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Abstract
In rigid body simulation contact graphs are used detecting contact groups. Contact graphs provide an
efficient underlying data structure for keeping information about the entire configuration and in this
paper we extend their usage to a new collision detection phase termed “Spatial-Temporal Coherence
Analysis”. This paper will review contact graphs and demonstrate the performance impact in a
typical constraint based multibody simulator.
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Introduction
Historically contact graphs are used for splitting ob-
jects into disjoint groups that can be simulated inde-
pendently. Contact graphs are frequently mentioned
between people working with rigid body simulation,
but they are often not formally described in the liter-
ature. In [1] the idea of using contact groups to break
down contact force computations is mentioned. The
benefit is obvious and not many people would spend
time on explaining it. To our knowledge the first
use of the word “graph” appears in [2], where a con-
tact graph is used to properly back-up penetrating
objects. In our opinion [3] is the first advanced at-
tempt on using contact groups for distributed simu-
lation. Recently [4] developed a shock propagation
algorithm for efficient handling of stacked objects,
which uses a contact graph. Today simulators do ex-
ploit contact groups for breaking down the computa-
tions into smaller independent problems as in Open
Dynamics Engine (ODE) (v0.035), however they do
not store a graph data structure.
Alternatives to contact graphs are not very surpris-
ingly neither mentioned or talked about. An alterna-
tive is to put the contact-matrix into block-form [5].
In comparison with the contact graph approach the
“block-form” matrix approach is limited to contact
force and collision impulse computations and can
not be used for anything else.
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The contact graph algorithm we present in this pa-
per is part of the Spatial-Temporal Coherence (STC)
analysis module. The algorithm clearly shows that
STC analysis is scattered around the other phases
in the collision detection engine. We use con-
tact graphs for caching information, such as contact
points. The cached information can be used for to
improve run time performance of a rigid body simu-
lator. Several speedup methods are presented, these
fall into two categories, the first is real speed-ups
due to improvements of simulation algorithms, the
second is due to changes of the properties of the me-
chanical system, which alters the physical system,
but still produces plausible results. Our main fo-
cus is computer animation and not accurate physical
simulation.

The Contact Graph
A contact graph consists of a set of nodes, a node is
an entity in the configuration, such as a rigid body or
a fixed body. A node can also be a virtual entity, such
as a trigger volume, generating an event notification
when other objects penetrates it.
When objects interact with each other, contact infor-
mation are computed and cached, it is easy to use
the edges in the contact graph for storing informa-
tion of interactions between objects. Edges are also
useful for keeping structural and proximity informa-
tion about objects.
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The most important thing is that both nodes and
edges should be accessible in constant time and
edges are bidirectional and uniquely determined by
the two nodes they run between.
These properties can be obtained by letting every en-
tity in the configuration have an unique index, and
letting edges refer to these indices, such that the
smallest indexed entity is always known asA and
the other asB.
An edge between a physical object and a trigger vol-
ume indicates that the physical object has moved
inside the trigger volume. This kind of edges can
therefore be used to generate trigger volume event
notifications. This type of edge is a dynamic edge,
meaning that it is inserted and removed dynamically
by the collision detection engine during the simula-
tion.
The last type of edges we can encounter are those
which tell us something about how the objects in the
configuration currently interact with each other. For
instance if two rigid bodies come into contact then
an edge is created between them. There are some
combinations of edges which do not make sense. For
instance an edge between two fixed bodies.
More node types and edge types are described in [6].

The Contact Graph Algorithm
We will now outline how a contact graph can be used
in the collision detection pipeline. Notice that al-
though we claim a contact graph to be a higher or-
der contact analysis phase it is not a phase that is
isolated to a single place in the pipeline, instead it
is spread out around all the other phases, i.e. in be-
tween the broad phase module responsible for find-
ing close object pairs, the narrow phase module that
determines overlap status for an object pair, and the
contact determination module that computes all con-
tact points between an object pair. In the following
we will walk through what happens in the collision
detection pipeline step by step.
The first step in our algorithm is to update the edges
in the contact graph. This is done by looking at the
results of the broad phase collision detection algo-
rithm. The results of the broad phase collision detec-
tion algorithm are really an unsorted list of pairs of
nodes, where each pair denotes a detected overlap in
the broad phase algorithm. Observe that each pair is
equivalent to a contact graph edge. We can therefore

insert new edges into the contact graph, which we
have not seen before. At the same time we can han-
dle all close proximity information, that is detection
of vanished, persistent and new close proximity con-
tacts. This is done by comparing the state of edges
with their old state.

Now we can do logical testing and exploit caching,
by scanning through all the reported overlaps and
remove those overlaps we do not have or want to
treat any further.

Overlaps with passive objects are also removed, pas-
sive objects do not really exist in the configura-
tion, they are merely objects kept in memory in
case they should be turned active later on. This
way objects can be preallocated and further more
there is no penalty in reallocating objects that dy-
namically enter and leave the configuration during
runtime. We refer to the passive/active scheme as
light weighted objects. The opposite is called heavy
weighted objects and it means objects are explicitly
deallocated and reallocated whenever they are added
or removed from the configuration. One drawback
of light weighted objects is that there is a penalty in
the broad phase collision detection algorithm. For-
tunately broad phase collision detection algorithms
should have linear running time with very low con-
stants, so the penalty is negligible.

The last screening test is for change in relative place-
ment. Every edge stores a transform,x f orm(·), indi-
cating the relative placement of the end node objects.
If the transform is unchanged there is no need to run
narrow phase collision detection nor contact deter-
mination, because these algorithms would return the
exact same results as in the previous iteration.

We are now ready for doing narrow phase collision
detection and contact determination on the remain-
ing overlaps. Output from these sort of algorithms
are typical a set of feature pairs forming principal
contacts,PCs and a penetration state. The contact
graph edges provide a good place for storing this
kind of information. The output of the narrow phase
should of course also be cached in the edge, because
most narrow phase collision detection algorithms
reuse their results from the previous iteration to ob-
tain constant time algorithms. Notice that the closest
principal contact is also determined, closest contacts
are often used in impulse based simulation or time of
impact estimation computations. We do also test for
any contact state changes, that is if touching or pen-

308

SIMS 45

Proceedings of SIMS 2004
Copenhagen, Denmark, September 23–24, 2004

www.scansims.org



etrating contacts vanishes or are persistent, that is if
they were present in the last iteration. If one of the
nodes were a trigger volume then we do not mark
touching contact, but ratherin- and out- events of
the trigger volume, the same applies to the marking
that took place earlier on.
Finally we can run the contact determination for all
those edges where their end node objects are not sep-
arated.
In an impulse based simulator it is often not neces-
sary to do a full contact determination only the clos-
est points are actual needed [7], so an end user might
want to turn of contact determination completely.
Also contact determination should be skipped on
nodes representing things like trigger volumes, such
entities are merely used for event notification, so
there is no need for contact determination.
Now we have completed exploiting all of the log-
ical and caching benefits we can gain from a con-
tact graph. We are now ready for using the contact
graph for its intended purpose, determining contact
groups. The actual contact groups are found by a
traditional connected components search algorithm,
restricted to the union of the list of edges having
survived the logical and coherence testing as de-
scribed earlier and the structural edges. The algo-
rithm works by first marking all edges that should be
traversed as “white”. Afterwards edges are treated
one by one until no more white edges exist.
Fixed objects are rather special, they behave like
they have infinite mass, so they can support any
number of bodies without ever getting affected
themselves. They work like an insulator, which is
why we ignore edges from these nodes when we
search for contact groups.

The Event Handling
In the method we have described in this paper we
have not really explicitly stated when events get
propagated back to an end user. Instead we have
very clearly shown when and how the events should
be detected. We can traverse the edges of the graph,
and simply generate the respective event notifica-
tions for all those edges that have been marked with
an event.
There is one major subtlety to event handling, some
simulators are based on backtracking algorithms,
meaning they keep on running forward until things
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Figure 1: Spatial-Temporal Coherence Analysis
Module.

go wrong, then they backtrack correct things and
tries to go forward again. This could many times.
The consequences being that we might detect events
which really never occurs.
The problem of backtracking can be handled in two
ways, in the first solution events can be queued dur-
ing the simulation together with a time stamp indi-
cating the simulation time at which they were de-
tected. Upon backtracking one simply dequeues all
events with a time stamp greater than the time the
simulator backtracks to.
In the second solution events are restricted to only
be generated when it is “safe”, that means whenever
a backtrack can not occur or on completion of the
frame computation. We favor the second solution,
the reason for this is that events are most likely to
be used in a gaming context, where a backtracking
algorithm is unlikely.

The STC-Analysis Module
Having outlined how the contact graph should be
used in the collision detection pipeline we can
schematically sketch the STC analysis module to-
gether with the other modules in the collision de-
tection engine. Figure 1 illustrates the interac-
tion between the modules. From Figure 1 we see
that the STC analysis occurs in three phases, post-
broad-phase, post-narrow-phase and post-contact-
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determination. We do not need a pre-broad-phase in
the STC analysis at this point, but if any initializa-
tion is supposed to take place then a pre-broad-phase
analysis would be a good place for doing this.
In our opinion there are basically three different
ways to exploit the contact groups in rigid body sim-
ulation. We will briefly talk about them in the fol-
lowing.
Time warping: Traditionally one would backtrack
the entire configuration when an illegal state is
found, such as a penetration of two objects. This is
inefficient since there may be a lot of objects whos
motion are completely independent of the two pene-
trating objects. Contact groups could be used to only
backtrack those contact groups with penetrating ob-
jects see [3] for more details.
Subdivision of Contact Force Computation:
Constraint-based methods for computing contact
forces are oftenNP-hard, so it is intractable to have
large problems, however the contact forces needed
in one contact group is totally independent of all the
other contact groups. The essence is basically why
solve one big problem, when you can solve several
smaller problems instead see [1].
Caching Contact Forces: If contact forces from the
previous iteration of contact force computations are
cached in the contact graph edges then these forces
can be used as initial guess for the contact force
computation in the current iteration as described
in [8].

Results
We will elaborate on several speedup methods that
relies on or relates to contact graphs. The speedup
methods are generally applicable to any kind of rigid
body simulator. In order to show the effects we have
chosen to extend our own multibody simulator, a ve-
locity based complementarity formulation [9] using
distance fields for collision detection, with the speed
ups. Example code is available from the OpenTissue
Project.
In this paper we will focus on performance speedup
only. For this reason we have chosen a semi-implicit
fixed time stepping scheme with a rather large time-
step, 0.01 second.
Using distance fields for collision detection have one
major drawback, when objects are deeply penetrat-
ing, a large number of contact points will be gener-

Figure 2: 120 Falling Spheres onto inclined plane
with engravings.

ated, the consequence will be a performance degra-
dation due to the large number of variables. Perfor-
mance improvements are therefore particular impor-
tant even though real-time simulation is out of our
grasp.
We have done several performance measurements
and statistics on 120 spheres falling onto an inclined
plane with engravings. The configuration is shown
in Figure 2. The total duration of the simulation is
10 seconds. In Figure 3 measurements of the brute
force method is shown, i.e. without using contact
graph. Observe that the number of variables and
real-life time per iteration are increasing until the
point where the spheres settle down to rest. In com-
parison Figure 4 shows how the curves from Fig-
ure 3 changes when a contact graph is used. Notice
that the number of variables per contact group is
much smaller than in the brute force method also
observe the impact on the real-life duration curves.
The total running time of the brute force method
is 28424 sec. Using a contact graph the simula-
tion takes 1011.4 sec., which is a speedup factor
of roughly 28. In the following we will explain 7
more speed up methods that further increases per-
formance.
Using contact graphs an improvement comes from
ignoring contact groups where all objects are at rest,
we call such objects sleepy objects, and we deter-
mine them by tracking their kinetic energy, when-
ever we find an object who’s kinetic energy have
been zero within threshold over some constant num-
ber of iterations, which is user specified, the object
is flagged as sleepy. If a contact group only con-
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Figure 3: Performance of the brute force method.

tains sleepy objects the group is completely ignored
during simulation. Contact graph nodes are used for
the kinetic energy tracking. This method is compu-
tationally inexpensive, it have been used in all of the
measurements in Table 1. The method could have
a potentially disastrous effect if the scheme for tag-
ging sleepy objects is not well-picked. Too greedy
an approach could leave objects hanging in the air,
too lazy an approach would result in no performance
improvement.

We exploit contact graph edges for caching contact
points and contact forces. Cached contact points are
used to skip narrow phase and contact determination
whenever two incident objects of a contact edge are
at absolute rest, cached contact forces are used to
seed the iterative LCP solver, Path from CPNET. We
call this speed up “caching”.

A further speed up can be obtained by limiting the
number of iteration of the LCP solver, currently
from 500 to 15, as a consequence the motion is al-
tered but still looks plausible. The method has noth-
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Figure 4: The performance impact of using a contact
graph.
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ing to do with contact graphs, but it is interesting in
combination with the other speed ups we apply. We
refer to this speed up as “tweaking”.

Another speed-up we use is to reduce the number of
contacts between two objects in contact, the reduc-
tion is applied to objects that are deeply penetrating,
all contacts are pruned except the single contact of
deepest penetration. The contact graph edges are a
convenient storage for this. We have named this “re-
duction”. Reduction have an effect on the motion of
the objects, we believe that it is actually more cor-
rect, because intuitively the deepest point of penetra-
tion better resembles the original idea behind using
the minimum translational distance as a separation
measure. Besides theoretically reduction should de-
crease the number of variables used in the comple-
mentarity formulation.

Inspired by the speed up of detecting independent
contact groups, further subdivision into independent
groups seems attractive. An idea is to prune away
sleepy objects from those contact groups containing
both non-sleepy and sleepy objects, thereby hope-
fully breaking these into subgroups. We refer to this
as “subgrouping”. Other subgrouping/sleepy object
schemes can be found in [5, 10]. To help objects
settle down and become sleepy faster it intuitively
seems to be a good idea to let the coefficient of resti-
tution fall to zero the more sleepy an object gets,
meaning that sleepy objects are sticky objects. Cur-
rently we set the coefficient of restitution to zero
whenever at least one of the incident objects are
sleepy. We call this “zeroing”. In the same spirit
a linear viscous damping term is added to the mo-
tion of all objects in the simulation, the intention is
to slow down objects making them less willing to
become non-sleepy. We call this heuristic “damp-
ing”. The contact graph is used for the subgrouping
and zeroing by classifying edges dependent on the
sleepy-state of the incident objects.

The last method we have applied consist of setting
the inverse mass and inertia tensor to zero for all
sleepy objects. The main intuition behind this is
to “force” sleepy objects to stay sleepy. We have
named this “fixation”. It has a dramatic impact on
the simulation as seen form the♠-simulation in Fig-
ure 5. Fixation makes only sense when subgrouping
is used otherwise the LCP solver will have to solve
contacts between two fixated objects.

Table 1 contains performance measurements of most

Cache Tweak Reduce Zero Damp Subgroup Fixate Time
♦ + - + - - - - 624.274
♥ - + - - + - - 528.633
♣ + - - - + + - 460.561
♠ + + + - + + + 134.721

Table 1: Comparison of various combinations of
speed-up methods. “+” means enabled, “-” means
disabled. More combinations can be found in[6].

promising combinations of the previously described
heuristics and speedup methods.
Figure 5 shows motion results of the two combina-
tions: ♦ and♠. Here♦ is identical to the brute-
force method. These four combinations:♦, ♥, ♣,
and♠ were picked because they resembles the best
performance. It should be noted the motion diverges
more and more from the brute force method the
more speed ups that are used. Especially♠ is dif-
ferent, during the last seconds objects actually fly up
in the air. Animations of the♦, ♥, ♣, and♠ sim-
ulations are available from corresponding authors
homage. In Figure 6 a comparison is done between
the performance statistics of♣, and♠. The♦ and♥
behave similar to♣ as can be seen in [6]. The plots
of ♣ are similar to Figure 4. The♠, has very differ-
ent plots for the real-life duration and variables per
group plots, these appear to be nearly asymptotically
constant.

Discussion
It is obvious from Table 1 that the prober combi-
nation of the speed ups is capable of producing a
speed up factor of28424

135 ≈ 210. It is difficult to de-
scribe the impact on the resulting motion, however
it is clear that using Contact Graphs, Caching Con-
tact Forces and Sleepy Groups do not alter the me-
chanical system, but the other speed ups presented
change the physical properties and thus the motion
of the objects as can be seen in Figure 5. Especially
the reduction and the subgrouping also with zeroing
and fixation have great impact on the motion.
The tagging of sleepy objects can have a drastic im-
pact on the simulation. As an side effect objects are
sometimes left hanging. For instance in Figure 7
spheres land on top of each other, while the top-most
spheres rumbles off, the bottom-most sphere is kept
in place and prohibited from gaining kinetic energy,
at the end of the simulation a single hanging sleepy
sphere can be seen near the K-letter. We have to be
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(a) ♦

(b) ♠

Figure 5: Motion Results at time 9.20 seconds for♦

and♠.

careful not making general conclusions based on the
measurements in this paper, since only one configu-
ration have been examined.

We can say as much as contact graphs are a valuable
extension to a rigid body simulator, even when not
trading accuracy for performance speed up factor of
order 20-30 is not unlikely, disregarding accuracy
the speed up factor can be increased further by an
order of magnitude.

Better performance is not always achieved by using
more speed ups, in some cases one speed up can-
cels the effect of another. For instance using caching
seems to make tweaking needles. Also speed ups
can alter the motion. Thirdly our experiments indi-
cate that high-performance can be achieved by com-
bining subgrouping and fixation, however from the
motion results it also clear this is a non-trivial task
to embark upon.
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Figure 6: Performance measurements of♣, and♠
from Table 1.
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Figure 7: Figure showing hanging sphere near K-
letter. Frame grab after 9.87 sec. using zeroing,
damping, subgrouping and fixation.

Our numerical experiments clearly indicates that
sleepy objects are a promising strategy, it seems
promising to look into better methods for more
quickly making objects sleepy and stay sleepy. For
instance to pre-process the complementarity formu-
lation with a sequential collision method truncat-
ing impulses, this was used for a sequential impulse
based method in [4].
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