in Figure 4. The line-
degenerate case is given by the criteria

(~q2(ε)−~q1(ε)) 6=~0 or (~q3(ε)−~q1(ε)) 6=~0.

If this criteria is not fulfilled we have a point-degenerate case. A
pseudo code version of the algorithm is shown in Figure 5. The
degenerate cases do not only influence the prism tessellation (which
we will treat in the next section). If another thin shell layer is to be
generated, then the original mesh faces can no longer be used. A
simple 2D case is shown in Figure 6. Notice that the bold red faces
were used when creating layer 0, but they vanish when layer 1 is
created. Therefore, if another layer should be generated, anew
connected triangular mesh must be formed from the extruded faces
of the non-degenerate prisms.

In Figure 7 the surface mesh generation algorithm is shown in
pseudo code.

algorithm markDegeneratePrism(ε ,γ)
for each prism p do

if ε p = ε then

if ||~nq(ε)|| ≤ γ then

if (~q2(ε)−~q1(ε)) 6=~0
or (~q3(ε)−~q1(ε)) 6=~0 then

mark p as line-degenerate

else

mark p as point-degenerate

end if

end if

next p
End algorithm

Figure 5: Pseudo code for marking degenerate prisms.
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Figure 6: Degenerate cases affect succeeding layers.

4 Prism Tessellation

For non-degenerate prisms, having 6 corners, the minimum number
of tetrahedra we can tesselate the prism into, is 3. This is shown in
Figure 8. The problem with this approach is that the extrudedsides
of the prism will be triangulated. One therefore has to ensure, that
the tessellation of neighboring prisms agree with each other. This
is illustrated in Figure 9. As seen in Figure 9 it becomes a global
combinatorial problem to match the tesselation of neighbors against
each other.

If we use the centroid of the prism as the apex for creating tetra-
hedra then a prism can be tesselated into eight tetrahedra, as shown
in Figure 10. With this approach the tesselation is no longera global
problem, since the tesselation of each prism side can be chosen in-

algorithm build-surface(Mesh : M)

for each prism p do

for i = 1,2,3 do

if~qi /∈ M then

add ~qi to M
end if

next i
if p not degenerate then

add face ~q1,~q2,~q3 to M
end if

next p
End algorithm

Figure 7: Pseudo code for generating surface mesh for next shell
layer.



Figure 8: Prism tessellated into 3 tetrahedra.

Figure 9: Tessellation of neighboring prisms must be consistent.

dependently of each other.
Both approaches deals nicely with the point-degenerate case.

Since a point-degenerate prism is already a tetrahedron, there is
no need to tesselate it. However, since the point-degenerate case
only have triangular sides, it can never be a direct neighborwith
a non-degenerate prism. It can only be neighbor with other point-
degenerate cases or line-degenerate cases, which have bothrectan-
gular and triangular sides, as shown in Figure 11.

In the following we disregard degeneracies and consider the
three-tetrahdra tesselation strategy. This is because it is more at-
tractive due to the lower tetrahedra count.

A prism can be tesselated into three tetrahedra in 6 different
ways. In order to classify the 6 types of tesselation, we willmark
the rectangular sides of a prism as falling (F) or rising (R). The
edge type depends on wether the tesselation edge is falling or rising
as we travel along the extruded prism face in counter clock wise
order. See Figure 12. We observe that the three-tetrahedra tesse-
lation strategy will always have two prism sides of the same type,
and the last side of opposite type. Thus, we can only have 6 dif-
ferent patterns, as shown in Table 1. The consistency requirement
implies that if one side of a prism is marked asF , then the neigh-
boring prism will have marked the same side asR. In short, no
neighboring prisms will have a side marked with the same type.

A simple tesselation example is shown in Figure 13. Here a tetra-
hedron mesh is being tesselated. The thetrahedron has been cut
up and layed out in 2D. Triangle edges corresponds to rectangular
sides of prisms. Let us apply a brute-force strategy to the combi-

Figure 10: Prism tessellated into eight tetrahedra.

Figure 11: Nice vs. bad line case.
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Figure 12: Classification of prism sides as falling (F) or rising (R).

natorial problem of the tesselation as follows: We start at asingle
prism and choose one of the 6 tesselation types. Then we visitthe
neighboring prisms and choose a tesselation type that agreewith
the immediate neighbor prisms, which have already been tesselated.
This is a breadth first traversal over the prisms.

The method is not fail-safe, since inconsistency can arise,as
shown in Figure 14. Here, the middle prism is the last prism to
be visited by the traversal. Clearly, it is impossible to assign a tes-
selation type to the prism, since all three sides should havethe same
type. We can repair the inconsistency by picking one of the neigh-
boring prisms and flipping the type of its shared edge. This action
will not change the type of any of the edges marked with arrowsin
Figure 14. Therefore, the repairing action do not cause a rippling
effect through the prisms, and inconsistencies are not introduced at
other places.

Fixing inconsistency in this way is attractive, since it offers a
local solution to a global problem. However, sometimes we might
end up in a dead-lock where no local solution can be found, as is
shown in the top of Figure 15.

This time the drawing in the figure resembles a small local view
of a larger mesh. Notice that none of the edges shared with the
inconsistent prism can be flipped, without creating an inconsistent
neighboring prism. The problem is that all the edges marked with
arrows are of the same type.

The solution to the problem is shown in the bottom of Figure 15.
We let the inconsistency ripple as water waves over to neighboring
prisms, in a search for a single prism, where an edge flip does not
give rise to a new inconsistency. When such a prism is encountered,
we track the trajectory of the ripple wave-front back to the originat-
ing inconsistent prism, and flip all shared edges lying on this path.
In Figure 16 we have shown the result of the rippling. Notice that
two edges are flipped. These are the edges lying on the path to the
prism that could be flipped. Also notice that all edges markedwith
arrows are unaffected by the rippling action. This propertyensures
that the rippling action will not cause inconsistencies in any prisms
elsewhere in the mesh.

A pseudo code of the tesselation-pattern-finding algorithmis
shown in Figure 17. Our proposed tesselation pattern algorithm

F R R
R F R
R R F
R F F
F R F
F F R

Table 1: The 6 Four-Tetrahedra Tesselation types.
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Figure 13: Tesselation Example. A simple 3D mesh (a tetrahedron)
have been cut up and layed down in 2D. Triangles correspond to
prisms in the thin shell.
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Figure 14: Inconsistent Tesselation Example. The middle prism
will have the same type on all sides, which is illegal.

is an ad-hoc solution for the problem at hand. We do not have a
formal proof, stating that it is always possible to find a consistent
pattern of rising and falling tesselation edges.

5 Results

We have implemented the extrusion length computation and
tesselation-pattern algorithm. Currently the implementation detects
degenerate prisms, but do not tesselate these.

In our test cases we have chosen 14 meshes of increasing size,
that were all scaled to be within the unit-cube. A single layer shell
were computed, given a user specified maximum extrusion length.
In Table 2, performance statistics are listed, together with polygon
count, extrusion lengths and rippling action information.The tim-
ings for a single layer construction are cheap, and appears to scale
lineary with mesh size. The resulting tetrahedral meshes are visu-
alized in Figure 18. As seen in Table 2, the test-cases: diku,teapot,
propeller, funnel, cow, and bend have a surpringsingly small extru-
sion limit. The remaining test cases show excellent extrusion limits.
Figure 19 shows the prisms corresponding to the minimum extru-
sion limit. Notice that in all cases, where the limit is unexpected
small, the limit is caused by small faces or long slivers on sharp
ridges. Figure 20 shows cut-through views of the cylinder, pointy,
tube, sphere, teapot, funnel, bowl, and torus meshes. Notice how
thin the teapot and funnel are.
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Figure 15: Top picture shows a dead-locked inconsistent tessela-
tion. The bottom picture shows that inconsistency problem have
been propagated to neighboring prisms further away.
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Figure 16: The rippling solution to the dead-locked case shown in
Figure 15.



Figure 18: Tesselation results of the 14 meshes.



Figure 19: Prisms marked with blue have minimum extrusion limit.



Figure 20: Various cut-through views of a few selected meshes, illustrating the thin shell.



algorithm tesselation-pattern()

Queue Q
Push first prism onto Q
While Q not empty do

Prism p = pop(Q)
mark p as visited

if neighbors is not tesselated then

pick random pattern of p

else if exist consistent pattern with neighbors

assign consistent pattern to p

else

if exist neighbor that can be flipped

flip edge type of shared edge with p

assign constent pattern to p

else

perform-rippling

end if

end if

for all unvisited neighbors n of p do

push(Q,n)
next n

End while

End algorithm

Figure 17: Pseudo code for determining tesselation pattern.

6 Discussion

We have omitted the problem of shell layers overlapping fromop-
posite sides. In Figure 20 the problem is seen in the case of the
bowl mesh. Our solution to the problem have been to ignore it.The
user can always choose a smaller maximum extrusion length.

Degenerate prisms were ignored, in the sense that we are ableto
detect if they occur, but our tesselation pattern algorithmis not yet
capable of handling them. No degenerate prisms were generated
for any of the examples in our result section.

The global computation of the extrustion length work fairlywell
for some meshes, but for others a surpingsly small extrusionlength
is found. Long slivers and small faces lying close to sharp ridges are
the reason for this phenemena, as can be seen in Figure 19. Thus,
we conclude that, not surpringsingly, the algorithm is highly depen-
dent on both the shape of the object, but also upon the tesselation of
the object surface. It appears that a good uniform tesselation work
best. Abrubt tesselation with large aspect ratios results in small ex-
trusion lengths. Mesh reconstruction [Nooruddin and Turk 2003]
could be used as a preprocessing step to create a more suitable tes-
selation.

Another avenue for circumventing the problem of a small global
extrusion, might be to investigate the possibililty of having non-
global extrusion lengths, i.e. a varying extrusion length over the
mesh, adapting itself to take the local maximum length without
causing degenerate prisms. We believe this is an interesting thought
an leave it for future work.

Our results indicate that our tesselation pattern algorithm works:
We have not yet encountered an unsolvable problem. We believe
this shows, that the combinatorial problem of finding the tesselation
pattern, is at least solvable in practice. From a theoretical view-
point, a proof of existence would be very interesting, and weleave
this for future work.

7 Conclusion

In this paper we have presented preliminary results, showing that it
is possible to generate a thin shell, without any topological errors.

|F | |R| δ ε time(secs.)
box 12 0 0.1 0.866 0
cylinder 48 0 0.1 0.431 0
pointy 96 0 0.083 0.083 0
diku 288 0 0.004 0.004 0
tube 512 0 0.1 0.174 0.01
sphere 760 0 0.1 0.476 0.01
teapot 1056 1 0.001 0.001 0.01
propeller 1200 2 0.004 0.004 0.02
funnel 1280 1 0.003 0.003 0.029
cow 1500 0 0.001 0.001 0.02
bend 1604 0 0.006 0.006 0.029
bowl 2680 0 0.017 0.017 0.04
torus 3072 0 0.099 0.099 0.059
knot 5760 0 0.1 0.102 0.089

Table 2: Performance Statistics on 14 different test cases.In all
cases the end user requested a shell thickness of 0.1. Theδ -column
shows the actual shell thickness produced. Theε-column shows
the extrusion limit. The|F|-column gives the face count of the
meshes. The|R|-column gives the number of times the ripple action
were invoked. The zero entires in the time column indicates that the
duration were not measureable by the timing method.

As pointed out in the previous section, there are many unsolved
issues to be dealt with.

Our motivation for this work were to create a volumetric mesh
with low tetrahedra count for animation purpose. Due to the early
stage of this work, we have not yet validated whether our approach
is useful for animation.
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