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Abstract

Tetrahedral meshes are often used for simulation of defolerab-
jects. Unlike engineering disciplines graphics is biagseards sta-
ble, robust and fast methods, instead of accuracy. In thit we
present in this paper an approach for building a thin inwéells
of the surface of an object. The goal is to device a simple ast f
algorithm yet capable of building a topologically soundabaedral
mesh. The tetrahedral mesh can be used with several diffgéiren
ulation methods, such as the finite element method (FEM).

The main contribution of this paper is a novel tetrahedratime
generation method, based on surface extrusion and priselaes
tion.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;71.3
[Computer Graphics]: Three-Dimensional Graphics and iRea-
Animation;
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1 Introduction

Twofold

Inward
Extrusion

Tesselating
Prisms

Given a 3D polygonal model created by a 3D artist, it is often a Figyre 1: The basic algorithm for generating a thin tetrafieshell

challenge to create a spatial structure for simulating ardedble
object. Besides, polygonal models for visual pleasingupég tends
to be highly tessellated. Thus, even if they do not pose ampt'’,
creating a tetrahedral mesh directly from the polygonal ehod
tends to create an enormous amount of tetrahedra. To aateialve
time performance, one seeks a more coarse tetrahedral freste
are the kind of problems we aim to solve in this paper.

Given a twofold boundary representation of an object, asa co
nected triangular mesh (a watertight surface), the tethahenesh
is build by extruding each triangle inward, that is in oppedi-
rection of the triangle normal. Thus, for each triangle ampri
is generated. The result is a volumetric mesh consistingoof ¢
nected prisms. These prisms can now be tessellated inahéetra,
thereby creating the first layer of the thin shell tetrahkedrash.
Succeeding layers can be created by recursively applyisga
proach. Figure 1 illustrates the basic idea. Although trexaiVidea
is simple, the approach is not without problems. Polygonadiets
are seldom twofold, but suffers from all kind of degeneraci€he
idea we have illustrated is obviously capable of handlingpan
boundary, but cases where edges share more than two néighbor
faces, or self-loop edges, are clearly unwanted, sinceghergted
prisms will overlap each other or degenerate into a zerarael
prism.

The prism generation is reminiscent of an erosion operatitn
a spherical strutural element (mathematical morphologyje ra-
dius of the sphere corresponds to the extrusion length. iteis
known that working directly on the Brep [Sethian 1999] istfas
and simple, but topological problems arises easily, sucdwasiow
tails.

In case the given triangle mesh is not a proper mesh, one can

apply a mesh reconstruction algorithm [Nooruddin and T@&33.
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from a boundary representation.

We will require the following properties of the prisms madgimp
a thin shell layer

e No two prisms must be intersecting each other (Neighbors are
allowed to touch each other at their common faces).

e No prism must collapse to zero volume or be turned inside out
(equivalent to signed volume is always positive).

e All prisms must be convex

Unfortunately, even if we are given a perfect connected ddof
triangle mesh, we can get into trouble if we make the inwatduex
sion too big. Thisis illustrated in Figure 2. Here, the laeg&rusion
length causes prisnBandC to become non-convex. Furthermore,
A andD, B andD, C andA, andB andC are overlapping. Fortu-
nately, these degenerate and unwanted prisms can be avidided
extrusion were made smaller. Thus, we seek an upper bound on
how far we can extrude the triangle faces inward, withousizay
degenerate prisms.

A publicly available implementation of the described altion
can be found in [OpenTissue 2004].

Existing tetrahedral mesh generation methods create #al,ini
blockified tetrahedral mesh from a voxelization or signestatice
map. Afterwards, nodes are iteratively repositioned, evisilib-
sampling tetrahedra to improve mesh quality [Muller andchmer
2003; Persson and Strang 2004; Molino et al. 2004]. Our &apro
differs mainly from these in being surface-based.



Figure 2: Degenerate prisms results from a too big inwarduext
sion.

2 Inward Extrusion

As a preprocessing step, we compute the pseudo normalsver-al
tices (the angle-weighted normals [Aanges and Baerentzesi)200
These will indicate the direction along which a vertex widl bx-
truded.

Given a triangle consisting of three vertiggés p» and g3, with
angle weighted normal$, i, andris, the inward extruded prism is
defined by the six corner points:

p1

P2

Ps
du(e) = Pr— e
02(&) = P2 — e
ds(€) = Ps —Mize.

The extrusion length is given by > 0. Notation is illustrated in
Figure 3. By requiring to be strictly positive, all generated prisms
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Figure 3: The six corner points defining a prism, and pseude no
mals yielding extrusion directions.

must have non-zero volume, as long as prism is not turnedensi
out. We therefore seek a robust way to determine an upperdboun
on g, such that all generated prisms will be valid.

The direction of the normal of the extruded faidg,can be found
from G1,0», andds, using the cross-product:

fig(€) = (Tz(&) —du(e)) x (da(g) —Ga(€))-

This is a second order polynomial &

fig(€) = (d2(&) — du(€)) x (da(e) —r(€))

(B2 —2€) — (Pr— M1€)) x ((P3 —g€) — (Pr —M1€))
(B2 — Pr) + (M —2) €) x (B3 — P1) + (M —ig) €)
(B2—P1) x (Bs—P1))

g
(P2 — P1) x (M —Mz) + (M —M2) x (B3 — P1)) €+
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B
(M —Fip) x (Mg — Fig)) €2
a
—ae?+be+c

Observe that + 0, since its magnitude is equal to twice the area of
the triangle being extruded.

To ensure convexity, the dot product of the direction of the n
mal of the extruded facély, with the pseudo normalsi, i, and
fi3, must always be positive. That is

fiy-fig(g) >0
Mo -fig(g) >0
fiz-fg(g) > 0.

This yields the following system of constraints,

iy ¢ [e2
.-l | €| >0.
As-cl [1

We solve for the smallest positive fulfilling the system of con-
straints. That is, each row represents the coefficient ofcarge
order polynomial ing, thus for each row we find the two roots of
the corresponding polynomial. The three rows yields a totad
roots. If no positive root exist, them= o, otherwises is set equal
to the smallest positive root.

Observe that the third column of the coefficient matrix isahes
positive (by the property of the angle weighted normals)e Titst
column can be interpreted as an indication of, whether thie co
responding extrusion line is trying to “shrink’<(0) or “enlarge”
(> 0) the extruded face. The middle column is difficult to interp
tate. As far as we can tell it resembles an indication of tleevsless
of the resulting prism.

In fact, the tree convexity constraints ensure that no feighg
prism will intersect each other, nor will the prism turn itside out
(ie. flipping the extruded face opposite the original face).

The maximum extrusion length for the entire layer can be doun
by iterating over each prism. For tiith prism the extrusion length
€' is computed. The maximum extrusion length of the layer istbu

as
€ =min (so,...,s”’l> .

fp-d rp-

rl.a fiy -
fig-d fg-

ololol

Afterwards, it is a simple matter to compute the actual et
and generating the prisms.



3 Prism Generation

The technique in the previous section guarantee that prigiths
be convex, and that no intersections occurs between ndigigbo
prisms. However, degenerate prisms can still occur wherteee
extruded face collapses to a line or to a point. These arersiow
Figure 4. These degenerate cases must be marked, suctetfat th
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Figure 4: Point-degenerate and line-degenerate prisms.

lowing tessellation can take them into consideration. Titublem

is how to detect these degenerate cases. If no upper boured wer

found on the extrusion length for a prism, we can triviallject the
prism. However, if an upper extrusion bound were computee!, t
prism might degenerate. As a first step in marking the degémer
prisms, we iterate over all those prisms where an upper boene
computed. If the computed upper bound for a prism is equéddeo t
extrusion length, then it might be a degenerate prism. Fdn e&
these possible degenerate prisms we first test whether

IFq(e)ll <,

algorithm markDegeneratePrism(g,Y)
for each prism pdo
if eP =€ then
if |[Ag(€)|| < y then
if (Go(e) ~ () 0
or (da(€) — du(€)) # 0 then
mark pPas line-degenerate
else
mark pas point-degenerate
end if
end if
next p
End algorithm

Figure 5: Pseudo code for marking degenerate prisms.
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Figure 6: Degenerate cases affect succeeding layers.

4  Prism Tessellation

For non-degenerate prisms, having 6 corners, the minimunbeu
of tetrahedra we can tesselate the prism into, is 3. Thisda/shin
Figure 8. The problem with this approach is that the extrigidds
of the prism will be triangulated. One therefore has to emsiimat
the tessellation of neighboring prisms agree with eachroffieis
is illustrated in Figure 9. As seen in Figure 9 it becomes &alo
combinatorial problem to match the tesselation of neigblagainst
each other.

If we use the centroid of the prism as the apex for creatingtet
hedra then a prism can be tesselated into eight tetrahexdshpa/n

whereyis a user specified threshold to counter numerical precision jn Figure 10. With this approach the tesselation is no loaggobal

problems. If this criteria is fulfilled, we clearly know thate are
dealing with a degenerate prism.

The degenerate prisms can be classified as either point-
degenerate or line-degenerate, as shown in Figure 4. Thke lin

degenerate case is given by the criteria

(d2(€) —da(g)) #0 or (ds(e) —h(e)) #0.

If this criteria is not fulfilled we have a point-degeneratse. A

pseudo code version of the algorithm is shown in Figure 5. The

degenerate cases do not only influence the prism tessel(atloch
we will treat in the next section). If another thin shell laygto be

generated, then the original mesh faces can no longer be ésed

simple 2D case is shown in Figure 6. Notice that the bold redsa

were used when creating layer 0, but they vanish when layer 1 i

created. Therefore, if another layer should be generatadwa
connected triangular mesh must be formed from the extruaieesf
of the non-degenerate prisms.

problem, since the tesselation of each prism side can besntins

algorithm build-surface(Mesh : M)
for each prism pdo
for i=123do
if Gi ¢ M then
add GitoM
end if
next i
if pnot degenerate then
add face @1,02,03to M
end if
next p
End algorithm

In Figure 7 the surface mesh generation algorithm is shown in Figure 7: Pseudo code for generating surface mesh for nekt sh

pseudo code.

layer.



Figure 8: Prism tessellated into 3 tetrahedra.
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Figure 9: Tessellation of neighboring prisms must be coests
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dependently of each other.

Both approaches deals nicely with the point-degenerate. cas
Since a point-degenerate prism is already a tetrahedrene ks
no need to tesselate it. However, since the point-degeneeste
only have triangular sides, it can never be a direct neighiatr
a non-degenerate prism. It can only be neighbor with otharmtpo
degenerate cases or line-degenerate cases, which havetiath-
gular and triangular sides, as shown in Figure 11.

In the following we disregard degeneracies and consider the
three-tetrahdra tesselation strategy. This is becausenilore at-
tractive due to the lower tetrahedra count.

A prism can be tesselated into three tetrahedra in 6 differen
ways. In order to classify the 6 types of tesselation, we muirk
the rectangular sides of a prism as fallirig) (or rising R). The
edge type depends on wether the tesselation edge is fatlimgjreg
as we travel along the extruded prism face in counter clodewi
order. See Figure 12. We observe that the three-tetrahessa-t
lation strategy will always have two prism sides of the sappet
and the last side of opposite type. Thus, we can only have-6 dif
ferent patterns, as shown in Table 1. The consistency remeint
implies that if one side of a prism is marked Rsthen the neigh-
boring prism will have marked the same sideRasIn short, no
neighboring prisms will have a side marked with the same.type

A simple tesselation example is shown in Figure 13. Herera-tet
hedron mesh is being tesselated. The thetrahedron has been c
up and layed out in 2D. Triangle edges corresponds to reatang
sides of prisms. Let us apply a brute-force strategy to tmabio

Figure 10: Prism tessellated into eight tetrahedra.
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Figure 11: Nice vs. bad line case.

Falling (F) Rising (R)

Falling (F)

Figure 12: Classification of prism sides as falling (F) omas(R).

natorial problem of the tesselation as follows: We start single
prism and choose one of the 6 tesselation types. Then welwsit
neighboring prisms and choose a tesselation type that agtke
the immediate neighbor prisms, which have already beesltss.
This is a breadth first traversal over the prisms.

The method is not fail-safe, since inconsistency can asse,
shown in Figure 14. Here, the middle prism is the last prism to
be visited by the traversal. Clearly, it is impossible togss tes-
selation type to the prism, since all three sides should tr@/eame
type. We can repair the inconsistency by picking one of thigme
boring prisms and flipping the type of its shared edge. Thi®ac
will not change the type of any of the edges marked with arriows
Figure 14. Therefore, the repairing action do not cause dimnigp
effect through the prisms, and inconsistencies are naidoged at
other places.

Fixing inconsistency in this way is attractive, since itevf a
local solution to a global problem. However, sometimes wghti
end up in a dead-lock where no local solution can be founds as i
shown in the top of Figure 15.

This time the drawing in the figure resembles a small locakvie
of a larger mesh. Notice that none of the edges shared with the
inconsistent prism can be flipped, without creating an istiant
neighboring prism. The problem is that all the edges markitid w
arrows are of the same type.

The solution to the problem is shown in the bottom of Figure 15
We let the inconsistency ripple as water waves over to neighd
prisms, in a search for a single prism, where an edge flip does n
give rise to a new inconsistency. When such a prism is eneoenht
we track the trajectory of the ripple wave-front back to thigioat-
ing inconsistent prism, and flip all shared edges lying os gith.

In Figure 16 we have shown the result of the rippling. Notleat t
two edges are flipped. These are the edges lying on the pdte to t
prism that could be flipped. Also notice that all edges maskit
arrows are unaffected by the rippling action. This properigures
that the rippling action will not cause inconsistenciesng prisms
elsewhere in the mesh.

A pseudo code of the tesselation-pattern-finding algoritam
shown in Figure 17. Our proposed tesselation pattern akgori
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Table 1: The 6 Four-Tetrahedra Tesselation types.
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Figure 13: Tesselation Example. A simple 3D mesh (a tetraimgd
have been cut up and layed down in 2D. Triangles correspond to
prisms in the thin shell.
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Figure 14: Inconsistent Tesselation Example. The middienmpr
will have the same type on all sides, which is illegal.
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Figure 15: Top picture shows a dead-locked inconsistesetas
tion. The bottom picture shows that inconsistency probleweh

been propagated to neighboring prisms further away.

is an ad-hoc solution for the problem at hand. We do not have a
formal proof, stating that it is always possible to find a dstent
pattern of rising and falling tesselation edges.

5 Results

We have implemented the extrusion length computation and
tesselation-pattern algorithm. Currently the implemgéotedetects
degenerate prisms, but do not tesselate these.

In our test cases we have chosen 14 meshes of increasing size,
that were all scaled to be within the unit-cube. A single tegkeell
were computed, given a user specified maximum extrusiortheng
In Table 2, performance statistics are listed, togethen witlygon
count, extrusion lengths and rippling action informatidie tim-
ings for a single layer construction are cheap, and appeasale
lineary with mesh size. The resulting tetrahedral meshewiau-
alized in Figure 18. As seen in Table 2, the test-cases: tiapot,
propeller, funnel, cow, and bend have a surpringsingly sexatu-
sion limit. The remaining test cases show excellent extrubiits.
Figure 19 shows the prisms corresponding to the minimurruextr
sion limit. Notice that in all cases, where the limit is unegfed

small, the limit is caused by small faces or long slivers cargh ~ Figure 16
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: The rippling solution to the dead-locked casevshin

ridges. Figure 20 shows cut-through views of the cylindeimty, Figure 15.

tube, sphere, teapot, funnel, bowl, and torus meshes. &bt
thin the teapot and funnel are.
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Figure 18: Tesselation results of the 14 meshes.



Figure 19: Prisms marked with blue have minimum extrusionitli



Figure 20: Various cut-through views of a few selected mesifiastrating the thin shell.



algorithm tesselation-pattern()
Queue Q
Push first prism onto Q
While Qnot empty do
Prism p= pop(Q)
mark pas visited
if neighbors is not tesselated then
pick random pattern of p
else if exist consistent pattern
assign consistent pattern to p
else
if exist neighbor that can be flipped
flip edge type of shared edge with p
assign constent pattern to p
else
perform-rippling
end if
end if
for all unvisited neighbors nof pdo
pushQ,n)
next n
End while
End algorithm

with neighbors

Figure 17: Pseudo code for determining tesselation pattern

6 Discussion

We have omitted the problem of shell layers overlapping faps
posite sides. In Figure 20 the problem is seen in the caseeof th
bowl mesh. Our solution to the problem have been to ignofehie
user can always choose a smaller maximum extrusion length.

Degenerate prisms were ignored, in the sense that we aréoable
detect if they occur, but our tesselation pattern algorithmot yet
capable of handling them. No degenerate prisms were gederat
for any of the examples in our result section.

The global computation of the extrustion length work fairlgil
for some meshes, but for others a surpingsly small extrusiogth
is found. Long slivers and small faces lying close to shatges are
the reason for this phenemena, as can be seen in Figure 18, Thu
we conclude that, not surpringsingly, the algorithm is higtepen-
dent on both the shape of the object, but also upon the t¢tissedd
the object surface. It appears that a good uniform tessalatork
best. Abrubt tesselation with large aspect ratios resulésnall ex-
trusion lengths. Mesh reconstruction [Nooruddin and TWR3
could be used as a preprocessing step to create a more stiisbl
selation.

Another avenue for circumventing the problem of a small glob
extrusion, might be to investigate the possibililty of hayinon-
global extrusion lengths, i.e. a varying extrusion lengterahe
mesh, adapting itself to take the local maximum length witho
causing degenerate prisms. We believe this is an integebtiught
an leave it for future work.

Our results indicate that our tesselation pattern algoritrorks:

We have not yet encountered an unsolvable problem. We keliev
this shows, that the combinatorial problem of finding theétstion
pattern, is at least solvable in practice. From a theoretieav-
point, a proof of existence would be very interesting, andeese
this for future work.

7 Conclusion

In this paper we have presented preliminary results, stoptiiat it
is possible to generate a thin shell, without any topoldgiceors.

[F| |R 4] £ time(secs.)
box 1 0 0.1 0.866 0
cylinder 48 0 0.1 0431 0
pointy 96 0 0.083 0.083 0
diku 288 0 0.004 0.004 0
tube 512 0 0.1 0.174 0.01
sphere 760 0 0.1 0.476 0.01
teapot 1056 1 0.001 0.001 0.01
propeller 1200 2 0.004 0.004 0.02
funnel 1280 1 0.003 0.003 0.029
cow 1500 0 0.001 0.001 0.02
bend 1604 0 0.006 0.006 0.029
bowl 2680 0 0.017 0.017 0.04
torus 3072 0 0.099 0.099 0.059
knot 5760 0 0.1 0.102 0.089

Table 2: Performance Statistics on 14 different test catesll
cases the end user requested a shell thicknes& oT@ed-column
shows the actual shell thickness produced. Frmlumn shows
the extrusion limit. ThegF|-column gives the face count of the
meshes. ThiR|-column gives the number of times the ripple action
were invoked. The zero entires in the time column indicdtasthe
duration were not measureable by the timing method.

As pointed out in the previous section, there are many uesolv
issues to be dealt with.

Our motivation for this work were to create a volumetric mesh
with low tetrahedra count for animation purpose. Due to tudye
stage of this work, we have not yet validated whether ourcgugr
is useful for animation.
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